1
|
Levine BH, Hoffman JM. Microbiome transplants may not improve health and longevity in Drosophila melanogaster. Biol Open 2025; 14:bio061745. [PMID: 39835966 PMCID: PMC11789278 DOI: 10.1242/bio.061745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated. Our results suggest that, overall, microbiome transplants do not improve longevity and may even be detrimental in flies, and the health effects of microbiome transplants were minor, but sex- and genotype-dependent. This discovery supports previous evidence that axenic flies, those with no gut microbiome, live healthier and longer lives than their non-axenic counterparts. The results of this study suggest that, at least for fruit flies, microbiome transplants may not be a viable intervention to improve health and longevity, though more research is still warranted.
Collapse
Affiliation(s)
- Benjamin H. Levine
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| | - Jessica M. Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Lee HY, Min KJ. Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan. Nutrients 2024; 16:4424. [PMID: 39771045 PMCID: PMC11678862 DOI: 10.3390/nu16244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR. As a potent intervention to slow down aging, DR has demonstrated promising effects on lipid metabolism, influencing the aging processes across various species. The current review focuses on the relationships among DR-related molecular signaling proteins such as the sirtuins, signaling pathways such as the target of rapamycin and the insulin/insulin-like growth factor (IGF)-1, lipid metabolism, and aging. Furthermore, the review presents research results on diet-associated changes in cell membrane lipids and alterations in lipid metabolism caused by commensal bacteria, highlighting the importance of lipid metabolism in aging. Overall, the review explores the interplay between diet, lipid metabolism, and aging, while presenting untapped areas for further understanding of the aging process.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
3
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
4
|
Gutiérrez-García K, Aumiller K, Dodge R, Obadia B, Deng A, Agrawal S, Yuan X, Wolff R, Zhu H, Hsia RC, Garud N, Ludington WB. A conserved bacterial genetic basis for commensal-host specificity. Science 2024; 386:1117-1122. [PMID: 39636981 DOI: 10.1126/science.adp7748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of living Drosophila melanogaster to show that Lactiplantibacillus plantarum specifically recognizes the fruit fly foregut as a distinct physical niche. L. plantarum establishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Kevin Aumiller
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ren Dodge
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Benjamin Obadia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ann Deng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sneha Agrawal
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xincheng Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Wolff
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haolong Zhu
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ru-Ching Hsia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - William B Ludington
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Shabbir S, Hadi A, Jabeen N, Hussain M. Developmental exposure of antibiotics shortens life span and induces teratogenicity in Drosophila melanogaster. Toxicol Rep 2024; 13:101784. [PMID: 39534686 PMCID: PMC11554921 DOI: 10.1016/j.toxrep.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Antibiotics are the major therapeutic arsenal against bacterial infections. Yet, beneath this medical triumph lies an under investigated challenge of the potential teratological and toxicological impacts associated with the use of antibiotics. In the present study, we have explored the teratogenic potential of five commonly used antibiotics (streptomycin, metronidazole, tigecycline, doxycycline and norfloxacin) on Drosophila melanogaster Oregon-R strain. Except norfloxacin, all other tested antibiotics significantly delayed the onset of pupariation. Consistently, metronidazole, doxycycline and tigecycline resulted in statistically significant drops in egg-to-adult viability and adversely affected egg-to-pupa transition. In comparison, embryonic exposure of streptomycin impeded pupa-to-fly transition. All tested antibiotics induced morphological defects in antenna, wings, proboscis, eye, head, thorax, haltere and abdomen. Interestingly, developmental exposure of antibiotics resulted in statistically significant decrease in the lifespan of both male and female flies. This suggests an increased incidence of teratogenic faults at the systemic level, which are otherwise not manifested morphologically, due to the exposure of tested antibiotics during development. Taken together, our data show that developmental exposure of antibiotics may induce varying degrees of teratogenicity in D. melanogaster. Given the genomic homology and conservation of major molecular pathways that underpin development in humans and D. melanogaster, the findings do hold translational potential.
Collapse
Affiliation(s)
- Sanya Shabbir
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Centre, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75280, Pakistan
- Department of Microbiology, University of Karachi, Pakistan
| | - Abdullah Hadi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Centre, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75280, Pakistan
| | - Nusrat Jabeen
- Department of Microbiology, University of Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Centre, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75280, Pakistan
| |
Collapse
|
7
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
8
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Beghelli D, Giusti L, Zallocco L, Ronci M, Cappelli A, Pontifex MG, Muller M, Damiani C, Cirilli I, Hrelia S, Vauzour D, Vittadini E, Favia G, Angeloni C. Dietary fiber supplementation increases Drosophila melanogaster lifespan and gut microbiota diversity. Food Funct 2024; 15:7468-7477. [PMID: 38912918 DOI: 10.1039/d4fo00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.
Collapse
Affiliation(s)
- Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| |
Collapse
|
10
|
Wesseltoft JB, Danielsen CD, Andersen AM, de Jonge N, Olsen A, Rohde PD, Kristensen TN. Feeding Drosophila gut microbiomes from young and old flies modifies the microbiome. Sci Rep 2024; 14:7799. [PMID: 38565609 PMCID: PMC10987527 DOI: 10.1038/s41598-024-58500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024] Open
Abstract
It is becoming increasingly evident that the myriad of microbes in the gut, within cells and attached to body parts (or roots of plants), play crucial roles for the host. Although this has been known for decades, recent developments in molecular biology allow for expanded insight into the abundance and function of these microbes. Here we used the vinegar fly, Drosophila melanogaster, to investigate fitness measures across the lifetime of flies fed a suspension of gut microbes harvested from young or old flies, respectively. Our hypothesis was that flies constitutively enriched with a 'Young microbiome' would live longer and be more agile at old age (i.e. have increased healthspan) compared to flies enriched with an 'Old microbiome'. Three major take home messages came out of our study: (1) the gut microbiomes of young and old flies differ markedly; (2) feeding flies with Young and Old microbiomes altered the microbiome of recipient flies and (3) the two different microbial diets did not have any effect on locomotor activity nor lifespan of the recipient flies, contradicting our working hypothesis. Combined, these results provide novel insight into the interplay between hosts and their microbiomes and clearly highlight that the phenotypic effects of gut transplants and probiotics can be complex and unpredictable.
Collapse
Affiliation(s)
| | | | | | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
11
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Atilano ML, Hull A, Romila CA, Adams ML, Wildfire J, Ureña E, Dyson M, Ivan-Castillo-Quan J, Partridge L, Kinghorn KJ. Autophagic dysfunction and gut microbiota dysbiosis cause chronic immune activation in a Drosophila model of Gaucher disease. PLoS Genet 2023; 19:e1011063. [PMID: 38127816 PMCID: PMC10734978 DOI: 10.1371/journal.pgen.1011063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Mutations in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD) and are the greatest known genetic risk factors for Parkinson's disease (PD). Communication between the gut and brain and immune dysregulation are increasingly being implicated in neurodegenerative disorders such as PD. Here, we show that flies lacking the Gba1b gene, the main fly orthologue of GBA1, display widespread NF-kB signalling activation, including gut inflammation, and brain glial activation. We also demonstrate intestinal autophagic defects, gut dysfunction, and microbiome dysbiosis. Remarkably, modulating the microbiome of Gba1b knockout flies, by raising them under germ-free conditions, partially ameliorates lifespan, locomotor and immune phenotypes. Moreover, we show that modulation of the immune deficiency (IMD) pathway is detrimental to the survival of Gba1 deficient flies. We also reveal that direct stimulation of autophagy by rapamycin treatment achieves similar benefits to germ-free conditions independent of gut bacterial load. Consistent with this, we show that pharmacologically blocking autophagosomal-lysosomal fusion, mimicking the autophagy defects of Gba1 depleted cells, is sufficient to stimulate intestinal immune activation. Overall, our data elucidate a mechanism whereby an altered microbiome, coupled with defects in autophagy, drive chronic activation of NF-kB signaling in a Gba1 loss-of-function model. It also highlights that elimination of the microbiota or stimulation of autophagy to remove immune mediators, rather than prolonged immunosuppression, may represent effective therapeutic avenues for GBA1-associated disorders.
Collapse
Affiliation(s)
- Magda L. Atilano
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alexander Hull
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Catalina-Andreea Romila
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Mirjam L. Adams
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jacob Wildfire
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enric Ureña
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Miranda Dyson
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jorge Ivan-Castillo-Quan
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center and Department of Genetics, Harvard Medical School, Boston, United States of America
| | - Linda Partridge
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kerri J. Kinghorn
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
13
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the gut microbiome have distinct, sex-specific roles in Hawaiian Drosophila reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549088. [PMID: 37503295 PMCID: PMC10370118 DOI: 10.1101/2023.07.14.549088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gut microbiomes provide numerous physiological benefits for host animals. The role of bacterial members of microbiomes in host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members of the microbiome even though fungi are significant components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, D. grimshawi, and identified distinct, sex-specific roles for the bacteria and fungi in microbiome community stability and reproduction. Female oogenesis, fecundity and mating drive were significantly diminished when fungal communities were suppressed. By contrast, male fecundity was more strongly affected by bacterial but not fungal populations. For males and females, suppression of both bacteria and fungi severely reduced fecundity and altered fatty acid levels and composition, implicating the importance of interkingdom interactions on reproduction and lipid metabolism. Overall, our results reveal that bacteria and fungi have distinct, sexually-dimorphic effects on host physiology and interkingdom dynamics in the gut help to maintain microbiome community stability and enhance reproduction.
Collapse
Affiliation(s)
- Matthew J. Medeiros
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Laura Seo
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Aziel Macias
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Donald K. Price
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| |
Collapse
|
14
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
15
|
Onuma T, Yamauchi T, Kosakamoto H, Kadoguchi H, Kuraishi T, Murakami T, Mori H, Miura M, Obata F. Recognition of commensal bacterial peptidoglycans defines Drosophila gut homeostasis and lifespan. PLoS Genet 2023; 19:e1010709. [PMID: 37023169 PMCID: PMC10112789 DOI: 10.1371/journal.pgen.1010709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/18/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Commensal microbes in animals have a profound impact on tissue homeostasis, stress resistance, and ageing. We previously showed in Drosophila melanogaster that Acetobacter persici is a member of the gut microbiota that promotes ageing and shortens fly lifespan. However, the molecular mechanism by which this specific bacterial species changes lifespan and physiology remains unclear. The difficulty in studying longevity using gnotobiotic flies is the high risk of contamination during ageing. To overcome this technical challenge, we used a bacteria-conditioned diet enriched with bacterial products and cell wall components. Here, we demonstrate that an A. persici-conditioned diet shortens lifespan and increases intestinal stem cell (ISC) proliferation. Feeding adult flies a diet conditioned with A. persici, but not with Lactiplantibacillus plantarum, can decrease lifespan but increase resistance to paraquat or oral infection of Pseudomonas entomophila, indicating that the bacterium alters the trade-off between lifespan and host defence. A transcriptomic analysis using fly intestine revealed that A. persici preferably induces antimicrobial peptides (AMPs), while L. plantarum upregulates amidase peptidoglycan recognition proteins (PGRPs). The specific induction of these Imd target genes by peptidoglycans from two bacterial species is due to the stimulation of the receptor PGRP-LC in the anterior midgut for AMPs or PGRP-LE from the posterior midgut for amidase PGRPs. Heat-killed A. persici also shortens lifespan and increases ISC proliferation via PGRP-LC, but it is not sufficient to alter the stress resistance. Our study emphasizes the significance of peptidoglycan specificity in determining the gut bacterial impact on healthspan. It also unveils the postbiotic effect of specific gut bacterial species, which turns flies into a "live fast, die young" lifestyle.
Collapse
Affiliation(s)
- Taro Onuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hibiki Kadoguchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takumi Murakami
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Dodge R, Jones EW, Zhu H, Obadia B, Martinez DJ, Wang C, Aranda-Díaz A, Aumiller K, Liu Z, Voltolini M, Brodie EL, Huang KC, Carlson JM, Sivak DA, Spradling AC, Ludington WB. A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 2023; 14:1557. [PMID: 36944617 PMCID: PMC10030875 DOI: 10.1038/s41467-023-36942-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbial pulse-chase protocols, and microscopy to investigate the stability of different strains of bacteria in the fly gut. We show that a host-constructed physical niche in the foregut selectively binds bacteria with strain-level specificity, stabilizing their colonization. Primary colonizers saturate the niche and exclude secondary colonizers of the same strain, but initial colonization by Lactobacillus species physically remodels the niche through production of a glycan-rich secretion to favor secondary colonization by unrelated commensals in the Acetobacter genus. Our results provide a mechanistic framework for understanding the establishment and stability of a multi-species intestinal microbiome.
Collapse
Affiliation(s)
- Ren Dodge
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Haolong Zhu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Benjamin Obadia
- Molecular and Cell Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Daniel J Martinez
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Chenhui Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Aumiller
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhexian Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marco Voltolini
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italy
| | - Eoin L Brodie
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
17
|
Lee HY, Lee JH, Kim SH, Jo SY, Min KJ. Probiotic Limosilactobacillus Reuteri (Lactobacillus Reuteri) Extends the Lifespan of Drosophila Melanogaster through Insulin/IGF-1 Signaling. Aging Dis 2023:AD.2023.0122. [PMID: 37163439 PMCID: PMC10389828 DOI: 10.14336/ad.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 05/12/2023] Open
Abstract
The term probiotic refers to bacteria that provide a beneficial effect to the host. Limosilactobacillus reuteri (Lactobacillus reuteri) is a probiotic isolated from human breast milk. Although L. reuteri has antimicrobial and anti-inflammatory activities occasionally linked to anti-aging effects, there are no reports of the effects of L. reuteri on longevity. This study evaluated the anti-aging effects of L. reuteri on the lifespan and physiology of Drosophila melanogaster. L. reuteri increased the mean lifespan of fruit flies significantly without reducing the reproductive output, food intake, or locomotor activity. Furthermore, the data suggested that the longevity effect of L. reuteri is mediated by the reduction of the insulin/IGF-1 signaling pathway and the action of reuterin, an antimicrobial compound produced by L. reuteri. These results show that L. reuteri can be used as a probiotic that acts as a dietary restriction mimetic with anti-aging effects.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Korea
| | - Su-Yeon Jo
- WEDEA Co., Science Park 305, HNU, Daejeon 34054, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
18
|
Abstract
The gut epithelia of virtually all animals harbor complex microbial communities that play an important role in maintaining immune and cellular homeostasis. Gut microbiota have evolutionarily adapted to the host gut environment, serving as key regulators of intestinal stem cells to promote a healthy gut barrier and modulate epithelial self-renewal. Disruption of these populations has been associated with inflammatory disorders or cancerous lesions of the intestine. However, the molecular mechanisms controlling gut-microbe interactions are only partially understood due to the high diversity and biologically dynamic nature of these microorganisms. This article reviews the current knowledge on Drosophila gut microbiota and its role in signaling pathways that are crucial for the induction of distinct homeostatic and immune responses. Thanks to the genetic tractability of Drosophila and its cultivable and simple microbiota, this association model offers new efficient tools for investigating the crosstalk between a host and its microbiota while providing a framework for a better understanding of the ecological and evolutionary roles of the microbiome.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| |
Collapse
|
19
|
Boehme M, Guzzetta KE, Wasén C, Cox LM. The gut microbiota is an emerging target for improving brain health during ageing. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:E2. [PMID: 37179659 PMCID: PMC10174391 DOI: 10.1017/gmb.2022.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The gut microbiota plays crucial roles in maintaining the health and homeostasis of its host throughout lifespan, including through its ability to impact brain function and regulate behaviour during ageing. Studies have shown that there are disparate rates of biologic ageing despite equivalencies in chronologic age, including in the development of neurodegenerative diseases, which suggests that environmental factors may play an important role in determining health outcomes in ageing. Recent evidence demonstrates that the gut microbiota may be a potential novel target to ameliorate symptoms of brain ageing and promote healthy cognition. This review highlights the current knowledge around the relationships between the gut microbiota and host brain ageing, including potential contributions to age-related neurodegenerative diseases. Furthermore, we assess key areas for which gut microbiota-based strategies may present as opportunities for intervention.
Collapse
Affiliation(s)
- Marcus Boehme
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katherine Elizabeth Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Laura Michelle Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Wang Q, Zhang J, Zhuang J, Shen F, Zhao M, Du J, Yu P, Zhong H, Feng F. Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila. Nutrients 2022; 14:nu14245205. [PMID: 36558363 PMCID: PMC9781693 DOI: 10.3390/nu14245205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In traditional Chinese medicine, soft-shelled turtle protein and peptides serve as a nutraceutical for prolonging the lifespan. However, their effects on anti-aging have not been clarified scientifically in vivo. This study aimed to determine whether soft-shelled turtle peptides (STP) could promote the lifespan and healthspan in Drosophila melanogaster and the underlying molecular mechanisms. Herein, STP supplementation prolonged the mean lifespan by 20.23% and 9.04% in males and females, respectively, delaying the aging accompanied by climbing ability decline, enhanced gut barrier integrity, and improved anti-oxidation, starvation, and heat stress abilities, while it did not change the daily food intake. Mechanistically, STP enhanced autophagy and decreased oxidative stress by downregulating the target of rapamycin (TOR) signaling pathway. In addition, 95.18% of peptides from the identified sequences in STP could exert potential inhibitory effects on TOR through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. The current study could provide a theoretical basis for the full exploitation of soft-shelled turtle aging prevention.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Juan Du
- Zhejiang Nuoyan Biotechnology Co., Ltd., Huzhou 313000, China
| | - Peng Yu
- Yuyao Lengjiang Turtle Industry, Ningbo 315400, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (H.Z.); (F.F.)
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.Z.); (F.F.)
| |
Collapse
|
21
|
Wang X, Wu C, Wei H. Humanized Germ-Free Mice for Investigating the Intervention Effect of Commensal Microbiome on Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1291-1302. [PMID: 35403435 DOI: 10.1089/ars.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Significance: A growing body of evidence has demonstrated that the commensal microbiome is deeply involved in the host immune response, accounting for significantly divergent clinical outcomes among cancer patients receiving immunotherapy. Therefore, precise screening and evaluating of functional bacterial strains as novel targets for cancer immunotherapy have attracted great enthusiasm from both academia and industry, which calls for the construction and application of advanced animal models to support translational research in this field. Recent Advances: Significant progress has been made to elucidate the intervention effect of commensal microbiome on immunotherapy based on animal experiments. Especially, correlation between gut microbiota and host response to immunotherapy has been continuously discovered in a variety of cancer types, laying the foundation for causality establishment and mechanism research. Critical Issues: In oncology research, it is particularly not uncommon to see that a promising preclinical result fails to translate into clinical success. The use of conventional murine models in immunotherapy-associated microbiome research is very likely to bring discredit on the preclinical findings. We emphasize the value of germ-free (GF) mice and humanized mice as advanced models in this field. Future Directions: Integrating rederivation and humanization to generate humanized GF mice as preclinical models would make it possible to clarify the role of specific bacterial strains in immunotherapy as well as obtain preclinical findings that are more predictive for humans, leading to novel microbiome-based strategies for cancer immunotherapy. Antioxid. Redox Signal. 37, 1291-1302.
Collapse
Affiliation(s)
- Xinning Wang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengwei Wu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
23
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
24
|
Corbally MK, Regan JC. Fly immunity comes of age: The utility of Drosophila as a model for studying variation in immunosenescence. FRONTIERS IN AGING 2022; 3:1016962. [PMID: 36268532 PMCID: PMC9576847 DOI: 10.3389/fragi.2022.1016962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jennifer C. Regan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Landis GN, Riggan L, Bell HS, Vu W, Wang T, Wang I, Tejawinata FI, Ko S, Tower J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. FRONTIERS IN AGING 2022; 3:924957. [PMID: 35935727 PMCID: PMC9354577 DOI: 10.3389/fragi.2022.924957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
27
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
28
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
29
|
Chiang MH, Ho SM, Wu HY, Lin YC, Tsai WH, Wu T, Lai CH, Wu CL. Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines 2022; 10:596. [PMID: 35327401 PMCID: PMC8945323 DOI: 10.3390/biomedicines10030596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
Mounting evidence indicates that the gut microbiota is linked to several physiological processes and disease development in mammals; however, the underlying mechanisms remained unexplored mostly due to the complexity of the mammalian gut microbiome. The fruit fly, Drosophila melanogaster, is a valuable animal model for studying host-gut microbiota interactions in translational aspects. The availability of powerful genetic tools and resources in Drosophila allowed the scientists to unravel the mechanisms by which the gut microbes affect fitness, health, and behavior of their hosts. Drosophila models have been extensively used not only to study animal behaviors (i.e., courtship, aggression, sleep, and learning & memory), but also some human related neurodegenerative diseases (i.e., Alzheimer's disease and Parkinson's disease) in the past. This review comprehensively summarizes the current understanding of the gut microbiota of Drosophila and its impact on fly behavior, physiology, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Shuk-Man Ho
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 74144, Taiwan;
| | - Tony Wu
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Neurology, New Taipei Municipal Tucheng Hospital, Tucheng 23652, Taiwan
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Research, Graduate Institute of Biomedical Sciences, China Medical University and Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
30
|
Lee HY, Lee SH, Min KJ. The Increased Abundance of Commensal Microbes Decreases Drosophila melanogaster Lifespan through an Age-Related Intestinal Barrier Dysfunction. INSECTS 2022; 13:insects13020219. [PMID: 35206792 PMCID: PMC8878274 DOI: 10.3390/insects13020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Commensal microbiota live in their host with a symbiotic relationship that affects the host's health and physiology. Many studies showed that microbial load and composition were changed by aging and observed that increasing the abundance and changing the composition of commensal microbes had detrimental effects on host lifespan. We hypothesized that dysbiosis of the intestinal microbiota leads to systemic effects in aging flies as a result of the increased intestinal permeability. METHODS We used the fruit fly, Drosophila melanogaster, laboratory strains w1118, as a model system with many advantages for microbe-host studies. RESULTS The incidence of intestinal dysfunction was increased with age, and intestinal dysfunction increased the permeability of the fly intestine to resident microbes. The lifespan of flies with an intestinal barrier dysfunction was increased by removal of the microbes. Interestingly, some bacteria were also found in the hemolymph of flies with intestinal barrier dysfunction. CONCLUSION Our findings suggest the possibility that, as the host ages, there is an increase in intestinal permeability, which leads to an increased intestinal microbial load and a reduction in the host lifespan. Our data therefore indicate a connection between commensal microbes and host lifespan.
Collapse
|
31
|
Neophytou C, Pitsouli C. How Gut Microbes Nurture Intestinal Stem Cells: A Drosophila Perspective. Metabolites 2022; 12:169. [PMID: 35208243 PMCID: PMC8878600 DOI: 10.3390/metabo12020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Host-microbiota interactions are key modulators of host physiology and behavior. Accumulating evidence suggests that the complex interplay between microbiota, diet and the intestine controls host health. Great emphasis has been given on how gut microbes have evolved to harvest energy from the diet to control energy balance, host metabolism and fitness. In addition, many metabolites essential for intestinal homeostasis are mainly derived from gut microbiota and can alleviate nutritional imbalances. However, due to the high complexity of the system, the molecular mechanisms that control host-microbiota mutualism, as well as whether and how microbiota affects host intestinal stem cells (ISCs) remain elusive. Drosophila encompasses a low complexity intestinal microbiome and has recently emerged as a system that might uncover evolutionarily conserved mechanisms of microbiota-derived nutrient ISC regulation. Here, we review recent studies using the Drosophila model that directly link microbiota-derived metabolites and ISC function. This research field provides exciting perspectives for putative future treatments of ISC-related diseases based on monitoring and manipulating intestinal microbiota.
Collapse
Affiliation(s)
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia, Nicosia 2109, Cyprus;
| |
Collapse
|
32
|
Beribaka M, Jelić M, Tanasković M, Lazić C, Stamenković-Radak M. Life History Traits in Two Drosophila Species Differently Affected by Microbiota Diversity under Lead Exposure. INSECTS 2021; 12:insects12121122. [PMID: 34940211 PMCID: PMC8708062 DOI: 10.3390/insects12121122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Microbiota have a significant functional role in the life of the host, including immunity, lifespan and reproduction. Drosophila species are attractive model organisms for investigating microbiota diversity from different aspects due to their simple gut microbiota, short generation time and high fertility. Considering such an important role of the microbiota in the life of Drosophila, we investigated the extent to which lead (Pb), as one of the most abundant heavy metals in the environment, affects the microbiota and the fitness of this insect host. The results indicate that different factors, such as population origin and sex, may affect individual traits differently and this could be species-specific. In addition, there are members of microbiota that help the host to overcome environmental stress and they could play a key role in reducing the fitness cost in such situations. Studying the influence of microbiota on the adaptive response to heavy metals and the potential implications on overall host fitness is of great pertinence. Abstract Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3–V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.
Collapse
Affiliation(s)
- Mirjana Beribaka
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
- Correspondence:
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Cvijeta Lazić
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Bosnia and Herzegovina;
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.J.); (M.S.-R.)
| |
Collapse
|
33
|
Competitive Coherence Generates Qualia in Bacteria and Other Living Systems. BIOLOGY 2021; 10:biology10101034. [PMID: 34681133 PMCID: PMC8533353 DOI: 10.3390/biology10101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
The relevance of bacteria to subjective experiences or qualia is underappreciated. Here, I make four proposals. Firstly, living systems traverse sequences of active states that determine their behaviour; these states result from competitive coherence, which depends on connectivity-based competition between a Next process and a Now process, whereby elements in the active state at time n+1 are chosen between the elements in the active state at time n and those elements in the developing n+1 state. Secondly, bacteria should help us link the mental to the physical world given that bacteria were here first, are highly complex, influence animal behaviour and dominate the Earth. Thirdly, the operation of competitive coherence to generate active states in bacteria, brains and other living systems is inseparable from qualia. Fourthly, these qualia become particularly important to the generation of active states in the highest levels of living systems, namely, the ecosystem and planetary levels.
Collapse
|
34
|
Kitani-Morii F, Friedland RP, Yoshida H, Mizuno T. Drosophila as a Model for Microbiota Studies of Neurodegeneration. J Alzheimers Dis 2021; 84:479-490. [PMID: 34569965 PMCID: PMC8673522 DOI: 10.3233/jad-215031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence show that the gut microbiota is deeply involved not only in host nutrient metabolism but also in immune function, endocrine regulation, and chronic disease. In neurodegenerative conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis, the gut-brain axis, the bidirectional interaction between the brain and the gut, provides new route of pathological spread and potential therapeutic targets. Although studies of gut microbiota have been conducted mainly in mice, mammalian gut microbiota is highly diverse, complex, and sensitive to environmental changes. Drosophila melanogaster, a fruit fly, has many advantages as a laboratory animal: short life cycle, numerous and genetically homogenous offspring, less ethical concerns, availability of many genetic models, and low maintenance costs. Drosophila has a simpler gut microbiota than mammals and can be made to remain sterile or to have standardized gut microbiota by simple established methods. Research on the microbiota of Drosophila has revealed new molecules that regulate the brain-gut axis, and it has been shown that dysbiosis of the fly microbiota worsens lifespan, motor function, and neurodegeneration in AD and PD models. The results shown in fly studies represents a fundamental part of the immune and proteomic process involving gut-microbiota interactions that are highly conserved. Even though the fly’s gut microbiota are not simple mimics of humans, flies are a valuable system to learn the molecular mechanisms of how the gut microbiota affect host health and behavior.
Collapse
Affiliation(s)
- Fukiko Kitani-Morii
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hideki Yoshida
- Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
35
|
Leech T, McDowall L, Hopkins KP, Sait SM, Harrison XA, Bretman A. Social environment drives sex and age-specific variation in Drosophila melanogaster microbiome composition and predicted function. Mol Ecol 2021; 30:5831-5843. [PMID: 34494339 DOI: 10.1111/mec.16149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022]
Abstract
Social environments influence multiple traits of individuals including immunity, stress and ageing, often in sex-specific ways. The composition of the microbiome (the assemblage of symbiotic microorganisms within a host) is determined by environmental factors and the host's immune, endocrine and neural systems. The social environment could alter host microbiomes extrinsically by affecting transmission between individuals, probably promoting homogeneity in the microbiome of social partners. Alternatively, intrinsic effects arising from interactions between the microbiome and host physiology (the microbiota-gut-brain axis) could translate social stress into dysbiotic microbiomes, with consequences for host health. We investigated how manipulating social environments during larval and adult life-stages altered the microbiome composition of Drosophila melanogaster fruit flies. We used social contexts that particularly alter the development and lifespan of males, predicting that any intrinsic social effects on the microbiome would therefore be sex-specific. The presence of adult males during the larval stage significantly altered the microbiome of pupae of both sexes. In adults, same-sex grouping increased bacterial diversity in both sexes. Importantly, the microbiome community structure of males was more sensitive to social contact at older ages, an effect partially mitigated by housing focal males with young rather than coaged groups. Functional analyses suggest that these microbiome changes impact ageing and immune responses. This is consistent with the hypothesis that the substantial effects of the social environment on individual health are mediated through intrinsic effects on the microbiome, and provides a model for understanding the mechanistic basis of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Thomas Leech
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Laurin McDowall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of Life Sciences, University of Dundee, Dundee, UK
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, London, UK
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, UK.,Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
36
|
Teulière J, Bernard C, Bapteste E. Interspecific interactions that affect ageing: Age-distorters manipulate host ageing to their own evolutionary benefits. Ageing Res Rev 2021; 70:101375. [PMID: 34082078 DOI: 10.1016/j.arr.2021.101375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Genetic causes for ageing are traditionally investigated within a species. Yet, the lifecycles of many organisms intersect. Additional evolutionary and genetic causes of ageing, external to a focal species/organism, may thus be overlooked. Here, we introduce the phrase and concept of age-distorters and its evidence. Age-distorters carry ageing interfering genes, used to manipulate the biological age of other entities upon which the reproduction of age-distorters relies, e.g. age-distorters bias the reproduction/maintenance trade-offs of cells/organisms for their own evolutionary interests. Candidate age-distorters include viruses, parasites and symbionts, operating through specific, genetically encoded interferences resulting from co-evolution and arms race between manipulative non-kins and manipulable species. This interference results in organismal ageing when age-distorters prompt manipulated organisms to favor their reproduction at the expense of their maintenance, turning these hosts into expanded disposable soma. By relying on reproduction/maintenance trade-offs affecting disposable entities, which are left ageing to the reproductive benefit of other physically connected lineages with conflicting evolutionary interests, the concept of age-distorters expands the logic of the Disposable Soma theory beyond species with fixed germen/soma distinctions. Moreover, acknowledging age-distorters as external sources of mutation accumulation and antagonistic pleiotropic genes expands the scope of the mutation accumulation and of the antagonistic pleiotropy theories.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|
37
|
Kong Y, Wang L, Jiang B. The Role of Gut Microbiota in Aging and Aging Related Neurodegenerative Disorders: Insights from Drosophila Model. Life (Basel) 2021; 11:life11080855. [PMID: 34440599 PMCID: PMC8399269 DOI: 10.3390/life11080855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by a time dependent impairment of physiological function and increased susceptibility to death. It is the major risk factor for neurodegeneration. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD) are the main causes of dementia in the old population. Gut microbiota is a community of microorganisms colonized in the gastrointestinal (GI) tract. The alteration of gut microbiota has been proved to be associated with aging and aging related neurodegeneration. Drosophila is a powerful tool to study microbiota-mediated physiological and pathological functions. Here, we summarize the recent advances using Drosophila as model organisms to clarify the molecular mechanisms and develop a therapeutic method targeting microbiota in aging and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China;
- Correspondence:
| | - Liyuan Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
| |
Collapse
|
38
|
Platonova EY, Shaposhnikov MV, Lee HY, Lee JH, Min KJ, Moskalev A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Abstract
The gut microbiota affects the physiology and metabolism of animals and its alteration can lead to diseases such as gut dysplasia or metabolic disorders. Several reports have shown that the immune system plays an important role in shaping both bacterial community composition and abundance in Drosophila, and that immune deficit, especially during aging, negatively affects microbiota richness and diversity. However, there has been little study at the effector level to demonstrate how immune pathways regulate the microbiota. A key set of Drosophila immune effectors are the antimicrobial peptides (AMPs), which confer defense upon systemic infection. AMPs and lysozymes, a group of digestive enzymes with antimicrobial properties, are expressed in the gut and are good candidates for microbiota regulation. Here, we take advantage of the model organism Drosophila melanogaster to investigate the role of AMPs and lysozymes in regulation of gut microbiota structure and diversity. Using flies lacking AMPs and newly generated lysozyme mutants, we colonized gnotobiotic flies with a defined set of commensal bacteria and analyzed changes in microbiota composition and abundance in vertical transmission and aging contexts through 16S rRNA gene amplicon sequencing. Our study shows that AMPs and, to a lesser extent, lysozymes are necessary to regulate the total and relative abundance of bacteria in the gut microbiota. We also decouple the direct function of AMPs from the immune deficiency (IMD) signaling pathway that regulates AMPs but also many other processes, more narrowly defining the role of these effectors in the microbial dysbiosis observed in IMD-deficient flies upon aging.
Collapse
|
40
|
Schissel M, Best R, Liesemeyer S, Tan YD, Carlson DJ, Shaffer JJ, Avuthu N, Guda C, Carlson KA. Effect of Nora virus infection on native gut bacterial communities of Drosophila melanogaster. AIMS Microbiol 2021; 7:216-237. [PMID: 34250376 PMCID: PMC8255909 DOI: 10.3934/microbiol.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal microflora is a key component in the maintenance of health and longevity across many species. In humans and mice, nonpathogenic viruses present in the gastrointestinal tract enhance the effects of the native bacterial microbiota. However, it is unclear whether nonpathogenic gastrointestinal viruses, such as Nora virus that infects Drosophila melanogaster, lead to similar observations. Longevity analysis of Nora virus infected (NV+) and uninfected (NV-) D. melanogaster in relationship to presence (B+) or absence (B-) of the native gut bacteria using four different treatment groups, NV+/B+, NV+/B-, NV-/B+, and NV-/B-, was conducted. Data from the longevity results were tested via Kaplan-Meier analysis and demonstrated that Nora virus can be detrimental to the longevity of the organism, whereas bacterial presence is beneficial. These data led to the hypothesis that gastrointestinal bacterial composition varies from NV+ to NV- flies. To test this, NV+ and NV- virgin female flies were collected and aged for 4 days. Surface sterilization followed by dissections of the fat body and the gastrointestinal tract, divided into crop (foregut), midgut, and hindgut, were performed. Ribosomal 16S DNA samples were sequenced to determine the bacterial communities that comprise the microflora in the gastrointestinal tract of NV+ and NV- D. melanogaster. When analyzing operational taxonomic units (OTUs), the data demonstrate that the NV+ samples consist of more OTUs than NV- samples. The NV+ samples were both more rich and diverse in OTUs compared to NV-. When comparing whole body samples to specific organs and organ sections, the whole fly was more diverse in OTUs, whereas the crop was the most rich. These novel data are pertinent in describing where Nora virus infection may be occurring within the gastrointestinal tract, as well as continuing discussion between the relationship of persistent viral and bacterial interaction.
Collapse
Affiliation(s)
- Makayla Schissel
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Rebecca Best
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Shelby Liesemeyer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Yuan-De Tan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Darby J. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Julie J. Shaffer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Kimberly A. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| |
Collapse
|
41
|
Common features of aging fail to occur in Drosophila raised without a bacterial microbiome. iScience 2021; 24:102703. [PMID: 34235409 PMCID: PMC8246586 DOI: 10.1016/j.isci.2021.102703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lifespan is limited both by intrinsic decline in vigor with age and by accumulation of external insults. There exists a general picture of the deficits of aging, one that is reflected in a pattern of age-correlated changes in gene expression conserved across species. Here, however, by comparing gene expression profiling of Drosophila raised either conventionally, or free of bacteria, we show that ∼70% of these conserved, age-associated changes in gene expression fail to occur in germ-free flies. Among the processes that fail to show time-dependent change under germ-free conditions are two aging features that are observed across phylogeny, declining expression of stress response genes and increasing expression of innate immune genes. These comprise adaptive strategies the organism uses to respond to bacteria, rather than being inevitable components of age-dependent decline. Changes in other processes are independent of the microbiome and can serve as autonomous markers of aging of the individual.
Collapse
|
42
|
Haran JP, McCormick BA. Aging, Frailty, and the Microbiome-How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2021; 160:507-523. [PMID: 33307030 PMCID: PMC7856216 DOI: 10.1053/j.gastro.2020.09.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in our bodies and are essential in protective, metabolic, and physiologic functions of human health. Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the intestinal microbial community structure that correlate with untoward inflammatory responses are increasingly recognized as being involved in disease processes that affect many organ systems in the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis and age-related diseases may lie in how the gut microbiome communicates with both the intestinal mucosa and the systemic immune system, given that these networks have a common interconnection to frailty. We therefore discuss recent advances in our understanding of the important role the microbiome plays in aging and how this knowledge opens the door for potential novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related diseases.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine; Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
43
|
Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, Min KJ. Role of Commensal Microbes in the γ-Ray Irradiation-Induced Physiological Changes in Drosophila melanogaster. Microorganisms 2020; 9:microorganisms9010031. [PMID: 33374132 PMCID: PMC7824294 DOI: 10.3390/microorganisms9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.
Collapse
Affiliation(s)
- Hwa-Jin Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Yongjoong Kim
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
- Correspondence:
| |
Collapse
|
44
|
Kamareddine L, Najjar H, Sohail MU, Abdulkader H, Al-Asmakh M. The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells 2020; 9:cells9112401. [PMID: 33147801 PMCID: PMC7693214 DOI: 10.3390/cells9112401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the scientific committee has called for broadening our horizons in understanding host–microbe interactions and infectious disease progression. Owing to the fact that the human gut harbors trillions of microbes that exhibit various roles including the production of vitamins, absorption of nutrients, pathogen displacement, and development of the host immune system, particular attention has been given to the use of germ-free (GF) animal models in unraveling the effect of the gut microbiota on the physiology and pathophysiology of the host. In this review, we discuss common methods used to generate GF fruit fly, zebrafish, and mice model systems and highlight the use of these GF model organisms in addressing the role of gut-microbiota in gut-related disorders (metabolic diseases, inflammatory bowel disease, and cancer), and in activating host defense mechanisms and amending pathogenic virulence.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Muhammad Umar Sohail
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadil Abdulkader
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar; (L.K.); (H.N.); (M.U.S.); (H.A.)
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Correspondence: ; Tel.: +974-4403-4789
| |
Collapse
|
45
|
Grenier T, Leulier F. How commensal microbes shape the physiology of Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2020; 41:92-99. [PMID: 32836177 DOI: 10.1016/j.cois.2020.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The interactions between animals and their commensal microbes profoundly influence the host's physiology. In the last decade, Drosophila melanogaster has been extensively used as a model to study host-commensal microbes interactions. Here, we review the most recent advances in this field. We focus on studies that extend our understanding of the molecular mechanisms underlying the effects of commensal microbes on Drosophila's development and lifespan. We emphasize how commensal microbes influence nutrition and the intestinal epithelium homeostasis; how they elicit immune tolerance mechanisms and how these physiological processes are interconnected. Finally, we discuss the importance of diets and microbial strains and show how they can be confounding factors of microbe mediated host phenotypes.
Collapse
Affiliation(s)
- Theodore Grenier
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, 46, allée d'Italie, 69007, Lyon, France
| | - François Leulier
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5242, 46, allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
46
|
Affiliation(s)
- William B. Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (WBL); (WWJ)
| | - William W. Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail: (WBL); (WWJ)
| |
Collapse
|
47
|
Heys C, Lizé A, Lewis Z, Price TAR. Drosophila Sexual Attractiveness in Older Males Is Mediated by Their Microbiota. Microorganisms 2020; 8:E168. [PMID: 31991698 PMCID: PMC7074797 DOI: 10.3390/microorganisms8020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
Age is well known to be a basis for female preference of males. However, the mechanisms underlying age-based choices are not well understood, with several competing theories and little consensus. The idea that the microbiota can affect host mate choice is gaining traction, and in this study we examine whether the male microbiota influences female preference for older individuals in the fruit fly Drosophila pseudoobscura. We find that an intact microbiota is a key component of attractiveness in older males. However, we found no evidence that this decrease in older male attractiveness was simply due to impaired microbiota generally reducing male quality. Instead, we suggest that the microbiota underlies an honest signal used by females to assess male age, and that impaired microbiota disrupt this signal. This suggests that age-based preferences may break down in environments where the microbiota is impaired, for example when individuals are exposed to naturally occurring antibiotics, extreme temperatures, or in animals reared in laboratories on antibiotic supplemented diet.
Collapse
Affiliation(s)
- Chloe Heys
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (C.H.); (A.L.); (T.A.R.P.)
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anne Lizé
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (C.H.); (A.L.); (T.A.R.P.)
- UMR CNRS 6553, University of Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes, France
| | - Zenobia Lewis
- School of Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tom A. R. Price
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (C.H.); (A.L.); (T.A.R.P.)
| |
Collapse
|