1
|
Yang J, Ma Y, Liu J, Zhu Q, Zhou R, Yuan C, Ding Y, Xiao W, Gong W, Shan Q, Lu G, Xu H. Identifying and validating the key regulatory transcription factor YY1 in the aging process of pancreatic beta cells based on bioinformatics. Exp Gerontol 2024; 198:112633. [PMID: 39542150 DOI: 10.1016/j.exger.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The aging of pancreatic beta cells is closely associated with various diseases, such as impaired glucose tolerance, yet the underlying regulatory mechanisms remain unclear. In this study, we screened young and aged mouse pancreatic beta cells' high-throughput sequencing data from the GEO public database. Utilizing bioinformatics techniques, we identified the key regulatory factor YY1 in the aging process of pancreatic islets. We observed a significant decrease in the expression of YY1 in a D-gal-induced mouse model of pancreatic aging and an H2O2-induced MIN6 cell model of aging. Moreover, both vivo and vitro models, we found that the YY1 agonist eudesmin (EDN) improved glucose intolerance in mice, alleviated aging of pancreatic beta cells, and downregulated the expression of cell cycle protein P21. Mechanistically, we discovered that EDN inhibited the P38/JNK MAPK pathway in aging cells. In summary, our study confirms the regulatory role of the transcription factor YY1 in the aging process of pancreatic beta cells. This finding may provide a new approach for the clinical treatment of pancreatic aging-related diseases such as impaired glucose tolerance or diabetes.
Collapse
Affiliation(s)
- Junqi Yang
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yumin Ma
- Department of Endocrinology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiang Liu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Zhou
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Qing Shan
- Department of Geriatric, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Hongwei Xu
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China.
| |
Collapse
|
2
|
Bo S, Dan M, Li W, Chen C. The regulatory mechanism of natural polysaccharides in type 2 diabetes mellitus treatment. Drug Discov Today 2024; 29:104182. [PMID: 39284523 DOI: 10.1016/j.drudis.2024.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Diabetes is a complex, multifactorial disease that is caused by a pathological combination of insulin resistance and pancreatic islet dysfunction. Polysaccharides are extensively dispersed in nature and have a very complicated structure with various biological properties. Natural polysaccharides have potentially extraordinary beneficial health effects on managing metabolic diseases such as diabetes, obesity and cardiovascular disease. Thus, a systematic review of the latest research into and possible regulatory mechanisms of natural polysaccharides for type 2 diabetes mellitus treatment is of great significance for a better understanding of their pharmaceutical value. We discuss the regulatory mechanisms of natural polysaccharides for the treatment of diabetes, and especially their role in reshaping dysfunctional gut microbiota. Natural polysaccharides could be developed as new and safe antidiabetic drugs, and detailed mechanistic studies could further clarify the molecular targets of polysaccharides in the treatment of diabetes.
Collapse
Affiliation(s)
- Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Jinshan Development Zone, Hohhot, Inner Mongolian Province 010110, China; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mu Dan
- College of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Jinshan Development Zone, Hohhot, Inner Mongolian Province 010110, China
| | - Wei Li
- Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Moon ME, Jung DH, Heo SJ, Park B, Lee YJ. Oxidative balance score as a useful predictive marker for new-onset type 2 diabetes mellitus in Korean adults aged 60 years or older: The Korean Genome and Epidemiologic Study-Health Examination (KoGES-HEXA) cohort. Exp Gerontol 2024; 193:112475. [PMID: 38823556 DOI: 10.1016/j.exger.2024.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The oxidative balance score (OBS) is a comprehensive pro- and anti-oxidative marker for assessing the risk of various metabolic diseases and cancers. However, it is not well established whether OBS is related to type 2 diabetes mellitus (T2DM), particularly in elderly populations. Therefore, our objective was to investigate the longitudinal effect of OBS on T2DM in a large cohort of Korean adults aged 60 years and older. METHODS We assessed the data for 3516 participants aged 60 years and older without diabetes mellitus from the Health Examinees cohort of the Korean Genome and Epidemiology Study. We classified the participants into three groups according to OBS tertiles. We prospectively assessed hazard ratios (HRs) with 95 % confidence intervals (CIs) for new-onset T2DM using multivariable Cox proportional-hazard regression models during the mean 3.5 years following the baseline survey. RESULTS A total of 109 participants (3.1 %) developed T2DM during a mean follow-up of 3.5 years. The incidence rates per 1000 person-years were 11.73 for the lowest OBS tertile (T1), 8.19 for the second tertile (T2), and 6.23 for the highest tertile (T3). Adjusting for all confounding factors, compared with the referent T1, the HR (95 % CI) of new-onset T2DM was not significant in T2 (0.71 [0.47-1.07]) but was significant in T3 at (0.47 [0.30-0.75]) (p for trend = 0.002). CONCLUSIONS The study suggests that a OBS could serve as a valuable predictive marker for new-onset T2DM in older adults. Our study suggests that maintaining an appropriate body weight through healthy lifestyle modification has the potential to lower T2DM incidence in elderly. This implies that the OBS may be a useful tool for assessing the incidence of T2DM even in older individuals.
Collapse
Affiliation(s)
- Mid-Eum Moon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Family Medicine, Gangnam Severance Hospital, Seoul 06273, Republic of Korea
| | - Dong Hyuk Jung
- Department of Family Medicine, Yongin Severance Hospital, Gyeonggi-do 16995, Republic of Korea; Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yongin Severance Hospital, Gyeonggi-do 16995, Republic of Korea; Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yong Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Family Medicine, Gangnam Severance Hospital, Seoul 06273, Republic of Korea.
| |
Collapse
|
4
|
Chavda VP, Balar PC, Vaghela DA, Dodiya P. Unlocking longevity with GLP-1: A key to turn back the clock? Maturitas 2024; 186:108028. [PMID: 38815535 DOI: 10.1016/j.maturitas.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Traditionally known for managing blood sugar, GLP-1, a gut hormone, is emerging as a potential key to both lengthening lifespan and combating age-related ailments. While widely recognized for its role in blood sugar control, GLP-1 is increasingly recognized for its diverse effects on various biological pathways beyond glucose metabolism. Research across organisms and humans suggests that activating GLP-1 receptors significantly impacts cellular processes linked to aging. Its ability to boost mitochondrial function, enhance cellular stress resistance, and quell inflammation hints at its wider influence on aging mechanisms. This intricate interplay between GLP-1 and longevity appears to act through multiple pathways. One key effect is its ability to modulate insulin sensitivity, potentially curbing age-related metabolic issues like type 2 diabetes. Its neuroprotective properties also make it a promising candidate for addressing age-related cognitive decline and neurodegenerative diseases. Furthermore, preclinical studies using GLP-1 analogs or agonists have shown promising results in extending lifespan and improving healthspan in various model organisms. These findings provide a compelling rationale for exploring GLP-1-based interventions in humans to extend healthy aging. However, despite the exciting therapeutic prospects of GLP-1 in promoting longevity, challenges remain. Determining optimal dosages, establishing long-term safety profiles, and investigating potential adverse effects require comprehensive clinical investigations before we can confidently translate these findings to humans. This article emphasises the wide applicability of GLP-1.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India.
| | - Pankti C Balar
- Pharmacy Section, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Dixa A Vaghela
- Pharmacy Section, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Payal Dodiya
- Pharmacy Section, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| |
Collapse
|
5
|
Luo C, Nakagawa M, Sumi Y, Matsushima Y, Uemura M, Honda Y, Matsumoto N. Detection of senescent cells in the mucosal healing process on type 2 diabetic rats after tooth extraction for biomaterial development. Dent Mater J 2024; 43:430-436. [PMID: 38644214 DOI: 10.4012/dmj.2023-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The delayed mucosal healing of tooth extraction sockets in diabetes has few known effective treatment strategies, and its underlying mechanism remains unknown. Senescent cells may play a pivotal role in this delay, given the well-established association between diabetes, senescent cells, and wound healing. Here, we demonstrated an increase in p21- or p16-positive senescent cells in the epithelial and connective tissues of extraction sockets in type 2 diabetic rats compared to those in control rats. Between 7 and 14 days after tooth extraction, a decrease in senescent cells and improvement in re-epithelialization failure were observed in the epithelium, while an increase in senescent cells and persistence of inflammation were observed in the connective tissue. These results suggest that cellular senescence may have been induced by diabetes and contributed to delayed mucosal healing by suppressing re-epithelization and persistent inflammation. These findings provide new targets for treatment using biomaterials, cells, and drugs.
Collapse
Affiliation(s)
- Chuyi Luo
- Department of Orthodontics, Osaka Dental University
| | | | - Yoichi Sumi
- Department of Anatomy, Osaka Dental University
| | | | | | | | | |
Collapse
|
6
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Hela F, Aguayo-Mazzucato C. Interaction between Autophagy and Senescence in Pancreatic Beta Cells. BIOLOGY 2023; 12:1205. [PMID: 37759604 PMCID: PMC10525299 DOI: 10.3390/biology12091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Aging leads to an increase in cellular stress due to the fragility of the organism and the inability to cope with it. In this setting, there is a higher chance of developing different cardiometabolic diseases like diabetes. Cellular senescence and autophagy, both hallmarks of aging and stress-coping mechanisms, have gained increased attention for their role in the pathophysiology of diabetes. Studies show that impairing senescence dampens and even prevents diabetes while the role of autophagy is more contradictory, implying a context- and disease-stage-dependent effect. Reports show conflicting data about the effect of autophagy on senescence while the knowledge about this interaction in beta cells remains scarce. Elucidating this interaction between autophagy and senescence in pancreatic beta cells will lead to an identification of their respective roles and the extent of the effect each mechanism has on beta cells and open new horizons for developing novel therapeutic agents. To help illuminate this relationship we will review the latest findings of cellular senescence and autophagy with a special emphasis on pancreatic beta cells and diabetes.
Collapse
Affiliation(s)
| | - Cristina Aguayo-Mazzucato
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Lim ST, Kang S. Exercise therapy for sarcopenia and diabetes. World J Diabetes 2023; 14:565-572. [PMID: 37273255 PMCID: PMC10237001 DOI: 10.4239/wjd.v14.i5.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Aging is characterized by the gradual deterioration of function at the molecular, cellular, tissue, and organism levels in humans. The typical diseases caused by changes in body composition, as well as functional decline in the human body’s organs due to aging include sarcopenia and metabolic disorders. The accumulation of dysfunctional aging β cells with age can cause decreased glucose tolerance and diabetes. Muscle decline has a multifactorial origin, involving lifestyle habits, disease triggers, and age-dependent biological changes. The reduced function of β cells in elderly people lowers insulin sensitivity, which affects protein synthesis and interferes with muscle synthesis. The functional decrease and aggravation of disease in elderly people with less regular exercise or physical activity causes imbalances in food intake and a continuous, vicious cycle. In contrast, resistance exercise increases the function of β cells and protein synthesis in elderly people. In this review, we discuss regular physical activities or exercises to prevent and improve health, which is sarcopenia as decreased muscle mass and metabolic disorders as diabetes in the elderly.
Collapse
Affiliation(s)
- Seung-Taek Lim
- Institute of Sports and Arts Convergence (ISAC), Inha University, Incheon 22212, South Korea
- Waseda Institute for Sport Sciences, Waseda University, Saitama 341-0018, Japan
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, South Korea
- Interdisciplinary Program in Biohealth-machinery convergence engineering, Kangwon National University, Chuncheon-si 24341, South Korea
| |
Collapse
|
10
|
Jiang Z, Jin L, Jiang C, Yan Z, Cao Y. IL-1β contributes to the secretion of sclerostin by osteocytes and targeting sclerostin promotes spinal fusion at early stages. J Orthop Surg Res 2023; 18:162. [PMID: 36864451 PMCID: PMC9983224 DOI: 10.1186/s13018-023-03657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Despite extensive research, there is still a need for safe and effective agents to promote spinal fusion. Interleukin (IL)-1β is an important factor which influences the bone repair and remodelling. The purpose of our study was to determine the effect of IL-1β on sclerostin in osteocytes and to explore whether inhibiting the secretion of sclerostin from osteocytes can promote spinal fusion at early stages. METHODS Small-interfering RNA was used to suppress the secretion of sclerostin in Ocy454 cells. MC3T3-E1 cells were cocultured with Ocy454 cells. Osteogenic differentiation and mineralisation of MC3T3-E1 cells were evaluated in vitro. SOST knock-out rat generated using the CRISPR-Cas9 system and rat spinal fusion model was used in vivo. The degree of spinal fusion was assessed by manual palpation, radiographic analysis and histological analysis at 2 and 4 weeks. RESULTS We found that IL-1β level had a positive association with sclerostin level in vivo. IL-1β promoted the expression and secretion of sclerostin in Ocy454 cells in vitro. Inhibition of IL-1β-induced secretion of sclerostin from Ocy454 cells could promote the osteogenic differentiation and mineralisation of cocultured MC3T3-E1 cells in vitro. The extent of spinal graft fusion was greater in SOST-knockout rats than in wild-type rats at 2 and 4 weeks. CONCLUSIONS The results demonstrate that IL-1β contributes to a rise in the level of sclerostin at early stages of bone healing. Suppressing sclerostin may be an important therapeutic target capable of promoting spinal fusion at early stages.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Lixia Jin
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Chang Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Zuoqin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China.
| | - Yuanwu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, NO. 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
11
|
Sulfated fuco-manno-glucuronogalactan alleviates pancreatic beta cell senescence via PI3K/AKT/FoxO1 pathway. Int J Biol Macromol 2023; 236:123846. [PMID: 36863675 DOI: 10.1016/j.ijbiomac.2023.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing 1, 3-linked β-D-GlcpA residues, 1, 4-linked α-D-Galp residues, and alternating 1, 2-linked α-D-Manp residues and 1, 4-linked β-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro and in vivo, including cell cycle, senescence-associated β-galactosidase, DNA damage and senescence-associated secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be used for beta cell senescence treatment and alleviation of the progression of T2D.
Collapse
|
12
|
From Single- to Multi-organ-on-a-Chip System for Studying Metabolic Diseases. BIOCHIP JOURNAL 2023. [DOI: 10.1007/s13206-023-00098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
13
|
Yuniartha R, Arfian N, Setyaningsih WAW, Kencana SMS, Sari DCR, Sari DCR. Accelerated Senescence and Apoptosis in the Rat Liver during the Progression of Diabetic Complications. Malays J Med Sci 2022; 29:46-59. [PMID: 36818894 PMCID: PMC9910368 DOI: 10.21315/mjms2022.29.6.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Chronic hyperglycaemia of diabetes causes long-term damage and impaired function of multiple organs. However, the pathological changes in the liver following long-term diabetes remain unclear. This study aimed to determine the pathological complications of long-term diabetes in the rat liver. Methods Intraperitoneal injection of streptozotocin (STZ) was used to induce diabetes in rats at a single dose (60 mg/kg body weight [BW]). Rats were euthanised at 1 month (DM1 group), 2 months (DM2 group) and 4 months (DM4 group) following diabetes induction with six rats in each group. Immunohistochemistry was performed against SOD1, CD68, p53 and p16 antibodies. Messenger RNA (mRNA) expressions of SOD1, SOD2, GPx, CD68, p53, p21 and caspase-3 genes were measured by reverse transcription-polymerase chain reaction. Results Hepatic p53 mRNA expression was significantly higher in DM1, DM2 and DM4 groups compared to the control group. The p21 and caspase-3 mRNA expressions were significantly upregulated in the DM2 and DM4 groups. The p16-positive cells were obviously increased, particularly in the DM4 group. Bivariate correlation analysis showed mRNA expressions of p21 and caspase-3 genes were positively correlated with the p53 gene. Conclusion Diabetic rats exhibited increased apoptosis and senescence in the liver following a longer period of hyperglycaemia.
Collapse
|
14
|
Jiang Z, Jiang C, Jin L, Chen Z, Feng Z, Jiang X, Cao Y. In vitro and in vivo effects of hyperglycemia and diabetes mellitus on nucleus pulposus cell senescence. J Orthop Res 2022; 40:2350-2361. [PMID: 35005809 DOI: 10.1002/jor.25264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
Diabetes mellitus contributes to intervertebral disc degeneration. Nucleus pulposus cell senescence plays an important role in intervertebral disc degeneration. However, the effects of hyperglycemia on human nucleus pulposus cells and the underlying process remains poorly understood. In the current study, we evaluated the effects of high glucose levels on human nucleus pulposus cell senescence in vitro and the effects of hyperglycemia on rat nucleus pulposus aging in vivo. Human nucleus pulposus cells were cultured in high-glucose medium (200 mM glucose) for 48 h. Senescence-associated β-galactosidase staining, western blot analysis, and enzyme-linked immunosorbent assays were performed to evaluate human nucleus pulposus cell senescence. Flow cytometry and enzyme-linked immunosorbent assays were used to evaluate reactive oxygen species and advanced glycation end-product levels. Transcriptome sequencing followed by bioinformatics analysis was used to understand the abnormal biological processes of nucleus pulposus cells cultured in high-glucose medium. Diabetes mellitus rat models were established and histopathological and immunohistochemical analysis was conducted to examine nucleus pulposus tissue senescence in vivo. Exposure to a high glucose concentration promoted human nucleus pulposus cell senescence and increased the senescence-related secretion phenotype in human nucleus pulposus cells in vitro and in rat nucleus pulposus tissue in vivo. Bioinformatics analysis showed that hub genes were involved in nucleus pulposus cell cycle activities and cell senescence. The results suggest that appropriate blood glucose control may be key to preventing intervertebral disc degeneration in diabetic patients.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lixia Jin
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixian Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhou Feng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxing Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanwu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Yoon JS, Sasaki S, Velghe J, Lee MYY, Winata H, Nian C, Lynn FC. Calcium-dependent transcriptional changes in human pancreatic islet cells reveal functional diversity in islet cell subtypes. Diabetologia 2022; 65:1519-1533. [PMID: 35616696 PMCID: PMC9345846 DOI: 10.1007/s00125-022-05718-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic islets depend on cytosolic calcium (Ca2+) to trigger the secretion of glucoregulatory hormones and trigger transcriptional regulation of genes important for islet response to stimuli. To date, there has not been an attempt to profile Ca2+-regulated gene expression in all islet cell types. Our aim was to construct a large single-cell transcriptomic dataset from human islets exposed to conditions that would acutely induce or inhibit intracellular Ca2+ signalling, while preserving biological heterogeneity. METHODS We exposed intact human islets from three donors to the following conditions: (1) 2.8 mmol/l glucose; (2) 16 mmol/l glucose and 40 mmol/l KCl to maximally stimulate Ca2+ signalling; and (3) 16 mmol/l glucose, 40 mmol/l KCl and 5 mmol/l EGTA (Ca2+ chelator) to inhibit Ca2+ signalling, for 1 h. We sequenced 68,650 cells from all islet cell types, and further subsetted the cells to form an endocrine cell-specific dataset of 59,373 cells expressing INS, GCG, SST or PPY. We compared transcriptomes across conditions to determine the differentially expressed Ca2+-regulated genes in each endocrine cell type, and in each endocrine cell subcluster of alpha and beta cells. RESULTS Based on the number of Ca2+-regulated genes, we found that each alpha and beta cell cluster had a different magnitude of Ca2+ response. We also showed that polyhormonal clusters expressing both INS and GCG, or both INS and SST, are defined by Ca2+-regulated genes specific to each cluster. Finally, we identified the gene PCDH7 from the beta cell clusters that had the highest number of Ca2+-regulated genes, and showed that cells expressing cell surface PCDH7 protein have enhanced glucose-stimulated insulin secretory function. CONCLUSIONS/INTERPRETATION Here we use our large-scale, multi-condition, single-cell dataset to show that human islets have cell-type-specific Ca2+-regulated gene expression profiles, some of them specific to subpopulations. In our dataset, we identify PCDH7 as a novel marker of beta cells having an increased number of Ca2+-regulated genes and enhanced insulin secretory function. DATA AVAILABILITY A searchable and user-friendly format of the data in this study, specifically designed for rapid mining of single-cell RNA sequencing data, is available at https://lynnlab.shinyapps.io/Human_Islet_Atlas/ . The raw data files are available at NCBI Gene Expression Omnibus (GSE196715).
Collapse
Affiliation(s)
- Ji Soo Yoon
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- CELL Graduate Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jane Velghe
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Helena Winata
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cuilan Nian
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Wan T, Wang Y, Wang C, Wang H, Li X, Li Y. Overexpression of TRIM32 promotes pancreatic β-cell autophagic cell death through Akt/mTOR pathway under high glucose conditions. Cell Biol Int 2022; 46:2095-2106. [PMID: 36040726 DOI: 10.1002/cbin.11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing worldwide epidemic and is characterized by progressive pancreatic β-cell dysfunction and insulin resistance. Tripartite motif protein 32 (TRIM32) belongs to the TRIM family protein and has been shown to be involve in insulin resistance in skeletal muscle and the liver. However, the effect of TRIM32 on pancreatic β-cell dysfunction and its mechanism remains unknown. In the current study, we found that serum TRIM32 concentrations of T2DM in patients were significantly elevated compared to those in healthy controls, which indicated that TRIM32 might be used as a diagnostic biomarker in T2DM patients. In INS-1 cells, exposure to high glucose (HG) conditions caused a significant elevation in TRIM32 expression and TRIM32 was located in the nucleus. Overexpression of TRIM32 in INS-1 cells exacerbated the effects of HG-induced autophagy and impaired insulin secretion. In contrast, the silencing of TRIM32 produced the opposite effect. Furthermore, TRIM32 overexpression decreased the phosphorylation levels of Akt and mTOR under HG conditions. However, the activation of Akt/mTOR by MHY1485 reversed the effects of TRIM32 on HG-treated INS-1 cells. Collectively, the present results suggested that TRIM32 participates in the development of T2DM by modulating autophagic cell death and insulin secretion, which might occur through the Akt/mTOR pathway. Thus, TRIM32 might be a promising target in T2DM therapy.
Collapse
Affiliation(s)
- Tingting Wan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yidan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Chunxu Wang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China.,Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiudan Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yanbo Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Wu N, Jin W, Zhao Y, Wang H, He S, Zhang W, Zhou J. Sulfated Fucogalactan From Laminaria Japonica Ameliorates β-Cell Failure by Attenuating Mitochondrial Dysfunction via SIRT1-PGC1-α Signaling Pathway Activation. Front Endocrinol (Lausanne) 2022; 13:881256. [PMID: 35909530 PMCID: PMC9326112 DOI: 10.3389/fendo.2022.881256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
As mitochondrial metabolism is a major determinant of β-cell insulin secretion, mitochondrial dysfunction underlies β-cell failure and type 2 diabetes mellitus progression. An algal polysaccharide of Laminaria japonica, sulfated fucogalactan (SFG) displays various pharmacological effects in a variety of conditions, including metabolic disease. We investigated the protective effects of SFG against hydrogen peroxide (H2O2)-induced β-cell failure in MIN6 cells and islets. SFG significantly promoted the H2O2-inhibited proliferation in the cells and ameliorated their senescence, and potentiated β-cell function by regulating β-cell identity and the insulin exocytosis-related genes and proteins in H2O2-induced β-cells. SFG also attenuated mitochondrial dysfunction, including alterations in ATP content, mitochondrial respiratory chain genes and proteins expression, and reactive oxygen species and superoxide dismutase levels. Furthermore, SFG resulted in SIRT1-PGC1-α pathway activation and upregulated the downstream Nrf2 and Tfam. Taken together, the results show that SFG attenuates H2O2-induced β-cell failure by improving mitochondrial function via SIRT1-PGC1-α signaling pathway activation. Therefore, SFG is implicated as a potential agent for treating pancreatic β-cell failure.
Collapse
Affiliation(s)
- Nan Wu
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuchen Zhao
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Wang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sunyue He
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Zhang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqiang Zhou
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Filip K, Lewińska A, Adamczyk-Grochala J, Marino Gammazza A, Cappello F, Lauricella M, Wnuk M. 5-Azacytidine Inhibits the Activation of Senescence Program and Promotes Cytotoxic Autophagy during Trdmt1-Mediated Oxidative Stress Response in Insulinoma β-TC-6 Cells. Cells 2022; 11:cells11071213. [PMID: 35406777 PMCID: PMC8997412 DOI: 10.3390/cells11071213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
5-Azacytidine (5-azaC), a methyltransferase inhibitor and anticancer drug, can promote several cellular stress responses such as apoptosis, autophagy, and senescence. The action of 5-azaC is complex and can be modulated by dose, time of treatment, and co-administration with oxidants. Insulinoma is a rare pancreatic neuroendocrine tumor with limited chemotherapeutic options. In the present study, two cellular models of insulinoma were considered, namely NIT-1 and β-TC-6 mouse cells, to evaluate the effects of 5-azaC post-treatment during hydrogen peroxide-induced oxidative stress. 5-azaC attenuated the development of oxidant-induced senescent phenotype in both cell lines. No pro-apoptotic action of 5-azaC was observed in cells treated with the oxidant. On the contrary, 5-azaC stimulated an autophagic response, as demonstrated by the increase in phosphorylated eIF2α and elevated pools of autophagic marker LC3B in oxidant-treated β-TC-6 cells. Notably, autophagy resulted in increased necrotic cell death in β-TC-6 cells with higher levels of nitric oxide compared to less affected NIT-1 cells. In addition, 5-azaC increased levels of RNA methyltransferase Trdmt1, but lowered 5-mC and m6A levels, suggesting Trdmt1 inhibition. We postulate that the 5-azaC anticancer action may be potentiated during oxidative stress conditions that can be used to sensitize cancer cells, at least insulinoma cells, with limited drug responsiveness.
Collapse
Affiliation(s)
- Kamila Filip
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (K.F.); (A.M.G.); (F.C.)
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, 35959 Rzeszow, Poland; (J.A.-G.); (M.W.)
- Correspondence: (A.L.); (M.L.)
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, 35959 Rzeszow, Poland; (J.A.-G.); (M.W.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (K.F.); (A.M.G.); (F.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (K.F.); (A.M.G.); (F.C.)
- Euro-Mediterranean Institutes of Science and Technology, 90139 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
- Correspondence: (A.L.); (M.L.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, 35959 Rzeszow, Poland; (J.A.-G.); (M.W.)
| |
Collapse
|
19
|
Abstract
Pancreatic islets are the body's central rheostat that regulates glucose homeostasis through the production of different hormones, including β cell-derived insulin. During obesity-induced type 2 diabetes (T2D), islet β cells become dysfunctional and inadequate insulin secretion no longer ensures glycemic control. T2D is associated with a chronic low-grade inflammation that manifests in several metabolic organs including the pancreatic islets. Growing evidence suggests that components of the innate immune system, and especially macrophages, play a crucial role in regulating islet homeostasis. Yet, the phenotypes and functions of islet macrophages in physiology and during T2D have only started to attract attention and remain unclear. In this review, the current knowledge about islet inflammation and macrophages will be summarized in humans and rodent models. Recent findings on the cellular and molecular mechanisms involved in islet remodeling and β cell function during obesity and T2D will be discussed.
Collapse
Affiliation(s)
- Joyceline Cuenco
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
20
|
Zhu Q, Dai Y, Zhang J, Xie W, Zuo H, Zhang J, Zhou Y. Association between serum zinc concentrations and metabolic risk factors among Chinese children and adolescents. Br J Nutr 2021; 126:1529-1536. [PMID: 33472712 DOI: 10.1017/s0007114521000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to examine whether serum Zn concentrations were associated with metabolic risk factors in Chinese children and adolescents. This was a cross-sectional study including 3241 participants, aged 6 to 17 years, from Jiangsu, China. Metabolic risk factors included fasting glucose (FG), total cholesterol (TC), TAG, HDL-cholesterol, LDL-cholesterol, systolic blood pressure and diastolic blood pressure. Data were analysed using multi-variable linear regression and generalised additive models, which were adjusted for age, sex, high-sensitive C-reactive protein, estimated glomerular filtration rate, BMI and region of residence, to assess the associations of serum Zn concentrations with metabolic risk factors. We observed a negative association between serum Zn concentrations and FG (coefficient = -0·532; 95 % CI -0·569, -0·495; P < 0·001). Moreover, TC (coefficient = 0·175; 95 % CI 0·127, 0·222; P < 0·001), HDL-cholesterol (coefficient = 0·137; 95 % CI 0·082, 0·193; P < 0·001) and LDL-cholesterol (coefficient = 0·195; 95 % CI 0·128, 0·263; P < 0·001) were found to be positively associated with Zn levels. A generalised additive model showed that the negative association between serum Zn and FG was weak at lower serum Zn concentrations and was stronger with the increase in serum Zn concentrations. Additionally, a U-shaped association between serum Zn and TAG was observed. Serum Zn concentrations were associated with FG, TC, TAG, HDL-cholesterol and LDL-cholesterol levels in Chinese children and adolescents. Lower levels of serum Zn were more likely related to a poor metabolic status.
Collapse
Affiliation(s)
- Qianrang Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yue Dai
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Jingxian Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Wei Xie
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Hui Zuo
- School of Public Health, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yonglin Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Abstract
Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Department of General Internal Medicine, Kusatsu General Hospital, Kusatsu, Shiga, Japan.
| |
Collapse
|
22
|
Narasimhan A, Flores RR, Robbins PD, Niedernhofer LJ. Role of Cellular Senescence in Type II Diabetes. Endocrinology 2021; 162:6345039. [PMID: 34363464 PMCID: PMC8386762 DOI: 10.1210/endocr/bqab136] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a cell fate that occurs in response to numerous types of stress and can promote tissue repair or drive inflammation and disruption of tissue homeostasis depending on the context. Aging and obesity lead to an increase in the senescent cell burden in multiple organs. Senescent cells release a myriad of senescence-associated secretory phenotype factors that directly mediate pancreatic β-cell dysfunction, adipose tissue dysfunction, and insulin resistance in peripheral tissues, which promote the onset of type II diabetes mellitus. In addition, hyperglycemia and metabolic changes seen in diabetes promote cellular senescence. Diabetes-induced cellular senescence contributes to various diabetic complications. Thus, type II diabetes is both a cause and consequence of cellular senescence. This review summarizes recent studies on the link between aging, obesity, and diabetes, focusing on the role of cellular senescence in disease processes.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Rafael R Flores
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
- Correspondence: Laura J. Niedernhofer, MD, PhD, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol 2021; 17:534-548. [PMID: 34172940 DOI: 10.1038/s41574-021-00512-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
The past 50 years have seen a growing ageing population with an increasing prevalence of type 2 diabetes mellitus (T2DM); now, nearly half of all individuals with diabetes mellitus are older adults (aged ≥65 years). Older adults with T2DM present particularly difficult challenges. For example, the accentuated heterogeneity of these patients, the potential presence of multiple comorbidities, the increased susceptibility to hypoglycaemia, the increased dependence on care and the effect of frailty all add to the complexity of managing diabetes mellitus in this age group. In this Review, we offer an update on the key pathophysiological mechanisms associated with T2DM in older people. We then evaluate new evidence relating particularly to the effects of frailty and sarcopenia, the clinical difficulties of age-associated comorbidities, and the implications for existing guidelines and therapeutic options. Our conclusions will focus on the effect of T2DM on an ageing society.
Collapse
Affiliation(s)
- Srikanth Bellary
- School of Life and Health Sciences, Aston University, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, UK.
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
| | - James E Brown
- School of Life and Health Sciences, Aston University, Birmingham, UK
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, UK
| | - Clifford J Bailey
- School of Life and Health Sciences, Aston University, Birmingham, UK
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, UK
| |
Collapse
|
24
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
Kim YK, Sussel L, Davidson HW. Inherent Beta Cell Dysfunction Contributes to Autoimmune Susceptibility. Biomolecules 2021; 11:biom11040512. [PMID: 33808310 PMCID: PMC8065553 DOI: 10.3390/biom11040512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/10/2023] Open
Abstract
The pancreatic beta cell is a highly specialized cell type whose primary function is to secrete insulin in response to nutrients to maintain glucose homeostasis in the body. As such, the beta cell has developed unique metabolic characteristics to achieve functionality; in healthy beta cells, the majority of glucose-derived carbons are oxidized and enter the mitochondria in the form of pyruvate. The pyruvate is subsequently metabolized to induce mitochondrial ATP and trigger the downstream insulin secretion response. Thus, in beta cells, mitochondria play a pivotal role in regulating glucose stimulated insulin secretion (GSIS). In type 2 diabetes (T2D), mitochondrial impairment has been shown to play an important role in beta cell dysfunction and loss. In type 1 diabetes (T1D), autoimmunity is the primary trigger of beta cell loss; however, there is accumulating evidence that intrinsic mitochondrial defects could contribute to beta cell susceptibility during proinflammatory conditions. Furthermore, there is speculation that dysfunctional mitochondrial responses could contribute to the formation of autoantigens. In this review, we provide an overview of mitochondrial function in the beta cells, and discuss potential mechanisms by which mitochondrial dysfunction may contribute to T1D pathogenesis.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.K.K.); (L.S.)
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.K.K.); (L.S.)
| | - Howard W. Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.K.K.); (L.S.)
- Department of Immunology & Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-6852; Fax: +1-303-724-6830
| |
Collapse
|
26
|
Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17:150-161. [PMID: 33293704 PMCID: PMC7722981 DOI: 10.1038/s41574-020-00443-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus is believed to result from destruction of the insulin-producing β-cells in pancreatic islets that is mediated by autoimmune mechanisms. The classic view is that autoreactive T cells mistakenly destroy healthy ('innocent') β-cells. We propose an alternative view in which the β-cell is the key contributor to the disease. By their nature and function, β-cells are prone to biosynthetic stress with limited measures for self-defence. β-Cell stress provokes an immune attack that has considerable negative effects on the source of a vital hormone. This view would explain why immunotherapy at best delays progression of type 1 diabetes mellitus and points to opportunities to use therapies that revitalize β-cells, in combination with immune intervention strategies, to reverse the disease. We present the case that dysfunction occurs in both the immune system and β-cells, which provokes further dysfunction, and present the evidence leading to the consensus that islet autoimmunity is an essential component in the pathogenesis of type 1 diabetes mellitus. Next, we build the case for the β-cell as the trigger of an autoimmune response, supported by analogies in cancer and antitumour immunity. Finally, we synthesize a model ('connecting the dots') in which both β-cell stress and islet autoimmunity can be harnessed as targets for intervention strategies.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at City of Hope, Los Angeles, CA, USA.
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - René van Tienhoven
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at City of Hope, Los Angeles, CA, USA
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Cai XT, Ji LW, Liu SS, Wang MR, Heizhati M, Li NF. Derivation and Validation of a Prediction Model for Predicting the 5-Year Incidence of Type 2 Diabetes in Non-Obese Adults: A Population-Based Cohort Study. Diabetes Metab Syndr Obes 2021; 14:2087-2101. [PMID: 34007195 PMCID: PMC8123981 DOI: 10.2147/dmso.s304994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The aim of this study was to derivate and validate a nomogram based on independent predictors to better evaluate the 5-year risk of T2D in non-obese adults. PATIENTS AND METHODS This is a historical cohort study from a collection of databases that included 12,940 non-obese participants without diabetes at baseline. All participants were randomised to a derivation cohort (n = 9651) and a validation cohort (n = 3289). In the derivation cohort, the least absolute shrinkage and selection operator (LASSO) regression model was used to determine the optimal risk factors for T2D. Multivariate Cox regression analysis was used to establish the nomogram of T2D prediction. The receiver operating characteristic (ROC) curve, C-index, calibration curve, and decision curve analysis were performed by 1000 bootstrap resamplings to evaluate the discrimination ability, calibration, and clinical practicability of the nomogram. RESULTS After LASSO regression analysis of the derivation cohort, it was found that age, fatty liver, γ-glutamyltranspeptidase, triglycerides, glycosylated hemoglobin A1c and fasting plasma glucose were risk predictors, which were integrated into the nomogram. The C-index of derivation cohort and validation cohort were 0.906 [95% confidence interval (CI), 0.878-0.934] and 0.837 (95% CI, 0.760-0.914), respectively. The AUC of 5-year T2D risk in the derivation cohort and validation cohort was 0.916 (95% CI, 0.889-0.943) and 0.829 (95% CI, 0.753-0.905), respectively. The calibration curve indicated that the predicted probability of nomogram is in good agreement with the actual probability. The decision curve analysis demonstrated that the predicted nomogram was clinically useful. CONCLUSION Our nomogram can be used as a reasonable, affordable, simple, and widely implemented tool to predict the 5-year risk of T2D in non-obese adults. With this model, early identification of high-risk individuals is helpful to timely intervene and reduce the risk of T2D in non-obese adults.
Collapse
Affiliation(s)
- Xin-Tian Cai
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Urumqi, People’s Republic of China
| | - Li-Wei Ji
- Laboratory of Mitochondrial and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Sha-Sha Liu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Urumqi, People’s Republic of China
| | - Meng-Ru Wang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Urumqi, People’s Republic of China
| | - Mulalibieke Heizhati
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Urumqi, People’s Republic of China
| | - Nan-Fang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Urumqi, People’s Republic of China
- Correspondence: Nan-Fang Li Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Urumqi, Xinjiang, People’s Republic of ChinaTel +86 991 8564818 Email
| |
Collapse
|
28
|
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. VITAMINS AND HORMONES 2021; 115:535-570. [PMID: 33706961 DOI: 10.1016/bs.vh.2020.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging involves numerous changes in body composition that include a decrease in skeletal muscle mass. The gradual reduction in muscle mass is associated with a simultaneous decrease in muscle strength, which leads to reduced mobility, fragility and loss of independence. This process called sarcopenia is secondary to several factors such as sedentary lifestyle, inadequate nutrition, chronic inflammatory state and neurological alterations. However, the endocrine changes associated with aging seem to be of special importance in the development of sarcopenia. On one hand, advancing age is associated with a decreased secretion of the main hormones that stimulate skeletal muscle mass and function (growth hormone, insulin-like growth factor 1 (IGFI), testosterone and estradiol). On the other hand, the alteration of the IGF-I signaling along with decreased insulin sensitivity also have an important impact on myogenesis. Other hormones that decline with aging such as the adrenal-derived dehydroepiandrosterone, thyroid hormones and vitamin D seem to also be involved in sarcopenia. Adipokines released by adipose tissue show important changes during aging and can affect muscle physiology and metabolism. In addition, catabolic hormones such as cortisol and angiotensin II can accelerate aged-induced muscle atrophy, as they are involved in muscle wasting and their levels increase with age. The role played by all of these hormones and the possible use of some of them as therapeutic tools for treating sarcopenia will be discussed.
Collapse
Affiliation(s)
- T Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A I Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Pharmactive Biotech Products S.L. Parque Científico de Madrid. Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain
| | - A López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
29
|
Raghavan S, Malayaperumal S, Mohan V, Balasubramanyam M. A comparative study on the cellular stressors in mesenchymal stem cells (MSCs) and pancreatic β-cells under hyperglycemic milieu. Mol Cell Biochem 2020; 476:457-469. [PMID: 32997307 DOI: 10.1007/s11010-020-03922-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
β-cell dysfunction is a critical determinant for both type 1 diabetes and type 2 diabetes and β-cells are shown to be highly susceptible to cellular stressors. Mesenchymal stem cells (MSCs) on the other hand are known to have immunomodulatory potential and preferred in clinical applications. However, there is paucity of a comparative study on these cells in relation to several cellular stressors in response to hyperglycemia and this forms the rationale for the present study. INS1 β-cells and MSCs were subjected to high-glucose treatment without and with Metformin, Lactoferrin, or TUDCA and assessed for stress signaling alterations using gene expression, protein expression, as well as functional read-outs. Compared to the untreated control cells, INS1 β-cells or MSCs treated with high glucose showed significant increase in mRNA expressions of ER stress, senescence, and proinflammation. This was accompanied by increased miR146a target genes and decreased levels of SIRT1, NRF2, and miR146a in both the cell types. Consistent with the mRNA results, protein expression levels do reflect the same alterations. Notably, the alterations are relatively less extent in MSCs compared to INS1 β-cells. Interestingly, three different agents, viz., Metformin, Lactoferrin, or TUDCA, were found to overcome the high glucose-induced cellular stresses in a concerted and inter-linked way and restored the proliferation and migration capacity in MSCs as well as normalized the glucose-stimulated insulin secretion in INS1 β-cells. While our study gives a directionality for potential supplementation of metformin/lactoferrin/TUDCA in optimization protocols of MSCs, we suggest that in vitro preconditioning of MSCs with such factors should be further explored with in-depth investigations to harness and enhance the therapeutic capacity/potential of MSCs.
Collapse
Affiliation(s)
- Srividhya Raghavan
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Sarubala Malayaperumal
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India. .,Medical and Health Sciences (MHS), SRM Institute of Science and Technology (SRMIST), SRM Nagar, Kattankulathur, Kanchipuram, Chennai, 603 203, India.
| |
Collapse
|
30
|
Ren H, Luo JQ, Gao YC, Chen MY, Chen XP, Zhou HH, Jiang Y, Zhang W. Genetic association of hypoxia inducible factor 1-alpha ( HIF1A) Pro582Ser polymorphism with risk of diabetes and diabetic complications. Aging (Albany NY) 2020; 12:12783-12798. [PMID: 32658866 PMCID: PMC7377833 DOI: 10.18632/aging.103213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/17/2020] [Indexed: 04/11/2023]
Abstract
Diabetes is an age-related chronic disease associated with a number of complications, emerging as one of the major causes of morbidity and mortality worldwide. Several studies indicated that hypoxia-inducible factor 1-alpha (HIF1A) genetic polymorphisms may be associated with diabetes and diabetic complications. However, this association remains ambiguous. Thus, we performed a meta-analysis to provide more precise conclusion on this issue. Odds ratios (OR) with corresponding 95% confidence intervals (CI) were applied to assess the strength of the relationships. There was a protective association between HIF1A Pro582Ser polymorphism and diabetes under the heterozygous genetic model (OR = 0.70, 95% CI = 0.55-0.91; P = 0.007). Similar associations were observed in diabetic complications risk under the allelic (OR = 0.69, 95% CI = 0.57-0.83; P < 0.001), homozygous (OR = 0.51, 95% CI = 0.30-0.87; P = 0.014), recessive (OR = 0.73, 95% CI = 0.59-0.90; P = 0.004) and dominant (OR = 0.40, 95% CI = 0.25-0.65; P < 0.001) genetic models. No effects of the HIF1A Ala588Thr polymorphism were found in risk of diabetes and diabetic complications. Taken together, these findings revealed the protective effect of HIF1A Pro582Ser polymorphism against diabetes and diabetic complications.
Collapse
Affiliation(s)
- Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yong-Chao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China
| | - Ying Jiang
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China
| |
Collapse
|
31
|
Kokal M, Mirzakhani K, Pungsrinont T, Baniahmad A. Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071833. [PMID: 32650419 PMCID: PMC7408918 DOI: 10.3390/cancers12071833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays a leading role in the control of prostate cancer (PCa) growth. Interestingly, structurally different AR antagonists with distinct mechanisms of antagonism induce cell senescence, a mechanism that inhibits cell cycle progression, and thus seems to be a key cellular response for the treatment of PCa. Surprisingly, while physiological levels of androgens promote growth, supraphysiological androgen levels (SAL) inhibit PCa growth in an AR-dependent manner by inducing cell senescence in cancer cells. Thus, oppositional acting ligands, AR antagonists, and agonists are able to induce cellular senescence in PCa cells, as shown in cell culture model as well as ex vivo in patient tumor samples. This suggests a dual AR-signaling dependent on androgen levels that leads to the paradox of the rational to keep the AR constantly inactivated in order to treat PCa. These observations however opened the option to treat PCa patients with AR antagonists and/or with androgens at supraphysiological levels. The latter is currently used in clinical trials in so-called bipolar androgen therapy (BAT). Notably, cellular senescence is induced by AR antagonists or agonist in both androgen-dependent and castration-resistant PCa (CRPC). Pathway analysis suggests a crosstalk between AR and the non-receptor tyrosine kinase Src-Akt/PKB and the PI3K-mTOR-autophagy signaling in mediating AR-induced cellular senescence in PCa. In this review, we summarize the current knowledge of therapeutic induction and intracellular pathways of AR-mediated cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396820; Fax: +49-3641-99396822
| |
Collapse
|
32
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|