1
|
Wickenheisser VA, Zywot EM, Rabjohns EM, Lee HH, Lawrence DS, Tarrant TK. Laser Light Therapy in Inflammatory, Musculoskeletal, and Autoimmune Disease. Curr Allergy Asthma Rep 2019; 19:37. [PMID: 31267251 DOI: 10.1007/s11882-019-0869-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the field to date and to discuss strengths and limitations of low-level laser (light) therapy (LLLT) for the future investigation as a treatment of inflammatory disease. RECENT FINDINGS LLLT is a promising therapeutic, particularly for those diseases of skin and joints because they are most accessible to treatment. Indeed, the known mechanisms of LLLT support its use for anti-inflammatory purposes, as well as stimulation of tissue growth and repair. Although the standard of care for the majority of inflammatory diseases is immunosuppressive agents such as corticosteroids with undesirable toxicities, LLLT offers a unique approach by being non-invasive and incurring minimal side effects. It is also relatively inexpensive and accessible and even has the possibility to be patient directed at home. There is evidence that LLLT is able to modulate the immune system at the skin and joint, and it has been shown to be efficacious in humans by affecting bacterial colonization as it may pertain to chronic rhinosinusitis. However, there is variability in the methods of laser application as well as a lack of evidence for laser type, dose-ranging studies, and wavelength selection that create barriers to the implementation of LLLT without further more rigorous and standardized study. The heterogeneity makes it difficult to draw strong conclusions about the efficacy of LLLT and its mechanisms.
Collapse
Affiliation(s)
| | - Emilia Marta Zywot
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, USA
| | - Emily Mary Rabjohns
- Duke Department of Medicine, Division of Rheumatology and Immunology, DUMC 3874, 200 Trent Dr., Durham, NC, 27710, USA
| | - Hyun Ho Lee
- Duke Department of Medicine, Division of Rheumatology and Immunology, DUMC 3874, 200 Trent Dr., Durham, NC, 27710, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, USA
| | - Teresa Kathleen Tarrant
- Duke School of Medicine, Durham, NC, USA.
- Duke Department of Medicine, Division of Rheumatology and Immunology, DUMC 3874, 200 Trent Dr., Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Meek RL, LeBoeuf RC, Saha SA, Alpers CE, Hudkins KL, Cooney SK, Anderberg RJ, Tuttle KR. Glomerular cell death and inflammation with high-protein diet and diabetes. Nephrol Dial Transplant 2013; 28:1711-20. [PMID: 23314315 DOI: 10.1093/ndt/gfs579] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Overfeeding amino acids (AAs) increases cellular exposure to advanced glycation end-products (AGEs), a mechanism for protein intake to worsen diabetic kidney disease (DKD). This study assessed receptor for AGE (RAGE)-mediated apoptosis and inflammation in glomerular cells exposed to metabolic stressors characteristic of high-protein diets and/or diabetes in vitro with proof-of-concept appraisal in vivo. METHODS Mouse podocytes and mesangial cells were cultured under control and metabolic stressor conditions: (i) no addition; (ii) increased AAs (4-6-fold>control); (iii) high glucose (HG, 30.5 mM); (iv) AA/HG combination; (v) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL); (vi) BSA (300 µg/mL). RAGE was inhibited by blocking antibody. Diabetic (streptozotocin) and nondiabetic mice (C57BL/6J) consumed diets with protein calories of 20 or 40% (high) for 20 weeks. People with DKD and controls provided 24-h urine samples. RESULTS In podocytes and mesangial cells, apoptosis (caspase 3/7 activity and TUNEL) increased in all metabolic stressor conditions. Both inflammatory mediator expression (real-time reverse transcriptase-polymerase chain reaction: serum amyloid A, caspase-4, inducible nitric oxide synthase, and monocyte chemotactic protein-1) and RAGE (immunostaining) also increased. RAGE inhibition prevented apoptosis and inflammation in podocytes. Among mice fed high protein, podocyte number (WT-1 immunostaining) decreased in the diabetic group, and only these diabetic mice developed albuminuria. Protein intake (urea nitrogen) correlated with AGE excretion (carboxymethyllysine) in people with DKD and controls. CONCLUSIONS High-protein diet and/or diabetes-like conditions increased glomerular cell death and inflammation, responses mediated by RAGEs in podocytes. The concept that high-protein diets exacerbate early indicators of DKD is supported by data from mice and people.
Collapse
Affiliation(s)
- Rick L Meek
- Providence Medical Research Center, Providence Sacred Heart Medical Center, Spokane, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Yamato M, Kaneda A, Kataoka Y. Low-level laser therapy improves crescentic glomerulonephritis in rats. Lasers Med Sci 2012; 28:1189-96. [PMID: 23139073 DOI: 10.1007/s10103-012-1229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Low-level laser therapy (LLLT) can reduce inflammation in a variety of clinical conditions, including trauma, postherpetic neuralgia, and rheumatoid arthritis. However, the effect of LLLT on internal organs has not been elucidated. The goal of the present study was to investigate the anti-inflammatory effect of daily external LLLT in an animal model of crescentic glomerulonephritis. Crescentic glomerulonephritis was induced in male Wister Kyoto rats by intravenous injection of antibody for glomerular basement membrane (GBM). The rats were irradiated with a low-reactive level diode laser with an infrared wavelength of 830 nm from the shaved skin surface once a day for 14 days (irradiation spot size on the skin surface, 2.27 cm(2); power intensity, 880 mW/cm(2); irradiation mode, continuous mode; irradiation time, 250 s; energy, 500 J; energy density, 220 J/cm(2)). After laser irradiation for 14 days, animals were killed, and the extent of inflammation was evaluated. Expression of gene for inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) was assessed by reverse transcription polymerase chain reaction. Crescent formation in glomeruli and infiltration of macrophages and lymphocytes were assessed by histochemical observation. Injection of anti-GBM antibody induced severe glomerulonephritis with crescent formation. Histological observations indicated that LLLT suppressed crescent formation and infiltration of ED1+ macrophages and CD8+ lymphocytes into the glomeruli. LLLT attenuated the levels of IL-1β and TNF-α messenger RNA in the renal cortex. Externally directed LLLT suppresses the activity of rat anti-GBM crescentic glomerulonephritis in rats. LLLT has the potential to be used for direct treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Masanori Yamato
- Cellular Function Imaging Laboratory, RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | | | |
Collapse
|
4
|
Spleen tyrosine kinase promotes acute neutrophil-mediated glomerular injury via activation of JNK and p38 MAPK in rat nephrotoxic serum nephritis. J Transl Med 2011; 91:1727-38. [PMID: 21894146 DOI: 10.1038/labinvest.2011.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glomerular antibody deposition induces acute neutrophil-mediated glomerular injury via activation of c-Jun amino terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). However, the link between antibody deposition and activation of JNK/p38 MAPK signalling is unclear. This study tested the postulate that spleen tyrosine kinase (Syk), which is activated via Fcγ-receptor ligation, is required for activation of JNK and p38 signalling and acute neutrophil-mediated glomerular injury. We used a Syk inhibitor (SYKi) in rat nephrotoxic serum nephritis (NTN) in which neutrophil-mediated glomerular injury is dependent upon JNK and p38 signalling. SYKi or vehicle treatment of Sprague-Dawley rats began 30 min before administration of anti-GBM serum with rats killed 3 or 24 h later. Immunostaining identified de novo glomerular Syk activation (p-Tyr 525/526) in untreated NTN, being most prominent in neutrophils. Vehicle and untreated NTN exhibited heavy proteinuria and glomerular thrombosis at 24 h with P-selectin and fibrin immunostaining within capillaries, glomerular macrophage and T cell infiltration, activation of JNK and p38 MAPK signalling, and upregulation of glomerular mRNA levels of pro-inflammatory molecules (TNF-α, NOS2, MMP-12 and CCL2). In contrast, SYKi treatment provided complete protection from proteinuria, with a profound reduction in glomerular thrombosis and immunostaining for P-selectin and fibrin, and a substantial reduction in glomerular mRNA levels of pro-inflammatory molecules. SYKi treatment also reduced the acute glomerular neutrophil influx and pro-inflammatory response at 3 h in NTN. These protective effects were associated with a significant reduction in glomerular JNK and p38 MAPK activation. In addition, activation of Syk, JNK and p38 was identified in human biopsy samples of acute crescentic glomerulonephritis. In conclusion, this study demonstrates that Syk signalling is required for JNK and p38 MAPK signalling and acute neutrophil-dependent glomerular injury in rat NTN. These findings identify Syk as a potential therapeutic target in antibody-dependent kidney disease.
Collapse
|
5
|
Prêtre G, Olivera N, Cédola M, Haase S, Alberdi L, Brihuega B, Gómez RM. Role of inducible nitric oxide synthase in the pathogenesis of experimental leptospirosis. Microb Pathog 2011; 51:203-8. [DOI: 10.1016/j.micpath.2011.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 01/19/2023]
|
6
|
Effects of low protein intake on the development of the remaining kidney in subtotally nephrectomized immature rats: expression of inducible and endothelial NO synthase. Med Mol Morphol 2010; 43:116-22. [PMID: 20683700 DOI: 10.1007/s00795-009-0485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/16/2009] [Indexed: 10/19/2022]
Abstract
We examined the effects of low protein intake on the development of the remaining kidney in subtotally (5/6) nephrectomized immature rats. Three-week-old rats were kept on a diet containing either 12% protein (Lp rats) or 18% protein (Np rats) for 4 or 8 weeks after subtotal nephrectomy (SUNx). In Western blot analysis, the endothelial NO synthase (eNOS) protein expression of the Lp rats was significantly higher than that of the Np rats at 4 weeks after SUNx. Immunohistochemically, more inducible NO synthase (iNOS)-positive cells were observed in the Np rats than in the Lp rats 4 weeks after SUNx in the distal tubules. In semiquantitative RT-PCR, the expression of renin mRNA was significantly lower in the Lp rats than in the Np rats at 4 and 8 weeks after SUNx. These findings reveal that protein restriction is effective in preventing renal failure of immature rats and that the changes in the expression levels of renin, eNOS, and iNOS is involved in the process of this prevention.
Collapse
|
7
|
Oliveira CRP, Salvatori R, Meneguz-Moreno RA, Aguiar-Oliveira MH, Pereira RMC, Valença EHA, Araujo VP, Farias NT, Silveira DCR, Vieira JGH, Barreto-Filho JAS. Adipokine profile and urinary albumin excretion in isolated growth hormone deficiency. J Clin Endocrinol Metab 2010; 95:693-8. [PMID: 20016047 PMCID: PMC2840862 DOI: 10.1210/jc.2009-1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND GH deficiency (GHD) is often associated with cardiovascular risk factors, including abdominal fat accumulation, hypercholesterolemia, and increased C-reactive protein. Despite the presence of these risk factors, adults with congenital lifetime isolated GHD (IGHD) due to an inactivating mutation in the GHRH receptor gene do not have premature atherosclerosis. OBJECTIVE The aim was to study the serum levels of adiponectin and leptin (antiatherogenic and atherogenic adipokine, respectively), and the urinary albumin excretion (UAE) in these IGHD individuals. DESIGN AND PATIENTS We conducted a cross-sectional study of 20 IGHD individuals (seven males; age, 50.8 +/- 14.6 yr) and 22 control subjects (eight males; age, 49.9 +/- 11.5 yr). MAIN OUTCOME MEASURES Anthropometric factors, body composition, blood pressure, serum adiponectin, leptin, and UAE were measured. RESULTS Adiponectin was higher [12.8 (7.1) vs. 9.7 (5) ng/ml; P = 0.041] in IGHD subjects, whereas no difference was observed in leptin [7.3 (6.3) vs. 9.3 (18.7 ng/ml] and UAE [8.6 (13.8) vs. 8.5 (11.1) microg/min]. CONCLUSIONS Subjects with lifetime untreated IGHD have an adipokine profile with high adiponectin and normal leptin levels that may delay vascular damage and lesions of the renal endothelium.
Collapse
Affiliation(s)
- Carla R P Oliveira
- Division of Endocrinology, The Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. J Transl Med 2009; 89:470-84. [PMID: 19188913 DOI: 10.1038/labinvest.2009.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Macrophages induce acute renal injury in anti-glomerular basement membrane (GBM) glomerulonephritis. This operates, in part, via activation of the c-Jun amino terminal kinase (JNK) signaling pathway. However, it is unknown whether inhibition of JNK signaling is effective once the proinflammatory response is established in the injured kidney. This study examined whether blockade of JNK signaling could halt disease progression, including crescent formation, in a model of severe crescentic anti-GBM glomerulonephritis. WKY rats were immunized with sheep IgG and then injected with sheep anti-GBM serum (day 0). Animals were treated with the JNK inhibitor, CC-401, vehicle alone, or no treatment from day 7 until being killed on day 24 of disease. Untreated animals at day 7 showed significant proteinuria, focal glomerular lesions, marked glomerular macrophage and T-cell accumulation, and upregulation of proinflammatory mediators (TNF-alpha, iNOS, MMP-12). Untreated and vehicle-treated groups displayed severe glomerulonephritis at day 24 with renal impairment and worsening proteinuria. These animals had severe glomerular lesions, with 60% of glomeruli exhibiting fibrocellular crescents, in association with increased macrophage and T-cell accumulation (including macrophage giant cells) and a further increase in mRNA levels of TNF-alpha, iNOS, MMP-12, and TGF-beta1. In contrast, CC-401 treatment prevented renal impairment, suppressed proteinuria, and prevented severe glomerular and tubulointerstitial lesions, including crescent formation and granulomatous-like lesions. These protective effects were independent of glomerular macrophage and T-cell accumulation, and of the humoral immune response. CC-401 treatment inhibited expression of both pro- and antiinflammatory molecules (interleukin-10 and heme oxygenase-1). In addition, IL-1 induced MMP-12 and IL-10 production by cultured macrophages was found to be JNK dependent. In conclusion, blockade of JNK signaling provides substantial protection against the progression of crescentic anti-GBM glomerulonephritis, which may be, in part, due to inhibition of the macrophage proinflammatory response.
Collapse
|
9
|
Onozato ML, Tojo A, Leiper J, Fujita T, Palm F, Wilcox CS. Expression of NG,NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney: effects of angiotensin II receptor blockers. Diabetes 2008; 57:172-80. [PMID: 17909098 DOI: 10.2337/db06-1772] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine (ADMA) is generated by protein arginine N-methyltransferase (PRMT)-1 and is metabolized by N(G),N(G)-dimethylarginine dimethylaminohydrolase (DDAH). We tested the hypothesis that increased serum ADMA (S(ADMA)) in the streptozotocin (STZ)-induced diabetic rat model of diabetes is mediated by an angiotensin receptor blocker-sensitive change in DDAH or PRMT expression. RESEARCH DESIGN AND METHODS Data were compared from four groups of rats: sham-injected controls, untreated STZ-induced diabetic rats at 4 weeks, STZ-induced diabetic rats administered the angiotensin II (Ang II) receptor blocker telmisartan for 2 weeks, and control rats administered telmisartan for 2 weeks. RESULTS Immunostaining and Western blotting of microdissected nephron segments localized DDAH I in the proximal tubules and DDAH II in the glomeruli, afferent arterioles, macula densa, and distal nephron. Renal Ang II and S(ADMA) increased with diabetes but were normalized by 2 weeks of telmisartan. DDAH I expression was decreased in diabetic kidneys, while DDAH II expression was increased. These changes were reversed by telmisartan, which also reduced expression of PRMT-1 and -5. Telmisartan increased expressions of DDAH I but decreased DDAH II in Ang II-stimulated kidney slices ex vivo. CONCLUSIONS Renal Ang II and S(ADMA) are increased in insulinopenic diabetes. They are normalized by an Ang II receptor blocker, which increases the renal expression of DDAH I, decreases PRMT-1, and increases renal NO metabolites.
Collapse
|
10
|
Fu Y, Du Y, Mohan C. Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis. Clin Immunol 2007; 124:109-118. [PMID: 17640604 DOI: 10.1016/j.clim.2007.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
Lupus nephritis is an immune-mediated disease, where antibodies and T cells both play pathogenic roles. Since spontaneous lupus nephritis in mouse models takes 6-12 months to manifest, there is an urgent need for a mouse model that can be used to delineate the pathogenic processes that lead to immune nephritis, over a quicker time frame. We propose that the experimental anti-glomerular basement membrane (GBM) disease model might be a suitable tool for uncovering some of the molecular steps underlying lupus nephritis. This article reviews the current evidence that supports the use of the experimental anti-GBM nephritis model for studying spontaneous lupus nephritis. Importantly, out of about 25 different molecules that have been specifically examined in the experimental anti-GBM model and also spontaneous lupus nephritis, all influence both diseases concordantly, suggesting that the experimental model might be a useful tool for unraveling the molecular basis of spontaneous lupus nephritis. This has important clinical implications, both from the perspective of genetic susceptibility as well as clinical therapeutics.
Collapse
Affiliation(s)
- Yuyang Fu
- Department of Internal Medicine (Rheumatology) and Immunology, University of Texas Southwestern Medical School, Y8.204, 5323 Harry Hines Boulevard, Dallas, TX 75390-8884, USA
| | | | | |
Collapse
|
11
|
Oates JC, Gilkeson GS. The biology of nitric oxide and other reactive intermediates in systemic lupus erythematosus. Clin Immunol 2006; 121:243-50. [PMID: 16861040 PMCID: PMC2765327 DOI: 10.1016/j.clim.2006.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/03/2006] [Indexed: 02/07/2023]
Abstract
Formation of reactive nitrogen and oxygen intermediates (RNI and ROI) is an essential part of the innate immune response. Markers of systemic RNI production are increased in the setting of systemic lupus erythematosus (SLE) activity. Several lines of evidence suggest mechanisms through which the activity of inducible nitric oxide synthase (iNOS) is pathogenic in SLE, including the ability of peroxynitrite (ONOO(-), a product of iNOS activity) to modify proteins, lipids, and DNA. These modifications can alter enzyme activity and may increase the immunogenicity of self antigens, leading to a break in immune tolerance. In humans, observational data suggest that overexpression of iNOS and increased production of ONOO(-) lead to glomerular and vascular pathology. Therapies designed to target iNOS activity or scavenge ROI and RNI are in development and may provide the means to reduce the pathogenic consequences of ROI and RNI in SLE.
Collapse
Affiliation(s)
- Jim C Oates
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 912, PO Box 250637, Charleston, SC 29425, USA.
| | | |
Collapse
|
12
|
Satriano J, Lortie MJ, Ishizuka S, Valdivielso JM, Friedman B, Munger KA. Inhibition of inducible nitric oxide synthase alters Thy-1 glomeruonephritis in rats. Nephron Clin Pract 2005; 102:p17-26. [PMID: 16230862 DOI: 10.1159/000088970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/06/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Inducible nitric oxide (NO) synthase (iNOS) generated NO increases in the early phase of Thy-1 glomerulonephritis concurrently with mesangiolysis and reduction in glomerular filtration rate (GFR). Activation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, is upregulated to allow mesangial cell proliferation which constitutes the repair phase in this model. Antiproliferative high-output NO generation inhibits proproliferative ODC activity, thereby temporally separating the early 'bactericidal' phase from the later 'growth' repair phase. METHODS Renal function, ODC protein expression, arginine, ornithine, and polyamines by high-performance liquid chromatography, and histological changes were assessed in rats after induction of Thy-1 nephritis with and without NOS inhibition. RESULTS Thy-1 significantly reduced the GFR relative to untreated controls. Treatment with a nonspecific NOS inhibitor, but not a selective iNOS inhibitor, further decreased the GFR at day 1. This implys a protective role for constitutive NOS in the early phase of this inflammatory model. Selective iNOS inhibition abrogated increased plasma NO(2)/NO(3) levels in Thy-1 glomerulonephritis, but did not significantly reduce mesangiolysis. However, inhibition of iNOS did result in significantly more nuclei/glomerulus during the proliferative phase, increasing the hypercellularity component of this disease model. This correlates with increased levels of polyamines, ornithine, and arginine beyond those observed with Thy-1 administration alone. CONCLUSIONS These studies provide evidence that NO generation from different NOS isoforms can be protective in the temporal course of Thy-1 glomerulonephritis. The finding that iNOS attenuates hypercellularity in the repair phase of this inflammatory model adds cautionary insight in the therapeutic use of selective iNOS inhibition in vivo.
Collapse
Affiliation(s)
- Joseph Satriano
- Division of Nephrology and Hypertension, Department of Medicine and Stein Institute for Research on Aging, University of California, San Diego 92161, CA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 2005; 67:1890-8. [PMID: 15840036 DOI: 10.1111/j.1523-1755.2005.00287.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND We used apocynin to test the hypothesis that superoxide anion (O(-) (2)) from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase underlies the development of diabetic nephropathy in the rat. METHODS Rats received apocynin (16 mg/kg/day) from 2 to 8 weeks after inducing diabetes mellitus (DM) with streptozotocin. RESULTS DM increased excretion of hydrogen peroxide (H(2)O(2)), lipid peroxidation products (LPO), nitric oxide products (NOx), and protein. The kidneys of rats with DM had increased expression of p47phox and gp91phox and endothelial nitric oxide synthase (eNOS), and increased mesangial matrix with expression of fibronectin and collagen I. Apocynin prevented the increase in excretion of H(2)O(2), LPO, and protein in diabetic rats, increased renal NOx generation, and prevented the increased renal expression of gp91phox and the membrane fraction of p47phox, and reverted the mesangial matrix expansion. CONCLUSION Activation of NADPH oxidase with translocation of p47phox to the membrane underlies the oxidative stress and limited NO generation, despite enhanced eNOS expression in a model of diabetic nephropathy. Apocynin prevents these changes and the associated proteinuria.
Collapse
Affiliation(s)
- Kensuke Asaba
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The term glomerulonephritis encompasses a range of immune-mediated disorders that cause inflammation within the glomerulus and other compartments of the kidney. Studies with animal models have shown the crucial interaction between bone-marrow-derived inflammatory cells and cells intrinsic to the kidney that is both fundamental and unique to the pathogenesis of glomerulonephritis. The mechanisms of interaction between these cells and the mediators of their coordinated response to inflammation are being elucidated. Despite these pathophysiological advances, treatments for glomerulonephritis remain non-specific, hazardous, and only partly successful. Glomerulonephritis therefore remains a common cause of end-stage kidney failure worldwide. Molecule-specific approaches offer hope for more effective and safer treatments in the future.
Collapse
Affiliation(s)
- S J Chadban
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | | |
Collapse
|
15
|
Abstract
Glomerulonephritis is a common clinical condition that is caused by immune-mediated injury to the kidney and is characterized by dysfunction of the glomerular capillary filtration barrier. Nitric oxide (NO), a ubiquitous molecule with many biological functions throughout the body, has been evaluated as an inflammatory mediator in these circumstances. NO may induce glomerular injury directly or may act via stimulation of a host of other inflammatory mediators. A variety of experimental models of glomerulonephritis have been studied including those induced by infusion of antibodies to the Thy1.1 antigen or glomerular basement membrane, Heymann nephritis, and autoimmune nephritis. In virtually all of these cases there is evidence of increased NO production. Excessive production of NO by inducible nitric oxide synthase (iNOS), derived from infiltrating immune cells or resident glomerular cells, nearly always is associated with increased glomerular injury. Interventions that inhibit this enzyme result in less proteinuria and diminished glomerular damage. In contrast, NO derived from endothelial nitric oxide synthase (eNOS) may limit glomerular disease by preserving endothelial cell integrity. There are only a limited number of studies that have evaluated the impact of NO in patients with glomerulonephritis. Although the bulk of evidence supports a role of NO as a pro-inflammatory mediator in glomerulonephritis, additional work is needed to show an association between altered NO production and the severity and outcome of disease in patients with this disease. It is hoped that better understanding of the role of NO in glomerulonephritis will lead to the development of therapies to ameliorate the disease.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Schneider Children's Hospital of Long Island Jewish Medical Center, Long Island Campus for the Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA.
| |
Collapse
|
16
|
Onozato ML, Tojo A, Goto A, Fujita T. Radical scavenging effect of gliclazide in diabetic rats fed with a high cholesterol diet. Kidney Int 2004; 65:951-60. [PMID: 14871415 DOI: 10.1111/j.1523-1755.2004.00470.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gliclazide is a sulphonylurea antidiabetic drug with anti-oxidant effect due to its azabicyclo-octyl ring. We hypothesized that gliclazide may have a beneficial effect on diabetic nephropathy via radical scavenging. METHODS Streptozotocin-induced diabetic rats fed a 4% cholesterol diet [high cholesterol-diabetes mellitus (HC-DM)] (N= 12) were treated with gliclazide (HC-DM + gliclazide) (N= 12) or glibenclamide (HC-DM + glibenclamide) (N= 12) after 2 weeks of the diabetes induction, and normal rat fed with 4% cholesterol served as control [high cholesterol-control (HC-control)] (N= 12). Renal expression of endothelial nitric oxide synthase (eNOS) and intracellular adhesion molecule-1 (ICAM-1), oxidative stress production via nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase and antioxidant enzyme manganese superoxide dismutase (MnSOD) were evaluated at 4 weeks and renal damage was examined at 8 weeks. RESULTS HC-DM showed significant increase in renal NAD(P)H oxidase and reduction in MnSOD with a significant increase in urinary lipid peroxidation products and H2O2 excretion compared to HC-control. Gliclazide treatment, but not glibenclamide, significantly reduced the oxidative products and NAD(P)H oxidase. There was no difference in renal eNOS expression between HC-DM and HC-control rats, and only gliclazide treatment enhanced eNOS expression. Renal damage evaluated by increased glomerular macrophage migration via enhanced ICAM-1 expression, mesangial matrix expansion, and albuminuria was significantly increased in HC-DM, and they were ameliorated by gliclazide but not by glibenclamide. CONCLUSION Gliclazide reduced oxidative stress in diabetic rats fed a high cholesterol diet with reduction of renal NAD(P)H oxidase expression, enhanced MnSOD and eNOS expression, and had a beneficial effect on glomerular macrophage infiltration and mesangial expansion.
Collapse
|
17
|
Lui SL, Tsang R, Wong D, Chan KW, Chan TM, Fung PCW, Lai KN. Effect of mycophenolate mofetil on severity of nephritis and nitric oxide production in lupus-prone MRL/lpr mice. Lupus 2003; 11:411-8. [PMID: 12195781 DOI: 10.1191/0961203302lu214oa] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycophenolate mofetil (MMF), an immunosuppressive drug commonly used in organ transplantation, is increasingly being used to treat autoimmune diseases including systemic lupus erythematosus (SLE). Excessive production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of lupus nephritis. We evaluated the effect of MMF on the severity of nephritis and the production of NO in lupus-prone MRL/lpr mice. Eight-week-old female MRL/lpr mice (n = 20) were treated with MMF (100 mg/kg/day) by oral gavage for 12 weeks. Control mice (n = 20) received vehicle on the same schedule. The mice were killed after 12 weeks of treatment. Treatment with MMF significantly decreased the amount of proteinuria, prolonged survival and reduced the histological severity of glomerulonephritis. Urinary nitrite/nitrate excretion in the MMF-treated mice was significantly reduced during the first 8 weeks of treatment. However, by the end of the 12 weeks' treatment period, there was no significant difference between vehicle and MMF-treated mice in terms of urinary nitrite/nitrate excretion, intra-renal production of NO, expression of iNOS protein and induction of iNOS mRNA. We conclude that MMF is effective in attenuating the severity of nephritis in MRL/lpr mice. The beneficial effects of MMF on lupus nephritis during the early phase of the disease might be partly attributed to the inhibition of NO production. The inhibitory effect of MMF on NO production diminishes as the disease progresses. MMF probably has additional, as yet undefined mode of actions to fully account for its beneficial effects on lupus nephritis.
Collapse
Affiliation(s)
- S L Lui
- Division of Nephrology, University Department of Medicine, Queen Mary Hospital, Hong Kong, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Yokoyama T, Oono H, Miyamoto A, Ishiguro S, Nishio A. Magnesium-deficient medium enhances NO production in alveolar macrophages isolated from rats. Life Sci 2003; 72:1247-57. [PMID: 12570925 DOI: 10.1016/s0024-3205(02)02371-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnesium deficiency has been shown to increase nitric oxide (NO) levels in plasma and to aggravate endotoxin lethality. The present study was performed to examine the effects of magnesium (Mg(2+))-deficient culture medium, with and without endotoxin (LPS), on NO release and inducible NOS (iNOS) mRNA levels in alveolar macrophages isolated from rats. Decreasing the Mg(2+) concentration in the culture medium from 0.39 mM (normal-Mg(2+) medium) to 0.021 mM (Mg(2+)-deficient medium) increased NO release from alveolar macrophages for 2 h. However, LPS stimulation in Mg(2+)-deficient medium had little effect on NO release. The increased NO release in Mg(2+)-deficient medium was suppressed completely by L-NAME and aminoguanidine. Dexamethasone, pyrrolidine dithiocarbamate and curcumin strongly inhibited NO release. Verapamil, U73122, TMB-8 and W-7 had no significant effect on NO release induced by Mg(2+) deficiency. Preculture of macrophages with Mg(2+)-deficient medium for 22 h markedly increased NO release and iNOS mRNA levels for a further 2 h; these increments were suppressed completely by curcumin. These results suggest that Mg(2+) deficiency enhances NO production via iNOS by alveolar macrophages. In this experimental condition, we can not suggest that NO production from alveolar macrophage plays an essential role in the pathogenesis of enhanced endotoxin lethality in Mg-deficient rats.
Collapse
Affiliation(s)
- Tatsuya Yokoyama
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
19
|
Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T. Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure. Hypertension 2002; 40:834-9. [PMID: 12468566 DOI: 10.1161/01.hyp.0000039506.43589.d5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species have an important pathogenic role in organ damage. We investigated the role of oxidative stress via nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the kidney of the Dahl salt-sensitive (DS) rats with heart failure (DSHF). Eleven-week-old DS rats fed an 8%-NaCl diet received either vehicle or imidapril (1 mg/kg per day) for 7 weeks. The renal expression of the NAD(P)H oxidase p47phox and endothelial NO synthase were evaluated. In DSHF rats, associated with increased renal angiotensin II, mRNA and protein expression of NAD(P)H oxidase p47phox were enhanced with an increase in renal lipid peroxidation production (0.33+/-0.03 versus 0.22+/-0.01 nmol/mg protein, P<0.05) and urinary excretion of hydrogen peroxide (26.9+/-6.6 versus 9.5+/-2.1 U/mg creatinine, P<0.01) compared with levels in Dahl salt-resistant rats. The endothelial NO synthase expression was decreased in the kidney. Treatment with imidapril reduced renal angiotensin II and NAD(P)H oxidase expression and the oxidative products (kidney lipid peroxidation product: 0.16+/-0.02, P<0.001; urinary hydrogen peroxide: 3.1+/-0.2, P<0.01 versus DSHF rats). Imidapril significantly decreased albuminuria and reduced glomerulosclerosis without changes in the blood pressure. In conclusion, DSHF rats showed increased oxidative stress in the kidney via NAD(P)H oxidase. Blockade of local angiotensin II with subpressor dose of imidapril inhibited NAD(P)H oxidase and prevented renal damage.
Collapse
Affiliation(s)
- Akihiro Tojo
- Division of Nephrology and Endocrinology, Department of Internal Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Bussolati B, Mariano F, Migliori M, Camussi G. Nitric oxide/platelet activating factor cross-talk in mesangial cells modulates the interaction with leukocytes. Kidney Int 2002; 62:1322-31. [PMID: 12234302 DOI: 10.1111/j.1523-1755.2002.kid589.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet activating factor (PAF) and nitric oxide (NO) exert opposite effects on adherence and activation of circulating leukocytes to endothelium. Several studies have implicated the production of PAF and NO by mesangial cells in the regulation of glomerular filtration, permeability and inflammation. However, the reciprocal interaction between PAF and NO in mesangial cells and their role in leukocyte adhesion has not been investigated. METHODS We evaluated whether blockade of constitutive production of NO by two different NO synthase (NOS) inhibitors (L-NAME and L-NMMA) could modulate PAF synthesis, and conversely whether exogenous PAF could influence the production of NO by mesangial cells. We evaluated whether modulation of PAF synthesis by NOS inhibitors could affect leukocyte adhesion to mesangial cells. The effect of PAF-receptor antagonist WEB2170, of anti-beta(2) integrins and intracellular adhesion molecule-1 (ICAM-1) blocking antibodies and of soluble Sialyl-Lewis-a also was evaluated. RESULTS Blockade of NO synthesis by NOS inhibitors induced a spontaneous synthesis of PAF that was conversely inhibited by NO generation. On the other hand, PAF inhibited both the basal and l-arginine induced synthesis of NO by mesangial cells. Moreover, NOS inhibition promoted the adhesion of polymorphonuclear cells and monocytes to mesangial cells by a mechanism dependent on the synthesis of PAF and on the interaction of beta(2) integrins and ICAM-1. CONCLUSIONS These data indicate that PAF and NO exhibit a bi-directional effect on their respective synthesis in human mesangial cells, and suggest that their reciprocal regulation may be relevant for leukocyte adhesion to glomerular mesangial cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Cattedra di Nefrologia, Dipartimento di Medicina Interna, Università di Torino and Centro Ricerca Medicina Sperimentale (CeRMS), Ospedale S. Giovanni Battista, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | |
Collapse
|
21
|
Fujihara CK, Mattar AL, Vieira JM, Malheiros DMAC, Noronha IDL, Gonçalves ARR, De Nucci G, Zatz R. Evidence for the existence of two distinct functions for the inducible NO synthase in the rat kidney: effect of aminoguanidine in rats with 5/6 ablation. J Am Soc Nephrol 2002; 13:2278-87. [PMID: 12191972 DOI: 10.1097/01.asn.0000027354.12330.f4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The functional role of the NO synthase (NOS) isoforms in the normal or diseased kidney is uncertain. This study examined the renal expression of the endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) isoforms by both immunohistochemistry and Western blot analyses in sham-operated rats (S) and in rats subjected to 5/6 nephrectomy (Nx). Primary antibodies from two different sources were used to detect iNOS. Additional S and Nx rats were chronically treated with aminoguanidine (AG), a selective iNOS inhibitor. All three isoforms were clearly expressed in S kidney. Their renal abundance, evaluated by Western blot analysis, fell in Nx rats. With the use of anti-iNOS antibodies from two distinct sources, the immunohistochemical analysis showed the presence of what appeared to be two distinct iNOS fractions: a "tubular" fraction, present in S and with decreased intensity in Nx; and an "interstitial" fraction, observed only in inflamed areas of Nx rats. AG treatment greatly attenuated renal injury in Nx rats by a direct antiinflammatory effect, likely related to iNOS inhibition, rather than to amelioration of renal hemodynamics or to reduced protein glycation. These observations suggest that: (1) the functional role of the renal iNOS isoform may vary dramatically under different physiologic conditions; (2) caution should be taken in the interpretation of immunohistochemical iNOS data, because antibodies from different sources may detect different iNOS fractions; and (3) AG treatment may become useful in the treatment of human progressive nephropathies, even those not associated with diabetes or aging.
Collapse
Affiliation(s)
- Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The glomerulus is a unique vascular network with the potential to express several isoforms of nitric oxide synthase (NOS). Induction of inducible NOS (iNOS) occurs as part of a rapid initial response to immune injury in glomerulonephritis (GN). Studies on rodent models suggest that this is due to activation of transcription factors by reactive oxygen species (ROS), generated in responses to Fcgamma and CR engagement. iNOS operates in a complex milieu among multiple other inflammatory mediators, changing expression of constitutive NOS (endothelial NOS, eNOS), a critical regulator of glomerular function, and auto-regulating its own expression. As yet there is no consensus as to the role of high output NO generated by iNOS in the glomerulus, although many studies have demonstrated that NO inhibition can alter the level of proteinuria and leukocyte infiltration, and other manifestations of injury such as thrombosis, proliferation, and matrix production. This article reviews the evidence accumulated from experimental studies over the past decade, and discusses how these conflicting data can be reconciled to form a working hypothesis on the role of NO in GN.
Collapse
Affiliation(s)
- Victoria Cattell
- Departmental of Histopathology, Imperial College School of Medicine, Norfolk Place, London, England W2 1PG, United Kingdom.
| |
Collapse
|
23
|
Heeringa P, Steenbergen E, van Goor H. A protective role for endothelial nitric oxide synthase in glomerulonephritis. Kidney Int 2002; 61:822-5. [PMID: 11849432 DOI: 10.1046/j.1523-1755.2002.00227.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In acute glomerulonephritis (GN), increased nitric oxide (NO) production occurs, suggesting a pathophysiological role for NO in the disease process. Although NO potentially could have both toxic as well as protective effects, its exact role in the pathophysiology of GN is unclear and may depend on the NOS isoform generating NO. The protective effects of NO such as prevention of leukocyte and platelet activation and adhesion have been attributed to NO generated by endothelial nitric oxide synthase (eNOS). Evidence for a beneficial role for eNOS includes the demonstration of reduced eNOS expression in experimental models of GN as well as human biopsy specimens that is mostly likely due to endothelial cell necrosis. Reduced NO production in GN also may occur through reaction of NO with superoxide anions or the myeloperoxidase (MPO)/hypochlorous acid (HOCL) system. Further evidence has been provided by the observation that in several experimental models of GN, glomerular injury is exacerbated following treatment with non-selective NO inhibitors. Finally, the development of GN is severely aggravated in mice lacking a functional gene for eNOS as compared to wild-type mice, providing direct support for a protective role of eNOS-derived NO in acute GN.
Collapse
Affiliation(s)
- Peter Heeringa
- Department of Clinical and Experimental Immunology, Cardiovascular Research Institute, University Maastricht, Universiteitssingel 50 6221 ER Maastricht, The Netherlands.
| | | | | |
Collapse
|
24
|
Shao J, Miyata T, Yamada K, Hanafusa N, Wada T, Gordon KL, Inagi R, Kurokawa K, Fujita T, Johnson RJ, Nangaku M. Protective role of nitric oxide in a model of thrombotic microangiopathy in rats. J Am Soc Nephrol 2001; 12:2088-2097. [PMID: 11562407 DOI: 10.1681/asn.v12102088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Anew model of thrombotic microangiopathy (TMA) was previously developed, and it was demonstrated that endothelial nitric oxide (NO) synthase (NOS) is upregulated in glomeruli in this model. It was hypothesized that the synthesis of NO, a potent vasodilator and platelet inhibitory factor, is induced as a defense mechanism. The goal of this study was to clarify the role of NO in this model. Ex vivo experiments using Western blotting and functional assays demonstrated upregulation of endothelial NOS in isolated glomeruli from TMA rats. In in vivo experiments, five groups of rats were studied, including rats with TMA treated with vehicle, N(G)-nitro-L-arginine methyl ester (L-NAME) (a NOS inhibitor), or L-N(6)-(1-iminoethyl)lysine (L-NIL) (a specific inducible NOS inhibitor) and normal control rats treated with vehicle or L-NAME. Blood urea nitrogen levels, BP, urinary nitrate/nitrite excretion, and proteinuria were measured. Histologic assessments using periodic acid-Schiff staining and immunohistologic studies with markers for endothelium, platelets, fibrin, cell proliferation, and apoptosis were also performed. L-NAME inhibition of NO synthesis in rats with TMA resulted in more severe glomerular and tubulointerstitial injury, which was accompanied by thrombus formation and a marked loss of endothelial cells, with more apoptotic cells. These changes were associated with severe renal function deterioration. In contrast, these features were less pronounced in the vehicle- or L-NIL-treated rats with TMA and were absent in the control animals. In conclusion, inhibition of NO production in this model of TMA markedly exacerbated renal injury. The absence of effects with L-NIL treatment suggests a minor role for inducible NOS in this model. These results suggest that production of NO, most likely by endothelial cells, is an important protective mechanism in TMA.
Collapse
Affiliation(s)
- Jing Shao
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | - Toshio Miyata
- Department of Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Koei Yamada
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | - Norio Hanafusa
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | - Katherine L Gordon
- Division of Nephrology, University of Washington Medical Center, Seattle, Washington
| | - Reiko Inagi
- Department of Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Kurokawa
- Department of Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Toshiro Fujita
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Yokozawa T, Tanaka T, Kimura T. Examination of the nitric oxide production-suppressing component in Tinospora tuberculata. Biol Pharm Bull 2001; 24:1153-6. [PMID: 11642322 DOI: 10.1248/bpb.24.1153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The component of aqueous Tinospora tuberculata extract that inhibits nitric oxide (NO) production was examined using macrophages activated by the addition of lipopolysaccharide. The aqueous extract was partitioned with ethyl acetate. The aqueous layer was fractionated with a Diaion column. The residue of the aqueous extract was extracted with methanol, and partitioned with ethyl acetate. The ethyl acetate layer was found to be associated with a distinct decrease in the NO level and inducible NO synthase. On further fractionation, the subfraction of E-3 showed high anti-NO activity. N-trans-Feruloyltyramine isolated from E-3 was identified as exhibiting strong anti-NO activity. This compound is the most active component of Tinospora tuberculata with respect to the suppression of NO production.
Collapse
Affiliation(s)
- T Yokozawa
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Japan.
| | | | | |
Collapse
|
26
|
Rangan GK, Wang Y, Harris DCH. Pharmacologic modulators of nitric oxide exacerbate tubulointerstitial inflammation in proteinuric rats. J Am Soc Nephrol 2001; 12:1696-1705. [PMID: 11461942 DOI: 10.1681/asn.v1281696] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nitric oxide (NO) regulates inflammatory responses partly by cell-specific inhibition of the transcription factor nuclear factor kappaB (NF-kappaB). This study investigated the effect of continuous oral administration of an NO donor (molsidomine [Mol]), NO precursor (L-arginine [L-arg]), or selective inhibitors of inducible NO synthase (iNOS; aminoguanidine [AG], L-N(6)-(1-iminoethyl)lysine [L-NIL]) on the progression of tubulointerstitial inflammation and NF-kappaB activation in a non-immune model of chronic glomerular disease (Adriamycin nephropathy [AN]), from day 8 until day 30 after disease induction. On day 30, rats with AN had heavy proteinuria, reduced creatinine clearance, and tubulointerstitial disease. Treatment with both AG and L-NIL exacerbated the progression of AN as evidenced by (1) increased renal cortical malondialdehyde; (2) reduced creatinine clearance; and (3) increased tubular atrophy, interstitial volume, and monocyte infiltration. Unexpectedly, Mol also increased renal malondialdehyde and worsened tubular injury, whereas L-arg had no effect. The increase in renal cortical NF-kappaB activation in AN was not altered by AG, L-NIL, or Mol, but the mRNA expression of monocyte chemoattractant protein-1, interleukin-10, and osteopontin were elevated in these groups. Nitrite release from kidney slices reduced in AN. Treatment with Mol restored renal nitrite release to normal, whereas neither L-arg nor the NOS inhibitors had an effect. It is concluded that endogenous iNOS-derived NO has a protective role against tubulointerstitial injury and cytokine production in AN. However, the pro-oxidant activity of NO donors may limit their potential benefit in proteinuric renal disease.
Collapse
Affiliation(s)
- Gopala K Rangan
- Renal Unit, Fremantle Hospital, Fremantle, Australia
- Department of Pharmacology, University of Western Australia, Perth, Australia
| | - Yiping Wang
- Department of Renal Medicine, University of Sydney at Westmead Hospital, Westmead, Sydney, Australia
| | - David C H Harris
- Department of Renal Medicine, University of Sydney at Westmead Hospital, Westmead, Sydney, Australia
| |
Collapse
|
27
|
Heeringa P, Bijl M, de Jager-Krikken A, Zandvoort A, Dijkstra G, Moshage H, Tervaert JW, Tiebosch AT, Kallenberg CG, van Goor H. Renal expression of endothelial and inducible nitric oxide synthase, and formation of peroxynitrite-modified proteins and reactive oxygen species in Wegener's granulomatosis. J Pathol 2001; 193:224-32. [PMID: 11180170 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path782>3.0.co;2-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the role of nitric oxide (NO) in glomerular inflammation, the expression of endothelial NO synthase (eNOS) and inducible NOS (iNOS) was studied in conjunction with inflammatory cell influx, H2O2 production, and the formation of nitrotyrosines in renal biopsies from patients with Wegener's granulomatosis (WG). Renal cryostat sections from patients with WG (n=15) were stained by immunohistochemistry for eNOS, iNOS, endothelial cells (CD31), nitrotyrosines, polymorphonuclear cells (PMNs, CD15), and monocytes/macrophages (CD14, CD68). Production of H2O2 was identified by enzyme cytochemistry using diaminobenzidine. In control tissues, strong staining for eNOS was found in glomerular and interstitial tubular capillaries and cortical vessels. A significant reduction in eNOS expression was found in WG biopsies, which was associated with a reduction in CD31 expression. Expression of iNOS was found in infiltrating inflammatory cells, mainly located in the interstitium. H2O2-producing cells were detected in glomeruli and were abundantly present in the interstitium. Nitrotyrosine-positive cells, however, were almost exclusively found in the interstitium. It is concluded that renal inflammation in WG is associated with the induction of iNOS in inflammatory cells and the formation of nitrotyrosines. Expression of eNOS in glomerular capillaries is lost, most likely due to endothelial cell damage. These results suggest that decreased NO production by endothelial cells, in conjunction with increased NO production by iNOS-positive inflammatory cells, is involved in renal tissue injury in WG.
Collapse
Affiliation(s)
- P Heeringa
- Department of Clinical Immunology, Pathology and Division of Gastroenterology and Hepatology, University Hospital Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tojo A, Kimoto M, Wilcox CS. Renal expression of constitutive NOS and DDAH: separate effects of salt intake and angiotensin. Kidney Int 2000; 58:2075-83. [PMID: 11044228 DOI: 10.1111/j.1523-1755.2000.00380.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nitric oxide (NO) is generated from NO synthase (NOS) isoforms. These enzymes can be inhibited by asymmetric dimethylarginine, which is inactivated by N(G)-N(G)-dimethylarginine dimethylaminohydrolase (DDAH). The neuroneal (nNOS) type I and endothelial (eNOS) type III constitutive NOS isoforms are expressed predominantly in the macula densa and microvascular endothelium of the renal cortex, respectively. DDAH is expressed at sites of NOS expression. Since NO may coordinate the renal responses to angiotensin II (Ang II) and changes in salt intake, we tested the hypothesis that salt intake regulates the expression of nNOS, eNOS and DDAH by Ang II acting on type 1 (AT(1)) receptors. METHODS Groups (N = 6) of rats were adapted to low-salt (LS) or high-salt (HS) intakes for 10 days. Other groups of LS and HS rats received the AT(1) receptor antagonist losartan for six days (to test the effects of salt independent of AT(1) receptors). A further group of HS rats received an infusion of Ang II for six days (to test the effect of Ang II independent of salt intake). RESULTS Compared with HS rats, there was a significant (P < 0.05) increase in LS rats of nNOS protein in kidney and immunohistochemical expression in the macula densa, and of eNOS protein expression and immunohistochemical expression in the microvascular endothelium, and of DDAH protein expression. Losartan prevented these effects of salt on the expression of eNOS or DDAH, both of which were also increased by Ang II infusions in HS rats. In contrast, losartan did not prevent the effects of salt on nNOS expression, which was unresponsive to Ang II infusion. The generation of NO(2)(-) released by slices of renal cortex, in the presence of saturating concentrations of L-arginine, was increased by LS, compared to HS, independent of losartan and by Ang II during HS. CONCLUSION The expressions of eNOS in cortical microvascular endothelium and DDAH in kidney are enhanced by Ang II acting on AT(1) receptors. The expression of nNOS in the macula densa is enhanced by salt restriction independent of Ang II or AT(1) receptors.
Collapse
MESH Headings
- Amidohydrolases
- Angiotensin II/physiology
- Animals
- Diet, Sodium-Restricted
- Endothelium, Vascular/enzymology
- Hydrolases/metabolism
- Kidney/enzymology
- Kidney Cortex/blood supply
- Kidney Tubules, Distal/cytology
- Kidney Tubules, Distal/enzymology
- Male
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Nitric Oxide Synthase Type III
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/physiology
- Tissue Distribution
Collapse
Affiliation(s)
- A Tojo
- Division of Nephrology and Endocrinology, Department of Internal Medicine, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Ookata K, Tojo A, Suzuki Y, Nakamura N, Kimura K, Wilcox CS, Hirose S. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J Am Soc Nephrol 2000; 11:1987-1994. [PMID: 11053473 DOI: 10.1681/asn.v11111987] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inward rectifier potassium channels (Kir) play an important role in the K(+) secretion from the kidney. Recently, a new subfamily of Kir, Kir7.1, has been cloned and shown to be present in the kidney as well as in the brain, choroid plexus, thyroid, and intestine. Its cellular and subcellular localization was examined along the renal tubule. Western blot from the kidney cortex showed a single band for Kir7.1 at 52 kD, which was also observed in microdissected segments from the thick ascending limb of Henle, distal convoluted tubule (DCT), connecting tubule, and cortical and medullary collecting ducts. Kir7.1 immunoreactivity was detected predominantly in the DCT, connecting tubule, and cortical collecting duct, with lesser expression in the thick ascending limb of Henle and in the medullary collecting duct. Kir7.1 was detected by electron microscopic immunocytochemistry on the basolateral membrane of the DCT and the principal cells of cortical collecting duct, but neither type A nor type B intercalated cells were stained. The message levels and immunoreactivity were decreased under low-K diet and reversed by low-K diet supplemented with 4% KCl. By the double-labeling immunogold method, both Kir7.1 and Na(+), K(+)-ATPase were independently located on the basolateral membrane. In conclusion, the novel Kir7.1 potassium channel is located predominantly in the basolateral membrane of the distal nephron and collecting duct where it could function together with Na(+), K(+)-ATPase and contribute to cell ion homeostasis and tubular K(+) secretion.
Collapse
Affiliation(s)
- Kayoko Ookata
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihiro Tojo
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | - Yoshiro Suzuki
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Kenjiro Kimura
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
30
|
Doi SQ, Jacot TA, Sellitti DF, Hirszel P, Hirata MH, Striker GE, Striker LJ. Growth hormone increases inducible nitric oxide synthase expression in mesangial cells. J Am Soc Nephrol 2000; 11:1419-1425. [PMID: 10906155 DOI: 10.1681/asn.v1181419] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mice transgenic for bovine growth hormone (GH) develop progressive glomerulosclerosis. However, the proximal signaling events that lead to increased matrix deposition in this pathologic condition are still unclear. Components of the L-arginine metabolic pathway, especially inducible nitric oxide (NO) synthase (iNOS), ornithine aminotransferase (OAT), and ornithine decarboxylase (ODC), have been associated with glomerular scarring. In this study, mesangial cells were treated with GH, and the expression of iNOS, ODC, and OAT was determined using reverse transcription-PCR. In addition, nitrite accumulation in the conditioned media of mesangial cell cultures was measured in the presence or absence of GH. The findings revealed that GH increased iNOS transcript levels in a dose-dependent manner, with the highest levels being attained at GH concentrations of 20 to 50 ng/ml. The GH-induced increase in iNOS transcript levels was accompanied by a significant increase in nitrite concentrations in conditioned media, which was blocked by the addition of L-N(G)-monomethylarginine. The effect of GH (50 ng/ml) in eliciting nitrite production was as potent as that of bacterial lipopolysaccharide (10 microg/ml). The expression of OAT and ODC, in contrast, was not altered at any of the GH concentrations tested. GH receptor mRNA was also expressed by mesangial cells, independently of the GH concentration present in the cell culture medium. These data indicate that GH may interact with its receptor to regulate the L-arginine/NO pathway in mesangial cells, by directly modulating iNOS expression and NO production, without altering the arginase/OAT/ODC pathway.
Collapse
Affiliation(s)
- Sonia Q Doi
- Department of Medicine, Division of Nephrology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Terry A Jacot
- Renal Cell Biology Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Donald F Sellitti
- Department of Medicine, Division of Nephrology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Przemyslaw Hirszel
- Department of Medicine, Division of Nephrology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mario H Hirata
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gary E Striker
- Department of Medicine, University of Miami School of Medicine, Miami, Florida
| | - Liliane J Striker
- Department of Medicine, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
31
|
Heeringa P, van Goor H, Itoh-Lindstrom Y, Maeda N, Falk RJ, Assmann KJM, Kallenberg CGM, Jennette JC. Lack of endothelial nitric oxide synthase aggravates murine accelerated anti-glomerular basement membrane glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:879-88. [PMID: 10702405 PMCID: PMC1876860 DOI: 10.1016/s0002-9440(10)64957-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) radicals generated by endothelial nitric oxide synthase (eNOS) are involved in the regulation of vascular tone. In addition, NO radicals derived from eNOS inhibit platelet aggregation and leukocyte adhesion to the endothelium and, thus, may have anti-inflammatory effects. To study the role of eNOS in renal inflammation, the development of accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was examined in mice lacking a functional gene for eNOS and compared with wild-type (WT) C57BL/B6j mice. WT C57BL/6j mice (n = 12) and eNOS knockout (-/-) mice (n = 12) were immunized intraperitoneally with sheep IgG (0.2 mg in complete Freund's adjuvant). At day 6.5 after immunization, mice received a single i.v. injection of sheep anti-mouse GBM (1 mg in 200 microl PBS). Mice were sacrificed at day 1 and 10 after induction of the disease. All WT mice survived until day 10, whereas 1 eNOS-/- mouse died and 2 more became moribund, requiring sacrifice. At day 10, eNOS-/- mice had higher levels of blood urea nitrogen than WT mice (P < 0.02), although proteinuria was comparable. Immunofluorescence microscopy documented similar IgG deposition in both WT and eNOS-/- mice, but eNOS-/- mice had more extensive glomerular staining for fibrin at day 10 (P < 0.007). At day 10, light microscopy demonstrated that eNOS-/- mice had more severe glomerular thrombosis (P < 0.003) and influx of neutrophils (P < 0. 006), but similar degrees of overall glomerular endocapillary hypercellularity and crescent formation. In conclusion, accelerated anti-GBM glomerulonephritis is severely aggravated in eNOS-/- mice, especially with respect to glomerular capillary thrombosis and neutrophil infiltration. These results indicate that NO radicals generated by eNOS play a protective role during renal inflammation.
Collapse
Affiliation(s)
| | - Harry van Goor
- University Hospital, Groningen, The Netherlands; and the Department of Pathology,¶
| | - Yoshie Itoh-Lindstrom
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; the Departments of Clinical Immunology‡
| | | | - Ronald J. Falk
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; the Departments of Clinical Immunology‡
| | | | | | | |
Collapse
|
32
|
Oates JC, Christensen EF, Reilly CM, Self SE, Gilkeson GS. Prospective measure of serum 3-nitrotyrosine levels in systemic lupus erythematosus: correlation with disease activity. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:611-21. [PMID: 10591091 DOI: 10.1046/j.1525-1381.1999.99110.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease. Overproduction of nitric oxide (NO) has been implicated in its pathogenesis. Several retrospective studies have indicated a correlation between serum nitrate and nitrite (NOx) and disease activity. This measure of NO production can be falsely elevated by exogenous dietary and medication sources of NOx and variably reduced by serum thiols. These variables can make NOx a less reliable tool for studying the role of NO in SLE. Peroxynitrite, a by-product of NO and superoxide, nitrates tyrosine moieties. The resulting 3-nitrotyrosine (3NT) serves as a long-term indicator of NO-mediated protein modifications that is not affected by exogenous sources of NOx or serum thiols. We hypothesized that for these reasons serum 3NT levels would correlate with lupus disease activity more significantly than serum NOx. To address this hypothesis, we prospectively evaluated lupus disease activity, serum protein 3NT levels, and NOx levels in a cohort of lupus patients at 3-month intervals. Serum 3NT correlated with disease activity among African-Americans, while NOx correlated with disease activity among Caucasians. Subjects with active lupus nephritis had higher levels of serum 3NT than those without renal disease. Immunohistochemical analysis of renal biopsies from subjects with active proliferative lupus nephritis revealed renal expression of inducible NO synthase. The results of this study suggest that overproduction of NO may play a pathogenic role in SLE and lupus nephritis. Serum 3NT may be a useful, new tool for studying the contributions of NO to the pathogenesis of SLE.
Collapse
Affiliation(s)
- J C Oates
- Department of Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
33
|
Waddington SN, Mosley K, Cattell V. Induced nitric oxide (NO) synthesis in heterologous nephrotoxic nephritis; effects of selective inhibition in neutrophil-dependent glomerulonephritis. Clin Exp Immunol 1999; 118:309-14. [PMID: 10540196 PMCID: PMC1905410 DOI: 10.1046/j.1365-2249.1999.01049.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased NO synthesis, due to inducible NO synthase (iNOS) activity, is found in macrophage-associated glomerulonephritis. Little is known about NO in neutrophil-dependent immune complex inflammation, and its role remains controversial. We therefore studied early phase heterologous nephrotoxic nephritis (HNTN) induced in rats by nephrotoxic globulin and the effects of selective iNOS inhibition of this model. At 2 h of the model iNOS mRNA was induced and nitrite (NO-2) was generated in glomeruli incubated ex vivo (5.2 +/- 1.0 nmol/2000 glomeruli per 24 h). There were 14.7 +/- 2.2 polymorphonuclear neutrophils (PMN)/glomerulus (normal controls 0.1 +/- 0.1). At 8 h urinary protein was 69 +/- 15.3 (normal controls 0. 6 +/- 0.2 mg/24 h). Peritoneal PMN expressed iNOS and produced significant NO-2 (basal 11.2 +/- 0.3 nmol/106 cells per 24 h). Selective iNOS inhibition with L-N6-(1-iminoethyl)-lysine (L-NIL) in vitro inhibited nephritic glomerular and PMN NO-2 synthesis. In HNTN L-NIL in vivo significantly suppressed elevated plasma NO-2/NO-3 levels (representative experiment: 17 +/- 2 microM, untreated 40 +/- 4 microM, P = < 0.01, normal control 18 +/- 2 microM). This inhibition did not affect leucocyte infiltration into glomeruli or induce thrombosis. There was no consistent effect on proteinuria. This is the first demonstration of glomerular iNOS induction and high output NO production in the acute phase of PMN-dependent acute immune complex glomerulonephritis. Selective iNOS inhibition does not affect the primary mechanism of injury (leucocyte infiltration) in this model.
Collapse
Affiliation(s)
- S N Waddington
- Department of Histopathology, Imperial College School of Medicine at St Mary's, London, UK
| | | | | |
Collapse
|
34
|
Tojo A, Bredt DS, Wilcox CS. Distribution of postsynaptic density proteins in rat kidney: relationship to neuronal nitric oxide synthase. Kidney Int 1999; 55:1384-94. [PMID: 10201003 DOI: 10.1046/j.1523-1755.1999.00392.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Neuronal nitric oxide synthase (nNOS) is expressed in skeletal muscle beneath the sarcolemma associated with dystrophin complex. In brain, nNOS is anchored to synaptic membranes by specific postsynaptic density proteins (PSD)-95 and PSD-93. We have investigated the cellular and subcellular localization of these PSD proteins in the kidney and their relationship to nNOS and the cell membrane. METHODS Kidneys from male Sprague-Dawley rats were processed for light and electron microscopic immunohistochemistry with polyclonal antibodies against PSD and nNOS proteins. RESULTS Western blot analysis of rat kidney revealed a specific band for PSD-93 at the molecular weight of 103 kDa. Immunostaining for PSD-93 was located in the thick ascending limb of the loop of Henle, macula densa cells, distal convoluted tubules, cortical collecting ducts, outer and inner medullary collecting duct, glomerular epithelium, and Bowman's capsule. A pre-embedding electron microscopic immunoperoxidase procedure localized PSD-93 to the basolateral membrane of these tubular cells. Using different sized immunogold particles, a portion of nNOS in the macula densa colocalized with PSD-93 adjacent to cytoplasmic vesicles and the basolateral membrane. In contrast, PSD-95 protein was detected only weakly in the cortex by Western blot. Immunostaining for PSD-95 was located only faintly in the apical membrane of the thick ascending limb, macula densa, distal convoluted tubule and cortical collecting duct cells. CONCLUSION PSD-93 is the predominant PSD expressed in the rat kidney. It is located primarily in the basolateral membranes of distal nephron and colocalizes with a pool of nNOS in cytoplasmic vesicles and basolateral membranes of macula densa cells.
Collapse
Affiliation(s)
- A Tojo
- Division of Nephrology and Endocrinology, University of Tokyo, Japan
| | | | | |
Collapse
|
35
|
Tojo A, Sekine T, Nakajima N, Hosoyamada M, Kanai Y, Kimura K, Endou H. Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J Am Soc Nephrol 1999; 10:464-71. [PMID: 10073596 DOI: 10.1681/asn.v103464] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Renal proximal convoluted tubules have an important role, i.e., to excrete organic anions, including numerous drugs and endogenous substances. Recently, multispecific organic anion transporter 1 (OAT1) was isolated from rat kidney. In this study, the cellular and subcellular localization of OAT1 in rat kidney was investigated. Kidneys from normal rats were perfused and fixed with periodate-lysine-paraformaldehyde solution and were then processed for immunohistochemical analysis using the labeled streptavidin-biotin method, preembedding horseradish peroxidase method, and immunogold method. Light microscopic examination revealed immunostaining for OAT1 in the middle portion of the proximal tubule (S2 segment), but not in the initial portion of the proximal convoluted tubule, next to the glomerulus. Nephron segments other than the S2 segment and the renal vasculature were not stained with antibody to OAT1. Electron-microscopic observation using a preembedding method revealed that OAT1 was exclusively expressed in the basolateral membrane of S2 segments of proximal tubules. The immunogold method showed no labeling for OAT1 in the cytoplasmic vesicles, suggesting that OAT1 may not move together with organic anions into the cells. These results are consistent with previous physiologic data showing that organic anions, including para-aminohippurate, are taken up by the basolateral Na+-independent organic anion/dicarboxylate exchanger and excreted at S2 segments. In conclusion, OAT1 was localized to the basolateral membrane of S2 segments of proximal tubules in rat kidneys.
Collapse
Affiliation(s)
- A Tojo
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Mitaka, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Yang CW, Yu CC, Ko YC, Huang CC. Aminoguanidine reduces glomerular inducible nitric oxide synthase (iNOS) and transforming growth factor-beta 1 (TGF-beta1) mRNA expression and diminishes glomerulosclerosis in NZB/W F1 mice. Clin Exp Immunol 1998; 113:258-64. [PMID: 9717976 PMCID: PMC1905027 DOI: 10.1046/j.1365-2249.1998.00632.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over-expression of iNOS is implicated in the pathogenesis of glomerulonephritis in animal models of systemic lupus erythematosus. The aim of this study was to evaluate the effect of aminoguanidine, a selective inhibitor of iNOS, for the protection from glomerulosclerosis in NZB/W F1 mice. Female NZB/W F1 mice (n = 8) were treated with aminoguanidine (1 g/l) in drinking water for 4 months starting at age 2 months before the onset of glomerulonephritis. Controls were age- and sex-matched mice (n = 10) without aminoguanidine treatment. By glomerular microdissection and reverse-transcription competitive polymerase chain reaction, we found that glomerular iNOS/beta-actin and TGF-beta1/beta-actin mRNA ratios were reduced 15.1% (P<0.05) and 61.3% (P<0.01), respectively, in aminoguanidine-treated mice. Aminoguanidine significantly reduced the glomerular iNOS staining, urinary nitrite production and degree of glomerulosclerosis. In addition, the glomerular volume and mean glomerular cell number were reduced 33.2% (P<0.01) and 32.8% (P<0.01), respectively. Likewise, the urinary proteinuria was also significantly reduced by aminoguanidine. These results indicate that administration of aminoguanidine may reduce the progression of glomerulosclerosis in NZB/W F1 mice, possibly through inhibition of glomerular nitric oxide production.
Collapse
Affiliation(s)
- C W Yang
- Division of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
37
|
JANSSON OLOFT, MORCOS EDWARD, BRUNDIN LOU, BERGERHEIM ULFS, ADOLFSSON JAN, WIKLUND NPETER. NITRIC OXIDE SYNTHASE ACTIVITY IN HUMAN RENAL CELL CARCINOMA. J Urol 1998. [DOI: 10.1016/s0022-5347(01)62958-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- OLOF T. JANSSON
- Departments of Urology and Clinical Neuroscience, Karolinska Hospital, Stockholm, and the Department of Urology, Huddinge Hospital, Huddinge, Sweden
| | - EDWARD MORCOS
- Departments of Urology and Clinical Neuroscience, Karolinska Hospital, Stockholm, and the Department of Urology, Huddinge Hospital, Huddinge, Sweden
| | - LOU BRUNDIN
- Departments of Urology and Clinical Neuroscience, Karolinska Hospital, Stockholm, and the Department of Urology, Huddinge Hospital, Huddinge, Sweden
| | - ULF S.R. BERGERHEIM
- Departments of Urology and Clinical Neuroscience, Karolinska Hospital, Stockholm, and the Department of Urology, Huddinge Hospital, Huddinge, Sweden
| | - JAN ADOLFSSON
- Departments of Urology and Clinical Neuroscience, Karolinska Hospital, Stockholm, and the Department of Urology, Huddinge Hospital, Huddinge, Sweden
| | - N. PETER WIKLUND
- Departments of Urology and Clinical Neuroscience, Karolinska Hospital, Stockholm, and the Department of Urology, Huddinge Hospital, Huddinge, Sweden
| |
Collapse
|
38
|
NITRIC OXIDE SYNTHASE ACTIVITY IN HUMAN RENAL CELL CARCINOMA. J Urol 1998. [DOI: 10.1097/00005392-199808000-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|