1
|
Sarkar S, Prasanna VS, Das P, Suzuki H, Fujihara K, Kodama S, Sone H, Sreedhar R, Velayutham R, Watanabe K, Arumugam S. The onset and the development of cardiometabolic aging: an insight into the underlying mechanisms. Front Pharmacol 2024; 15:1447890. [PMID: 39391689 PMCID: PMC11464448 DOI: 10.3389/fphar.2024.1447890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic compromise is crucial in aggravating age-associated chronic inflammation, oxidative stress, mitochondrial damage, increased LDL and triglycerides, and elevated blood pressure. Excessive adiposity, hyperglycemia, and insulin resistance due to aging are associated with elevated levels of damaging free radicals, inducing a proinflammatory state and hampering immune cell activity, leading to a malfunctioning cardiometabolic condition. The age-associated oxidative load and redox imbalance are contributing factors for cardiometabolic morbidities via vascular remodelling and endothelial damage. Recent evidence has claimed the importance of gut microbiota in maintaining regular metabolic activity, which declines with chronological aging and cardiometabolic comorbidities. Genetic mutations, polymorphic changes, and environmental factors strongly correlate with increased vulnerability to aberrant cardiometabolic changes by affecting key physiological pathways. Numerous studies have reported a robust link between biological aging and cardiometabolic dysfunction. This review outlines the scientific evidence exploring potential mechanisms behind the onset and development of cardiovascular and metabolic issues, particularly exacerbated with aging.
Collapse
Affiliation(s)
- Sulogna Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Vani S. Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Hiroshi Suzuki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Kodama
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Director, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Nakagawa K, Chen R, Ross GW, Donlon TA, Allsopp RC, Willcox DC, Morris BJ, Willcox BJ, Masaki KH. FOXO3 longevity genotype attenuates the impact of hypertension on cerebral microinfarct risk. J Hypertens 2024; 42:484-489. [PMID: 38009316 PMCID: PMC10873049 DOI: 10.1097/hjh.0000000000003620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
OBJECTIVE The G -allele of FOXO3 SNP rs2802292 , which is associated with human resilience and longevity, has been shown to attenuate the impact of hypertension on the risk of intracerebral hemorrhage (ICH). We sought to determine whether the FOXO3 G -allele similarly attenuates the impact of hypertension on the risk of cerebral microinfarcts (CMI). METHODS From a prospective population-based cohort of American men of Japanese ancestry from the Kuakini Honolulu Heart Program (KHHP) and Kuakini Honolulu-Asia Aging Study (KHAAS) that had brain autopsy data, age-adjusted prevalence of any CMI on brain autopsy was assessed. Logistic regression models, adjusted for age at death, cardiovascular risk factors, FOXO3 and APOE-ε4 genotypes, were utilized to determine the predictors of any CMI. Interaction of FOXO3 genotype and hypertension was analyzed. RESULTS Among 809 men with complete data, 511 (63.2%) participants had evidence of CMI. A full multivariable model demonstrated that BMI [odds ratio (OR) 1.07, 95% confidence interval (CI) 1.01-1.14, P = 0.015) was the only predictor of CMI, while hypertension was a borderline predictor (OR 1.44, 95% CI 1.00-2.08, P = 0.052). However, a significant interaction between FOXO3 G -allele carriage and hypertension was observed ( P = 0.020). In the stratified analyses, among the participants without the longevity-associated FOXO3 G -allele, hypertension was a strong predictor of CMI (OR 2.25, 95% CI 1.34-3.77, P = 0.002), while among those with the longevity-associated FOXO3 G -allele, hypertension was not a predictor of CMI (OR 0.88, 95% CI 0.51-1.54, P = 0.66). CONCLUSION The longevity-associated FOXO3 G -allele mitigates the impact of hypertension on the risk of CMI.
Collapse
Affiliation(s)
- Kazuma Nakagawa
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Neuroscience Institute, The Queen's Medical Center
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii
| | - Randi Chen
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
| | - G Webster Ross
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii
- Pacific Health Research and Education Institute
- Veterans Affairs Pacific Islands Healthcare Systems
- Department of Geriatric Medicine
| | - Timothy A Donlon
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii
| | - Richard C Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - D Craig Willcox
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Brian J Morris
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Bradley J Willcox
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| | - Kamal H Masaki
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| |
Collapse
|
4
|
Morris BJ, Donlon TA. Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension. Am J Hypertens 2023; 36:631-640. [PMID: 37561089 PMCID: PMC10647014 DOI: 10.1093/ajh/hpad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Genetic factors influence lifespan. In humans, there appears to be a particularly strong genetic effect in those aged ≥ 90 years. An important contribution is nutrient sensing genes which confer cell resilience. METHODS Our research has been investigating the genetic factors by longitudinal studies of American men of Japanese descent living on the island of Oahu in Hawaii. This cohort began as the Honolulu Heart Program in the mid-1960s and most subjects are now deceased. RESULTS We previously discovered various genes containing polymorphisms associated with longevity. In recent investigations of the mechanism involved we found that the longevity genotypes ameliorated the risk of mortality posed by having a cardiometabolic disease (CMD)-most prominently hypertension. For the gene FOXO3 the protective alleles mitigated the risk of hypertension, coronary heart disease (CHD) and diabetes. For the kinase MAP3K5 it was hypertension, CHD and diabetes, for the kinase receptor PIK3R1 hypertension, CHD and stroke, and for the growth hormone receptor gene (GHR) and vascular endothelial growth factor receptor 1 gene (FLT1), it was nullifying the higher mortality risk posed by hypertension. Subjects with a CMD who had a longevity genotype had similar survival as men without CMD. No variant protected against risk of death from cancer. We have postulated that the longevity-associated genotypes reduced mortality risk by effects on intracellular resilience mechanisms. In a proteomics study, 43 "stress" proteins and associated biological pathways were found to influence the association of FOXO3 genotype with reduced mortality. CONCLUSIONS Our landmark findings indicate how heritable genetic components affect longevity.
Collapse
Affiliation(s)
- Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence on Aging, Kuakini Medical Center, Honolulu, Hawaii 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence on Aging, Kuakini Medical Center, Honolulu, Hawaii 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
| |
Collapse
|
5
|
Li X, Qu Y, Yang Q, Li R, Diao Y, Wang J, Wu L, Zhang C, Cui S, Qin L, Zhuo D, Wang H, Wang L, Huang Y. Cellular Localization of FOXO3 Determines Its Role in Cataractogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1845-1862. [PMID: 37517685 DOI: 10.1016/j.ajpath.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
The transcription factor forkhead box protein (FOX)-O3 is a core regulator of cellular homeostasis, stress response, and longevity. The cellular localization of FOXO3 is closely related to its function. Herein, the role of FOXO3 in cataract formation was explored. FOXO3 showed nuclear translocation in lens epithelial cells (LECs) arranged in a single layer on lens capsule tissues from both human cataract and N-methyl-N-nitrosourea (MNU)-induced rat cataract, also in MNU-injured human (H)-LEC lines. FOXO3 knockdown inhibited the MNU-induced increase in expression of genes related to cell cycle arrest (GADD45A and CCNG2) and apoptosis (BAK and TP53). H2 is highly effective in reducing oxidative impairments in nuclear DNA and mitochondria. When H2 was applied to MNU-injured HLECs, FOXO3 underwent cleavage by MAPK1 and translocated into mitochondria, thereby increasing the transcription of oxidative phosphorylation-related genes (MTCO1, MTCO2, MTND1, and MTND6) in HLECs. Furthermore, H2 mediated the translocation of FOXO3 from the nucleus to the mitochondria within the LECs of cataract capsule tissues of rats exposed to MNU. This intervention ameliorated MNU-induced cataracts in the rat model. In conclusion, there was a correlation between the localization of FOXO3 and its function in cataract formation. It was also determined that H2 protects HLECs from injury by leading FOXO3 mitochondrial translocation via MAPK1 activation. Mitochondrial FOXO3 can increase mtDNA transcription and stabilize mitochondrial function in HLECs.
Collapse
Affiliation(s)
- Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Runpu Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Chuyue Zhang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shaoyuan Cui
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Limin Qin
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huiyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
7
|
Morris BJ, Chen R, Donlon TA, Kallianpur KJ, Masaki KH, Willcox BJ. Vascular endothelial growth factor receptor 1 gene ( FLT1) longevity variant increases lifespan by reducing mortality risk posed by hypertension. Aging (Albany NY) 2023; 15:3967-3983. [PMID: 37178326 PMCID: PMC10257998 DOI: 10.18632/aging.204722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Longevity is written into the genes. While many so-called "longevity genes" have been identified, the reason why particular genetic variants are associated with longer lifespan has proven to be elusive. The aim of the present study was to test the hypothesis that the strongest of 3 adjacent longevity-associated single nucleotide polymorphisms - rs3794396 - of the vascular endothelial growth factor receptor 1 gene, FLT1, may confer greater lifespan by protecting against mortality risk from one or more adverse medical conditions of aging - namely, hypertension, coronary heart disease (CHD), stroke, and diabetes. In a prospective population-based longitudinal study we followed 3,471 American men of Japanese ancestry living on Oahu, Hawaii, from 1965 until death or to the end of December 2019 by which time 99% had died. Cox proportional hazards models were used to assess the association of FLT1 genotype with longevity for 4 genetic models and the medical conditions. We found that, in major allele recessive and heterozygote disadvantage models, genotype GG ameliorated the risk of mortality posed by hypertension, but not that posed by having CHD, stroke or diabetes. Normotensive subjects lived longest and there was no significant effect of FLT1 genotype on their lifespan. In conclusion, the longevity-associated genotype of FLT1 may confer increased lifespan by protecting against mortality risk posed by hypertension. We suggest that FLT1 expression in individuals with longevity genotype boosts vascular endothelial resilience mechanisms to counteract hypertension-related stress in vital organs and tissues.
Collapse
Affiliation(s)
- Brian J. Morris
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Randi Chen
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kalpana J. Kallianpur
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J. Willcox
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Chen R, Morris BJ, Donlon TA, Ross GW, Kallianpur KJ, Allsopp RC, Nakagawa K, Willcox BJ, Masaki KH. Incidence of Alzheimer's Disease in Men with Late-Life Hypertension Is Ameliorated by FOXO3 Longevity Genotype. J Alzheimers Dis 2023; 95:79-91. [PMID: 37483002 PMCID: PMC10578238 DOI: 10.3233/jad-230350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND It is well established that mid-life hypertension increases risk of dementia, whereas the association of late-life hypertension with dementia is unclear. OBJECTIVE To determine whether FOXO3 longevity-associated genotype influences the association between late-life hypertension and incident dementia. METHODS Subjects were 2,688 American men of Japanese ancestry (baseline age: 77.0±4.1 years, range 71-93 years) from the Kuakini Honolulu Heart Program. Status was known for FOXO3 rs2802292 genotype, hypertension, and diagnosis of incident dementia to 2012. Association of FOXO3 genotype with late-life hypertension and incident dementia, vascular dementia (VaD) and Alzheimer's disease (AD) was assessed using Cox proportional hazards models. RESULTS During 21 years of follow-up, 725 men were diagnosed with all-cause dementia, 513 with AD, and 104 with VaD. A multivariable Cox model, adjusting for age, education, APOEɛ4, and cardiovascular risk factors, showed late-life hypertension increased VaD risk only (HR = 1.71, 95% CI = 1.08-2.71, p = 0.022). We found no significant protective effect of FOXO3 longevity genotype on any type of dementia at the population level. However, in a full Cox model adjusting for age, education, APOEɛ4, and other cardiovascular risk factors, there was a significant interaction effect of late-life hypertension and FOXO3 longevity genotype on incident AD (β= -0.52, p = 0.0061). In men with FOXO3 rs2802292 longevity genotype (TG/GG), late-life hypertension showed protection against AD (HR = 0.72; 95% CI = 0.55-0.95, p = 0.021). The non-longevity genotype (TT) (HR = 1.16; 95% CI = 0.90-1.51, p = 0.25) had no protective effect. CONCLUSION This longitudinal study found late-life hypertension was associated with lower incident AD in subjects with FOXO3 genotype.
Collapse
Affiliation(s)
- Randi Chen
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
| | - Brian J. Morris
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A. Donlon
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - G. Webster Ross
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Veterans Affairs Pacific Islands Health Care Systems, Honolulu, HI, USA
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Kalpana J. Kallianpur
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, USA
| | - Kazuma Nakagawa
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Neuroscience Institute, The Queen’s Medical Center, Honolulu, HI, USA
| | - Bradley J. Willcox
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Kamal H. Masaki
- NIH Center of Biomedical Reseach Excellence on Aging, Kuakini Medical Center, Honolulu, HI, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
9
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
10
|
Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci 2022; 43:1070-1084. [PMID: 36280450 DOI: 10.1016/j.tips.2022.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Forkhead box (FOX)O proteins are transcription factors (TFs) with four members in mammals designated FOXO1, FOXO3, FOXO4, and FOXO6. FOXO TFs play a pivotal role in the cellular adaptation to diverse stress conditions. FOXO proteins act as context-dependent tumor suppressors and their dysregulation has been implicated in several age-related diseases. FOXO3 has been established as a major gene for human longevity. Accordingly, FOXO proteins have emerged as potential targets for the therapeutic development of drugs and geroprotectors. In this review, we provide an overview of the most recent advances in our understanding of FOXO regulation and function in various pathological conditions. We discuss strategies targeting FOXOs directly or by the modulation of upstream regulators, shedding light on the most promising intervention points. We also reveal the most relevant clinical indications and discuss the potential, trends, and challenges of modulating FOXO activity for therapeutic purposes.
Collapse
Affiliation(s)
- Alba Orea-Soufi
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Campus de Gambelas, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029-Madrid, Spain.
| |
Collapse
|
11
|
Raghavachari N, Wilmot B, Dutta C. Optimizing Translational Research for Exceptional Health and Life Span: A Systematic Narrative of Studies to Identify Translatable Therapeutic Target(s) for Exceptional Health Span in Humans. J Gerontol A Biol Sci Med Sci 2022; 77:2272-2280. [PMID: 35279027 PMCID: PMC9678194 DOI: 10.1093/gerona/glac065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Exceptional longevity as manifested by the lower incidence and delayed onset of age-related disabilities/diseases that include cardiovascular disease, Alzheimer's disease, cancer is believed to be influenced by inherent protective molecular factors in exceptionally long-lived individuals. Unraveling these protective factors could lead to the discovery of therapeutic target(s) and interventions to promote healthy aging. METHODS In this context, the National Institute on Aging has established a collection of translational longevity research projects (ie, the Long-Life Family Study, the Longevity Consortium, Longevity Genomics, and the Integrative Longevity Omics) which are generating large omics data sets spanning the human genome to phenome and have embarked on cross-species multiomic data analyses integrating human and nonhuman species that display wide variation in their life spans. RESULTS It is expected that these studies will discover key signaling pathways that influence exceptional health span and identify therapeutic targets for translation to enhance health and life span. Other efforts related to translational longevity research include the "Comprehensive Evaluation of Aging-Related Clinical Outcomes and Geroproteins study," which focuses on potential effects in humans of polypeptides/proteins whose circulating levels change with age, and for which experimental evidence indicates reversal or acceleration of aging changes. The "Predictive Human Mechanistic Markers Network" is devoted to the development of predictive markers of aging, for target engagement when testing novel interventions for healthy aging. CONCLUSION We describe here the significance, the unique study design, categories of data sets, analytical strategies, and a data portal to facilitate open science and sharing of resources from these longevity studies to identify and validate potential therapeutic targets for healthy aging.
Collapse
Affiliation(s)
- Nalini Raghavachari
- Division of Geriatrics & Clinical Gerontology, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Beth Wilmot
- Division of Geriatrics & Clinical Gerontology, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Chhanda Dutta
- Division of Geriatrics & Clinical Gerontology, National Institute on Aging, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Nakagawa K, Chen R, Greenberg SM, Ross GW, Willcox BJ, Donlon TA, Allsopp RC, Willcox DC, Morris BJ, Masaki KH. Forkhead box O3 longevity genotype may attenuate the impact of hypertension on risk of intracerebral haemorrhage. J Hypertens 2022; 40:2230-2235. [PMID: 35943066 PMCID: PMC9553272 DOI: 10.1097/hjh.0000000000003249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Since the G allele of forkhead box O3 ( FOXO3 ) single nucleotide polymorphism (SNP) rs2802292 is associated with resilience and longevity, ostensibly by mitigating the adverse effects of chronic cardiometabolic stress on mortality, our aim was to determine the association between the FOXO3 SNP rs2802292 genotype and risk of hypertension-mediated intracerebral haemorrhage (ICH). METHODS From a prospective population-based cohort of Japanese American men from the Kuakini Honolulu Heart Program (KHHP), age-adjusted prevalence of ICH by hypertension was assessed for the whole cohort after stratifying by FOXO3 genotype. Cox regression models, adjusted for age, cardiovascular risk factors and, FOXO3 and APOE genotypes, were utilized to determine relative risk of hypertension's effect on ICH. All models were created for the whole cohort and stratified by FOXO3 G -allele carriage vs. TT genotype. RESULTS Among 6469 men free of baseline stroke, FOXO3 G -allele carriage was seen in 3009 (46.5%) participants. Overall, 183 participants developed ICH over the 34-year follow-up period. Age-adjusted ICH incidence was 0.90 vs. 1.32 per 1000 person-years follow-up in those without and with hypertension, respectively ( P = 0.002). After stratifying by FOXO3 genotype, this association was no longer significant in G allele carriers. In the whole cohort, hypertension was an independent predictor of ICH (relative risk [RR] = 1.70, 95% confidence interval [CI] 1.25, 2.32; P = 0.0007). In stratified analyses, hypertension remained an independent predictor of ICH among the FOXO3 TT -genotype group (RR = 2.02, 95% CI 1.33, 3.07; P = 0.001), but not in FOXO3 G -allele carriers (RR = 1.39, 95% CI 0.88, 2.19; P = 0.15). CONCLUSIONS The longevity-associated FOXO3 G allele may attenuate the impact of hypertension on ICH risk.
Collapse
Affiliation(s)
- Kazuma Nakagawa
- Department of Research, Kuakini Medical Center
- Neuroscience Institute, The Queen's Medical Center
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Randi Chen
- Department of Research, Kuakini Medical Center
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts
| | - G. Webster Ross
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- Pacific Health Research and Education Institute
- Veterans Affairs Pacific Islands Healthcare Systems
- Department of Geriatric Medicine
| | - Bradley J. Willcox
- Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| | - Timothy A. Donlon
- Department of Research, Kuakini Medical Center
- Department of Cell and Molecular Biology
| | - Richard C. Allsopp
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - D. Craig Willcox
- Department of Research, Kuakini Medical Center
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Brian J. Morris
- Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal H. Masaki
- Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| |
Collapse
|
13
|
Donlon TA, Morris BJ, Masaki KH, Chen R, Davy PMC, Kallianpur KJ, Nakagawa K, Owens JB, Willcox DC, Allsopp RC, Willcox BJ. FOXO3, a Resilience Gene: Impact on Lifespan, Healthspan, and Deathspan. J Gerontol A Biol Sci Med Sci 2022; 77:1479-1484. [PMID: 35960854 PMCID: PMC9373965 DOI: 10.1093/gerona/glac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Timothy A Donlon
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal H Masaki
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Randi Chen
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Phillip M C Davy
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - Kalpana J Kallianpur
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Kazuma Nakagawa
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Neuroscience Institute, The Queen’s Medical Center, Honolulu, Hawaii, USA
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Jesse B Owens
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - D Craig Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Richard C Allsopp
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
14
|
Ji JS, Liu L, Shu C, Yan LL, Zeng Y. Sex Difference and Interaction of SIRT1 and FOXO3 Candidate Longevity Genes on Life Expectancy: A 10-Year Prospective Longitudinal Cohort Study. J Gerontol A Biol Sci Med Sci 2022; 77:1557-1563. [PMID: 34928346 PMCID: PMC9373943 DOI: 10.1093/gerona/glab378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/14/2022] Open
Abstract
SIRT1 and FOXO3 are both associated with longevity. Molecular biology research in many organisms (yeast, nematode worm Caenorhabditis elegans, and mice mammalian models) shows SIRT1 acts on the FOXO family of forkhead transcription factors to respond to oxidative stress better, shifting processes away from cell death toward stress resistance. Human population studies need epidemiologic evidence. We used an open cohort of 3 166 community-dwelling participants in China with follow-up from 2008 to 2018. The mean age at baseline was 84.6 years. In 16 375 person-years of follow-up, there were 1 968 mortality events. SIRT1 and FOXO3 exhibited Mendelian randomization as there was no correlation with each other and with baseline study population characteristics. Some SIRT1 and FOXO3 single-nucleotide polymorphisms showed protective effects for mortality risk. The FOXO3 protective effect was stronger in females, and the SIRT1 protective effect was stronger in male study participants. We did not see evidence of a synergistic effect of being carriers of both SIRT1 and FOXO3 advantageous alleles.
Collapse
Affiliation(s)
- John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Linxin Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Chang Shu
- Departments of Pediatrics and Systems Biology, Columbia University, New York, New York, USA
| | - Lijing L Yan
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
- Center for the Study of Aging and Human Development, Duke Medical School, Durham, North Carolina, USA
| |
Collapse
|
15
|
Margrett JA, Schofield T, Martin P, Poon LW, Masaki K, Donlon TA, Kallianpur KJ, Willcox BJ. Novel Functional, Health, and Genetic Determinants of Cognitive Terminal Decline: Kuakini Honolulu Heart Program/Honolulu-Asia Aging Study. J Gerontol A Biol Sci Med Sci 2022; 77:1525-1533. [PMID: 34918073 PMCID: PMC9373950 DOI: 10.1093/gerona/glab327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
To investigate interindividual differences in cognitive terminal decline and identify determinants including functional, health, and genetic risk and protective factors, data from the Honolulu Heart Program/Honolulu-Asia Aging Study, a prospective cohort study of Japanese American men, were analyzed. The sample was recruited in 1965-1968 (ages 45-68 years). Longitudinal performance of cognitive abilities and mortality status were assessed from Exam 4 (1991-1993) through June 2014. Latent class analysis revealed 2 groups: maintainers retained relatively high levels of cognitive functioning until death and decliners demonstrated significant cognitive waning several years prior to death. Maintainers were more likely to have greater education, diagnosed coronary heart disease, and presence of the apolipoprotein E (APOE) ε2 allele and FOXO3 G allele (SNP rs2802292). Decliners were more likely to be older and have prior stroke, Parkinson's disease, dementia, and greater depressive symptoms at Exam 4, and the APOE ε4 allele. Findings support terminal decline using distance to death as the basis for modeling change. Significant differences were observed between maintainers and decliners 15 years prior to death, a finding much earlier compared to the majority of previous investigations.
Collapse
Affiliation(s)
- Jennifer A Margrett
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Thomas Schofield
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Peter Martin
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, Georgia, USA
| | - Kamal Masaki
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Timothy A Donlon
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Kalpana J Kallianpur
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| |
Collapse
|
16
|
Xu C, Zhang P, Cao Z. Cardiovascular health and healthy longevity in people with and without cardiometabolic disease: A prospective cohort study. EClinicalMedicine 2022; 45:101329. [PMID: 35284807 PMCID: PMC8904213 DOI: 10.1016/j.eclinm.2022.101329] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Existing evidence suggest an association of cardiovascular health (CVH) level with cardiometabolic disease (CMD) and mortality, but the effect of CVH on life expectancy, particularly survival years in CMD patients, has not been well-established. This study aimed to investigate the association of CVH defined using the 7-item tool from the American Heart Association (AHA) with life expectancy in people with and without CMD. METHODS Between 2006 and 2010, a total of 341,331 participants (age 37-73 years) in the UK Biobank were examined and thereafter followed up to 2020. The CVH raised by the AHA included 4 behavioral (smoking, diet, physical activity, body mass index) and 3 biological (fasting glucose, blood cholesterol, blood pressure) metrics, coded on a three-point scale (0, 1, 2). The CVH score was the sum of 7 metrics (score range 0-14) and was then categorized into poor (scores 0-6), intermediate (7-11), and ideal (12-14) CVH. The flexible parametric survival models were applied to estimate life expectancy. FINDINGS During a median follow-up of 11.4 years, 18,420 (5.4%) deaths occurred. The multivariable-adjusted hazard ratio (HRs) of all-cause mortality were 2.21 (95% CI: 1.77 to 2.75) for male and 2.63 (95% CI: 2.22 to 3.12) for female with prevalent CMD and a poor CVH compared with CMD-free and ideal CVH group, an ideal CVH attenuated the CMD-related risk of mortality by approximately 62% for male and 53% for female. In CMD patients, an ideal CVH compared to poor CVH was associated with additional life years gain of 5.50 (95% CI: 3.94-7.05) for male 4.20 (95% CI: 2.77-5.62) for female at the age of 45 years. Corresponding estimates in those without CMD were 4.55 (95% CI: 3.62-5.48) and 4.89 (95% CI: 3.99-5.79), respectively. Ideal smoking status, fasting glucose and physical activity for male and ideal smoking status, cholesterol level and physical activity for female contributed to the greatest survival benefit. INTERPRETATION An ideal CVH is associated with a lower risk of premature mortality and longer life expectancy whether in general population or CMD patients. Our study highlights the benefits of maintaining better CVH across the life course and calls attention to the need for comprehensive strategies (healthy behavioral lifestyle and biological phenotypes) to preserve and restore a higher CVH level. FUNDING Scientific Research Foundation for Scholars of HZNU (Grant No. 4265C50221204119).
Collapse
Affiliation(s)
- Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Pengjie Zhang
- School of Public Health, Fudan University, Shanghai, China
| | - Zhi Cao
- School of Public Health, Zhejiang University School of Medicine, Yuhangtang Road 866, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
17
|
Zhao Y, Liu YS. Longevity Factor FOXO3: A Key Regulator in Aging-Related Vascular Diseases. Front Cardiovasc Med 2022; 8:778674. [PMID: 35004893 PMCID: PMC8733402 DOI: 10.3389/fcvm.2021.778674] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
18
|
Beaulac HJ, Gilels F, Zhang J, Jeoung S, White PM. Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis 2021; 12:682. [PMID: 34234110 PMCID: PMC8263610 DOI: 10.1038/s41419-021-03972-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/-), and Foxo3 knock-out (Foxo3-/-) mice to better understand FOXO3's role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3-/- OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3's absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3-/- mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3-/- mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.
Collapse
MESH Headings
- Animals
- Cell Death
- Disease Models, Animal
- Female
- Forkhead Box Protein O3/deficiency
- Forkhead Box Protein O3/genetics
- Gene Expression Regulation
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Homozygote
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Male
- Mice, Knockout
- Noise
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- Time Factors
- Mice
Collapse
Affiliation(s)
- Holly J Beaulac
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Felicia Gilels
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jingyuan Zhang
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Otolaryngology, Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston Children's Hospital Center for Life Science, Boston, MA, USA
| | - Sarah Jeoung
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
19
|
Morris BJ, Chen R, Donlon TA, Masaki KH, Willcox DC, Allsopp RC, Willcox BJ. Lifespan extension conferred by mitogen-activated protein kinase kinase kinase 5 ( MAP3K5) longevity-associated gene variation is confined to at-risk men with a cardiometabolic disease. Aging (Albany NY) 2021; 13:7953-7974. [PMID: 33739303 PMCID: PMC8034933 DOI: 10.18632/aging.202844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Genetic variants of the kinase signaling gene MAP3K5 are associated with longevity. Here we explore whether the longevity-association involves protection against mortality in all individuals, or only in individuals with aging-related diseases. We tested the strongest longevity associated single nucleotide polymorphism (SNP), rs2076260, for association with mortality in 3,516 elderly American men of Japanese ancestry. At baseline (1991-1993), 2,461 had either diabetes (n=990), coronary heart disease (CHD; n=724), or hypertension (n=1,877), and 1,055 lacked any of these cardiometabolic diseases (CMDs). The men were followed from baseline until Dec 31, 2019. Longevity-associated genotype CC in a major allele homozygote model, and CC+TT in a heterozygote disadvantage model were associated with longer lifespan in individuals having a CMD (covariate-adjusted hazard ratio [HR] 1.23 [95% CI: 1.12-1.35, p=2.5x10-5] in major allele homozygote model, and 1.22 [95% CI: 1.11-1.33, p=1.10x10-5] in heterozygote disadvantage model). For diabetes, hypertension and CHD, HR p-values were 0.019, 0.00048, 0.093, and 0.0024, 0.00040, 0.0014, in each respective genetic model. As expected, men without a CMD outlived men with a CMD (p=1.9x10-6). There was, however, no difference in lifespan by genotype in men without a CMD (p=0.21 and 0.86, respectively, in each genetic model). In conclusion, we propose that in individuals with a cardiometabolic disease, longevity-associated genetic variation in MAP3K5 enhances resilience mechanisms in cells and tissues to help protect against cardiometabolic stress caused by CMDs. As a result, men with CMD having longevity genotype live as long as all men without a CMD.
Collapse
Affiliation(s)
- Brian J. Morris
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, New South Wales, Australia
| | - Randi Chen
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - D. Craig Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Human Welfare, Okinawa International University, Okinawa, Japan
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Bradley J. Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|