1
|
Hao Y, Lee YJ, Yap K, Samuel M, Chow VT. Comparison of Respiratory Microbiomes in Influenza Versus Other Respiratory Infections: Systematic Review and Analysis. Int J Mol Sci 2025; 26:778. [PMID: 39859492 PMCID: PMC11765715 DOI: 10.3390/ijms26020778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Studies have indicated the potential importance of the human nasal and respiratory microbiomes in health and disease. However, the roles of these microbiomes in the pathogenesis of influenza and its complications are not fully understood. Therefore, the objective of this systematic review and analysis is to identify the patterns of nasal and respiratory microbiome dysbiosis and to define the unique signature bacteria associated with influenza compared with other respiratory tract infections. We compared the respiratory microbiome composition between influenza patients and healthy controls; across different influenza severities; in adult versus pediatric influenza patients; as well as influenza versus other respiratory infections. The desired outcomes include the signature bacteria in each cohort and the Shannon index to reflect the alpha diversity. Of the 2269 articles identified, 31 studies fulfilled the inclusion criteria. These studies investigated the respiratory tract microbiomes of patients with influenza, COVID-19, pneumonia, other respiratory infections, and chronic rhinosinusitis (CRS). Our review revealed that the phylum Firmicutes and Actinobacteria, genus Actinomyces, Streptococcus and Granulicatella, and species Neisseria are more prominent in severe influenza than mild to moderate influenza. Reduced microbiome alpha diversity is noted in influenza patients compared to healthy controls. There are some similarities and differences between the signature bacteria in pediatric and adult influenza patients, e.g., Streptococcus is common in both age groups, whereas Pseudomonas is associated with adults. Intriguingly, there is a common predominance of Streptococcus and Firmicutes among influenza and pneumonia patients. COVID-19 patients exhibit an increased abundance of Firmicutes as well as Pseudomonas. In CRS patients, Proteobacteria and Haemophilus are found in high abundance. This review highlights some similarities and differences in the respiratory microbiomes and their signature organisms in influenza of varying severity and in different age groups compared with other respiratory infections. The dysbiosis of the respiratory microbiomes in these respiratory infections enhances our understanding of their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Yunrui Hao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Ying-Jou Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Kihan Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Miny Samuel
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Vincent T. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
2
|
Summer K, Liu L, Guo Q, Barkla B, Benkendorff K. Semi-purified Antimicrobial Proteins from Oyster Hemolymph Inhibit Pneumococcal Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:862-875. [PMID: 38430292 PMCID: PMC11480171 DOI: 10.1007/s10126-024-10297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Pneumococcal infections caused by Streptococcus pneumoniae are a leading cause of morbidity and mortality globally, particularly among children. The ability of S. pneumoniae to form enduring biofilms makes treatment inherently difficult, and options are further limited by emerging antibiotic resistance. The discovery of new antibiotics, particularly those with antibiofilm activity, is therefore increasingly important. Antimicrobial proteins and peptides (AMPs) from marine invertebrates are recognised as promising pharmacological leads. This study determined the in vitro antibacterial activity of hemolymph and unique protein fractions from an Australian oyster (Saccostrea glomerata) against multi-drug-resistant S. pneumoniae. We developed a successful method for hemolymph extraction and separation into 16 fractions by preparative HPLC. The strongest activity was observed in fraction 7: at 42 µg/mL protein, this fraction was bactericidal to S. pneumoniae and inhibited biofilm formation. Proteomic analysis showed that fraction 7 contained relatively high abundance of carbonic anhydrase, cofilin, cystatin B-like, and gelsolin-like proteins, while surrounding fractions, which showed lower or no antibacterial activity, contained these proteins in lower abundance or not at all. This work supports traditional medicinal uses of oysters and contributes to further research and development of novel hemolymph/AMP-based treatments for pneumococcal infections.
Collapse
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Bronwyn Barkla
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
3
|
Iqbal A, Muhammad Haroon D, Badar S, Kaur L, Waqas M, Haider F, Syed M, Djekidel K. Streptococcus pyogenes Pneumonia: A Rare and Severe Presentation in a Patient With Asthma. Cureus 2023; 15:e47182. [PMID: 38022084 PMCID: PMC10652230 DOI: 10.7759/cureus.47182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Pneumonia is a common respiratory infection typically caused by pathogens such as Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus. It is characterized by inflammation and infection in the lung parenchyma, often presenting with symptoms such as cough, fever, and difficulty breathing. Empyema, on the other hand, is a severe complication of pneumonia marked by the accumulation of pus in the pleural cavity. Streptococcus pyogenes (S. pyogenes), also known as group A Streptococcus (GAS), is a bacterium that can cause various infections, including pharyngitis and skin infections. In rare cases, it can lead to community-acquired pneumonia. In our case report, we describe a 32-year-old female with a history of mild persistent asthma who contracted influenza B virus, eventually developing pneumonia caused by GAS, S. pyogenes.
Collapse
Affiliation(s)
- Aimen Iqbal
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | | | - Sanya Badar
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Lavleen Kaur
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Muhammad Waqas
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | - Faryal Haider
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, USA
| | | | - Karim Djekidel
- Critical Care, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
4
|
Higgins E, Gupta A, Cummins NW. Polymicrobial Infections in the Immunocompromised Host: The COVID-19 Realm and Beyond. Med Sci (Basel) 2022; 10:medsci10040060. [PMID: 36278530 PMCID: PMC9589947 DOI: 10.3390/medsci10040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Immunosuppression changes both susceptibility to and presentation of infection. Infection with one pathogen can also alter host response to a different, unrelated pathogen. These interactions have been seen across multiple infection domains where bacteria, viruses or fungi act synergistically with a deleterious impact on the host. This phenomenon has been well described with bacterial and fungal infections complicating influenza and is of particular interest in the context of the COVID-19 pandemic. Modulation of the immune system is a crucial part of successful solid organ and hematopoietic stem cell transplantation. Herein, we present three cases of polymicrobial infection in transplant recipients. These case examples highlight complex host–pathogen interactions and the resultant clinical syndromes.
Collapse
|
5
|
CALABRÒ GIOVANNAELISA, ICARDI GIANCARLO, BONANNI PAOLO, GABUTTI GIOVANNI, VITALE FRANCESCO, RIZZO CATERINA, CICCHETTI AMERICO, STAIANO ANNAMARIA, ANSALDI FILIPPO, ORSI ANDREA, DE WAURE CHIARA, PANATTO DONATELLA, AMICIZIA DANIELA, BERT FABRIZIO, VILLANI ALBERTO, IERACI ROBERTO, CONVERSANO MICHELE, RUSSO CARMELA, RUMI FILIPPO, SCOTTI SILVESTRO, MAIO TOMMASA, RUSSO ROCCO, VACCARO CONCETTAMARIA, SILIQUINI ROBERTA, RICCIARDI WALTER. [Flu vaccination and value-based health care: operational solutions to safeguard public health]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E1-E85. [PMID: 36310765 PMCID: PMC9586154 DOI: 10.15167/2421-4248/jpmh2022.63.2s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
- VIHTALI - Value In Health Technology and Academy for Leadership & Innovation, Spin-Off dell'Università Cattolica del Sacro Cuore, Roma
| | - GIANCARLO ICARDI
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
- U.O. Igiene, IRCCS Ospedale Policlinico San Martino, Genova
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute (DSS), Università di Firenze
| | - GIOVANNI GABUTTI
- Coordinatore Nazionale GdL Vaccini e Politiche Vaccinali della SItI
| | - FRANCESCO VITALE
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - CATERINA RIZZO
- Dipartimento di ricerca traslazionale e nuove tecnologie in medicina e chirurgia, Università degli Studi di Pisa
| | - AMERICO CICCHETTI
- Alta Scuola di Economia e Management dei Sistemi Sanitari (ALTEMS), Università Cattolica del Sacro Cuore, Roma
| | - ANNAMARIA STAIANO
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi “Federico II”, Napoli
- Presidente Società Italiana di Pediatria (SIP)
| | - FILIPPO ANSALDI
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
- A.Li.Sa. Azienda Ligure Sanitaria Regione Liguria
| | - ANDREA ORSI
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
- U.O. Igiene, IRCCS Ospedale Policlinico San Martino, Genova
| | - CHIARA DE WAURE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - DANIELA AMICIZIA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
- A.Li.Sa. Azienda Ligure Sanitaria Regione Liguria
| | - FABRIZIO BERT
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino
- SSDU Igiene Ospedaliera e Governo delle Infezioni Correlate all’Assistenza, ASL TO3
| | - ALBERTO VILLANI
- Dipartimento Emergenza Accettazione Ospedale Pediatrico Bambino Gesù, IRCCS, Roma
- Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata
| | - ROBERTO IERACI
- Strategie vaccinali, Regione Lazio
- Ricercatore associato CID Ethics-CNR
| | | | - CARMELA RUSSO
- U.O.S.V.D. Epidemiologia - Comunicazione e Formazione Coordinamento delle Attività di Promozione della Salute e di Educazione Sanitaria, ASL Taranto
| | - FILIPPO RUMI
- Alta Scuola di Economia e Management dei Sistemi Sanitari (ALTEMS), Università Cattolica del Sacro Cuore, Roma
| | | | - TOMMASA MAIO
- Federazione Italiana Medici di Medicina Generale (FIMMG)
| | - ROCCO RUSSO
- Coordinatore tavolo tecnico vaccinazioni, Società Italiana di Pediatria (SIP)
| | | | - ROBERTA SILIQUINI
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino
- AOU Città della Salute e della Scienza di Torino
| | - WALTER RICCIARDI
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| |
Collapse
|
6
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
7
|
Chen YY, Huang CT, Li SW, Pan YJ, Lin TL, Huang YY, Li TH, Yang YC, Gong YN, Hsieh YC. Bacterial factors required for Streptococcus pneumoniae coinfection with influenza A virus. J Biomed Sci 2021; 28:60. [PMID: 34452635 PMCID: PMC8395381 DOI: 10.1186/s12929-021-00756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Yu Huang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hsuan Li
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Yang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan.
| |
Collapse
|
8
|
Soto A, Quiñones-Laveriano DM, Valdivia F, Juscamayta-López E, Azañero-Haro J, Chambi L, Horna H, Patiño G, Guzman E, De la Cruz-Vargas JA. Detection of Viral and Bacterial Respiratory Pathogens Identified by Molecular Methods in COVID-19 Hospitalized Patients and Its Impact on Mortality and Unfavorable Outcomes. Infect Drug Resist 2021; 14:2795-2807. [PMID: 34321896 PMCID: PMC8312249 DOI: 10.2147/idr.s306439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose The purpose of this study is to evaluate the frequency of viral and bacterial respiratory pathogens detected by molecular methods in sputum samples of patients hospitalized for COVID-19 and to evaluate its impact on mortality and unfavorable outcomes (in-hospital death or mechanical ventilation). Patients and Methods The prospective cohort included patients with diagnosis of COVID-19 hospitalized at Hospital Nacional Hipólito Unanue. Sociodemographic and clinical data were collected from clinical records. Sputum samples were analyzed with the Biofire Filmarray Pneumonia plus® respiratory panel. Crude and adjusted associations with unfavorable outcomes were evaluated using logistic regression models. Results Ninety-three patients who were able to collect sputum samples were recruited between September 8 and December 28, 2020. The median age was 61.7 years (IQR 52.3–69-8) and 66 (71%) were male. The most frequent symptoms were dyspnea, cough, fever, and general malaise found in 80 (86%), 76 (82%), 45 (48%), and 34 (37%) patients, respectively. Fifty-three percent of patients had comorbidities. Seventy-six (82%) patients received antibiotics prior to admission and 29 (31%) developed unfavorable outcome. Coinfection was evidenced in 38 (40.86%) cases. The most frequently found bacteria were Staphylococcus aureus, Streptococcus agalactiae, Haemophilus influenzae and Klebsiella pneumoniae in 11 (11.83%), 10 (10.75%), 10 (10.75%), and 8 (8.6%) cases, respectively. Streptococcus pneumoniae was found in one case (1.08%). We neither identify atypical bacteria nor influenza virus. No association was found between the presence of viral or bacterial microorganisms and development of unfavorable outcomes (OR 1.63; 95% CI 0.45–5.82). Conclusion A high frequency of respiratory pathogens was detected by molecular methods in patients with COVID-19 pneumonia but were not associated with unfavorable outcomes. No atypical agents or influenza virus were found. The high use antibiotics before admission is a concern. Our data suggest that the use of drug therapy against atypical bacteria and viruses would not be justified in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
- Alonso Soto
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú.,Department of Medicine, Hospital Nacional Hipólito Unanue, Lima, Peru
| | | | - Faviola Valdivia
- Department of Public Health, Instituto Nacional de Salud, Lima, Peru
| | | | | | - Liliana Chambi
- Department of Medicine, Hospital Nacional Hipólito Unanue, Lima, Peru
| | - Helen Horna
- Department of Public Health, Instituto Nacional de Salud, Lima, Peru
| | - Gladys Patiño
- Department of Clinical Pathology, Hospital Nacional Hipólito Unanue, Lima, Peru
| | - Elizabet Guzman
- Department of Clinical Pathology, Hospital Nacional Hipólito Unanue, Lima, Peru
| | | |
Collapse
|
9
|
Dynamic Pneumococcal Genetic Adaptations Support Bacterial Growth and Inflammation during Coinfection with Influenza. Infect Immun 2021; 89:e0002321. [PMID: 33875471 PMCID: PMC8208518 DOI: 10.1128/iai.00023-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the primary bacterial pathogens that complicates influenza virus infections. These bacterial coinfections increase influenza-associated morbidity and mortality through a number of immunological and viral-mediated mechanisms, but the specific bacterial genes that contribute to postinfluenza pathogenicity are not known. Here, we used genome-wide transposon mutagenesis (Tn-Seq) to reveal bacterial genes that confer improved fitness in influenza virus-infected hosts. The majority of the 32 genes identified are involved in bacterial metabolism, including nucleotide biosynthesis, amino acid biosynthesis, protein translation, and membrane transport. We generated mutants with single-gene deletions (SGD) of five of the genes identified, SPD1414, SPD2047 (cbiO1), SPD0058 (purD), SPD1098, and SPD0822 (proB), to investigate their effects on in vivo fitness, disease severity, and host immune responses. The growth of the SGD mutants was slightly attenuated in vitro and in vivo, but each still grew to high titers in the lungs of mock- and influenza virus-infected hosts. Despite high bacterial loads, mortality was significantly reduced or delayed with all SGD mutants. Time-dependent reductions in pulmonary neutrophils, inflammatory macrophages, and select proinflammatory cytokines and chemokines were also observed. Immunohistochemical staining further revealed altered neutrophil distribution with reduced degeneration in the lungs of influenza virus-SGD mutant-coinfected animals. These studies demonstrate a critical role for specific bacterial genes and for bacterial metabolism in driving virulence and modulating immune function during influenza-associated bacterial pneumonia.
Collapse
|
10
|
Park SS, Gonzalez-Juarbe N, Riegler AN, Im H, Hale Y, Platt MP, Croney C, Briles DE, Orihuela CJ. Streptococcus pneumoniae binds to host GAPDH on dying lung epithelial cells worsening secondary infection following influenza. Cell Rep 2021; 35:109267. [PMID: 34133917 PMCID: PMC8265312 DOI: 10.1016/j.celrep.2021.109267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (Spn) alone and during co-infection with influenza A virus (IAV) can result in severe pneumonia with mortality. Pneumococcal surface protein A (PspA) is an established virulence factor required for Spn evasion of lactoferricin and C-reactive protein-activated complement-mediated killing. Herein, we show that PspA functions as an adhesin to dying host cells. We demonstrate that PspA binds to host-derived glyceraldehyde-3-phosphate dehydrogenase (GAPDH) bound to outward-flipped phosphatidylserine residues on dying host cells. PspA-mediated adhesion was to apoptotic, pyroptotic, and necroptotic cells, but not healthy lung cells. Using isogenic mutants of Spn, we show that PspA-GAPDH-mediated binding to lung cells increases pneumococcal localization in the lower airway, and this is enhanced as a result of pneumolysin exposure or co-infection with IAV. PspA-mediated binding to GAPDH requires amino acids 230-281 in its α-helical domain with intratracheal inoculation of this PspA fragment alongside the bacteria reducing disease severity in an IAV/Spn pneumonia model.
Collapse
Affiliation(s)
- Sang-Sang Park
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashleigh N Riegler
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hansol Im
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvette Hale
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Christina Croney
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Bortell N, Aguilera ER, Lenz LL. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. PLoS Pathog 2021; 17:e1009531. [PMID: 33878120 PMCID: PMC8087096 DOI: 10.1371/journal.ppat.1009531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/30/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Most individuals who consume foods contaminated with the bacterial pathogen Listeria monocytogenes (Lm) develop mild symptoms, while others are susceptible to life-threatening systemic infections (listeriosis). Although it is known that the risk of severe disease is increased in certain human populations, including the elderly, it remains unclear why others who consume contaminated food develop listeriosis. Here, we used a murine model to discover that pulmonary coinfections can impair the host's ability to adequately control and eradicate systemic Lm that cross from the intestines to the bloodstream. We found that the resistance of mice to oral Lm infection was dramatically reduced by coinfection with Streptococcus pneumoniae (Spn), a bacterium that colonizes the respiratory tract and can also cause severe infections in the elderly. Exposure to Spn or microbial products, including a recombinant Lm protein (L1S) and lipopolysaccharide (LPS), rendered otherwise resistant hosts susceptible to severe systemic Lm infection. In addition, we show that this increase in susceptibility was dependent on an increase in the production of interleukin-10 (IL-10) from Ncr1+ cells, including natural killer (NK) cells. Lastly, the ability of Ncr1+ cell derived IL-10 to increase disease susceptibility correlated with a dampening of both myeloid cell accumulation and myeloid cell phagocytic capacity in infected tissues. These data suggest that efforts to minimize inflammation in response to an insult at the respiratory mucosa render the host more susceptible to infections by Lm and possibly other pathogens that access the oral mucosa.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Elizabeth R. Aguilera
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laurel L. Lenz
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
12
|
Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. PLoS One 2021; 16:e0235026. [PMID: 33705390 PMCID: PMC7951856 DOI: 10.1371/journal.pone.0235026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, especially the co-pathologies between RSV and Spn, is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups were mock nebulized. At day three post-RSV infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day six post-RSV infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn trended with higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more frequent in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration and higher myeloperoxidase. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.
Collapse
|
13
|
Aykac K, Ozsurekci Y, Cura Yayla BC, Evren K, Lacinel Gurlevik S, Oygar PD, Yucel M, Karakoc AE, Alp A, Cengiz AB, Ceyhan M. Pneumococcal carriage in children with COVID-19. Hum Vaccin Immunother 2021; 17:1628-1634. [PMID: 33449815 DOI: 10.1080/21645515.2020.1849516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: SARS-CoV-2 is the new virus, and Streptococcus pneumoniae is one of the most important pathogens affecting humans. However, we do not yet know whether these microorganisms interact. Thus, we aimed to evaluate the relationship between Streptococcus pneumoniae and SARS-CoV-2 in pediatric patients.Methods: This study was conducted retrospectively by means of medical records of pediatric patients who were tested for SARS-CoV-2 between March 11 and June 04, 2020, in the University of Health Sciences, Ankara Educating and Training Hospital and Hacettepe University Faculty of Medicine.Results: We evaluated 829 pediatric patients for S. pneumoniae and SARS-CoV-2 from their nasopharyngeal specimen. Of 115 children positive for SARS-CoV-2, 32.2% had a positive S. pneumoniae test, whereas of 714 children negative for SARS-CoV-2, 14.1% had a positive S. pneumoniae test (p < .01). We compared patients with positive vs. negative SARS-CoV-2 tests according to S. pneumoniae positivity There were no statistically significant differences in terms of gender, underlying disease, fever, cough, leukocytosis, lymphopenia, increased CRP, increased procalcitonin, findings of chest x-ray, severity of disease, and treatment.Conclusion: The nasopharyngeal S. pneumoniae carriage rate in patients with COVID-19 was higher than in non-infected children, while S. pneumoniae carriage did not affect the course of COVID-19 disease. Pneumococcal vaccination is significant, such that we do not know the outcomes of increased pneumococcal carriage for the upcoming months of pandemic.
Collapse
Affiliation(s)
- Kubra Aykac
- Department of Pediatric Infectious Diseases, University of Health Science Ankara Training and Research Hospital, Ankara, Turkey
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burcu Ceylan Cura Yayla
- Department of Pediatric Infectious Diseases, University of Health Science Ankara Training and Research Hospital, Ankara, Turkey
| | - Kubra Evren
- Department of Microbiology, University of Health Science Ankara Training and Research Hospital, Ankara, Turkey
| | - Sibel Lacinel Gurlevik
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pembe Derin Oygar
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mihriban Yucel
- Department of Microbiology, University of Health Science Ankara Training and Research Hospital, Ankara, Turkey
| | - Ayse Esra Karakoc
- Department of Microbiology, University of Health Science Ankara Training and Research Hospital, Ankara, Turkey
| | - Alpaslan Alp
- Department of Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Bulent Cengiz
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ceyhan
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Rodriguez-Nava G, Yanez-Bello MA, Trelles-Garcia DP, Chung CW, Egoryan G, Friedman HJ. A Retrospective Study of Coinfection of SARS-CoV-2 and Streptococcus pneumoniae in 11 Hospitalized Patients with Severe COVID-19 Pneumonia at a Single Center. Med Sci Monit 2020; 26:e928754. [PMID: 33188161 PMCID: PMC7673066 DOI: 10.12659/msm.928754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background A lethal synergism between the influenza virus and Streptococcus pneumoniae has been identified. However, bacterial coinfection is considered relatively infrequent in hospitalized patients with COVID-19, and the co-prevalence of Streptococcus pneumoniae is low. Material/Methods We retrospectively analyzed the clinical characteristics and outcomes of patients subsequently admitted to AMITA Health Saint Francis Hospital between March 1 and June 30, 2020, with documented SARS-CoV-2 and S. pneumoniae coinfection. Results We identified 11 patients with S. pneumoniae coinfection. The median age was 77 years (interquartile range [IQR], 74–82 years), 45.5% (5/11) were males, 54.5% (6/11) were white, and 90.9% (10/11) were long-term care facility (LTCF) residents. The median length of stay was 7 days (IQR, 6–8 days). Among 11 patients, 4 were discharged in stable condition and 7 had died, resulting in an inpatient mortality rate of 64%. Conclusions At our center, 11 patients with COVID-19 pneumonia who had confirmed infection with SARS-CoV-2 were diagnosed with Streptococcus pneumoniae infection while in hospital. All patients had pneumonia confirmed on imaging and a nonspecific increase in markers of inflammation. The in-hospital mortality rate of 64% (7 patients) was higher in this group than in previous reports. This study highlights the importance of monitoring bacterial coinfection in patients with viral lung infection due to SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Chul Won Chung
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Goar Egoryan
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Harvey J Friedman
- Critical Care Units, AMITA Health Saint Francis Hospital, Evanston, IL, USA.,University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Nickol ME, Lyle SM, Dennehy B, Kindrachuk J. Dysregulated Host Responses Underlie 2009 Pandemic Influenza-Methicillin Resistant Staphylococcus aureus Coinfection Pathogenesis at the Alveolar-Capillary Barrier. Cells 2020; 9:E2472. [PMID: 33202895 PMCID: PMC7696554 DOI: 10.3390/cells9112472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Influenza viruses are a continual public health concern resulting in 3-5 million severe infections annually despite intense vaccination campaigns and messaging. Secondary bacterial infections, including Staphylococcus aureus, result in increased morbidity and mortality during seasonal epidemics and pandemics. While coinfections can result in deleterious pathologic consequences, including alveolar-capillary barrier disruption, the underlying mechanisms are poorly understood. We have characterized host- and pathogen-centric mechanisms contributing to influenza-bacterial coinfections in a primary cell coculture model of the alveolar-capillary barrier. Using 2009 pandemic influenza (pH1N1) and methicillin-resistant S. aureus (MRSA), we demonstrate that coinfection resulted in dysregulated barrier function. Preinfection with pH1N1 resulted in modulation of adhesion- and invasion-associated MRSA virulence factors during lag phase bacterial replication. Host response modulation in coinfected alveolar epithelial cells were primarily related to TLR- and inflammatory response-mediated cell signaling events. While less extensive in cocultured endothelial cells, coinfection resulted in changes to cellular stress response- and TLR-related signaling events. Analysis of cytokine expression suggested that cytokine secretion might play an important role in coinfection pathogenesis. Taken together, we demonstrate that coinfection pathogenesis is related to complex host- and pathogen-mediated events impacting both epithelial and endothelial cell regulation at the alveolar-capillary barrier.
Collapse
Affiliation(s)
- Michaela E. Nickol
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
| | - Sarah M. Lyle
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
| | - Brendan Dennehy
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
16
|
The Nontypeable Haemophilus influenzae Major Adhesin Hia Is a Dual-Function Lectin That Binds to Human-Specific Respiratory Tract Sialic Acid Glycan Receptors. mBio 2020; 11:mBio.02714-20. [PMID: 33144377 PMCID: PMC7642680 DOI: 10.1128/mbio.02714-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Host-adapted bacterial pathogens like NTHi have evolved specific mechanisms to colonize their restricted host niche. Relatively few of the adhesins expressed by NTHi have been characterized as regards their binding affinity at the molecular level. In this work, we show that the major NTHi adhesin Hia preferentially binds to Neu5Ac-α2-6-sialyllactosamine, the form of sialic acid expressed in humans. The receptors targeted by Hia in the human airway mirror those targeted by influenza A virus and indicates the broad importance of sialic acid glycans as receptors for microbes that colonize the human airway. NTHi is a human-adapted pathogen that colonizes the human respiratory tract. Strains of NTHi express multiple adhesins; however, there is a unique, mutually exclusive relationship between the major adhesins Hia and HMW1 and HMW2 (HMW1/2). Approximately 25% of NTHi strains express Hia, a phase-variable autotransporter protein that has a critical role in colonization of the host nasopharynx. The remaining 75% of strains express HMW1/2. Previous work has shown that the HMW1 and HMW2 proteins mediate binding to 2-3- and 2-6-linked sialic acid glycans found in the human respiratory tract. Here, we show that the high-affinity binding domain of Hia, binding domain 1 (BD1), is responsible for binding to α2-6-sialyllactosamine (2-6 SLN) glycans. BD1 is highly specific for glycans that incorporate the form of sialic acid expressed by humans, N-acetylneuraminic acid (Neu5Ac). We further show that Hia has lower-affinity binding activity for 2-3-linked sialic acid and that this binding activity is mediated via a distinct domain. Thus, Hia with its dual binding activities functionally mimics the combined activities of the HMW1 and HMW2 adhesins. In addition, we show that Hia has a role in biofilm formation by strains of NTHi that express the adhesin. Knowledge of the binding affinity of this major NTHi adhesin and putative vaccine candidate will direct and inform development of future vaccines and therapeutic strategies for this important pathogen.
Collapse
|
17
|
Liu X, Kimmey JM, Matarazzo L, de Bakker V, Van Maele L, Sirard JC, Nizet V, Veening JW. Exploration of Bacterial Bottlenecks and Streptococcus pneumoniae Pathogenesis by CRISPRi-Seq. Cell Host Microbe 2020; 29:107-120.e6. [PMID: 33120116 DOI: 10.1016/j.chom.2020.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that causes invasive diseases, including pneumonia, with greater health risks upon influenza A virus (IAV) co-infection. To facilitate pathogenesis studies in vivo, we developed an inducible CRISPR interference system that enables genome-wide fitness testing in one sequencing step (CRISPRi-seq). We applied CRISPRi-seq to assess bottlenecks and identify pneumococcal genes important in a murine pneumonia model. A critical bottleneck occurs at 48 h with few bacteria causing systemic infection. This bottleneck is not present during IAV superinfection, facilitating identification of pneumococcal pathogenesis-related genes. Top in vivo essential genes included purA, encoding adenylsuccinate synthetase, and the cps operon required for capsule production. Surprisingly, CRISPRi-seq indicated no fitness-related role for pneumolysin during superinfection. Interestingly, although metK (encoding S-adenosylmethionine synthetase) was essential in vitro, it was dispensable in vivo. This highlights advantages of CRISPRi-seq over transposon-based genetic screens, as all genes, including essential genes, can be tested for pathogenesis potential.
Collapse
Affiliation(s)
- Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Jacqueline M Kimmey
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Laura Matarazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Laurye Van Maele
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland.
| |
Collapse
|
18
|
Narasaraju T, Tang BM, Herrmann M, Muller S, Chow VTK, Radic M. Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19. Front Pharmacol 2020; 11:870. [PMID: 32581816 PMCID: PMC7291833 DOI: 10.3389/fphar.2020.00870] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19.
Collapse
Affiliation(s)
- Teluguakula Narasaraju
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Benjamin M. Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France
- Laboratory of Excellence Medalis, Institut de science et d'ingénierie supramoléculaire, and University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Vincent T. K. Chow
- Department of Microbiology and Immunology, Infectious Diseases Program, School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
Ambigapathy G, Schmit T, Mathur RK, Nookala S, Bahri S, Pirofski LA, Khan MN. Double-Edged Role of Interleukin 17A in Streptococcus pneumoniae Pathogenesis During Influenza Virus Coinfection. J Infect Dis 2020; 220:902-912. [PMID: 31185076 DOI: 10.1093/infdis/jiz193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/17/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We sought to determine the role of host interleukin 17A (IL-17A) response against colonizing Streptococcus pneumoniae, and its transition to a pathogen during coinfection with an influenza virus, influenza A H1N1 A/Puerto Rico/8/1934 (PR8). METHOD Wild-type (WT) C57BL/6 mice were intranasally inoculated with S. pneumoniae serotype 6A to establish colonization and later infected with the influenza strain, PR8, resulting in invasive S. pneumoniae disease. The role of the IL-17A response in colonization and coinfection was investigated in WT, RoRγt-/- and RAG1-/- mice with antibody-mediated depletion of IL-17A (WT) and CD90 cells (RAG1-/-). RESULTS RAG1-/- mice did not clear colonization and IL-17A neutralization impaired 6A clearance in WT mice. RoRγt-/- mice also had reduced clearance. S. pneumoniae-PR8 coinfection elicited a robust IL-17A response in the nasopharynx; IL-17A neutralization reduced S. pneumoniae invasive disease. RoRγt-/- mice also had reduced S. pneumoniae disease in a coinfection model. Depletion of CD90+ cells suppressed the IL-17A response and reduced S. pneumoniae invasion in RAG1-/- mice. CONCLUSION Our data show that although IL-17A reduces S. pneumoniae colonization, coinfection with influenza virus elicits a robust innate IL-17A response that promotes inflammation and S. pneumoniae disease in the nasopharynx.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Ram Kumar Mathur
- Department of Molecular and Cellular Physiology, Albany Medical College
| | - Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Saad Bahri
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Liise-Anne Pirofski
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| |
Collapse
|
20
|
Kanyiri CW, Luboobi L, Kimathi M. Application of Optimal Control to Influenza Pneumonia Coinfection with Antiviral Resistance. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:5984095. [PMID: 32256682 PMCID: PMC7091548 DOI: 10.1155/2020/5984095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/01/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Influenza and pneumonia independently lead to high morbidity and mortality annually among the human population globally; however, a glaring fact is that influenza pneumonia coinfection is more vicious and it is a threat to public health. Emergence of antiviral resistance is a major impediment in the control of the coinfection. In this paper, a deterministic mathematical model illustrating the transmission dynamics of influenza pneumonia coinfection is formulated having incorporated antiviral resistance. Optimal control theory is then applied to investigate optimal strategies for controlling the coinfection using prevalence reduction and treatment as the system control variables. Pontryagin's maximum principle is used to characterize the optimal control. The derived optimality system is solved numerically using the Runge-Kutta-based forward-backward sweep method. Simulation results reveal that implementation of prevention measures is sufficient to eradicate influenza pneumonia coinfection from a given population. The prevention measures could be social distancing, vaccination, curbing mutation and reassortment, and curbing interspecies movement of the influenza virus.
Collapse
Affiliation(s)
- Caroline W. Kanyiri
- Department of Mathematics, Pan African University Institute of Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| | - Livingstone Luboobi
- Institute of Mathematical Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| | - Mark Kimathi
- Department of Mathematics, Machakos University, P.O. Box 139-90100, Machakos, Kenya
| |
Collapse
|
21
|
Abelenda-Alonso G, Rombauts A, Gudiol C, Meije Y, Ortega L, Clemente M, Ardanuy C, Niubó J, Carratalà J. Influenza and Bacterial Coinfection in Adults With Community-Acquired Pneumonia Admitted to Conventional Wards: Risk Factors, Clinical Features, and Outcomes. Open Forum Infect Dis 2020; 7:ofaa066. [PMID: 32206675 PMCID: PMC7081386 DOI: 10.1093/ofid/ofaa066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background Relevance of viral and bacterial coinfection (VBC) in non-intensive care unit (ICU) hospitalized adults with community-acquired pneumonia (CAP) is poorly characterized. We aim to determine risk factors, features, and outcomes of VBC-CAP in this setting. Methods This is a prospective cohort of adults admitted to conventional wards with CAP. Patients were divided into VBC-CAP, viral CAP (V-CAP), and bacterial CAP (B-CAP) groups. Independent risk and prognostic factors for VBC-CAP were identified. Results We documented 1123 episodes: 57 (5.1%) VBC-CAP, 98 (8.7%) V-CAP, and 968 (86.1%) B-CAP. Patients with VBC-CAP were younger than those with B-CAP (54 vs 71 years; P < .001). Chronic respiratory disease was more frequent in patients with VBC-CAP than in those with V-CAP (26.3% vs 14.3%%; P = .001). Among those with influenza (n = 153), the VBC-CAP group received empirical oseltamivir less often (56.1% vs 73.5%; P < .001). Patients with VBC-CAP also had more respiratory distress (21.1% VBC-CAP; 19.4% V-CAP, and 9.8% B-CAP; P < .001) and required ICU admission more often (31.6% VBC-CAP, 31.6% V-CAP, and 12.8% B-CAP; P < .001). The 30-day case-fatality rate was 3.5% in the VBC-CAP group, 3.1% in the V-CAP group, and 6.3% in the B-CAP group (P = .232). Furthermore, VBC-CAP was associated with severity criteria (odds ratio [OR], 5.219; P < .001) and lack of empirical oseltamivir therapy in influenza cases (OR, 0.401; P < .043). Conclusions Viral and bacterial coinfection-CAP involved younger patients with comorbidities and with poor influenza vaccination rate. Patients with VBC-CAP presented more respiratory complications and more often required ICU admission. Nevertheless, 30-day mortality rate was low and related either to severity criteria or to delayed initiation of oseltamivir therapy.
Collapse
Affiliation(s)
- Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Meije
- Department Internal Medicine, Infectious Diseases Unit, Hospital de Barcelona, Societat, Cooperativa d'Installacions Assistencials Sanitàries (SCIAS), Barcelona, Spain
| | - Lucía Ortega
- Department Internal Medicine, Infectious Diseases Unit, Hospital de Barcelona, Societat, Cooperativa d'Installacions Assistencials Sanitàries (SCIAS), Barcelona, Spain
| | - Mercedes Clemente
- Department Internal Medicine, Infectious Diseases Unit, Hospital de Barcelona, Societat, Cooperativa d'Installacions Assistencials Sanitàries (SCIAS), Barcelona, Spain
| | - Carmen Ardanuy
- Department Clinical Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Jordi Niubó
- Department Clinical Microbiology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Kramskaya T, Leontieva G, Desheva Y, Grabovskaya K, Gupalova T, Rudenko L, Suvorov A. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice. PLoS One 2019; 14:e0222148. [PMID: 31513620 PMCID: PMC6742370 DOI: 10.1371/journal.pone.0222148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Influenza and its bacterial complications are a leading cause of morbidity and mortality worldwide. The effect of combined immunization with live influenza vaccine and recombinant chimeric pneumococcal protein in dual infection caused by influenza H1N1 and S. pneumoniae (serotype 3) has been studied. The combined vaccine consisted of the strain A/California/2009/38 (H1N1) pdm and chimeric recombinant protein PSPF composed of immunodominant fragments of the surface virulence factors of S. pneumoniae—PsaA, PspA, and Shr1875—associated with modified salmonella flagellin. Vaccinated mice were infected with the influenza virus 24 hours before or 24 hours after the onset of pneumococcal infection. The protective effect of combined vaccination was shown on both models of viral-bacterial infection.
Collapse
Affiliation(s)
- T. Kramskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - G. Leontieva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- * E-mail:
| | - Yu. Desheva
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- Department of Fundamental Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - K. Grabovskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - T. Gupalova
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - L. Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - A. Suvorov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- Department of Fundamental Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
23
|
Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat Microbiol 2019; 4:1328-1336. [PMID: 31110359 DOI: 10.1038/s41564-019-0447-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Epidemiological observations and animal models have long shown synergy between influenza virus infections and bacterial infections. Influenza virus infection leads to an increase in both the susceptibility to secondary bacterial infections and the severity of the bacterial infections, primarily pneumonias caused by Streptococcus pneumoniae or Staphylococcus aureus. We show that, in addition to the widely described immune modulation and tissue-remodelling mechanisms of bacterial-viral synergy, the virus interacts directly with the bacterial surface. Similar to the recent observation of direct interactions between enteric bacteria and enteric viruses, we observed a direct interaction between influenza virus on the surface of Gram-positive, S. pneumoniae and S. aureus, and Gram-negative, Moraxella catarrhalis and non-typeable Haemophilus influenzae, bacterial colonizers and pathogens in the respiratory tract. Pre-incubation of influenza virus with bacteria, followed by the removal of unbound virus, increased bacterial adherence to respiratory epithelial cells in culture. This result was recapitulated in vivo, with higher bacterial burdens in murine tissues when infected with pneumococci pre-incubated with influenza virus versus control bacteria without virus. These observations support an additional mechanism of bacteria-influenza virus synergy at the earliest steps of pathogenesis.
Collapse
|
24
|
Rodriguez AE, Bogart C, Gilbert CM, McCullers JA, Smith AM, Kanneganti TD, Lupfer CR. Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae. PLoS One 2019; 14:e0212236. [PMID: 30794604 PMCID: PMC6386446 DOI: 10.1371/journal.pone.0212236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022] Open
Abstract
Viral-bacterial coinfections, such as with influenza A virus and Streptococcus pneumoniae (S.p.), are known to cause severe pneumonia. It is well known that the host response has an important role in disease. Interleukin-1β (IL-1β) is an important immune signaling cytokine responsible for inflammation and has been previously shown to contribute to disease severity in numerous infections. Other studies in mice indicate that IL-1β levels are dramatically elevated during IAV-S.p. coinfection. However, the regulation of IL-1β during coinfection is unknown. Here, we report the NLRP3 inflammasome is the major inflammasome regulating IL-1β activation during coinfection. Furthermore, elevated IL-1β mRNA expression is due to enhanced TLR2-MYD88 signaling, which increases the amount of pro-IL-1β substrate for the inflammasome to process. Finally, NLRP3 and high IL-1β levels were associated with increased bacterial load in the brain. Our results show the NLRP3 inflammasome is not protective during IAV-S.p. coinfection.
Collapse
Affiliation(s)
- Angeline E. Rodriguez
- Department of Biology, Missouri State University, Springfield, Missouri, United States of America
| | - Christopher Bogart
- Department of Biology, Missouri State University, Springfield, Missouri, United States of America
| | - Christopher M. Gilbert
- Department of Pathology, Cox Medical Center South, Springfield, Missouri, United States of America
| | - Jonathan A. McCullers
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christopher R. Lupfer
- Department of Biology, Missouri State University, Springfield, Missouri, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nickol ME, Kindrachuk J. A year of terror and a century of reflection: perspectives on the great influenza pandemic of 1918-1919. BMC Infect Dis 2019; 19:117. [PMID: 30727970 PMCID: PMC6364422 DOI: 10.1186/s12879-019-3750-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Background In the spring of 1918, the “War to End All Wars”, which would ultimately claim more than 37 million lives, had entered into its final year and would change the global political and economic landscape forever. At the same time, a new global threat was emerging and would become one of the most devastating global health crises in recorded history. Main text The 1918 H1N1 pandemic virus spread across Europe, North America, and Asia over a 12-month period resulting in an estimated 500 million infections and 50–100 million deaths worldwide, of which ~ 50% of these occurred within the fall of 1918 (Emerg Infect Dis 12:15-22, 2006, Bull Hist Med 76:105-115, 2002). However, the molecular factors that contributed to the emergence of, and subsequent public health catastrophe associated with, the 1918 pandemic virus remained largely unknown until 2005, when the characterization of the reconstructed pandemic virus was announced heralding a new era of advanced molecular investigations (Science 310:77-80, 2005). In the century following the emergence of the 1918 pandemic virus we have landed on the Moon, developed the electronic computer (and a global internet), and have eradicated smallpox. In contrast, we have a largely remedial knowledge and understanding of one of the greatest scourges in recorded history. Conclusion Here, we reflect on the 1918 influenza pandemic, including its emergence and subsequent rapid global spread. In addition, we discuss the pathophysiology associated with the 1918 virus and its predilection for the young and healthy, the rise of influenza therapeutic research following the pandemic, and, finally, our level of preparedness for future pandemics.
Collapse
Affiliation(s)
- Michaela E Nickol
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, 523-745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, 523-745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
26
|
Characterization of Host and Bacterial Contributions to Lung Barrier Dysfunction Following Co-infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses 2019; 11:v11020116. [PMID: 30699912 PMCID: PMC6409999 DOI: 10.3390/v11020116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses are a threat to global public health resulting in ~500,000 deaths each year. Despite an intensive vaccination program, influenza infections remain a recurrent, yet unsolved public health problem. Secondary bacterial infections frequently complicate influenza infections during seasonal outbreaks and pandemics, resulting in increased morbidity and mortality. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is frequently associated with these co-infections, including the 2009 influenza pandemic. Damage to alveolar epithelium is a major contributor to severe influenza-bacterial co-infections and can result in gas exchange abnormalities, fluid leakage, and respiratory insufficiency. These deleterious manifestations likely involve both pathogen- and host-mediated mechanisms. However, there is a paucity of information regarding the mechanisms (pathogen- and/or host-mediated) underlying influenza-bacterial co-infection pathogenesis. To address this, we characterized the contributions of viral-, bacterial-, and host-mediated factors to the altered structure and function of alveolar epithelial cells during co-infection with a focus on the 2009 pandemic influenza (pdm2009) and MRSA. Here, we characterized pdm2009 and MRSA replication kinetics, temporal host kinome responses, modulation of MRSA virulence factors, and disruption of alveolar barrier integrity in response to pdm2009-MRSA co-infection. Our results suggest that alveolar barrier disruption during co-infection is mediated primarily through host response dysregulation, resulting in loss of alveolar barrier integrity.
Collapse
|
27
|
Zivich PN, Grabenstein JD, Becker-Dreps SI, Weber DJ. Streptococcus pneumoniae outbreaks and implications for transmission and control: a systematic review. Pneumonia (Nathan) 2018; 10:11. [PMID: 30410854 PMCID: PMC6217781 DOI: 10.1186/s41479-018-0055-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is capable of causing multiple infectious syndromes and occasionally causes outbreaks. The objective of this review is to update prior outbreak reviews, identify control measures, and comment on transmission. METHODS We conducted a review of published S. pneumoniae outbreaks, defined as at least two linked cases of S. pneumoniae. RESULTS A total of 98 articles (86 respiratory; 8 conjunctivitis; 2 otitis media; 1 surgical site; 1 multiple), detailing 94 unique outbreaks occurring between 1916 to 2017 were identified. Reported serotypes included 1, 2, 3, 4, 5, 7F, 8, 12F, 14, 20, and 23F, and serogroups 6, 9, 15, 19, 22. The median attack rate for pneumococcal outbreaks was 7.0% (Interquartile range: 2.4%, 13%). The median case-fatality ratio was 12.9% (interquartile range: 0%, 29.2%). Age groups most affected by outbreaks were older adults (60.3%) and young adults (34.2%). Outbreaks occurred in crowded settings, such as universities/schools/daycares, military barracks, hospital wards, and long-term care facilities. Of outbreaks that assessed vaccination coverage, low initial vaccination or revaccination coverage was common. Most (73.1%) of reported outbreaks reported non-susceptibility to at least one antibiotic, with non-susceptibility to penicillin (56.0%) and erythromycin (52.6%) being common. Evidence suggests transmission in outbreaks can occur through multiple modes, including carriers, infected individuals, or medical devices. Several cases developed disease shortly after exposure (< 72 h). Respiratory outbreaks used infection prevention (55.6%), prophylactic vaccination (63.5%), and prophylactic antibiotics (50.5%) to prevent future cases. PPSV23 covered all reported outbreak serotypes. PCV13 covered 10 of 16 serotypes. For conjunctival outbreaks, only infection prevention strategies were used. CONCLUSIONS To prevent the initial occurrence of respiratory outbreaks, vaccination and revaccination is likely the best preventive measure. Once an outbreak occurs, vaccination and infection-prevention strategies should be utilized. Antibiotic prophylaxis may be considered for high-risk exposed individuals, but development of antibiotic resistance during outbreaks has been reported. The short period between initial exposure and development of disease indicates that pneumococcal colonization is not a prerequisite for pneumococcal respiratory infection.
Collapse
Affiliation(s)
- Paul N. Zivich
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| | | | - Sylvia I. Becker-Dreps
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC USA
- Department of Family Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| | - David J. Weber
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
28
|
Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga AC, White HD. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent) 2018; 31:419-423. [PMID: 30948970 DOI: 10.1080/08998280.2018.1499293] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors and statins may potentially benefit patients with viral infections and pneumonia. Our study aimed to evaluate the impact of ACE inhibitors and statins on the rates of intubation and death in viral pneumonia. We retrospectively studied 1055 adult patients admitted to a tertiary care center in central Texas with a positive respiratory viral polymerase chain reaction test. Of these, 539 had clinical presentation and imaging consistent with pneumonia. We collected information on demographic characteristics, microbiology, comorbid conditions, medication use, and outcomes. ACE inhibitors given prior to admission were associated with an increased risk of death or intubation (odds ratio [OR] = 3.02; 95% confidence interval [CI], 1.30-7.01), whereas statin use prior to admission did not change rates of death or intubation. Lower rates of death and intubation were noted with continued use of ACE inhibitors (OR =0.25; 95% CI, 0.09-0.64) and statins (OR =0.26; 95% CI, 0.08-0.81) throughout the hospital stay. We added further evidence of the beneficial effect of continued use of ACE inhibitors and statins in viral pneumonia.
Collapse
Affiliation(s)
- Christopher Henry
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor Scott & White HealthTempleTexas
| | - Manaf Zaizafoun
- Division of Pulmonary and Critical Care Medicine, University Hospitals, Ahuja Medical CenterBedfordOhio
| | - Eileen Stock
- Perry Point/Baltimore Coordinating Center, Cooperative Studies Program, Office of Research and Development, US Department of Veterans AffairsPerry PointMaryland
| | - Shekhar Ghamande
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor Scott & White HealthTempleTexas
| | - Alejandro C Arroliga
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor Scott & White HealthTempleTexas
| | - Heath D White
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor Scott & White HealthTempleTexas
| |
Collapse
|
29
|
Neumann F, Hernández-Neuta I, Grabbe M, Madaboosi N, Albert J, Nilsson M. Padlock Probe Assay for Detection and Subtyping of Seasonal Influenza. Clin Chem 2018; 64:1704-1712. [PMID: 30257827 DOI: 10.1373/clinchem.2018.292979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Influenza remains a constant threat worldwide, and WHO estimates that it affects 5% to 15% of the global population each season, with an associated 3 to 5 million severe cases and up to 500000 deaths. To limit the morbidity and the economic burden of influenza, improved diagnostic assays are needed. METHODS We developed a multiplexed assay for the detection and subtyping of seasonal influenza based on padlock probes and rolling circle amplification. The assay simultaneously targets all 8 genome segments of the 4 circulating influenza variants-A(H1N1), A(H3N2), B/Yamagata, and B/Victoria-and was combined with a prototype cartridge for inexpensive digital quantification. Characterized virus isolates and patient nasopharyngeal swabs were used for assay design and analytical validation. The diagnostic performance was assessed by blinded testing of 50 clinical samples analyzed in parallel with a commercial influenza assay, Simplexa™ Flu A/B & RSV Direct. RESULTS The assay had a detection limit of 18 viral RNA copies and achieved 100% analytical and clinical specificity for differential detection and subtyping of seasonal circulating influenza variants. The diagnostic sensitivity on the 50 clinical samples was 77.5% for detecting influenza and up to 73% for subtyping seasonal variants. CONCLUSIONS We have presented a proof-of-concept padlock probe assay combined with an inexpensive digital readout for the detection and subtyping of seasonal influenza strains A and B. The demonstrated high specificity and multiplexing capability, together with the digital quantification, established the assay as a promising diagnostic tool for seasonal influenza.
Collapse
Affiliation(s)
- Felix Neumann
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Iván Hernández-Neuta
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Malin Grabbe
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Narayanan Madaboosi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
30
|
Sid H, Hartmann S, Winter C, Rautenschlein S. Interaction of Influenza A Viruses with Oviduct Explants of Different Avian Species. Front Microbiol 2017; 8:1338. [PMID: 28775714 PMCID: PMC5518544 DOI: 10.3389/fmicb.2017.01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
Infection of poultry with low pathogenic avian influenza viruses (LPAIV) is often associated with mild respiratory symptoms but may also lead to loss in egg production in laying birds. In vivo susceptibility of the reproductive tract for LPAIV infection was reported for turkeys and chickens, but virus-interaction with epithelial cells of the oviduct and possible stimulation of the local antiviral immune responses have not been characterized. In this study, we wanted to investigate the suitability of magnum organ cultures (MOC) as an in vitro model to study virus-host interactions. We compared the susceptibility of duck (Du), chicken (Ch), and turkey (Tu) MOC for three different influenza A viruses (IAV). Overall, the course of infection and the antiviral immune response varied between strains as well as host cell origin, but MOC gave reproducible results for all investigated parameters within each species. While pandemic (p) H1N1 and H9N2 efficiently replicated in MOC-Ch and MOC-Tu, MOC-Du were significantly less susceptible to infection as indicated by a reduced replication level for both viruses (p < 0.05). Overall, virus replication levels did not correlate with interferonα (IFNα) mRNA-expression levels in neither species. H9N2-infection led to a significant upregulation of interferonλ (IFNλ) mRNA expression in MOC of all species compared to the non-infected controls (p < 0.05), while a correlation with replication levels was only seen for MOC-Tu. pH1N1-infection induced only significant upregulation of IFNλ mRNA expression in MOC-Tu at 48 hours post infection (p < 0.05), but the expression pattern did not correlate with replication levels. Our results show that MOC are a suitable model to study IAV-interaction with the mucosal surface of the avian reproductive tract. The data suggest that the reproductive tract may play a role in the pathobiology of IAV in poultry.
Collapse
Affiliation(s)
- Hicham Sid
- Clinic for Poultry, University of Veterinary Medicine HannoverHannover, Germany
| | - Sandra Hartmann
- Clinic for Poultry, University of Veterinary Medicine HannoverHannover, Germany
| | - Christine Winter
- Institute of Virology, University of Veterinary Medicine HannoverHannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine HannoverHannover, Germany
| |
Collapse
|