1
|
Adeva-Andany MM, Carneiro-Freire N, Castro-Quintela E, Ameneiros-Rodriguez E, Adeva-Contreras L, Fernandez-Fernandez C. Interferon Upregulation Associates with Insulin Resistance in Humans. Curr Diabetes Rev 2025; 21:86-105. [PMID: 38500280 DOI: 10.2174/0115733998294022240309105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
In humans, insulin resistance is a physiological response to infections developed to supply sufficient energy to the activated immune system. This metabolic adaptation facilitates the immune response but usually persists after the recovery period of the infection and predisposes the hosts to type 2 diabetes and vascular injury. In patients with diabetes, superimposed insulin resistance worsens metabolic control and promotes diabetic ketoacidosis. Pathogenic mechanisms underlying insulin resistance during microbial invasions remain to be fully defined. However, interferons cause insulin resistance in healthy subjects and other population groups, and their production is increased during infections, suggesting that this group of molecules may contribute to reduced insulin sensitivity. In agreement with this notion, gene expression profiles (transcriptomes) from patients with insulin resistance show a robust overexpression of interferon- stimulated genes (interferon signature). In addition, serum levels of interferon and surrogates for interferon activity are elevated in patients with insulin resistance. Circulating levels of interferon- γ-inducible protein-10, neopterin, and apolipoprotein L1 correlate with insulin resistance manifestations, such as hypertriglyceridemia, reduced HDL-c, visceral fat, and homeostasis model assessment-insulin resistance. Furthermore, interferon downregulation improves insulin resistance. Antimalarials such as hydroxychloroquine reduce interferon production and improve insulin resistance, reducing the risk for type 2 diabetes and cardiovascular disease. In addition, diverse clinical conditions that feature interferon upregulation are associated with insulin resistance, suggesting that interferon may be a common factor promoting this adaptive response. Among these conditions are systemic lupus erythematosus, sarcoidosis, and infections with severe acute respiratory syndrome-coronavirus-2, human immunodeficiency virus, hepatitis C virus, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Maria M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Elvira Castro-Quintela
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Eva Ameneiros-Rodriguez
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | |
Collapse
|
2
|
Gan L, Jiang Q, Huang D, Wu X, Zhu X, Wang L, Xie W, Huang J, Fan R, Jing Y, Tang G, Li XD, Guo J, Yin S. A natural small molecule alleviates liver fibrosis by targeting apolipoprotein L2. Nat Chem Biol 2025; 21:80-90. [PMID: 39103634 DOI: 10.1038/s41589-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Liver fibrosis is an urgent clinical problem without effective therapies. Here we conducted a high-content screening on a natural Euphorbiaceae diterpenoid library to identify a potent anti-liver fibrosis lead, 12-deoxyphorbol 13-palmitate (DP). Leveraging a photo-affinity labeling approach, apolipoprotein L2 (APOL2), an endoplasmic reticulum (ER)-rich protein, was identified as the direct target of DP. Mechanistically, APOL2 is induced in activated hepatic stellate cells upon transforming growth factor-β1 (TGF-β1) stimulation, which then binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) to trigger ER stress and elevate its downstream protein kinase R-like ER kinase (PERK)-hairy and enhancer of split 1 (HES1) axis, ultimately promoting liver fibrosis. As a result, targeting APOL2 by DP or ablation of APOL2 significantly impairs APOL2-SERCA2-PERK-HES1 signaling and mitigates fibrosis progression. Our findings not only define APOL2 as a novel therapeutic target for liver fibrosis but also highlight DP as a promising lead for treatment of this symptom.
Collapse
Affiliation(s)
- Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialuo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runzhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Guihua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang David Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
3
|
Ray PE, Li J, Das J, Xu L, Yu J, Han Z. Pathogenesis of HIV-associated nephropathy in children and adolescents: taking a hard look 40 years later in the era of gene-environment interactions. Am J Physiol Renal Physiol 2024; 327:F1049-F1066. [PMID: 39323389 DOI: 10.1152/ajprenal.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
HIV-associated nephropathy (HIVAN) is a kidney disease that affects mainly people of African ancestry with a high HIV-1 viral load. New antiretroviral therapies (ART) have been highly efficient in preventing and improving the outcome of HIVAN. However, providing chronic ART to children and adolescents living with HIV (CALWH) remains a significant challenge all over the world. More than 2.5 million CALWH, including those living in Sub-Saharan Africa, continue to be at high risk of developing HIVAN. Much of our understanding of the pathogenesis of HIVAN is based on studies conducted in transgenic mice and adults with HIVAN. However, CALWH may experience different health outcomes, risk factors, and susceptibilities to HIVAN in comparison to adults. This article reviews the progress made over the last 40 years in understanding the pathogenesis of HIVAN in CALWH, focusing on how the HIV virus, alongside genetic and environmental factors, contributes to the development of this disease. The landmark discovery that two risk alleles of the apolipoprotein-1 (APOL1) gene play a critical role in HIVAN has significantly advanced our understanding of the disease's pathogenesis. However, we still need to understand why renal inflammation persists despite ART and determine whether the kidney may harbor HIV reservoirs that need to be eliminated to cure HIV permanently. For these reasons, we emphasize reviewing how HIV-1 infects renal cells, affects their growth and regeneration, and discussing how inflammatory cytokines and APOL1 affect the outcome of childhood HIVAN.
Collapse
Affiliation(s)
- Patricio E Ray
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jinliang Li
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jharna Das
- Children's National Hospital, Washington, District of Columbia, United States
| | - Lian Xu
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jing Yu
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteomics Analysis on the Effects of Oxidative Stress and Antioxidants on Proteins Involved in Sterol Transport and Metabolism in Human Telomerase Transcriptase-Overexpressing-Retinal Pigment Epithelium Cells. Int J Mol Sci 2024; 25:10893. [PMID: 39456672 PMCID: PMC11507349 DOI: 10.3390/ijms252010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent ocular disease in the elderly, resulting in blindness. Oxidative stress plays a role in retinal pigment epithelium (RPE) pathology observed in AMD. Tocopherols are potent antioxidants that prevent cellular oxidative damage and have been shown to upregulate the expression of cellular antioxidant proteins. Here, we determined whether oxidative stress and tocopherols, using either normal cellular conditions or conditions of sublethal cellular oxidative stress, alter the expression of proteins mediating sterol uptake, transport, and metabolism. Human telomerase transcriptase-overexpressing RPE cells (hTERT-RPE) were used to identify differential expression of proteins resulting from treatments. We utilized a proteomics strategy to identify protein expression changes in treated cells. After the identification and organization of data, we divided the identified proteins into groups related to biological function: cellular sterol uptake, sterol transport and sterol metabolism. Exposure of cells to conditions of oxidative stress and exposure to tocopherols led to similar protein expression changes within these three groups, suggesting that α-tocopherol (αT) and γ-tocopherol (γT) can regulate the expression of sterol uptake, transport and metabolic proteins in RPE cells. These data suggest that proteins involved in sterol transport and metabolism may be important for RPE adaptation to oxidative stress, and these proteins represent potential therapeutic targets.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA (C.W.H.)
- Department of Biomedical Sciences, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| |
Collapse
|
5
|
Yoshida T, Latt KZ, Santo BA, Shrivastav S, Zhao Y, Fenaroli P, Chung JY, Hewitt SM, Tutino VM, Sarder P, Rosenberg AZ, Winkler CA, Kopp JB. Single-Cell Transcriptional Signatures of Glomerular Disease in Transgenic Mice with APOL1 Variants. J Am Soc Nephrol 2024; 35:1058-1075. [PMID: 38709562 PMCID: PMC11377807 DOI: 10.1681/asn.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Key Points Apolipoprotein L1 (APOL1)-G1 induced kidney disease in the two APOL1 transgenic mouse models, HIV-associated nephropathy and IFN-γ administration. Glomerular single-nuclear RNA-sequencing identified genes differentially expressed among mice with APOL1-G1 and G0 variants at single-cell resolution. Background Apolipoprotein L1 (APOL1 ) high-risk variants contribute to kidney disease among individuals with African ancestry. We sought to describe cell-specific APOL1 variant–induced pathways using two mouse models. Methods We characterized bacterial artificial chromosome/APOL1 transgenic mice crossed with HIV-associated nephropathy (HIVAN) Tg26 mice and bacterial artificial chromosome/APOL1 transgenic mice given IFN-γ . Results Both mouse models showed more severe glomerular disease in APOL1-G1 compared with APOL1-G0 mice. Synergistic podocyte-damaging pathways activated by APOL1-G1 and by the HIV transgene were identified by glomerular bulk RNA sequencing (RNA-seq) of HIVAN model. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially expressed genes as a function of APOL1 alleles. Shared activated pathways, for example, mammalian target of rapamycin, and differentially expressed genes, for example, Ccn2 , in podocytes in both models suggest novel markers of APOL1-associated kidney disease. HIVAN mouse-model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis glomerular RNA-seq data. Differential effects of the APOL1 -G1 variant on the eukaryotic initiation factor 2 pathway highlighted differences between the two models. Conclusions These findings in two mouse models demonstrated both shared and distinct cell type–specific transcriptomic signatures induced by APOL1 variants. These findings suggest novel therapeutic opportunities for APOL1 glomerulopathies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, Maryland
| | - Paride Fenaroli
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- S.C. Nefrologia e Dialisi, AUSL-IRCCS, Reggio Emilia, Italy
| | | | | | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York
- College of Medicine, University of Florida, Gainesville, Florida
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Cheryl A. Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, Maryland
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Tabachnikov O, Skorecki K, Kruzel-Davila E. APOL1 nephropathy - a population genetics success story. Curr Opin Nephrol Hypertens 2024; 33:447-455. [PMID: 38415700 PMCID: PMC11139250 DOI: 10.1097/mnh.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW More than a decade ago, apolipoprotein L1 ( APOL1 ) risk alleles designated G1 and G2, were discovered to be causally associated with markedly increased risk for progressive kidney disease in individuals of recent African ancestry. Gratifying progress has been made during the intervening years, extending to the development and clinical testing of genomically precise small molecule therapy accompanied by emergence of RNA medicine platforms and clinical testing within just over a decade. RECENT FINDINGS Given the plethora of excellent prior review articles, we will focus on new findings regarding unresolved questions relating mechanism of cell injury with mode of inheritance, regulation and modulation of APOL1 activity, modifiers and triggers for APOL1 kidney risk penetrance, the pleiotropic spectrum of APOL1 related disease beyond the kidney - all within the context of relevance to therapeutic advances. SUMMARY Notwithstanding remaining controversies and uncertainties, promising genomically precise therapies targeted at APOL1 mRNA using antisense oligonucleotides (ASO), inhibitors of APOL1 expression, and small molecules that specifically bind and inhibit APOL1 cation flux are emerging, many already at the clinical trial stage. These therapies hold great promise for mitigating APOL1 kidney injury and possibly other systemic phenotypes as well. A challenge will be to develop guidelines for appropriate use in susceptible individuals who will derive the greatest benefit.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Nephrology, Rambam Healthcare Campus, Haifa, Israel
| | - Karl Skorecki
- Department of Nephrology, Rambam Healthcare Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Etty Kruzel-Davila
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Nephrology, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
7
|
Juliar BA, Stanaway IB, Sano F, Fu H, Smith KD, Akilesh S, Scales SJ, El Saghir J, Bhatraju PK, Liu E, Yang J, Lin J, Eddy S, Kretzler M, Zheng Y, Himmelfarb J, Harder JL, Freedman BS. Interferon-γ induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease. Cell Rep 2024; 43:114310. [PMID: 38838223 PMCID: PMC11216883 DOI: 10.1016/j.celrep.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.
Collapse
Affiliation(s)
- Benjamin A Juliar
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ian B Stanaway
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Fumika Sano
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Hematology, Department of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Bloodworks Northwest Research Institute, Seattle, WA 98102, USA; Plurexa, Seattle, WA 98109, USA
| | - Kelly D Smith
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Suzie J Scales
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavan K Bhatraju
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Esther Liu
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Johnson Yang
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ying Zheng
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Benjamin S Freedman
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Le LNH, Choi C, Han JA, Kim EB, Trinh VN, Kim YJ, Ryu S. Apolipoprotein L1 is a tumor suppressor in clear cell renal cell carcinoma metastasis. Front Oncol 2024; 14:1371934. [PMID: 38680858 PMCID: PMC11045967 DOI: 10.3389/fonc.2024.1371934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The 5-year survival rate of kidney cancer drops dramatically from 93% to 15% when it is metastatic. Metastasis constitutes for 30% of kidney cancer cases, in which clear cell renal cell carcinoma (ccRCC) is the most prominent subtype. By sequencing mRNA of ccRCC patient samples, we found that apolipoprotein L1 (APOL1) was highly expressed in tumors compared to their adjacent normal tissues. This gene has been previously identified in a large body of kidney disease research and was reported as a potential prognosis marker in many types of cancers. However, the molecular function of APOL1 in ccRCC, especially in metastasis, remained unknown. In this study, we modulated the expression of APOL1 in various renal cancer cell lines and analyzed their proliferative, migratory, and invasive properties. Strikingly, APOL1 overexpression suppressed ccRCC metastasis both in vitro and in vivo. We then explored the mechanism by which APOL1 alleviated ccRCC malignant progression by investigating its downstream pathways. APOL1 overexpression diminished the activity of focal adhesive molecules, Akt signaling pathways, and EMT processes. Furthermore, in the upstream, we discovered that miR-30a-3p could inhibit APOL1 expression. In conclusion, our study revealed that APOL1 play a role as a tumor suppressor in ccRCC and inhibit metastasis, which may provide novel potential therapeutic approaches for ccRCC patients.
Collapse
Affiliation(s)
- Linh Nguy-Hoang Le
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Cheolwon Choi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-A. Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Eun-Bit Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Van Ngu Trinh
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yong-June Kim
- Department of Urology, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
9
|
Gupta N, Waas B, Austin D, De Mazière AM, Kujala P, Stockwell AD, Li T, Yaspan BL, Klumperman J, Scales SJ. Apolipoprotein L1 (APOL1) renal risk variant-mediated podocyte cytotoxicity depends on African haplotype and surface expression. Sci Rep 2024; 14:3765. [PMID: 38355600 PMCID: PMC10866943 DOI: 10.1038/s41598-024-53298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Homozygous Apolipoprotein L1 (APOL1) variants G1 and G2 cause APOL1-mediated kidney disease, purportedly acting as surface cation channels in podocytes. APOL1-G0 exhibits various single nucleotide polymorphisms, most commonly haplotype E150K, M228I and R255K ("KIK"; the Reference Sequence is "EMR"), whereas variants G1 and G2 are mostly found in a single "African" haplotype background ("EIK"). Several labs reported cytotoxicity with risk variants G1 and G2 in KIK or EIK background haplotypes, but used HEK-293 cells and did not verify equal surface expression. To see if haplotype matters in a more relevant cell type, we induced APOL1-G0, G1 and G2 EIK, KIK and EMR at comparable surface levels in immortalized podocytes. G1 and G2 risk variants (but not G0) caused dose-dependent podocyte death within 48h only in their native African EIK haplotype and correlated with K+ conductance (thallium FLIPR). We ruled out differences in localization and trafficking, except for possibly greater surface clustering of cytotoxic haplotypes. APOL1 surface expression was required, since Brefeldin A rescued cytotoxicity; and cytoplasmic isoforms vB3 and vC were not cytotoxic. Thus, APOL1-EIK risk variants kill podocytes in a dose and haplotype-dependent manner (as in HEK-293 cells), whereas unlike in HEK-293 cells the KIK risk variants did not.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Discovery Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Bridget Waas
- Department of Discovery Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Austin
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ann M De Mazière
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pekka Kujala
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Amy D Stockwell
- Department of Human Genetics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzie J Scales
- Department of Discovery Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Datta S, Antonio BM, Zahler NH, Theile JW, Krafte D, Zhang H, Rosenberg PB, Chaves AB, Muoio DM, Zhang G, Silas D, Li G, Soldano K, Nystrom S, Ferreira D, Miller SE, Bain JR, Muehlbauer MJ, Ilkayeva O, Becker TC, Hohmeier HE, Newgard CB, Olabisi OA. APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease. J Clin Invest 2024; 134:e172262. [PMID: 38227370 PMCID: PMC10904047 DOI: 10.1172/jci172262] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Somenath Datta
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | | | | | | | | | - Hengtao Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul B. Rosenberg
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alec B. Chaves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Guofang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Guojie Li
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Karen Soldano
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Sarah Nystrom
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - James R. Bain
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas C. Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hans-Ewald Hohmeier
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Opeyemi A. Olabisi
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| |
Collapse
|
11
|
Vasquez-Rios G, De Cos M, Campbell KN. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int Rep 2023; 8:2226-2234. [PMID: 38025220 PMCID: PMC10658239 DOI: 10.1016/j.ekir.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk variants confer an increased risk for the development and progression of kidney disease among individuals of recent African ancestry. Over the past several years, significant progress has been made in understanding the pathogenesis of APOL1-mediated kidney diseases (AMKD), including genetic regulation, environmental interactions, immunomodulatory, proinflammatory and apoptotic signaling processes, as well as the complex role of APOL1 as an ion channel. Collectively, these findings have paved the way for novel therapeutic strategies to mitigate APOL1-mediated kidney injury. Precision medicine approaches are being developed to identify subgroups of AMKD patients who may benefit from these targeted interventions, fueling hope for improved clinical outcomes. This review summarizes key mechanistic insights in the pathogenesis of AMKD, emergent therapies, and discusses future challenges.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina De Cos
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Carracedo M, Ericson E, Ågren R, Forslöw A, Madeyski-Bengtson K, Svensson A, Riddle R, Christoffersson J, González-King Garibotti H, Lazovic B, Hicks R, Buvall L, Fornoni A, Greasley PJ, Lal M. APOL1 promotes endothelial cell activation beyond the glomerulus. iScience 2023; 26:106830. [PMID: 37250770 PMCID: PMC10209455 DOI: 10.1016/j.isci.2023.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk genotypes are associated with increased risk of chronic kidney disease (CKD) in people of West African ancestry. Given the importance of endothelial cells (ECs) in CKD, we hypothesized that APOL1 high-risk genotypes may contribute to disease via EC-intrinsic activation and dysfunction. Single cell RNA sequencing (scRNA-seq) analysis of the Kidney Precision Medicine Project dataset revealed APOL1 expression in ECs from various renal vascular compartments. Utilizing two public transcriptomic datasets of kidney tissue from African Americans with CKD and a dataset of APOL1-expressing transgenic mice, we identified an EC activation signature; specifically, increased intercellular adhesion molecule 1 (ICAM-1) expression and enrichment in leukocyte migration pathways. In vitro, APOL1 expression in ECs derived from genetically modified human induced pluripotent stem cells and glomerular ECs triggered changes in ICAM-1 and platelet endothelial cell adhesion molecule 1 (PECAM-1) leading to an increase in monocyte attachment. Overall, our data suggest the involvement of APOL1 as an inducer of EC activation in multiple renal vascular beds with potential effects beyond the glomerular vasculature.
Collapse
Affiliation(s)
- Miguel Carracedo
- Bioscience Renal, Research and Early Development, Cardiovascular , Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elke Ericson
- Genome Engineering, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Ågren
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Forslöw
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Svensson
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rebecca Riddle
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Jonas Christoffersson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hernán González-King Garibotti
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bojana Lazovic
- Genome Engineering, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Lisa Buvall
- Bioscience Renal, Research and Early Development, Cardiovascular , Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Peter J. Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Lal
- Bioscience Renal, Research and Early Development, Cardiovascular , Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
13
|
Yoshida T, Latt KZ, Santo BA, Shrivastav S, Zhao Y, Fenaroli P, Chung JY, Hewitt SM, Tutino VM, Sarder P, Rosenberg AZ, Winkler CA, Kopp JB. APOL1 kidney risk variants in glomerular diseases modeled in transgenic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534273. [PMID: 37090576 PMCID: PMC10120684 DOI: 10.1101/2023.03.27.534273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
APOL1 high-risk variants partially explain the high kidney disease prevalence among African ancestry individuals. Many mechanisms have been reported in cell culture models, but few have been demonstrated in mouse models. Here we characterize two models: (1) HIV-associated nephropathy (HIVAN) Tg26 mice crossed with bacterial artificial chromosome (BAC)/APOL1 transgenic mice and (2) interferon-γ administered to BAC/APOL1 mice. Both models showed exacerbated glomerular disease in APOL1-G1 compared to APOL1-G0 mice. HIVAN model glomerular bulk RNA-seq identified synergistic podocyte-damaging pathways activated by the APOL1-G1 allele and by HIV transgenes. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Eukaryotic Initiation factor-2 pathway was the most activated pathway in the interferon-γ model and the most deactivated pathway in the HIVAN model. HIVAN mouse model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis (FSGS) glomerular bulk RNA-seq data. Furthermore, single-nuclear RNA-seq data from interferon-γ mouse model podocytes (in vivo) showed similarity to human FSGS single-cell RNA-seq data from urine podocytes (ex vivo) and from human podocyte cell lines (in vitro) using bulk RNA-seq. These data highlight differences in the transcriptional effects of the APOL1-G1 risk variant in a model specific manner. Shared differentially expressed genes in podocytes in both mouse models suggest possible novel glomerular damage markers in APOL1 variant-induced diseases. Transcription factor Zbtb16 was downregulated in podocytes and endothelial cells in both models, possibly contributing to glucocorticoid-resistance. In summary, these findings in two mouse models suggest both shared and distinct therapeutic opportunities for APOL1 glomerulopathies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | - Paride Fenaroli
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- S.C. Nefrologia e Dialisi, AUSL-IRCCS, Reggio Emilia, Italy
| | | | | | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY
- College of Medicine, University of Florida, Gainesville, FL
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Cheryl A. Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD
| |
Collapse
|
14
|
Vandorpe DH, Heneghan JF, Waitzman JS, McCarthy GM, Blasio A, Magraner JM, Donovan OG, Schaller LB, Shah SS, Subramanian B, Riella CV, Friedman DJ, Pollak MR, Alper SL. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475:323-341. [PMID: 36449077 DOI: 10.1007/s00424-022-02767-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.
Collapse
Affiliation(s)
- David H Vandorpe
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - John F Heneghan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Joshua S Waitzman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gizelle M McCarthy
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Angelo Blasio
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Jose M Magraner
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,, San Diego, CA, USA
| | - Olivia G Donovan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Lena B Schaller
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Ludwig-Maximilians-Universitaet, 80336, Munich, Germany
| | - Shrijal S Shah
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Chroma Medicine, Cambridge, MA, 02142, USA
| | - Balajikarthick Subramanian
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristian V Riella
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - David J Friedman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Martin R Pollak
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Seth L Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Andrews M, Yoshida T, Henderson CM, Pflaum H, McGregor A, Lieberman JA, de Boer IH, Vaisar T, Himmelfarb J, Kestenbaum B, Chung JY, Hewitt SM, Santo BA, Ginley B, Sarder P, Rosenberg AZ, Murakami T, Kopp JB, Kuklenyik Z, Hoofnagle AN. Variant APOL1 protein in plasma associates with larger particles in humans and mouse models of kidney injury. PLoS One 2022; 17:e0276649. [PMID: 36279295 PMCID: PMC9591058 DOI: 10.1371/journal.pone.0276649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Genetic variants in apolipoprotein L1 (APOL1), a protein that protects humans from infection with African trypanosomes, explain a substantial proportion of the excess risk of chronic kidney disease affecting individuals with sub-Saharan ancestry. The mechanisms by which risk variants damage kidney cells remain incompletely understood. In preclinical models, APOL1 expressed in podocytes can lead to significant kidney injury. In humans, studies in kidney transplant suggest that the effects of APOL1 variants are predominantly driven by donor genotype. Less attention has been paid to a possible role for circulating APOL1 in kidney injury. METHODS Using liquid chromatography-tandem mass spectrometry, the concentrations of APOL1 were measured in plasma and urine from participants in the Seattle Kidney Study. Asymmetric flow field-flow fractionation was used to evaluate the size of APOL1-containing lipoprotein particles in plasma. Transgenic mice that express wild-type or risk variant APOL1 from an albumin promoter were treated to cause kidney injury and evaluated for renal disease and pathology. RESULTS In human participants, urine concentrations of APOL1 were correlated with plasma concentrations and reduced kidney function. Risk variant APOL1 was enriched in larger particles. In mice, circulating risk variant APOL1-G1 promoted kidney damage and reduced podocyte density without renal expression of APOL1. CONCLUSIONS These results suggest that plasma APOL1 is dynamic and contributes to the progression of kidney disease in humans, which may have implications for treatment of APOL1-associated kidney disease and for kidney transplantation.
Collapse
Affiliation(s)
- Michael Andrews
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Clark M. Henderson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Hannah Pflaum
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ayako McGregor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Joshua A. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ian H. de Boer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jonathan Himmelfarb
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Bryan Kestenbaum
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Joon-Yong Chung
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Stephen M. Hewitt
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Brandon Ginley
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Taichi Murakami
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Nephrology, Ehime Prefectural Central Hospital, Ehime, Japan
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Gerstner L, Chen M, Kampf LL, Milosavljevic J, Lang K, Schneider R, Hildebrandt F, Helmstädter M, Walz G, Hermle T. Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney Int 2022; 101:1216-1231. [PMID: 35120995 PMCID: PMC10061223 DOI: 10.1016/j.kint.2021.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Chun J, Riella CV, Chung H, Shah SS, Wang M, Magraner JM, Ribas GT, Ribas HT, Zhang JY, Alper SL, Friedman DJ, Pollak MR. DGAT2 Inhibition Potentiates Lipid Droplet Formation To Reduce Cytotoxicity in APOL1 Kidney Risk Variants. J Am Soc Nephrol 2022; 33:889-907. [PMID: 35232775 PMCID: PMC9063887 DOI: 10.1681/asn.2021050723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/22/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Two variants in the gene encoding apolipoprotein L1 (APOL1) that are highly associated with African ancestry are major contributors to the large racial disparity in rates of human kidney disease. We previously demonstrated that recruitment of APOL1 risk variants G1 and G2 from the endoplasmic reticulum to lipid droplets leads to reduced APOL1-mediated cytotoxicity in human podocytes. METHODS We used CRISPR-Cas9 gene editing of induced pluripotent stem cells to develop human-derived APOL1G0/G0 and APOL1G2/G2 kidney organoids on an isogenic background, and performed bulk RNA sequencing of organoids before and after treatment with IFN-γ. We examined the number and distribution of lipid droplets in response to treatment with inhibitors of diacylglycerol O-acyltransferases 1 and 2 (DGAT1 and DGAT2) in kidney cells and organoids. RESULTS APOL1 was highly upregulated in response to IFN-γ in human kidney organoids, with greater increases in organoids of high-risk G1 and G2 genotypes compared with wild-type (G0) organoids. RNA sequencing of organoids revealed that high-risk APOL1G2/G2 organoids exhibited downregulation of a number of genes involved in lipogenesis and lipid droplet biogenesis, as well as upregulation of genes involved in fatty acid oxidation. There were fewer lipid droplets in unstimulated high-risk APOL1G2/G2 kidney organoids than in wild-type APOL1G0/G0 organoids. Whereas DGAT1 inhibition reduced kidney organoid lipid droplet number, DGAT2 inhibition unexpectedly increased organoid lipid droplet number. DGAT2 inhibition promoted the recruitment of APOL1 to lipid droplets, with associated reduction in cytotoxicity. CONCLUSIONS Lipogenesis and lipid droplet formation are important modulators of APOL1-associated cytotoxicity. Inhibition of DGAT2 may offer a potential therapeutic strategy to attenuate cytotoxic effects of APOL1 risk variants.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Division of Nephrology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Cristian V. Riella
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hyunjae Chung
- Department of Medicine, Division of Nephrology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shrijal S. Shah
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Minxian Wang
- Cardiovascular Disease Initiative and the Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jose M. Magraner
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Guilherme T. Ribas
- Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hennrique T. Ribas
- Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Jia-Yue Zhang
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth. L. Alper
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - David J. Friedman
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Martin R. Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Nystrom SE, Li G, Datta S, Soldano K, Silas D, Weins A, Hall G, Thomas DB, Olabisi OA. JAK inhibitor blocks COVID-19-cytokine-induced JAK-STAT-APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight 2022; 7:157432. [PMID: 35472001 PMCID: PMC9220952 DOI: 10.1172/jci.insight.157432] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19–associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19–induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.
Collapse
Affiliation(s)
- Sarah E Nystrom
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Guojie Li
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Somenath Datta
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Karen Soldano
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Daniel Silas
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Gentzon Hall
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| | - David B Thomas
- Department of Pathology, Nephrocor, Memphis, United States of America
| | - Opeyemi A Olabisi
- Division of Nephrology, Duke University School of Medicine, Durham, United States of America
| |
Collapse
|
19
|
Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol 2022; 18:307-320. [PMID: 35217848 PMCID: PMC8877744 DOI: 10.1038/s41581-022-00538-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/13/2023]
Abstract
Genetic coding variants in APOL1, which encodes apolipoprotein L1 (APOL1), were identified in 2010 and are relatively common among individuals of sub-Saharan African ancestry. Approximately 13% of African Americans carry two APOL1 risk alleles. These variants, termed G1 and G2, are a frequent cause of kidney disease — termed APOL1 nephropathy — that typically manifests as focal segmental glomerulosclerosis and the clinical syndrome of hypertension and arterionephrosclerosis. Cell culture studies suggest that APOL1 variants cause cell dysfunction through several processes, including alterations in cation channel activity, inflammasome activation, increased endoplasmic reticulum stress, activation of protein kinase R, mitochondrial dysfunction and disruption of APOL1 ubiquitinylation. Risk of APOL1 nephropathy is mostly confined to individuals with two APOL1 risk variants. However, only a minority of individuals with two APOL1 risk alleles develop kidney disease, suggesting the need for a ‘second hit’. The best recognized factor responsible for this ‘second hit’ is a chronic viral infection, particularly HIV-1, resulting in interferon-mediated activation of the APOL1 promoter, although most individuals with APOL1 nephropathy do not have an obvious cofactor. Current therapies for APOL1 nephropathies are not adequate to halt progression of chronic kidney disease, and new targeted molecular therapies are in clinical trials. This Review summarizes current understanding of the role of APOL1 variants in kidney disease. The authors discuss the genetics, protein structure and biological functions of APOL1 variants and provide an overview of promising therapeutic strategies. In contrast to other APOL family members, which are primarily intracellular, APOL1 contains a unique secretory signal peptide, resulting in its secretion into plasma. APOL1 renal risk alleles provide protection from African human trypanosomiasis but are a risk factor for progressive kidney disease in those carrying two risk alleles. APOL1 risk allele frequency is ~35% in the African American population in the United States, with ~13% of individuals having two risk alleles; the highest allele frequencies are found in West African populations and their descendants. Cell and mouse models implicate endolysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and activation of protein kinase R in the pathogenesis of APOL1-associated kidney disease; however, the relevance of these injury pathways to human disease has not been resolved. APOL1 kidney disease tends to be progressive, and current standard therapies are generally ineffective; targeted therapeutic strategies hold the most promise.
Collapse
Affiliation(s)
- Parnaz Daneshpajouhnejad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | | | - Cheryl A Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Comparative Analysis of the APOL1 Variants in the Genetic Landscape of Renal Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14030733. [PMID: 35159001 PMCID: PMC8833631 DOI: 10.3390/cancers14030733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) occurs at higher frequency in individuals of African ancestry, with well-recorded documentation in this community. This is most prominent in the context of chronic kidney disease. In turn, many forms of progressive chronic kidney disease are more common in populations of Sub-Saharan African ancestry. This disparity has been attributed to well-defined allelic variants and has risen in the parental populations to high frequency under evolutionary pressure. Mechanisms of increased kidney disease risk and cell injury, causally associated with these APOL1 gene variants, have been extensively studied. Most studies have compared the effects of ectopic overexpression of the parental non-risk APOL1 with the mutated risk variants in cellular and organismal platforms. In the current study, we have used CRISPR/Cas9 genetic engineering to knock out or modify the sequence of endogenous APOL1 in RCC to mimic and examine the effects of these naturally occurring kidney disease risk allelic variants. Remarkably, these modifications to endogenous APOL1 genes in RCC resulted in a set of prominent effects on mitochondrial integrity and metabolic pathways and disrupted tumorigenesis. These findings both clarify pathways of cell injury of APOL1 risk variants in cells of kidney origin and motivate further studies to examine the potential central role of APOL1 in the pathogenesis of renal cell carcinoma and its relation to chronic kidney disease in genotypically at-risk African ancestry individuals. Abstract Although the relative risk of renal cell carcinoma associated with chronic kidney injury is particularly high among sub-Saharan African ancestry populations, it is unclear yet whether the APOL1 gene risk variants (RV) for kidney disease additionally elevate this risk. APOL1 G1 and G2 RV contribute to increased risk for kidney disease in black populations, although the disease mechanism has still not been fully deciphered. While high expression levels of all three APOL1 allelic variants, G0 (the wild type allele), G1, and G2 are injurious to normal human cells, renal carcinoma cells (RCC) naturally tolerate inherent high expression levels of APOL1. We utilized CRISPR/Cas9 gene editing to generate isogenic RCC clones expressing APOL1 G1 or G2 risk variants on a similar genetic background, thus enabling a reliable comparison between the phenotypes elicited in RCC by each of the APOL1 variants. Here, we demonstrate that knocking in the G1 or G2 APOL1 alleles, or complete elimination of APOL1 expression, has major effects on proliferation capacity, mitochondrial morphology, cell metabolism, autophagy levels, and the tumorigenic potential of RCC cells. The most striking effect of the APOL1 RV effect was demonstrated in vivo by the complete abolishment of tumor growth in immunodeficient mice. Our findings suggest that, in contrast to the WT APOL1 variant, APOL1 RV are toxic for RCC cells and may act to suppress cancer cell growth. We conclude that the inherent expression of non-risk APOL1 G0 is required for RCC tumorigenicity. RCC cancer cells can hardly tolerate increased APOL1 risk variants expression levels as opposed to APOL1 G0.
Collapse
|
21
|
Kruzel-Davila E, Bavli-Kertselli I, Ofir A, Cheatham AM, Shemer R, Zaknoun E, Chornyy S, Tabachnikov O, Davis SE, Khatua AK, Skorecki K, Popik W. Endoplasmic reticulum-translocation is essential for APOL1 cellular toxicity. iScience 2022; 25:103717. [PMID: 35072009 PMCID: PMC8762391 DOI: 10.1016/j.isci.2021.103717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
Two variants at the APOL1 gene, encoding apolipoprotein L1, account for more than 70% of the increased risk for chronic kidney disease in individuals of African ancestry. While the initiating event for APOL1 risk variant cell injury remains to be clarified, we explored the possibility of blocking APOL1 toxicity at a more upstream level. We demonstrate that deletion of the first six amino acids of exon 4 abrogates APOL1 cytotoxicity by impairing APOL1 translocation to the lumen of ER and splicing of the signal peptide. Likewise, in orthologous systems, APOL1 lethality was partially abrogated in yeast strains and flies with reduced dosage of genes encoding ER translocon proteins. An inhibitor of ER to Golgi trafficking reduced lethality as well. We suggest that targeting the MSALFL sequence or exon 4 skipping may serve as potential therapeutic approaches to mitigate the risk of CKD caused by APOL1 renal risk variants.
Collapse
Affiliation(s)
- Etty Kruzel-Davila
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | | | - Ayala Ofir
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Amber M. Cheatham
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Revital Shemer
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eid Zaknoun
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sergiy Chornyy
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Orly Tabachnikov
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Shamara E. Davis
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Atanu K. Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Karl Skorecki
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
- Department of Internal Medicine, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| |
Collapse
|
22
|
Pays E. Distinct APOL1 functions in trypanosomes and kidney podocytes. Trends Parasitol 2021; 38:104-108. [PMID: 34887168 DOI: 10.1016/j.pt.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The human serum protein apolipoprotein L1 (APOL1) kills Trypanosoma brucei but not the sleeping sickness agent Trypanosoma rhodesiense. APOL1 C-terminal variants can kill T. rhodesiense but they also induce kidney disease. Given topological and functional differences between intracellular and extracellular APOL1 isoforms, I propose that trypanolysis and kidney disease result from distinct APOL1 activities.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
23
|
Yoshida T, Latt KZ, Heymann J, Kopp JB. Lessons From APOL1 Animal Models. Front Med (Lausanne) 2021; 8:762901. [PMID: 34765626 PMCID: PMC8576052 DOI: 10.3389/fmed.2021.762901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
African-Americans have a three-fold higher rate of chronic kidney disease compared to European-Americans. Much of this excess risk is attributed to genetic variants in APOL1, encoding apolipoprotein L1, that are present only in individuals with sub-Saharan ancestry. Although 10 years have passed since the discovery of APOL1 renal risk variants, the mechanisms by which APOL1 risk allele gene products damage glomerular cells remain incompletely understood. Many mechanisms have been reported in cell culture models, but few have been demonstrated to be active in transgenic models. In this narrative review, we will review existing APOL1 transgenic models, from flies to fish to mice; discuss findings and limitations from studies; and consider future research directions.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
24
|
Wu J, Ma Z, Raman A, Beckerman P, Dhillon P, Mukhi D, Palmer M, Chen HC, Cohen CR, Dunn T, Reilly J, Meyer N, Shashaty M, Arany Z, Haskó G, Laudanski K, Hung A, Susztak K. APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity 2021; 54:2632-2649.e6. [PMID: 34715018 PMCID: PMC9338439 DOI: 10.1016/j.immuni.2021.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
The incidence and severity of sepsis is higher among individuals of African versus European ancestry. We found that genetic risk variants (RVs) in the trypanolytic factor apolipoprotein L1 (APOL1), present only in individuals of African ancestry, were associated with increased sepsis incidence and severity. Serum APOL1 levels correlated with sepsis and COVID-19 severity, and single-cell sequencing in human kidneys revealed high expression of APOL1 in endothelial cells. Analysis of mice with endothelial-specific expression of RV APOL1 and in vitro studies demonstrated that RV APOL1 interfered with mitophagy, leading to cytosolic release of mitochondrial DNA and activation of the inflammasome (NLRP3) and the cytosolic nucleotide sensing pathways (STING). Genetic deletion or pharmacological inhibition of NLRP3 and STING protected mice from RV APOL1-induced permeability defects and proinflammatory endothelial changes in sepsis. Our studies identify the inflammasome and STING pathways as potential targets to reduce APOL1-associated health disparities in sepsis and COVID-19.
Collapse
Affiliation(s)
- Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Archana Raman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pazit Beckerman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Chang Chen
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassiane Robinson Cohen
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Nephrology & Hypertension, Vanderbilt Precision Nephrology Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Dunn
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Reilly
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuala Meyer
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Shashaty
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adriana Hung
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Nephrology & Hypertension, Vanderbilt Precision Nephrology Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
26
|
Tran NH, Carter SD, De Mazière A, Ashkenazi A, Klumperman J, Walter P, Jensen GJ. The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science 2021; 374:52-57. [PMID: 34591618 PMCID: PMC9041316 DOI: 10.1126/science.abh2474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signaling network of the unfolded protein response (UPR) adjusts the protein-folding capacity of the endoplasmic reticulum (ER) according to need. The most conserved UPR sensor, IRE1α, spans the ER membrane and activates through oligomerization. IRE1α oligomers accumulate in dynamic foci. We determined the in situ structure of IRE1α foci by cryogenic correlated light and electron microscopy combined with electron cryo-tomography and complementary immuno–electron microscopy in mammalian cell lines. IRE1α foci localized to a network of narrow anastomosing ER tubes (diameter, ~28 nm) with complex branching. The lumen of the tubes contained protein filaments, which were likely composed of arrays of IRE1α lumenal domain dimers that were arranged in two intertwined, left-handed helices. This specialized ER subdomain may play a role in modulating IRE1α signaling.
Collapse
Affiliation(s)
- Ngoc-Han Tran
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ann De Mazière
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
27
|
McCarthy GM, Blasio A, Donovan OG, Schaller LB, Bock-Hughes A, Magraner JM, Suh JH, Tattersfield CF, Stillman IE, Shah SS, Zsengeller ZK, Subramanian B, Friedman DJ, Pollak MR. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis Model Mech 2021; 14:dmm048952. [PMID: 34350953 PMCID: PMC8353097 DOI: 10.1242/dmm.048952] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Angelo Blasio
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olivia G. Donovan
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lena B. Schaller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Althea Bock-Hughes
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose M. Magraner
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jung Hee Suh
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Calum F. Tattersfield
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Isaac E. Stillman
- Dept. of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shrijal S. Shah
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zsuzsanna K. Zsengeller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Balajikarthick Subramanian
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - David J. Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Martin R. Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
28
|
Pant J, Giovinazzo JA, Tuka LS, Peña D, Raper J, Thomson R. Apolipoproteins L1-6 share key cation channel-regulating residues but have different membrane insertion and ion conductance properties. J Biol Chem 2021; 297:100951. [PMID: 34252458 PMCID: PMC8358165 DOI: 10.1016/j.jbc.2021.100951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023] Open
Abstract
The human apolipoprotein L gene family encodes the apolipoprotein L1-6 (APOL1-6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.
Collapse
Affiliation(s)
- Jyoti Pant
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| | - Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilit S Tuka
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Darwin Peña
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| |
Collapse
|
29
|
Kon V, Yang HC, Smith LE, Vickers KC, Linton MF. High-Density Lipoproteins in Kidney Disease. Int J Mol Sci 2021; 22:ijms22158201. [PMID: 34360965 PMCID: PMC8348850 DOI: 10.3390/ijms22158201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of epidemiological studies have established the strong inverse relationship between high-density lipoprotein (HDL)-cholesterol concentration and cardiovascular disease. Recent evidence suggests that HDL particle functions, including anti-inflammatory and antioxidant functions, and cholesterol efflux capacity may be more strongly associated with cardiovascular disease protection than HDL cholesterol concentration. These HDL functions are also relevant in non-cardiovascular diseases, including acute and chronic kidney disease. This review examines our current understanding of the kidneys’ role in HDL metabolism and homeostasis, and the effect of kidney disease on HDL composition and functionality. Additionally, the roles of HDL particles, proteins, and small RNA cargo on kidney cell function and on the development and progression of both acute and chronic kidney disease are examined. The effect of HDL protein modification by reactive dicarbonyls, including malondialdehyde and isolevuglandin, which form adducts with apolipoprotein A-I and impair proper HDL function in kidney disease, is also explored. Finally, the potential to develop targeted therapies that increase HDL concentration or functionality to improve acute or chronic kidney disease outcomes is discussed.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Loren E. Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kasey C. Vickers
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
30
|
Schaub C, Lee P, Racho-Jansen A, Giovinazzo J, Terra N, Raper J, Thomson R. Coiled-coil binding of the leucine zipper domains of APOL1 is necessary for the open cation channel conformation. J Biol Chem 2021; 297:101009. [PMID: 34331942 PMCID: PMC8446801 DOI: 10.1016/j.jbc.2021.101009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York; Vanderbilt University, Nashville, Tennessee, USA
| | - Penny Lee
- Department of Biological sciences, Hunter College, City University of New York, USA; John Jay College, City University of New York, USA
| | - Alisha Racho-Jansen
- Department of Biological sciences, Hunter College, City University of New York, USA
| | - Joe Giovinazzo
- Department of Biological sciences, Hunter College, City University of New York, USA; University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nada Terra
- Department of Biological sciences, Hunter College, City University of New York, USA; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jayne Raper
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York.
| | - Russell Thomson
- Department of Biological sciences, Hunter College, City University of New York, USA.
| |
Collapse
|
31
|
Ultsch M, Holliday MJ, Gerhardy S, Moran P, Scales SJ, Gupta N, Oltrabella F, Chiu C, Fairbrother W, Eigenbrot C, Kirchhofer D. Structures of the ApoL1 and ApoL2 N-terminal domains reveal a non-classical four-helix bundle motif. Commun Biol 2021; 4:916. [PMID: 34316015 PMCID: PMC8316464 DOI: 10.1038/s42003-021-02387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Michael J Holliday
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Suzie J Scales
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nidhi Gupta
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | | | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Wayne Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
32
|
Lack of APOL1 in proximal tubules of normal human kidneys and proteinuric APOL1 transgenic mouse kidneys. PLoS One 2021; 16:e0253197. [PMID: 34138902 PMCID: PMC8211208 DOI: 10.1371/journal.pone.0253197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanism of pathogenesis associated with APOL1 polymorphisms and risk for non-diabetic chronic kidney disease (CKD) is not fully understood. Prior studies have minimized a causal role for the circulating APOL1 protein, thus efforts to understand kidney pathogenesis have focused on APOL1 expressed in renal cells. Of the kidney cells reported to express APOL1, the proximal tubule expression patterns are inconsistent in published reports, and whether APOL1 is synthesized by the proximal tubule or possibly APOL1 protein in the blood is filtered and reabsorbed by the proximal tubule remains unclear. Using both protein and mRNA in situ methods, the kidney expression pattern of APOL1 was examined in normal human and APOL1 bacterial artificial chromosome transgenic mice with and without proteinuria. APOL1 protein and mRNA was detected in podocytes and endothelial cells, but not in tubular epithelia. In the setting of proteinuria, plasma APOL1 protein did not appear to be filtered or reabsorbed by the proximal tubule. A side-by-side examination of commercial antibodies used in prior studies suggest the original reports of APOL1 in proximal tubules likely reflects antibody non-specificity. As such, APOL1 expression in podocytes and endothelia should remain the focus for mechanistic studies in the APOL1-mediated kidney diseases.
Collapse
|
33
|
Bruggeman LA, Sedor JR, O'Toole JF. Apolipoprotein L1 and mechanisms of kidney disease susceptibility. Curr Opin Nephrol Hypertens 2021; 30:317-323. [PMID: 33767059 PMCID: PMC8211384 DOI: 10.1097/mnh.0000000000000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Allelic variants in the gene for apolipoprotein L1 (APOL1), found only in individuals of African ancestry, explain a majority of the excess risk of kidney disease in African Americans. However, a clear understanding how the disease-associated APOL1 variants cause kidney injury and the identity of environmental stressors that trigger the injury process have not been determined. RECENT FINDINGS Basic mechanistic studies of APOL1 biochemistry and cell biology, bolstered by new antibody reagents and inducible pluripotent stem cell-derived cell systems, have focused on the cytotoxic effect of the risk variants when APOL1 gene expression is induced. Since the APOL1 variants evolved to alter a key protein-protein interaction with the trypanosome serum resistance-associated protein, additional studies have begun to address differences in APOL1 interactions with other proteins expressed in podocytes, including new observations that APOL1 variants may alter podocyte cytoskeleton dynamics. SUMMARY A unified mechanism of pathogenesis for the various APOL1 nephropathies still remains unclear and controversial. As ongoing studies have consistently implicated the pathogenic gain-of-function effects of the variant proteins, novel therapeutic development inhibiting the synthesis or function of APOL1 proteins is moving toward clinical trials.
Collapse
Affiliation(s)
| | - John R Sedor
- Departments of Nephrology and Inflammation & Immunity, Cleveland Clinic
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John F O'Toole
- Departments of Nephrology and Inflammation & Immunity, Cleveland Clinic
| |
Collapse
|
34
|
Freedman BI, Kopp JB, Sampson MG, Susztak K. APOL1 at 10 years: progress and next steps. Kidney Int 2021; 99:1296-1302. [PMID: 33794228 DOI: 10.1016/j.kint.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
APOL1 kidney risk variants (RVs) were identified in 2010 as major drivers of glomerular, tubulointerstitial, and renal microvascular disease in individuals with sub-Saharan African ancestry. In December 2020, the "APOL1 at Ten" conference summarized the first decade of progress and discussed controversies and uncertainties that remain to be addressed. Topics included trypanosome infection and its role in the evolution of APOL1 kidney RVs, clinical phenotypes in APOL1-associated nephropathy, relationships between APOL1 RVs and background haplotypes on cell injury and molecular mechanisms initiating disease, the role of clinical APOL1 genotyping, and development of novel therapies for kidney disease. Future goals were defined, including improved characterization of various APOL1 RV phenotypes in patients and experimental preclinical models; further dissection of APOL1-mediated pathways to cellular injury and dysfunction in kidney (and other) cells; clarification of gene-gene and gene-environment interactions; and evaluation of the role for existing and novel therapies.
Collapse
Affiliation(s)
- Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Broad Institute, Cambridge, Massachusetts, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
35
|
Goyal R, Singhal PC. APOL1 risk variants and the development of HIV-associated nephropathy. FEBS J 2020; 288:5586-5597. [PMID: 33340240 DOI: 10.1111/febs.15677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023]
Abstract
HIV-associated nephropathy (HIVAN) remains a concern among untreated HIV patients, notably of African descent, as patients can reach end-stage renal disease within 3 years. Two variants (G1 and G2) of the APOL1 gene, common in African populations to protect against African sleeping sickness, have been associated with an increased risk of several glomerular disorders including HIVAN, hypertension-attributed chronic kidney disease, and idiopathic focal segmental glomerulosclerosis and are accordingly named renal risk variants (RRVs). This review examines the mechanisms by which APOL1 RRVs drive glomerular injury in the setting of HIV infection and their potential application to patient management. Innate antiviral mechanisms activated by chronic HIV infection, especially those involving type 1 interferons, are of particular interest as they have been shown to upregulate APOL1 expression. Additionally, the downregulation of miRNA 193a (a repressor of APOL1) is also associated with the upregulation of APOL1. Interestingly, glomerular damage affected by APOL1 RRVs is caused by both loss- and gain-of-function changes in the protein, explicitly characterizing these effects. Their intracellular localization offers a further understanding of the nuances of APOL1 variant effects in promoting renal disease. Finally, although APOL1 variants have been recognized as a critical genetic player in mediating kidney disease, there are significant gaps in their application to patient management for screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Rohan Goyal
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, Manhasset, NY, USA
| |
Collapse
|
36
|
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
37
|
Gupta N, Wang X, Wen X, Moran P, Paluch M, Hass PE, Heidersbach A, Haley B, Kirchhofer D, Brezski RJ, Peterson AS, Scales SJ. Domain-Specific Antibodies Reveal Differences in the Membrane Topologies of Apolipoprotein L1 in Serum and Podocytes. J Am Soc Nephrol 2020; 31:2065-2082. [PMID: 32764138 DOI: 10.1681/asn.2019080830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating APOL1 lyses trypanosomes, protecting against human sleeping sickness. Two common African gene variants of APOL1, G1 and G2, protect against infection by species of trypanosomes that resist wild-type APOL1. At the same time, the protection predisposes humans to CKD, an elegant example of balanced polymorphism. However, the exact mechanism of APOL1-mediated podocyte damage is not clear, including APOL1's subcellular localization, topology, and whether the damage is related to trypanolysis. METHODS APOL1 topology in serum (HDL particles) and in kidney podocytes was mapped with flow cytometry, immunoprecipitation, and trypanolysis assays that tracked 170 APOL1 domain-specific monoclonal antibodies. APOL1 knockout podocytes confirmed antibody specificity. RESULTS APOL1 localizes to the surface of podocytes, with most of the pore-forming domain (PFD) and C terminus of the Serum Resistance Associated-interacting domain (SRA-ID), but not the membrane-addressing domain (MAD), being exposed. In contrast, differential trypanolytic blocking activity reveals that the MAD is exposed in serum APOL1, with less of the PFD accessible. Low pH did not detectably alter the gross topology of APOL1, as determined by antibody accessibility, in serum or on podocytes. CONCLUSIONS Our antibodies highlighted different conformations of native APOL1 topology in serum (HDL particles) and at the podocyte surface. Our findings support the surface ion channel model for APOL1 risk variant-mediated podocyte injury, as well as providing domain accessibility information for designing APOL1-targeted therapeutics.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Molecular Biology, Genentech, South San Francisco, California.,Department of Immunology, Genentech, South San Francisco, California
| | - Xinhua Wang
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Xiaohui Wen
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Maciej Paluch
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Philip E Hass
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Amy Heidersbach
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Randall J Brezski
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California .,Department of Immunology, Genentech, South San Francisco, California
| |
Collapse
|