1
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
2
|
Li C, Fang F, Wang E, Yang H, Yang X, Wang Q, Si L, Zhang Z, Liu X. Engineering extracellular vesicles derived from endothelial cells sheared by laminar flow for anti-atherosclerotic therapy through reprogramming macrophage. Biomaterials 2024; 314:122832. [PMID: 39270628 DOI: 10.1016/j.biomaterials.2024.122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Extracellular vesicles (EVs) secreted by endothelial cells in response to blood laminar flow play a crucial role in maintaining vascular homeostasis. However, the potential of these EVs to modulate the immune microenvironment within plaques for treating atherosclerosis remains unclear. Here, we present compelling evidence that EVs secreted by endothelial cells sheared by atheroprotective laminar shear stress (LSS-EVs) exhibit excellent immunoregulatory effects against atherosclerosis. LSS-EVs demonstrated a robust capacity to induce the conversion of M1-type macrophages into M2-type macrophages. Mechanistic investigations confirmed that LSS-EVs were enriched in miR-34c-5p and reprogrammed macrophages by targeting the TGF-β-Smad3 signaling pathway. Moreover, we employed click chemistry to modify hyaluronic acid (HA) on the surface of LSS-EVs, enabling specific binding to the CD44 receptor expressed by inflammatory macrophages within plaques. These HA-modified LSS-EVs (HA@LSS-EVs) exhibited exceptional abilities for targeting atherosclerosis and demonstrated promising therapeutic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hanqiao Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiwei Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610036, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
4
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y, Tan F. Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci 2024; 14:105. [PMID: 39164778 PMCID: PMC11334359 DOI: 10.1186/s13578-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-β, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Ding Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
5
|
Si Y, Hayat MA, Hu J. NSPCs-ES: mechanisms and functional impact on central nervous system diseases. Biomed Mater 2024; 19:042011. [PMID: 38916246 DOI: 10.1088/1748-605x/ad5819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Patients with central neuronal damage may suffer severe consequences, but effective therapies remain unclear. Previous research has established the transplantation of neural stem cells that generate new neurons to replace damaged ones. In a new field of scientific research, the extracellular secretion of NPSCs (NSPCs-ES) has been identified as an alternative to current chemical drugs. Many preclinical studies have shown that NSPCs-ES are effective in models of various central nervous system diseases (CNS) injuries, from maintaining functional structures at the cellular level to providing anti-inflammatory functions at the molecular level, as well as improving memory and motor functions, reducing apoptosis in neurons, and mediating multiple signaling pathways. The NSPC-ES can travel to the damaged tissue and exert a broad range of therapeutic effects by supporting and nourishing damaged neurons. However, gene editing and cell engineering techniques have recently improved therapeutic efficacy by modifying NSPCs-ES. Consequently, future research and application of NSPCs-ES may provide a novel strategy for the treatment of CNS diseases in the future. In this review, we summarize the current progress on these aspects.
Collapse
Affiliation(s)
- Yu Si
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Muhammad Abid Hayat
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
6
|
Sintakova K, Romanyuk N. The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy. Front Neurosci 2024; 18:1400413. [PMID: 38774785 PMCID: PMC11106386 DOI: 10.3389/fnins.2024.1400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a complex pathology that affects a significant portion of the population and causes long-term consequences. After primary injury, an inflammatory cascade of secondary injury occurs, followed by neuronal cell death and glial scar formation. Together with the limited regenerative capacity of the central nervous system, these are the main reasons for the poor prognosis after SCI. Despite recent advances, there is still no effective treatment. Promising therapeutic approaches include stem cells transplantation, which has demonstrated neuroprotective and immunomodulatory effects in SCI. This positive effect is thought to be mediated by small extracellular vesicles (sEVs); membrane-bound nanovesicles involved in intercellular communication through transport of functional proteins and RNA molecules. In this review, we summarize the current knowledge about sEVs and microRNA as their cargo as one of the most promising therapeutic approaches for the treatment of SCI. We provide a comprehensive overview of their role in SCI pathophysiology, neuroprotective potential and therapeutic effect.
Collapse
Affiliation(s)
- Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Qin B, Hu XM, Huang YX, Yang RH, Xiong K. A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:656-673. [PMID: 37076458 DOI: 10.2174/1871527322666230418090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan-Xia Huang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
10
|
Golmakani H, Azimian A, Golmakani E. Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms. Mol Pain 2024; 20:17448069231225845. [PMID: 38148597 PMCID: PMC10851769 DOI: 10.1177/17448069231225845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023] Open
Abstract
Neuropathic pain is a widespread clinical issue caused by somatosensory nervous system damage, affecting numerous individuals. It poses considerable economic and public health challenges, and managing it can be challenging due to unclear underlying mechanisms. Nevertheless, emerging evidence suggests that neurogenic inflammation and neuroinflammation play a role in developing pain patterns. Emerging evidence suggests that neurogenic inflammation and neuroinflammation play significant roles in developing neuropathic pain within the nervous system. Increased/decreased miRNA expression patterns could affect the progression of neuropathic and inflammatory pain by controlling nerve regeneration, neuroinflammation, and the expression of abnormal ion channels. However, our limited knowledge of miRNA targets hinders a complete grasp of miRNA's functions. Meanwhile, exploring exosomal miRNA, a recently uncovered role, has significantly advanced our comprehension of neuropathic pain's pathophysiology in recent times. In this review, we present a comprehensive overview of the latest miRNA studies and explore the possible ways miRNAs might play a role in the development of neuropathic pain.
Collapse
Affiliation(s)
- Hasan Golmakani
- Department of Pediatrics, Faculty of Medicine, Mashhad Azad University, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ebrahim Golmakani
- Department of Anesthesiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhou X, Huang Q, Jiang Y, Tang H, Zhang L, Li D, Xu Y. Emerging technologies for engineering of extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1298746. [PMID: 38026881 PMCID: PMC10666158 DOI: 10.3389/fbioe.2023.1298746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer membrane-enclosed vesicles that are secreted by all cell types. Natural EVs contain biological information such as proteins, nucleic acids, and lipids from their parent cells. Therefore, EVs have been extensively studied as diagnostic biomarkers and therapeutic tools under normal and pathological conditions. However, some drawbacks, including low yield, poor therapeutic effects, lack of imaging, and targeting capacity of natural EVs, still need to be improved. Emerging engineering technologies have rendered EVs new properties or functionalities that broadened their applications in the biomedical field. Herein, in this review, we gave a brief overview of advanced strategies for EV engineering. We focused on pre-treatment of parent cells to regulate their released EVs. Meanwhile, we summarized and discussed the direct modification of EVs to achieve drug loading, imaging, and targeting functionalities for downstream applications.
Collapse
Affiliation(s)
- Xin Zhou
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qing Huang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Jiang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huijing Tang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Luhan Zhang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunsheng Xu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Zhang Z, Cheng N, Liang J, Deng Y, Xiang P, Hei Z, Li X. Gut microbiota changes in animal models of spinal cord injury: a preclinical systematic review and meta-analysis. Ann Med 2023; 55:2269379. [PMID: 37851840 PMCID: PMC10586076 DOI: 10.1080/07853890.2023.2269379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND An increasing number of studies show that the intestinal flora is closely related to spinal cord injury. Many researchers are exploring the changes in the richness, diversity, and evenness of intestinal flora in spinal cord injury animal models to identify the characteristic bacteria. METHODS A comprehensive literature search was conducted using three databases: PubMed, Embase, and Web of Science. A meta-analysis was performed using R 4.3.1 to evaluate the comparison of microbiota diversity, richness, and evenness and the relative abundance of intestinal microbiota in animals with spinal cord injury and blank controls. RESULTS Fifteen studies were included in the meta-analysis, of which 12 involved gut microbiota distribution indicators and 11 included intestinal microflora relative abundance indicators. Meta-analysis of high-dimensional indicators describing the distribution of the gut microbiota identified a substantial decline in the evenness and richness of the intestinal flora. In addition, the Actinobacteria phylum and Erysipelotrichales and Clostridiales orders were significantly different between the spinal cord injury and sham groups; therefore, they may be the characteristic bacteria in spinal cord injury models. CONCLUSION Our meta-analysis suggested that the gut microbiota in the spinal cord injury animal model group was altered compared with that in the control group, with varying degrees of changes in richness and evenness and potentially pathogenic characteristic flora. More rigorous methodological studies are needed because of the high heterogeneity and limited sample size. Further research is needed to clinically apply intestinal microbiota and potentially guide fecal microbiota transplantation therapy.
Collapse
Affiliation(s)
- Zhenye Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianfen Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Hwang J, Jang S, Kim C, Lee S, Jeong HS. Role of Stem Cell-Derived Exosomes and microRNAs in Spinal Cord Injury. Int J Mol Sci 2023; 24:13849. [PMID: 37762150 PMCID: PMC10530823 DOI: 10.3390/ijms241813849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. These challenges have driven the medical community to seek effective treatments for this serious global health threat. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties. Although MSCs themselves rarely differentiate into neurons at the site of injury after transplantation in vivo, paracrine factors secreted by MSCs can create environmental conditions for cell-to-cell communication and have shown therapeutic effects. Recent studies have shown that the pleiotropic effects of MSCs, particularly their immunomodulatory potential, can be attributed primarily to these paracrine factors. Exosomes derived from MSCs are known to play an important role in these effects. Many studies have evaluated the potential of exosome-based therapies for the treatment of various neurological diseases. In addition to exosomes, various miRNAs derived from MSCs have been identified to regulate genes and alleviate neuropathological changes in neurodegenerative diseases. This review explores the burgeoning field of exosome-based therapies, focusing on the effects of MSC-derived exosomes and exosomal miRNAs, and summarizes recent findings that shed light on the potential of exosomes in the treatment of neurological disorders. The insights gained from this review may pave the way for innovative and effective treatments for these complex conditions. Furthermore, we suggest the therapeutic effects of exosomes and exosomal miRNAs from MSCs, which have a rescue potential in spinal cord injury via diverse signaling pathways.
Collapse
Affiliation(s)
- Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Choonghyo Kim
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| |
Collapse
|
14
|
Mori T, Giovannelli L, Bilia AR, Margheri F. Exosomes: Potential Next-Generation Nanocarriers for the Therapy of Inflammatory Diseases. Pharmaceutics 2023; 15:2276. [PMID: 37765245 PMCID: PMC10537720 DOI: 10.3390/pharmaceutics15092276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory diseases are common pathological processes caused by various acute and chronic factors, and some of them are autoimmune diseases. Exosomes are fundamental extracellular vesicles secreted by almost all cells, which contain a series of constituents, i.e., cytoskeletal and cytosolic proteins (actin, tubulin, and histones), nucleic acids (mRNA, miRNA, and DNA), lipids (diacylglycerophosphates, cholesterol, sphingomyelin, and ceramide), and other bioactive components (cytokines, signal transduction proteins, enzymes, antigen presentation and membrane transport/fusion molecules, and adhesion molecules). This review will be a synopsis of the knowledge on the contribution of exosomes from different cell sources as possible therapeutic agents against inflammation, focusing on several inflammatory diseases, neurological diseases, rheumatoid arthritis and osteoarthritis, intestinal bowel disease, asthma, and liver and kidney injuries. Current knowledge indicates that the role of exosomes in the therapy of inflammation and in inflammatory diseases could be distinctive. The main limitations to their clinical translation are still production, isolation, and storage. Additionally, there is an urgent need to personalize the treatments in terms of the selection of exosomes; their dosages and routes of administration; and a deeper knowledge about their biodistribution, type and incidence of adverse events, and long-term effects of exosomes. In conclusion, exosomes can be a very promising next-generation therapeutic option, superior to synthetic nanocarriers and cell therapy, and can represent a new strategy of effective, safe, versatile, and selective delivery systems in the future.
Collapse
Affiliation(s)
- Tosca Mori
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Lisa Giovannelli
- Department of Neurosciences (Department of Neurosciences, Psychology, Drug Research and Child Health), University of Florence, 50139 Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
| |
Collapse
|
15
|
Li Y, Fang B. Neural stem cell-derived extracellular vesicles: The light of central nervous system diseases. Biomed Pharmacother 2023; 165:115092. [PMID: 37406512 DOI: 10.1016/j.biopha.2023.115092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Central nervous system (CNS) diseases are the leading cause of death worldwide. By performing compensatory functions and improving the inflammatory microenvironment, the transplantation of neural stem cells (NSCs) can promote functional recovery from brain injury, aging, brain tumours, and other diseases. However, the ability of NSCs to differentiate into neurons is limited, and they are associated with a risk of tumourigenicity. NSC-derived extracellular vesicles (NSC-EVs) can modulate the local microenvironment of the nervous system as well as distant neuronal functions. Thus, cell-free therapy may be a novel remedy for CNS disorders. This article reviews the characteristics, contents, and mechanisms of action of NSC-EVs as well as their roles and application prospects in various CNS diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
16
|
Li Q, Fu X, Kou Y, Han N. Engineering strategies and optimized delivery of exosomes for theranostic application in nerve tissue. Theranostics 2023; 13:4266-4286. [PMID: 37554270 PMCID: PMC10405842 DOI: 10.7150/thno.84971] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Severe injuries or diseases affecting the peripheral and central nervous systems can result in impaired organ function and permanent paralysis. Conventional interventions, such as drug administration and cell-based therapy, exhibit limited effectiveness due to their inability to preserve post-implantation cell survival and impede the deterioration of adjacent tissues. Exosomes have recently emerged as powerful tools for tissue repair owing to their proteins and nucleic acids, as well as their unique phospholipid properties, which facilitate targeted delivery to recipient cells. Engineering exosomes, obtained by manipulating the parental cells or directly functionalizing exosomes, play critical roles in enhancing regenerative repair, reducing inflammation, and maintaining physiological homeostasis. Furthermore, exosomes have been shown to restore neurological function when used in combination with biomaterials. This paper primarily focuses on the engineering strategies and delivery routes of exosomes related to neural research and emphasizes the theranostic application of optimized exosomes in peripheral nerve, traumatic spinal cord, and brain injuries. Finally, the prospects of exosomes development and their combination with other approaches will be discussed to enhance our knowledge on their theranostic effectiveness in neurological diseases.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100000, China
| | - Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
- National Center for Trauma Medicine, Beijing 100000, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100000, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100000, China
- National Center for Trauma Medicine, Beijing 100000, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100000, China
| |
Collapse
|
17
|
Wang J, Yang L. The role of exosomes in central nervous system tissue regeneration and repair. Biomed Mater 2023; 18:052003. [PMID: 37399812 DOI: 10.1088/1748-605x/ace39c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Exosomes are membrane-bound vesicles secreted by various cell types into the extracellular environment and contain kinds of bioactive molecules. These molecules can mediate various biological processes such as cell differentiation, proliferation, and survival, making them attractive for tissue regeneration and repair. Owing to their nanoscale size, bilayer membrane structure, and receptor-mediated transcytosis, exosomes can cross the blood-brain barrier (BBB) and reach the central nervous system (CNS) tissue. Additionally, exosomes can be loaded with exogenous substances after isolation. It has been suggested that exosomes could be used as natural drug carriers to transport therapeutic agents across the BBB and have great potential for CNS disease therapy by promoting tissue regeneration and repair. Herein, we discuss perspectives on therapeutic strategies to treat neurodegenerative disease or spinal cord injury using a variety of cell types-derived exosomes with kinds of exosomal contents, as well as engineering strategies of specific functional and exosome administration routes.
Collapse
Affiliation(s)
- Jingtao Wang
- Guangzhou Xinhua University, No.19 Huamei Road, Guangzhou, Guangdong 510520, People's Republic of China
| | - Lingyan Yang
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, People's Republic of China
| |
Collapse
|
18
|
Chen G, Ren C, Xiao Y, Wang Y, Yao R, Wang Q, You G, Lu M, Yan S, Zhang X, Zhang J, Yao Y, Zhou H. Time-resolved single-cell transcriptomics reveals the landscape and dynamics of hepatic cells in sepsis-induced acute liver dysfunction. JHEP Rep 2023; 5:100718. [PMID: 37122356 PMCID: PMC10130477 DOI: 10.1016/j.jhepr.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Sepsis-induced acute liver dysfunction often occurs early in sepsis and can exacerbate the pathology by triggering multiple organ dysfunction and increasing lethality. Nevertheless, our understanding of the cellular heterogeneity and dynamic regulation of major nonparenchymal cell lineages remains unclear. Methods Here, single-cell RNA sequencing was used to profile multiple nonparenchymal cell subsets and dissect their crosstalk during sepsis-induced acute liver dysfunction in a clinically relevant polymicrobial sepsis model. The transcriptomes of major liver nonparenchymal cells from control and sepsis mice were analysed. The alterations in the endothelial cell and neutrophil subsets that were closely associated with acute liver dysfunction were validated using multiplex immunofluorescence staining. In addition, the therapeutic efficacy of inhibiting activating transcription factor 4 (ATF4) in sepsis and sepsis-induced acute liver dysfunction was explored. Results Our results present the dynamic transcriptomic landscape of major nonparenchymal cells at single-cell resolution. We observed significant alterations and heterogeneity in major hepatic nonparenchymal cell subsets during sepsis. Importantly, we identified endothelial cell (CD31+Sele+Glut1+) and neutrophil (Ly6G+Lta4h+Sort1+) subsets that were closely associated with acute liver dysfunction during sepsis progression. Furthermore, we found that ATF4 inhibition alleviated sepsis-induced acute liver dysfunction, prolonging the survival of septic mice. Conclusions These results elucidate the potential mechanisms and subsequent therapeutic targets for the prevention and treatment of sepsis-induced acute liver dysfunction and other liver-related diseases. Impact and Implications Sepsis-induced acute liver dysfunction often occurs early in sepsis and can lead to the death of the patient. Nevertheless, the pathogenesis of sepsis-induced acute liver dysfunction is not yet clear. We identified the major cell types associated with acute liver dysfunction and explored their interactions during sepsis. In addition, we also found that ATF-4 inhibition could be invoked as a potential therapeutic for sepsis-induced acute liver dysfunction.
Collapse
Affiliation(s)
- Gan Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
- Corresponding authors. Addresses: Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Chao Ren
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yao Xiao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yujing Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Renqi Yao
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing, China
| | - Quan Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Mingzi Lu
- Beijing Science and Technology Innovation Research Center, Beijing, China
| | - Shaoduo Yan
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyong Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jun Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yongming Yao
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
- Corresponding authors. Addresses: Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
19
|
Han T, Song P, Wu Z, Liu Y, Ying W, Shen C. Inflammation Modifies miR-21 Expression Within Neuronal Extracellular Vesicles to Regulate Remyelination Following Spinal Cord Injury. Stem Cell Rev Rep 2023:10.1007/s12015-023-10560-y. [PMID: 37256514 PMCID: PMC10390616 DOI: 10.1007/s12015-023-10560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Cell‒cell communication following spinal cord injury (SCI) plays a key role in remyelination and neurological recovery. Although communication between neuron-neural stem cells (NSCs) affects remyelination, its precise mechanism remains unclear. The present study investigated the biological effects of extracellular vesicles (EVs) derived from neurons on the differentiation of NSCs and the remyelination of axons in a rat model for SCI. We found that that EVs derived from neurons promoted the differentiation of NSCs into oligodendrocytes and the remyelination of axons in SCI rats. However, neuron-derived EVs lost their biological effects after inflammatory stimulation of these neurons from which they originate. Further analysis demonstrated that the inflammatory stimulation on neurons upregulated miR-21 within EVs, which targeted SMAD 7 and upregulated the TGF-β/SMAD2 signaling pathway, resulting in an excess of astrocytic scar boundaries and in remyelination failure. Moreover, these effects could be abolished by miR-21 inhibitors/antagomirs. Considered together, these results indicate that inflammatory stimulation of neurons prevents remyelination following SCI via the upregulation of miR-21 expression within neuron-derived EVs, and this takes place through SMAD 7-mediated activation of the TGF-β/SMAD2 signaling pathway. Graphical Astract.
Collapse
Affiliation(s)
- Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yunlei Liu
- Department of clinical laboratory, People's Hospital of Fuyang, Fuyang, China
| | - Wang Ying
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
20
|
Han T, Song P, Wu Z, Wang C, Liu Y, Ying W, Li K, Shen C. Inflammatory stimulation of astrocytes affects the expression of miRNA-22-3p within NSCs-EVs regulating remyelination by targeting KDM3A. Stem Cell Res Ther 2023; 14:52. [PMID: 36959678 PMCID: PMC10035185 DOI: 10.1186/s13287-023-03284-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Endogenous neural stem cells (NSCs) are critical for the remyelination of axons following spinal cord injury (SCI). Cell-cell communication plays a key role in the regulation of the differentiation of NSCs. Astrocytes act as immune cells that encounter early inflammation, forming a glial barrier to prevent the spread of destructive inflammation following SCI. In addition, the cytokines released from astrocytes participate in the regulation of the differentiation of NSCs. The aim of this study was to investigate the effects of cytokines released from inflammation-stimulated astrocytes on the differentiation of NSCs following SCI and to explore the influence of these cytokines on NSC-NSC communication. RESULTS Lipopolysaccharide stimulation of astrocytes increased bone morphogenetic protein 2 (BMP2) release, which not only promoted the differentiation of NSCs into astrocytes and inhibited axon remyelination in SCI lesions but also enriched miRNA-22-3p within extracellular vesicles derived from NSCs. These miRNA-22 molecules function as a feedback loop to promote NSC differentiation into oligodendrocytes and the remyelination of axons following SCI by targeting KDM3A. CONCLUSIONS This study revealed that by releasing BMP2, astrocytes were able to regulate the differentiation of NSCs and NSC-NSC communication by enriching miRNA-22 within NSC-EVs, which in turn promoted the regeneration and remyelination of axons by targeting the KDM3A/TGF-beta axis and the recovery of neurological outcomes following SCI.
Collapse
Affiliation(s)
- Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cancan Wang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yunlei Liu
- Department of Clinical Laboratory, No.2 People's Hospital of Fuyang, Fuyang city, China
| | - Wang Ying
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei city, China
| | - Kaixuan Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
21
|
Hering C, Shetty AK. Extracellular Vesicles Derived From Neural Stem Cells, Astrocytes, and Microglia as Therapeutics for Easing TBI-Induced Brain Dysfunction. Stem Cells Transl Med 2023; 12:140-153. [PMID: 36847078 PMCID: PMC10021503 DOI: 10.1093/stcltm/szad004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Extracellular vesicles (EVs) derived from neural stem cells (NSC-EVs), astrocytes (ADEVs), and microglia (MDEVs) have neuroregenerative properties. This review discusses the therapeutic efficacy of NSC-EVs, ADEVs, and MDEVs in traumatic brain injury (TBI) models. The translational value and future directions for such EV therapy are also deliberated. Studies have demonstrated that NSC-EV or ADEV therapy can mediate neuroprotective effects and improve motor and cognitive function after TBI. Furthermore, NSC-EVs or ADEVs generated after priming parental cells with growth factors or brain-injury extracts can mediate improved therapeutic benefits. However, the therapeutic effects of naïve MDEVs are yet to be tested rigorously in TBI models. Studies using activated MDEVs have reported both adverse and beneficial effects. NSC-EV, ADEV, or MDEV therapy for TBI is not ready for clinical translation. Rigorous testing of their efficacy for preventing chronic neuroinflammatory cascades and enduring motor and cognitive impairments after treatment in the acute phase of TBI, an exhaustive evaluation of their miRNA or protein cargo, and the effects of delayed EV administration post-TBI for reversing chronic neuroinflammation and enduring brain impairments, are needed. Moreover, the most beneficial route of administration for targeting EVs into different neural cells in the brain after TBI and the efficacy of well-characterized EVs from NSCs, astrocytes, or microglia derived from human pluripotent stem cells need to be evaluated. EV isolation methods for generating clinical-grade EVs must also be developed. Overall, NSC-EVs and ADEVs promise to mitigate TBI-induced brain dysfunction, but additional preclinical studies are needed before their clinical translation.
Collapse
Affiliation(s)
- Catherine Hering
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Corresponding author: Ashok K. Shetty, MSc., PhD, Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843-1114, USA. Tel: +1 979 436 9653;
| |
Collapse
|
22
|
Dysregulation of Serum MicroRNA after Intracerebral Hemorrhage in Aged Mice. Biomedicines 2023; 11:biomedicines11030822. [PMID: 36979801 PMCID: PMC10044892 DOI: 10.3390/biomedicines11030822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Stroke is one of the most common diseases that leads to brain injury and mortality in patients, and intracerebral hemorrhage (ICH) is the most devastating subtype of stroke. Though the prevalence of ICH increases with aging, the effect of aging on the pathophysiology of ICH remains largely understudied. Moreover, there is no effective treatment for ICH. Recent studies have demonstrated the potential of circulating microRNAs as non-invasive diagnostic and prognostic biomarkers in various pathological conditions. While many studies have identified microRNAs that play roles in the pathophysiology of brain injury, few demonstrated their functions and roles after ICH. Given this significant knowledge gap, the present study aims to identify microRNAs that could serve as potential biomarkers of ICH in the elderly. To this end, sham or ICH was induced in aged C57BL/6 mice (18–24 months), and 24 h post-ICH, serum microRNAs were isolated, and expressions were analyzed. We identified 28 significantly dysregulated microRNAs between ICH and sham groups, suggesting their potential to serve as blood biomarkers of acute ICH. Among those microRNAs, based on the current literature, miR-124-3p, miR-137-5p, miR-138-5p, miR-219a-2-3p, miR-135a-5p, miR-541-5p, and miR-770-3p may serve as the most promising blood biomarker candidates of ICH, warranting further investigation.
Collapse
|
23
|
Li Z, Chen D, Pan R, Zhong Y, Zhong T, Jiao Z. microRNAs profiling of small extracellular vesicles from midbrain tissue of Parkinson's disease. Front Mol Neurosci 2023; 16:1090556. [PMID: 36818649 PMCID: PMC9935574 DOI: 10.3389/fnmol.2023.1090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Small extracellular vesicles (sEVs) are generated by all types of cells during physiological or pathological conditions. There is growing interest in tissue-derived small extracellular vesicles (tdsEVs) because they can be isolated from a single tissue source. Knowing the representation profile of microRNA (miRNA) in midbrain tissue-derived sEVs (bdsEVs) and their roles is imperative for understanding the pathological mechanism and improving the diagnosis and treatment of Parkinson's disease (PD). bdsEVs from a rat model of PD and a sham group were separated and purified using ultracentrifugation, size-exclusion chromatography (SEC), and ultrafiltration. Then, miRNA profiling of bdsEVs in both groups was performed using next-generation sequencing (NGS). The expression levels of 180 miRNAs exhibited significant differences between the two groups, including 114 upregulated and 66 downregulated genes in bdsEVs of PD rats compared with the sham group (p < 0.05). Targets of the differentially expressed miRNAs were predicted by miRanda and RNAhybrid, and their involvement in the signaling pathways and cellular function has been analyzed through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO). Furthermore, we explored the expression levels of miR-103-3p, miR-107-3p, miR-219a-2-3p, and miR-379-5p in bdsEVs, sEVs derived from plasma, and plasma of both groups of rats. Interestingly, the expression levels of miR-103-3p, miR-107-3p, miR-219a-2-3p, and miR-379-5p were elevated in bdsEVs and sEVs from plasma; in contrast, their expression levels were decreased in plasma of the rat model of PD. In summary, miRNAs may play a significant role in the onset and development of PD, and miRNAs need to be selected carefully as a research subject for exploring the pathological mechanism and the potential therapeutic targets and diagnostic markers of PD.
Collapse
Affiliation(s)
- Zhengzhe Li
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dongdong Chen
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Renjie Pan
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanbiao Zhong
- 3Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,*Correspondence: Tianyu Zhong, ; Zhigang Jiao,
| | - Zhigang Jiao
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,*Correspondence: Tianyu Zhong, ; Zhigang Jiao,
| |
Collapse
|
24
|
Li X, Zhu Y, Wang Y, Xia X, Zheng JC. Neural stem/progenitor cell-derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm (Beijing) 2023; 4:e214. [PMID: 36776763 PMCID: PMC9905070 DOI: 10.1002/mco2.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.
Collapse
Affiliation(s)
- Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative TherapyYangzhi Rehabilitation Hospital, Tongji UniversityShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| |
Collapse
|
25
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
26
|
Hajinejad M, Ebrahimzadeh MH, Ebrahimzadeh-Bideskan A, Rajabian A, Gorji A, Sahab Negah S. Exosomes and Nano-SDF Scaffold as a Cell-Free-Based Treatment Strategy Improve Traumatic Brain Injury Mechanisms by Decreasing Oxidative Stress, Neuroinflammation, and Increasing Neurogenesis. Stem Cell Rev Rep 2023; 19:1001-1018. [PMID: 36652144 DOI: 10.1007/s12015-022-10483-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 01/19/2023]
Abstract
Traumatic brain injury (TBI) causes a variety of complex pathological changes in brain parenchymal tissue by increasing neuroinflammatory and apoptosis responses. Currently, there is no treatment to resolve the consequences related to TBI. Recently, an extensive literature has grown up around the theme of bystander effects of stem cells, a mechanism of stem cells without the need for cell transplantation, which is called cell-free therapy. The purpose of this investigation was to determine the efficacy of a cell-free-based therapy strategy using exosomes derived from human neural stem cells (hNSCs) and a novel nano-scaffold in rats subjected to TBI. In this study, a series of in vitro and in vivo experiments from behavior tests to gene expression was performed to define the effect of exosomes in combination with a three-dimensional (3D) nano-scaffold containing a bio-motif of SDF1α (Nano-SDF). Application of exosomes with Nano-SDF significantly decreased oxidative stress in serum and brain samples. Moreover, treatment with exosomes and Nano-SDF significantly reduced the expression of Toll-like receptor 4 and its downstream signaling pathway, including NF-kβ and interleukin-1β. We also found that the cell-free-based therapy strategy could decrease reactive gliosis at the injury site. Interestingly, we showed that exosomes with Nano-SDF increased neurogenesis in the sub-ventricular zone of the lateral ventricle, indicating a bio-bridge mechanism. To sum up, the most obvious finding to emerge from this study is that a cell-free-based therapy strategy can be an effective option for future practice in the course of TBI.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Munster, Germany
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd, Mashhad, Iran.
| |
Collapse
|
27
|
Ni W, Ramalingam M, Li Y, Park JH, Dashnyam K, Lee JH, Bloise N, Fassina L, Visai L, De Angelis MGC, Pedraz JL, Kim HW, Hu J. Immunomodulatory and Anti-inflammatory effect of Neural Stem/Progenitor Cells in the Central Nervous System. Stem Cell Rev Rep 2023; 19:866-885. [PMID: 36650367 DOI: 10.1007/s12015-022-10501-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is a critical event that responds to disturbed homeostasis and governs various neurological diseases in the central nervous system (CNS). The excessive inflammatory microenvironment in the CNS can adversely affect endogenous neural stem cells, thereby impeding neural self-repair. Therapies with neural stem/progenitor cells (NSPCs) have shown significant inhibitory effects on inflammation, which is mainly achieved through intercellular contact and paracrine signalings. The intercellular contact between NSPCs and immune cells, the activated CNS- resident microglia, and astrocyte plays a critical role in the therapeutic NSPCs homing and immunomodulatory effects. Moreover, the paracrine effect mainly regulates infiltrating innate and adaptive immune cells, activated microglia, and astrocyte through the secretion of bioactive molecules and extracellular vesicles. However, the molecular mechanism involved in the immunomodulatory effect of NSPCs is not well discussed. This article provides a systematic analysis of the immunomodulatory mechanism of NSPCs, discusses efficient ways to enhance its immunomodulatory ability, and gives suggestions on clinical therapy.
Collapse
Affiliation(s)
- Wei Ni
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Yumeng Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | | | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
28
|
Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell Tissue Res 2023; 391:1-17. [PMID: 36380098 PMCID: PMC9839811 DOI: 10.1007/s00441-022-03699-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord injury (SCI) is a very serious clinical traumatic illness with a very high disability rate. It not only causes serious functional disorders below the injured segment, but also causes unimaginable economic burden to social development. Exosomes are nano-sized cellular communication carriers that exist stably in almost all organisms and cell types. Because of their capacity to transport proteins, lipids, and nucleic acids, they affect various physiological and pathological functions of recipient cells and parental cells. Autophagy is a process that relies on the lysosomal pathway to degrade cytoplasmic proteins and organelles and involves a variety of pathophysiological processes. Exosomes and autophagy play critical roles in cellular homeostasis following spinal cord injury. Presently, the coordination mechanism of exosomes and autophagy has attracted much attention in the early efficacy of spinal cord injury. In this review, we discussed the interaction of autophagy and exosomes from the perspective of molecular mechanisms, which might provide novel insights for the early therapeutic application of spinal cord injury.
Collapse
Affiliation(s)
- Rui-yu Li
- Anqing First People’s Hospital of Anhui Medical University, Anqing, 246000 Anhui Province, China
| | - Qi Hu
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Xu Shi
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Zhen-yu Luo
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Dong-hua Shao
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| |
Collapse
|
29
|
Shen Y, Cai J. The Importance of Using Exosome-Loaded miRNA for the Treatment of Spinal Cord Injury. Mol Neurobiol 2023; 60:447-459. [PMID: 36279099 PMCID: PMC9849169 DOI: 10.1007/s12035-022-03088-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a major traumatic disease of the central nervous system characterized by high rates of disability and mortality. Many studies have shown that SCI can be divided into the two stages of primary and secondary injury. Primary injury leads to pathophysiological changes, while consequential injury is even more fatal, including a series of harmful reactions that expand the scope and degree of SCI. Because the pathological process of SCI is highly complex, there is still no clear and effective clinical treatment strategy. Exosomes, membrane-bound extracellular vesicles (EVs) with a diameter of 30-200 nm, have emerged as an ideal vector to deliver therapeutic molecules. At the same time, increasing numbers of studies have shown that miRNAs play a momentous role in the process of SCI. In recent studies, researchers have adopted exosomes as carriers of miRNAs with potential therapeutic effects in SCI. In this review, we summarize relevant articles describing exosomes as miRNA carriers for SCI, after which we discuss further implications and perspectives of this novel treatment modality.
Collapse
Affiliation(s)
- Yunpeng Shen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Junying Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| |
Collapse
|
30
|
Zhao YY, Wu ZJ, Zhu LJ, Niu TX, Liu B, Li J. Emerging roles of miRNAs in neuropathic pain: From new findings to novel mechanisms. Front Mol Neurosci 2023; 16:1110975. [PMID: 36873108 PMCID: PMC9981676 DOI: 10.3389/fnmol.2023.1110975] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Neuropathic pain, which results from damage to the somatosensory nervous system, is a global clinical condition that affects many people. Neuropathic pain imposes significant economic and public health burdens and is often difficult to manage because the underlying mechanisms remain unclear. However, mounting evidence indicates a role for neurogenic inflammation and neuroinflammation in pain pattern development. There is increasing evidence that the activation of neurogenic inflammation and neuroinflammation in the nervous system contribute to neuropathic pain. Altered miRNA expression profiles might be involved in the pathogenesis of both inflammatory and neuropathic pain by regulating neuroinflammation, nerve regeneration, and abnormal ion channel expression. However, the lack of knowledge about miRNA target genes prevents a full understanding of the biological functions of miRNAs. At the same time, an extensive study on exosomal miRNA, a newly discovered role, has advanced our understanding of the pathophysiology of neuropathic pain in recent years. This section provides a comprehensive overview of the current understanding of miRNA research and discusses the potential mechanisms of miRNAs in neuropathic pain.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Li-Juan Zhu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Tong-Xiang Niu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, China.,Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
31
|
Jin S, Lv Z, Kang L, Wang J, Tan C, Shen L, Wang L, Liu J. Next generation of neurological therapeutics: Native and bioengineered extracellular vesicles derived from stem cells. Asian J Pharm Sci 2022; 17:779-797. [PMID: 36600903 PMCID: PMC9800941 DOI: 10.1016/j.ajps.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs)-based cell-free therapy, particularly stem cell-derived extracellular vesicles (SC-EVs), offers new insights into treating a series of neurological disorders and becomes a promising candidate for alternative stem cell regenerative therapy. Currently, SC-EVs are considered direct therapeutic agents by themselves and/or dynamic delivery systems as they have a similar regenerative capacity of stem cells to promote neurogenesis and can easily load many functional small molecules to recipient cells in the central nervous system. Meanwhile, as non-living entities, SC-EVs avoid the uncontrollability and manufacturability limitations of live stem cell products in vivo (e.g., low survival rate, immune response, and tumorigenicity) and in vitro (e.g., restricted sources, complex preparation processes, poor quality control, low storage, shipping instability, and ethical controversy) by strict quality control system. Moreover, SC-EVs can be engineered or designed to enhance further overall yield, increase bioactivity, improve targeting, and extend their half-life. Here, this review provides an overview on the biological properties of SC-EVs, and the current progress in the strategies of native or bioengineered SC-EVs for nerve injury repairing is presented. Then we further summarize the challenges of recent research and perspectives for successful clinical application to advance SC-EVs from bench to bedside in neurological diseases.
Collapse
Affiliation(s)
- Shilin Jin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Lin Kang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Chengcheng Tan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Liming Shen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| |
Collapse
|
32
|
The Neuroprotection Effects of Exosome in Central Nervous System Injuries: a New Target for Therapeutic Intervention. Mol Neurobiol 2022; 59:7152-7169. [DOI: 10.1007/s12035-022-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
|
33
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
34
|
Wang Z, Zhang Y, Wang L, Ito Y, Li G, Zhang P. Nerve implants with bioactive interfaces enhance neurite outgrowth and nerve regeneration in vivo. Colloids Surf B Biointerfaces 2022; 218:112731. [PMID: 35917689 DOI: 10.1016/j.colsurfb.2022.112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Nerve implants functionalized with growth factors and stem cells are critical to promote neurite outgrowth, regulate neurodifferentiation, and facilitate nerve regeneration. In this study, human umbilical cord mesenchymal stem cells (hUCMSCs) and 3,4-hydroxyphenalyalanine (DOPA)-containing insulin-like growth factor 1 (DOPA-IGF-1) were simultaneously applied to enhance the bioactivity of poly(lactide-co-glycolide) (PLGA) substrates which will be potentially utilized as nerve implants. In vitro and in vivo evaluations indicated that hUCMSCs and DOPA-IGF-1 could synergistically regulate neurite outgrowth of PC12 cells, improve intravital recovery of motor functions, and promote conduction of nerve electrical signals in vivo. The enhanced functional and structural nerve regeneration of injured spinal cord might be mainly attributable to the synergistically enhanced biofunctionality of hUCMSCs and DOPA-IGF-1/PLGA on the bioactive interfaces. Findings from this study demonstrate the potential of hUCMSC-seeded, DOPA-IGF-1-modified PLGA implants as promising candidates for promoting axonal regeneration and motor functional recovery in spinal cord injury treatment.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yi Zhang
- Department of Urology, The Second Hospital, Jilin University, Changchun 130041, PR China
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Gang Li
- Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
35
|
Lee S, Ko JH, Kim SN. The Extracellular MicroRNAs on Inflammation: A Literature Review of Rodent Studies. Biomedicines 2022; 10:1601. [PMID: 35884901 PMCID: PMC9312877 DOI: 10.3390/biomedicines10071601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an indispensable biological process stimulated by infection and injuries. Inflammatory mechanisms related to extracellular vesicles (EVs), which are small membrane structures carrying various molecules, were summarized in this review. Emerging evidence from animal studies has highlighted the role of EVs in modulating inflammatory responses, by transporting various molecules involved in host defense. In this review, we have discussed the role of EV miRNAs in inflammation. Rodent studies associated with extracellular miRNAs in inflammatory diseases, published from 2012 to 2022, were explored from PUBMED, EMBASE, and MEDLINE. A total of 95 studies were reviewed. In summary, EV-associated miRNAs play a key role in various diseases, including organ injury, immune dysfunction, neurological disease, metabolic syndrome, vesicular disease, arthritis, cancer, and other inflammatory diseases. Diverse EV-associated miRNAs regulate inflammasome activation and pro- and anti-inflammatory cytokine levels by targeting genes.
Collapse
Affiliation(s)
- Seri Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
- Graduate School, Dongguk University, Seoul 04620, Korea
| | - Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| |
Collapse
|
36
|
Yang ZL, Rao J, Lin FB, Liang ZY, Xu XJ, Lin YK, Chen XY, Wang CH, Chen CM. The Role of Exosomes and Exosomal Noncoding RNAs From Different Cell Sources in Spinal Cord Injury. Front Cell Neurosci 2022; 16:882306. [PMID: 35518647 PMCID: PMC9062236 DOI: 10.3389/fncel.2022.882306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) not only affects the quality of life of patients but also poses a heavy burden on their families. Therefore, it is essential to prevent the occurrence of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent years, various major breakthroughs have been made in cell therapy to protect and regenerate the damaged spinal cord via various mechanisms such as immune regulation, paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement. Nevertheless, many recent studies have shown that the cell therapy has many disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because of these disadvantages, the clinical application of cell therapy is limited. In recent years, the role of exosomes in various diseases and their therapeutic potential have attracted much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do not encode proteins but affect transcriptional and translational processes by targeting specific mRNAs. This review focuses on the mechanism of action of exosomes obtained from different cell sources in the treatment of SCI and the regulatory role and therapeutic potential of exosomal ncRNAs. This review also discusses the future opportunities and challenges, proposing that exosomes and exosomal ncRNAs might be promising tools for the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chun-Hua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Mei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
37
|
Wang Y, Xu H, Wang J, Yi H, Song Y. Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Curr Stem Cell Res Ther 2022; 17:317-327. [PMID: 35352667 DOI: 10.2174/1574888x17666220330005937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benefiting from in-depth research into stem cells, extracellular vesicles (EVs), which are byproducts of cells and membrane-wrapped microvesicles (30-120 nm) containing lipids, proteins, and nucleic acids, may cast light on the research and development of therapeutics capable of improving the neurological recovery of spinal cord injury (SCI) animals. However, the mechanistic modes of action for EVs in alleviating the lesion size of SCI remain to be solved, thus presenting a tremendous gap existing in translation from the laboratory to the clinic. OBJECTIVE The purpose of this minireview was to cover a wide range of basic views on EVs involved in SCI treatment, including the effects of EVs on the pathogenesis, treatment, and diagnosis of spinal cord injury. METHODS We searched databases (i.e., PubMed, Web of Science, Scopus, Medline, and EMBASE) and acquired all accessible articles published in the English language within five years. Studies reporting laboratory applications of EVs in the treatment of SCI were included and screened to include studies presenting relevant molecular mechanisms. RESULTS This review first summarized the basic role of EVs in cell communication, cell death, inflammatory cascades, scar formation, neuronal regrowth, and angiogenesis after SCI, thereby providing insights into neuroprotection and consolidated theories for future clinical application of EVs. CONCLUSION EVs participate in an extremely wide range of cell activities, play a critical role in cell communication centring neurons, and are considered potential therapies and biomarkers for SCI. miRNAs are the most abundant nucleic acids shipped by EVs and effluent cytokines, and they may represent important messengers of EVs and important factors in SCI treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hualiang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, YanJiang Road, Haizhu District, Guangzhou, China
| | - Yancheng Song
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Alsaadi N, Srinivasan AJ, Seshadri A, Shiel M, Neal MD, Scott MJ. The emerging therapeutic potential of extracellular vesicles in trauma. J Leukoc Biol 2022; 111:93-111. [PMID: 34533241 PMCID: PMC9169334 DOI: 10.1002/jlb.3mir0621-298r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic injury is a major cause of morbidity and mortality worldwide, despite significant advances in treatments. Most deaths occur either very early, through massive head trauma/CNS injury or exsanguination (despite advances in transfusion medicine), or later after injury often through multiple organ failure and secondary infection. Extracellular vesicles (EVs) are known to increase in the circulation after trauma and have been used to limited extent as diagnostic and prognostic markers. More intriguingly, EVs are now being investigated as both causes of pathologies post trauma, such as trauma-induced coagulopathy, and as potential treatments. In this review, we highlight what is currently known about the role and effects of EVs in various aspects of trauma, as well as exploring current literature from investigators who have begun to use EVs therapeutically to alter the physiology and pathology of traumatic insults. The potential effectiveness of using EVs therapeutically in trauma is supported by a large number of experimental studies, but there is still some way to go before we understand the complex effects of EVs in what is already a complex disease process.
Collapse
Affiliation(s)
- Nijmeh Alsaadi
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amudan J Srinivasan
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anupamaa Seshadri
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Shiel
- Division of Hematology-Oncology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D Neal
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J Scott
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Nie H, Jiang Z. Bone mesenchymal stem cell-derived extracellular vesicles deliver microRNA-23b to alleviate spinal cord injury by targeting toll-like receptor TLR4 and inhibiting NF-κB pathway activation. Bioengineered 2021; 12:8157-8172. [PMID: 34663169 PMCID: PMC8806461 DOI: 10.1080/21655979.2021.1977562] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bone mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are known for recovery of injured tissues. We investigated the possible mechanism of BMSC-EVs in spinal cord injury (SCI). EVs were isolated from BMSCs and injected into SCI rats to evaluate the recovery of hindlimb motor function. The spinal cord tissue was stained after modeling to analyze spinal cord structure and inflammatory cell infiltration and detect microRNA (miR)-23b expression. The activity of lipopolysaccharide (LPS)-induced BV2 inflammatory cells was detected. The protein contents of interleukin (IL)-6, IL-1β, IL-10 and tumor necrosis factor-α (TNF-α) in spinal cord and BV2 cells were measured. Western blot analysis was used to detect the level of toll-like receptor (TLR)4, p65, p-p65, iNOS, and Arg1 in spinal cord tissue and cells. TLR4 was overexpressed in rats and cells to evaluate the content of inflammatory cytokines. After EV treatment, the motor function of SCI rats was improved, SCI was relieved, and miR-23b expression was increased. After treatment with EV-miR-23b, iNOS, IL-6, IL-1β, and TNF-α contents were decreased, while Arg1 and IL-10 were increased. The levels of TLR4 and p-p65 in spinal cord and BV2 cells were decreased. The rescue experiments verified that after overexpression of TLR4, the activity of BV2 cells was decreased, the contents of IL-6, IL-1β, TNF-α, and p-p65 were increased, IL-10 was decreased, and SCI was aggravated. To conclude, The miR-23b delivered by BMSC-EVs targets TLR4 and inhibits the activation of NF-κB pathway, relieves the inflammatory response, so as to improve SCI in rats.
Collapse
Affiliation(s)
- Hongfei Nie
- Department of Pain Management, West China Hospital of Sichuan University, Chengdu Sichuan, China
| | - Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong, China
| |
Collapse
|
40
|
Biktimirov A, Pak O, Bryukhovetskiy I, Sharma A, Sharma HS. Neuromodulation as a basic platform for neuroprotection and repair after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2021; 266:269-300. [PMID: 34689861 DOI: 10.1016/bs.pbr.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is one of the most challenging medical issues. Spasticity is a major complication of SCI. A combination of spinal cord stimulation, new methods of neuroprotection and biomedical cellular products provides fundamentally new options for SCI treatment and rehabilitation. The paper attempts to critically analyze the effectiveness of using these procedures for patients with SCI, suggesting a protocol for a step-by-step personalized treatment of SCI, based on continuity of modern conservative and surgical methods. The study argues the possibility of using neuromodulation as a basis for rehabilitating patients with SCI.
Collapse
Affiliation(s)
- Artur Biktimirov
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| | - Oleg Pak
- Department of Neurosurgery, Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Mousa AH, Agha Mohammad S, Rezk HM, Muzaffar KH, Alshanberi AM, Ansari SA. Nanoparticles in traumatic spinal cord injury: therapy and diagnosis. F1000Res 2021. [DOI: 10.12688/f1000research.55472.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanotechnology has been previously employed for constructing drug delivery vehicles, biosensors, solar cells, lubricants and as antimicrobial agents. The advancement in synthesis procedure makes it possible to formulate nanoparticles (NPs) with precise control over physico-chemical and optical properties that are desired for specific clinical or biological applications. The surface modification technology has further added impetus to the specific applications of NPs by providing them with desirable characteristics. Hence, nanotechnology is of paramount importance in numerous biomedical and industrial applications due to their biocompatibility and stability even in harsh environments. Traumatic spinal cord injuries (TSCIs) are one of the major traumatic injuries that are commonly associated with severe consequences to the patient that may reach to the point of paralysis. Several processes occurring at a biochemical level which exacerbate the injury may be targeted using nanotechnology. This review discusses possible nanotechnology-based approaches for the diagnosis and therapy of TSCI, which have a bright future in clinical practice.
Collapse
|
42
|
Liu YJ, Cui ZY, Yang AL, Jallow AW, Huang HL, Shan CL, Lee SD. Anti-apoptotic and pro-survival effect of exercise training on early aged hypertensive rat cerebral cortex. Aging (Albany NY) 2021; 13:20495-20510. [PMID: 34432648 PMCID: PMC8436911 DOI: 10.18632/aging.203431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
The anti-apoptotic and pro-survival effects of exercise training were evaluated on the early aged hypertensive rat cerebral cortex. The brain tissues were analysed from ten sedentary male Wistar Kyoto normotensive rats (WKY), ten sedentary spontaneously 12 month early aged hypertensive rats (SHR), and ten hypertensive rats undergoing treadmill exercise training (60 min/day, 5 days/week) for 12 weeks (SHR-EX). TUNEL-positive apoptotic cells, the expression levels of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) (caspase-independent apoptotic pathway), Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain, active caspase-8 and active caspase-3 (Fas-mediated apoptotic pathways) as well as t-Bid, Bax, Bak, Bad, cytochrome c, active caspase 9 and active caspase-3 (mitochondria-mediated apoptotic pathways) were reduced in SHR-EX compared with SHR. Pro-survival Bcl2, Bcl-xL, p-Bad, 14-3-3, insulin-like growth factor (IGF)-1, pPI3K/PI3K, and pAKT/AKT were significantly increased in SHR-EX compared to those in SHR. Exercise training suppressed neural EndoG/AIF-related caspase-independent, Fas/FasL-mediated caspase-dependent, mitochondria-mediated caspase-dependent apoptotic pathways as well as enhanced Bcl-2 family-related and IGF-1-related pro-survival pathways in the early aged hypertensive cerebral cortex. These findings indicated new therapeutic effects of exercise training on preventing early aged hypertension-induced neural apoptosis in cerebral cortex.
Collapse
Affiliation(s)
- Yi-Jie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Amadou W Jallow
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hai-Liang Huang
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Chun-Lei Shan
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.,Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
43
|
Guo S, Redenski I, Levenberg S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021; 10:cells10081872. [PMID: 34440641 PMCID: PMC8394921 DOI: 10.3390/cells10081872] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting "cell-free" therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Shaowei Guo
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Correspondence: (S.G.); (S.L.)
| | - Idan Redenski
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
- Correspondence: (S.G.); (S.L.)
| |
Collapse
|
44
|
Dutta D, Khan N, Wu J, Jay SM. Extracellular Vesicles as an Emerging Frontier in Spinal Cord Injury Pathobiology and Therapy. Trends Neurosci 2021; 44:492-506. [PMID: 33581883 PMCID: PMC8159852 DOI: 10.1016/j.tins.2021.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are membrane-delimited particles that are secreted by nearly all cell types. EVs mediate crucial physiological functions and pathophysiological processes in the CNS. As carriers of diverse bioactive cargoes (e.g., proteins, lipids, and nucleic acids) that can be modified in response to external stimuli, EVs have emerged as pathological mediators following neurotrauma such as spinal cord injury (SCI). We discuss the roles of endogenous EVs in the CNS as well as crosstalk with peripheral EVs in relation to neurotrauma, with a particular focus on SCI. We then summarize the status of EV-based therapeutic advances in preclinical animal models for these conditions. Finally, we discuss new bioengineering strategies that are poised to enhance CNS-specific therapeutic capabilities of EVs.
Collapse
Affiliation(s)
- Dipankar Dutta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Niaz Khan
- Department of Anesthesiology, and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology, and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
45
|
Khalatbary AR. Stem cell-derived exosomes as a cell free therapy against spinal cord injury. Tissue Cell 2021; 71:101559. [PMID: 34052745 DOI: 10.1016/j.tice.2021.101559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Recent evidence suggests that stem cell therapy has beneficial effects on spinal cord injury. It was subsequently established that these beneficial effects may be mediated through release of paracrine factors, a kind of extracellular vesicle known as exosomes. Stem cell-secreted nano-sized exosomes have shown great potential to reduce apoptosis and inflammation, enhance angiogenesis, and improve functional behavioral recovery following spinal cord injury. This review summarizes current knowledge about the influence of exosomes derived from stem cells on spinal cord protection and regeneration with their molecular mechanisms after injury.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
46
|
Yang C, Zhang S, Chang X, Huang Y, Cui D, Liu Z. MicroRNA-219a-2-3p modulates the proliferation of thyroid cancer cells via the HPSE/cyclin D1 pathway. Exp Ther Med 2021; 21:659. [PMID: 33968189 DOI: 10.3892/etm.2021.10091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heparanase (HPSE) is an endo-β-D-glucuronidase overexpressed in different types of human cancer, and a predicted target of microRNA (miRNA/miR)-219a-2-3p in thyroid cancer. The present study aimed to investigate the potential role of HPSE and miR-219a-2-3p in thyroid cancer, and the molecular mechanism of miR-219a-2-3p regulating the proliferation of thyroid cancer cells via HPSE was confirmed. Immunohistochemistry analysis was performed to detect HPSE expression in thyroid cancer sections. In addition, reverse transcription-quantitative PCR analysis was performed to detect mRNA and miR-219a-2-3p expression levels in thyroid cancer samples and cell lines. miR-219-2-3p mimic or HPSE plasmid were transfected into B-CPAP and TPC-1 thyroid cancer cells. Furthermore, western blot analysis was performed to detect the protein expression levels of HPSE and cyclin D1. Cell cycle analysis was performed using propidium iodide staining and flow cytometry, and EdU incorporation was performed to detect cell proliferation. The results demonstrated that high HPSE expression was significantly associated with tumor size, extracapsular invasion and lymph node metastasis. Notably, a statistically negative correlation was observed between HPSE mRNA expression and miR-219a-2-3p expression in thyroid cancer tumors, as well as in thyroid cancer cell lines. When exogenously expressed in B-CPAP and TPC-1 cells, miR-219a-2-3p induced cell cycle arrest at the G0/G1 phase and decreased the percentage of proliferating cells. Furthermore, HPSE and cyclin D1 protein expression decreased following transfection with miR-219a-2-3p. Notably, when HPSE was ectopically expressed in miR-219a-2-3p transfected cells, cyclin D1 expression and the number of proliferative cells increased. Taken together, these results suggest that HPSE contributes to the proliferation of thyroid cancer cells. In addition, miR-219a-2-3p was confirmed to target HPSE and inhibit cell proliferation, which was associated with cyclin D1 suppression-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Siyang Zhang
- Science and Experiment Center, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoying Chang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dongxu Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
47
|
Zhu S, Ying Y, Ye J, Chen M, Wu Q, Dou H, Ni W, Xu H, Xu J. AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death Dis 2021; 12:274. [PMID: 33723238 PMCID: PMC7960741 DOI: 10.1038/s41419-021-03546-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso-Beattie-Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
48
|
Morales-Martinez M, Vega MI. Participation of different miRNAs in the regulation of YY1: Their role in pathogenesis, chemoresistance, and therapeutic implication in hematologic malignancies. YY1 IN THE CONTROL OF THE PATHOGENESIS AND DRUG RESISTANCE OF CANCER 2021:171-198. [DOI: 10.1016/b978-0-12-821909-6.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
49
|
Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. Int J Mol Sci 2020; 21:ijms21186859. [PMID: 32962107 PMCID: PMC7555813 DOI: 10.3390/ijms21186859] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell–cell communication in a wide range of embryonic developmental processes and in fetal–maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood–brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., “liquid biopsies”, but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.
Collapse
|
50
|
Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020; 11:439. [PMID: 32513969 PMCID: PMC7280216 DOI: 10.1038/s41419-020-2620-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Due to the disconnection of surviving neural elements after spinal cord injury (SCI), such patients had to suffer irreversible loss of motor or sensory function, and thereafter enormous economic and emotional burdens were brought to society and family. Despite many strategies being dealing with SCI, there is still no effective regenerative therapy. To date, significant progress has been made in studies of SCI repair strategies, including gene regulation of neural regeneration, cell or cell-derived exosomes and growth factors transplantation, repair of biomaterials, and neural signal stimulation. The pathophysiology of SCI is complex and multifaceted, and its mechanisms and processes are incompletely understood. Thus, combinatorial therapies have been demonstrated to be more effective, and lead to better neural circuits reconstruction and functional recovery. Combinations of biomaterials, stem cells, growth factors, drugs, and exosomes have been widely developed. However, simply achieving axon regeneration will not spontaneously lead to meaningful functional recovery. Therefore, the formation and remodeling of functional neural circuits also depend on rehabilitation exercises, such as exercise training, electrical stimulation (ES) and Brain-Computer Interfaces (BCIs). In this review, we summarize the recent progress in biological and engineering strategies for reconstructing neural circuits and promoting functional recovery after SCI, and emphasize current challenges and future directions.
Collapse
Affiliation(s)
- Biao Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Gong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|