1
|
Echeverria-Villalobos M, Fabian CA, Mitchell JG, Mazzota E, Fiorda Diaz JC, Noon K, Weaver TE. Cannabinoids and General Anesthetics: Revisiting Molecular Mechanisms of Their Pharmacological Interactions. Anesth Analg 2024:00000539-990000000-01027. [PMID: 39504269 DOI: 10.1213/ane.0000000000007313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cannabis has been used for recreation and medical purposes for more than a millennium across the world; however, its use's consequences remain poorly understood. Although a growing number of surgical patients are regular cannabis consumers, little is known regarding the pharmacological interactions between cannabis and general anesthetics; consequently, there is not a solid consensus among anesthesiologists on the perioperative management of these patients. The existing evidence about the molecular mechanisms underlying pharmacological interactions between cannabinoids and anesthetic agents, both in animal models and in humans, shows divergent results. While some animal studies have demonstrated that phytocannabinoids (tetrahydrocannabinol [THC], cannabidiol [CBD], and cannabinol [CBN]) potentiate the anesthetic effects of inhalation and intravenous anesthetics, while others have found effects comparable with what has been described in humans so far. Clinical studies and case reports have consistently shown increased requirements of GABAergic anesthetic drugs (isoflurane, sevoflurane, propofol, midazolam) to achieve adequate levels of clinical anesthesia. Several potential molecular mechanisms have been proposed to explain the effects of these interactions. However, it is interesting to mention that in humans, it has been observed that the ingestion of THC enhances the hypnotic effect of ketamine. Animal studies have reported that cannabinoids enhance the analgesic effect of opioids due to a synergistic interaction of the endogenous cannabinoid system (ECS) with the endogenous opioid system (EOS) at the spinal cord level and in the central nervous system. However, human data reveals that cannabis users show higher scores of postoperative pain intensity as well as increased requirements of opioid medication for analgesia. This review aims to improve understanding of the molecular mechanisms and pharmacological interactions between cannabis and anesthetic drugs and the clinical outcomes that occur when these substances are used together.
Collapse
Affiliation(s)
| | - Catherine A Fabian
- Department of Anesthesiology. University of Michigan Hospital, Ann Arbor, Michigan
| | - Justin G Mitchell
- Department of Anesthesiology & Perioperative Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Elvio Mazzota
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Juan C Fiorda Diaz
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristen Noon
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tristan E Weaver
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
2
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Galeano M, Vaccaro F, Irrera N, Caradonna E, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Melanoma and cannabinoids: A possible chance for cancer treatment. Exp Dermatol 2024; 33:e15144. [PMID: 39039940 DOI: 10.1111/exd.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The endocannabinoid system is composed by a complex and ubiquitous network of endogenous lipid ligands, enzymes for their synthesis and degradation, and receptors, which can also be stimulated by exogenous compounds, such as those derived from the Cannabis sativa. Cannabis and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied in different conditions. Recent data have shown that the endocannabinoid system is responsible for maintaining the homeostasis of various skin functions such as proliferation, differentiation and release of inflammatory mediators. Because of their role in regulating these key processes, cannabinoids have been studied for the treatment of skin cancers and melanoma; their anti-tumour effects regulate skin cancer progression and are mainly related to the inhibition of tumour growth, proliferation, invasion and angiogenesis, through apoptosis and autophagy induction. This review aims at summarising the current field of research on the potential uses of cannabinoids in the melanoma field.
Collapse
Affiliation(s)
- Mariarosaria Galeano
- Department of Human Pathology and Evolutive Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Federico Vaccaro
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emanuela Caradonna
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Richardson B, Clarke C, Blundell J, Bambico FR. Therapeutic-like activity of cannabidiolic acid methyl ester in the MK-801 mouse model of schizophrenia: Role for cannabinoid CB1 and serotonin-1A receptors. Eur J Neurosci 2024; 59:2403-2415. [PMID: 38385841 DOI: 10.1111/ejn.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 μg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 μg/kg), but not the high dose (.05 μg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.
Collapse
MESH Headings
- Animals
- Schizophrenia/drug therapy
- Schizophrenia/chemically induced
- Schizophrenia/metabolism
- Dizocilpine Maleate/pharmacology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Male
- Mice
- Female
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Mice, Inbred C57BL
- Disease Models, Animal
- Cannabinoids/pharmacology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Antipsychotic Agents/pharmacology
Collapse
Affiliation(s)
- Brandon Richardson
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Courtney Clarke
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Jacqueline Blundell
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Francis R Bambico
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
5
|
Wu J, Hua L, Liu W, Yang X, Tang X, Yuan S, Zhou S, Ye Q, Cui S, Wu Z, Lai L, Tang C, Wang L, Yi W, Yao L, Xu N. Electroacupuncture Exerts Analgesic Effects by Restoring Hyperactivity via Cannabinoid Type 1 Receptors in the Anterior Cingulate Cortex in Chronic Inflammatory Pain. Mol Neurobiol 2024; 61:2949-2963. [PMID: 37957422 PMCID: PMC11043129 DOI: 10.1007/s12035-023-03760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
As one of the commonly used therapies for pain-related diseases in clinical practice, electroacupuncture (EA) has been proven to be effective. In chronic pain, neurons in the anterior cingulate cortex (ACC) have been reported to be hyperactive, while the mechanism by which cannabinoid type 1 receptors (CB1Rs) in the ACC are involved in EA-mediated analgesic mechanisms remains to be elucidated. In this study, we investigated the potential central mechanism of EA analgesia. A combination of techniques was used to detect the expression and function of CB1R, including quantitative real-time PCR (q-PCR), western blot (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and in vivo multichannel optical fibre recording, and neuronal activity was examined by in vivo two-photon imaging and in vivo electrophysiological recording. We found that the hyperactivity of pyramidal neurons in the ACC during chronic inflammatory pain is associated with impairment of the endocannabinoid system. EA at the Zusanli acupoint (ST36) can reduce the hyperactivity of pyramidal neurons and exert analgesic effects by increasing the endocannabinoid ligands anandamide (AEA), 2-arachidonoylglycerol (2-AG) and CB1R. More importantly, CB1R in the ACC is one of the necessary conditions for the EA-mediated analgesia effect, which may be related to the negative regulation of the N-methyl-D-aspartate receptor (NMDAR) by the activation of CB1R downregulating NR1 subunits of NMDAR (NR1) via histidine triad nucleotide-binding protein 1 (HINT1). Our study suggested that the endocannabinoid system in the ACC plays an important role in acupuncture analgesia and provides evidence for a central mechanism of EA-mediated analgesia.
Collapse
Affiliation(s)
- Junshang Wu
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Libo Hua
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhao Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyun Yang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Yuan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Zhou
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuping Ye
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuai Cui
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Anhui, China
| | - Zhennan Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Mielnik CA, Li CK, Ramsey AJ, Salahpour A, Burnham WM, Ross RA. Cannabidiol, but Not Δ9-Tetrahydrocannabinol, Has Strain- and Genotype-Specific Effects in Models of Psychosis. Cannabis Cannabinoid Res 2024; 9:174-187. [PMID: 36251462 DOI: 10.1089/can.2022.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cannabis use has been associated with an increased incidence of psychiatric disorders, yet the underlying neurobiological processes mediating these associations are poorly understood. Whereas exposure to Δ9-tetrahydrocannabinol (THC) has been associated with the development or exacerbation of psychosis, treatment with cannabidiol (CBD) has been associated with amelioration of psychosis. In this study, we demonstrate a complex effect of CBD in mouse models of psychosis, based on factors, including dose, strain, and genotype. Methods: Adult GluN1 knockdown (GluN1KD) and dopamine transporter knockout (DATKO) mice (almost equally balanced for male/female) were acutely treated with vehicle, THC (4 mg/kg), CBD (60, 120 mg/kg), or THC:CBD (1:15, 4:60 mg/kg) and tested in behavioral assays. Results: GluN1KD and DATKO mice displayed hyperactivity, impaired habituation, and sensorimotor gating, along with increased stereotypy and vertical activity. THC, alone and in combination with CBD, produced a robust "dampening" effect on the exploratory behavior regardless of strain or genotype. CBD exhibited a more complex profile. At 60 mg/kg, CBD had minimal effects on horizontal activity, but the effects varied in terms of directionality (increase vs. decrease) in other parameters; effects on stereotypic behaviors differ by genotype, while effects on vertical exploration differ by strain×genotype. CBD at 120 mg/kg had a "dampening" effect on exploration overall, except in GluN1KD mice, where no effect was observed. In terms of sensorimotor gating, both THC and CBD had minimal effects, except for 120 mg/kg CBD, which exacerbated the acoustic startle response. Conclusions: Here, we present a study that highlights the complex mechanism of phytocannabinoids, particularly CBD, in models of psychosis-like behavior. These data require careful interpretation, as agonism of the cannabinoid receptor 1 (CB1) resulting in a decrease in locomotion can be misinterpreted as "antipsychotic-like" activity in murine behavioral outputs of psychosis. Importantly, the THC-mediated decrease in hyperexploratory behavior observed in our models (alone or in combination) was not specific to the genetic mutants, but rather was observed regardless of strain or genotype. Furthermore, CBD treatment, when comparing mutants with their wild-type littermate controls, showed little to no "antipsychotic-like" activity in our models. Therefore, it is not only important to consider dose when designing/interpreting therapeutically driven phytocannabinoid studies, but also effects of strain or genetic vulnerability respective to the general population.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Chun Kit Li
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Ruth A Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Dillenburg M, Smith J, Wagner CR. The Many Faces of Histidine Triad Nucleotide Binding Protein 1 (HINT1). ACS Pharmacol Transl Sci 2023; 6:1310-1322. [PMID: 37854629 PMCID: PMC10580397 DOI: 10.1021/acsptsci.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 10/20/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is a nucleoside phosphoramidase that has garnered interest due to its widespread expression and participation in a broad range of biological processes. Herein, we discuss the role of HINT1 as a regulator of several CNS functions, tumor suppressor, and mast cell activator via its interactions with multiple G-protein-coupled receptors and transcription factors. Importantly, altered HINT1 expression and mutation are connected to the progression of multiple disease states, including several neuropsychiatric disorders, peripheral neuropathy, and tumorigenesis. Additionally, due to its involvement in the activation of several clinically used phosphoramidate prodrugs, tremendous efforts have been made to better understand the interactions behind nucleoside binding and phosphoramidate hydrolysis by HINT1. We detail the substrate specificity and catalytic mechanism of HINT1 hydrolysis, while highlighting the structural biology behind these efforts. The aim of this review is to summarize the multitude of biological and pharmacological functions in which HINT1 participates while addressing the areas of need for future research.
Collapse
Affiliation(s)
- Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Loureiro CM, Corsi-Zuelli F, Fachim HA, Shuhama R, de Oliveira AM, Menezes PR, Dalton CF, Louzada-Junior P, Belangero SI, Coeli-Lacchini F, Reynolds GP, Lacchini R, Del-Ben CM. Lifetime cannabis use and childhood trauma associated with CNR1 genetic variants increase the risk of psychosis: findings from the STREAM study. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 45:226-235. [PMID: 36918037 PMCID: PMC10288472 DOI: 10.47626/1516-4446-2022-2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma. METHODS Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 community-based controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software. RESULTS Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p > 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis. CONCLUSION Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
| | - Fabiana Corsi-Zuelli
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Rosana Shuhama
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
| | | | - Paulo Rossi Menezes
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
- Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | | | - Paulo Louzada-Junior
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | | | - Riccardo Lacchini
- Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Cristina Marta Del-Ben
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol 2023; 119:110210. [PMID: 37099943 DOI: 10.1016/j.intimp.2023.110210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Substance Use Disorder (SUD) is one of the major mental illnesses that is terrifically intensifying worldwide. It is becoming overwhelming due to limited options for treatment. The complexity of addiction disorders is the main impediment to understanding the pathophysiology of the illness. Hence, unveiling the complexity of the brain through basic research, identification of novel signaling pathways, the discovery of new drug targets, and advancement in cutting-edge technologies will help control this disorder. Additionally, there is a great hope of controlling the SUDs through immunotherapeutic measures like therapeutic antibodies and vaccines. Vaccines have played a cardinal role in eliminating many diseases like polio, measles, and smallpox. Further, vaccines have controlled many diseases like cholera, dengue, diphtheria, Haemophilus influenza type b (Hib), human papillomavirus, influenza, Japanese encephalitis, etc. Recently, COVID-19 was controlled in many countries by vaccination. Currently, continuous effort is done to develop vaccines against nicotine, cocaine, morphine, methamphetamine, and heroin. Antibody therapy against SUDs is another important area where serious attention is required. Antibodies have contributed substantially against many serious diseases like diphtheria, rabies, Crohn's disease, asthma, rheumatoid arthritis, and bladder cancer. Antibody therapy is gaining immense momentum due to its success rate in cancer treatment. Furthermore, enormous advancement has been made in antibody therapy due to the generation of high-efficiency humanized antibodies with a long half-life. The advantage of antibody therapy is its instant outcome. This article's main highlight is discussing the drug targets of SUDs and their associated mechanisms. Importantly, we have also discussed the scope of prophylactic measures to eliminate drug dependence.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Javed N Agrewala
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
10
|
Prenatal Exposure to Δ9-Tetrahydrocannabinol Affects Hippocampus-Related Cognitive Functions in the Adolescent Rat Offspring: Focus on Specific Markers of Neuroplasticity. Pharmaceutics 2023; 15:pharmaceutics15020692. [PMID: 36840014 PMCID: PMC9963541 DOI: 10.3390/pharmaceutics15020692] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Previous evidence suggests that prenatal exposure to THC (pTHC) derails the neurodevelopmental trajectories towards a vulnerable phenotype for impaired emotional regulation and limbic memory. Here we aimed to investigate pTHC effect on hippocampus-related cognitive functions and markers of neuroplasticity in adolescent male offspring. Wistar rats were exposed to THC (2 mg/kg) from gestational day 5 to 20 and tested for spatial memory, object recognition memory and reversal learning in the reinforce-motivated Can test and in the aversion-driven Barnes maze test; locomotor activity and exploration, anxiety-like behaviour, and response to natural reward were assessed in the open field, elevated plus maze, and sucrose preference tests, respectively. The gene expression levels of NMDA NR1-2A subunits, mGluR5, and their respective scaffold proteins PSD95 and Homer1, as well as CB1R and the neuromodulatory protein HINT1, were measured in the hippocampus. pTHC offspring exhibited deficits in spatial and object recognition memory and reversal learning, increased locomotor activity, increased NR1-, decreased NR2A- and PSD95-, increased mGluR5- and Homer1-, and augmented CB1R- and HINT1-hippocampal mRNA levels. Our data shows that pTHC is associated with specific impairment in spatial cognitive processing and effectors of hippocampal neuroplasticity and suggests novel targets for future pharmacological challenges.
Collapse
|
11
|
Jeon KH, Park SH, Bae WJ, Kim SW, Park HJ, Kim S, Kim TH, Jeon SH, Park I, Park HJ, Kwon Y. Cannabidiol, a Regulator of Intracellular Calcium and Calpain. Cannabis Cannabinoid Res 2023; 8:119-125. [PMID: 35196129 DOI: 10.1089/can.2021.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabidiol (CBD) is one of the most abundant components of Cannabis and has long been used in Cannabis-based preparations. Recently, CBD has become a promising pharmacological agent because of its beneficial properties in the pathophysiology of several diseases. Although CBD is a kind of cannabinoid and acts on cannabinoid receptors (CB1 and CB2), molecular targets involved in diverse therapeutic properties of CBD have not been identified because CBD also interacts with other molecular targets. Considering that CBD alters the intracellular calcium level by which calpain activity is controlled, and both CBD and calpain are associated with various diseases related to calcium signaling, including neurological disorders, this review provides an overview of calpain and calcium signaling as possible molecular targets of CBD. As calpain is known to play an important role in the pathophysiology of neurological disease, a deeper understanding of its relationship with CBD will be meaningful. To understand the role of CBD as a calpain regulator, in silico structural analysis on the binding mode of CBD with calpain was performed.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Green Medicine Co., Ltd., Busan, Republic of Korea
| | - Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Seung Hwan Jeon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ilbum Park
- Yuhan Care Co., Ltd., Yuhan Care R&D Center, Yongin, Republic of Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd., Yuhan Natural Product R&D Center, Andong, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Banaei-Boroujeni G, Rezayof A, Alijanpour S, Nazari-Serenjeh F. Targeting mediodorsal thalamic CB1 receptors to inhibit dextromethorphan-induced anxiety/exploratory-related behaviors in rats: The post-weaning effect of exercise and enriched environment on adulthood anxiety. J Psychiatr Res 2023; 157:212-222. [PMID: 36495603 DOI: 10.1016/j.jpsychires.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Dextromethorphan (DXM) is an effective over-the-counter antitussive with an alarming increase as an abused drug for recreational purposes. Although reports of the association between DXM administration and anxiety, there are few investigations into the underlying DMX mechanisms of anxiogenic action. Thus, the present study aimed to investigate the role of the mediodorsal thalamus (MD) cannabinoid CB1 receptors (CB1Rs) in DXM-induced anxiety/exploratory-related behaviors in adult male Wistar rats. Animals were bilaterally cannulated in the MD regions. After one week, anxiety and exploratory behaviors were measured using an elevated plus-maze task (EPM) and a hole-board apparatus. Results showed that DXM (3-7 mg/kg, i. p.) dose-dependently increased anxiety-like behaviors. Intra-MD administration of ACPA (2.5-10 ng/rat), a selective CB1 receptor agonist, decreased anxiety-like effects of DXM. The blockade of MD CB1 receptors by AM-251 (40-120 ng/rat) did not affect the EPM task. However, it potentiated the anxiogenic response of an ineffective dose of DXM (3 mg/kg) in the animals. Moreover, the effect of post-weaning treadmill exercise (TEX) and enriched environment (EE) were examined in adulthood anxiety under the drug treatments. Juvenile rats were divided into TEX/EE and control groups. The TEX/EE-juvenile rats were placed on a treadmill and then exposed to EE for five weeks. Interestingly, compared to untreated animals, post-weaning TEX/EE inhibited the anxiety induced by DXM or AM-251/DXM. It can be concluded that the MD endocannabinoid system plays an essential role in the anxiogenic effect of dextromethorphan. Moreover, post-weaning exercise alongside an enriched environment may have an inhibitory effect on adulthood anxiety-like behaviors.
Collapse
Affiliation(s)
- Golnoush Banaei-Boroujeni
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | | |
Collapse
|
13
|
Silva JP, Carvalho F. El uso terapéutico del cannabis y los cannabinoides. REVISTA ESPAÑOLA DE DROGODEPENDENCIAS 2022; 47:103-122. [DOI: 10.54108/10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Los cannabinoides se dirigen principalmente al sistema endocannabinoide (ECS), que surge
como un objetivo terapéutico potencialmente interesante debido a su importante papel en la
modulación de procesos biológicos clave en todo el organismo. Como tal, los cannabinoides
ya se han propuesto como, por ejemplo, antieméticos, agentes antiespásticos, estimulantes del
apetito, antiepilépticos, analgésicos, depresores de la presión intraocular o como agentes para
controlar los trastornos del movimiento en el síndrome de Tourette.
Aquí revisamos las pruebas de investigación disponibles sobre el uso del cannabis y los cannabinoides
para un conjunto de aplicaciones terapéuticas sugeridas, y abordamos algunos de los
riesgos a corto y largo plazo que se han correlacionado con el uso de estas sustancias.
Encontramos escasas pruebas científicas que apoyen el uso de productos basados en el cannabis
para la mayoría de las aplicaciones sugeridas, así como ninguna necesidad médica no satisfecha
que no esté ya abordada por los medicamentos existentes (algunos basados en cannabinoides)
en el mercado. En este escenario, los riesgos potenciales asociados al uso crónico de estas sustancias
pueden disuadir su uso médico.
Collapse
|
14
|
Oleamide Reduces Mitochondrial Dysfunction and Toxicity in Rat Cortical Slices Through the Combined Action of Cannabinoid Receptors Activation and Induction of Antioxidant Activity. Neurotox Res 2022; 40:2167-2178. [PMID: 36069981 DOI: 10.1007/s12640-022-00575-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
The potential treatment of neurodegenerative disorders requires the development of novel pharmacological strategies at the experimental level, such as the endocannabinoid-based therapies. The effects of oleamide (OEA), a fatty acid primary amide with activity on cannabinoid receptors, was tested against mitochondrial toxicity induced by the electron transport chain complex II inhibitor, 3-nitropropionic acid (3-NP), in rat cortical slices. OEA prevented the 3-NP-induced loss of mitochondrial function/cell viability at a concentration range of 5 nM-25 µM, and this protective effect was observed only when the amide was administered as pretreatment, but not as post-treatment. The preservation of mitochondrial function/cell viability induced by OEA in the toxic model induced by 3-NP was lost when the slices were pre-incubated with the cannabinoid receptor 1 (CB1R) selective inhibitor, AM281, or the cannabinoid receptor 2 (CB2R) selective inhibitor, JTE-907. The 3-NP-induced inhibition of succinate dehydrogenase (mitochondrial Complex II) activity was recovered by 25 nM OEA. The amide also prevented the increased lipid peroxidation and the changes in reduced/oxidized glutathione (GSH/GSSG) ratio induced by 3-NP. The cell damage induced by 3-NP, assessed as incorporation of cellular propidium iodide, was mitigated by OEA. Our novel findings suggest that the neuroprotective properties displayed by OEA during the early stages of damage to cortical cells involve the converging activation of CB1R and CB2R and the increase in antioxidant activity, which combined may emerge from the preservation of the functional integrity of mitochondria.
Collapse
|
15
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
16
|
Monje-Reyna D, Manzo Denes J, Santamaria F. Effects of environmental enrichment and sexual dimorphism on the expression of cerebellar receptors in C57BL/6 and BTBR + Itpr3tf/J mice. BMC Res Notes 2022; 15:175. [PMID: 35562810 PMCID: PMC9103090 DOI: 10.1186/s13104-022-06062-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Environmental enrichment is used to treat social, communication, and behavioral deficits and is known to modify the expression of synaptic receptors. We compared the effects of environmental enrichment in the expression of glutamate and endocannabinoid receptors, which are widely expressed in the cerebellar cortex. These two receptors interact to regulate neuronal function and their dysregulation is associated with behavioral changes. We used BTBR + Itpr3tf/J mice, a strain that models behavioral disorders, and C57BL/6 mice for comparison. We studied the effects of genetic background, sex, environmental conditions, and layer of the cerebellar cortex on the expression of each receptor. RESULTS The influence of genetic background and environmental enrichment had the same pattern on glutamate and endocannabinoid receptors in males. In contrast, in females, the effect of environmental enrichment and genetic background were different than the ones obtained for males and were also different between the glutamate and endocannabinoid receptors. Furthermore, an analysis of both receptors from tissue obtained from the same animals show that their expression is correlated in males, but not in females. Our results suggest that environmental enrichment has a receptor dependent and sexual dimorphic effect on the molecular expression of different receptors in the cerebellar cortex.
Collapse
Affiliation(s)
- Daniela Monje-Reyna
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249 US
| | - Jorge Manzo Denes
- Brain Research Institute, Veracruzana University, Xalapa, Veracruz México
| | - Fidel Santamaria
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249 US
| |
Collapse
|
17
|
Ahmed M, Boileau I, Le Foll B, Carvalho AF, Kloiber S. The endocannabinoid system in social anxiety disorder: from pathophysiology to novel therapeutics. ACTA ACUST UNITED AC 2021; 44:81-93. [PMID: 34468550 PMCID: PMC8827369 DOI: 10.1590/1516-4446-2021-1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.
Collapse
Affiliation(s)
- Mashal Ahmed
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andre F Carvalho
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia, 3216
| | - Stefan Kloiber
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Dahlén A, Zarei M, Melgoza A, Wagle M, Guo S. THC-induced behavioral stereotypy in zebrafish as a model of psychosis-like behavior. Sci Rep 2021; 11:15693. [PMID: 34344922 PMCID: PMC8333334 DOI: 10.1038/s41598-021-95016-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
High doses of the Cannabis constituent Δ9-tetrahydrocannabinol (THC) increase the risk of psychosis in humans. Highly accessible animal models are needed to address underlying mechanisms. Using zebrafish with a conserved endocannabinoid system, this study investigates the acute effects of THC on adult zebrafish behavior and the mechanisms involved. A concentration-dependent THC-induced behavioral stereotypy akin to THC's effect in rats and the psychotropics phencyclidine and ketamine in zebrafish was established. Distinctive circular swimming during THC-exposure was measured using a novel analytical method that we developed, which detected an elevated Repetition Index (RI) compared to vehicle controls. This was reduced upon co-administration of N-methyl-D-aspartate (NMDA) receptor agonist NMDA, suggesting that THC exerts its effects via biochemical or neurobiological mechanisms associated with NMDA receptor antagonism. Co-treatment of γ-aminobutyric acid receptor antagonist pentylenetetrazol also showed signs of reducing the RI. Since THC-induced repetitive behavior remained in co-administrations with cannabinoid receptor 1 inverse agonist AM251, the phenotype may be cannabinoid receptor 1-independent. Conversely, the inverse cannabinoid receptor 2 agonist AM630 significantly reduced THC-induced behavioral stereotypy, indicating cannabinoid receptor 2 as a possible mediator. A significant reduction of the THC-RI was also observed by the antipsychotic sulpiride. Together, these findings highlight this model's potential for elucidating the mechanistic relationship between Cannabis and psychosis.
Collapse
Affiliation(s)
- Amelia Dahlén
- Department of Bioengineering and Therapeutic Sciences, and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA.
- Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA
| | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences, and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA
| | - Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
19
|
Boczek T, Zylinska L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca 2+ Channels and Ca 2+-Permeable Channels by Endocannabinoids in the Brain. Int J Mol Sci 2021; 22:ijms22158168. [PMID: 34360934 PMCID: PMC8348342 DOI: 10.3390/ijms22158168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.
Collapse
|
20
|
Shared Biological Pathways between Antipsychotics and Omega-3 Fatty Acids: A Key Feature for Schizophrenia Preventive Treatment? Int J Mol Sci 2021; 22:ijms22136881. [PMID: 34206945 PMCID: PMC8269187 DOI: 10.3390/ijms22136881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia typically emerges during adolescence, with progression from an ultra-high risk state (UHR) to the first episode of psychosis (FEP) followed by a chronic phase. The detailed pathophysiology of schizophrenia and the factors leading to progression across these stages remain relatively unknown. The current treatment relies on antipsychotics, which are effective for FEP and chronic schizophrenia but ineffective for UHR patients. Antipsychotics modulate dopaminergic and glutamatergic neurotransmission, inflammation, oxidative stress, and membrane lipids pathways. Many of these biological pathways intercommunicate and play a role in schizophrenia pathophysiology. In this context, research of preventive treatment in early stages has explored the antipsychotic effects of omega-3 supplementation in UHR and FEP patients. This review summarizes the action of omega-3 in various biological systems involved in schizophrenia. Similar to antipsychotics, omega-3 supplementation reduces inflammation and oxidative stress, improves myelination, modifies the properties of cell membranes, and influences dopamine and glutamate pathways. Omega-3 supplementation also modulates one-carbon metabolism, the endocannabinoid system, and appears to present neuroprotective properties. Omega-3 has little side effects compared to antipsychotics and may be safely prescribed for UHR patients and as an add-on for FEP patients. This could to lead to more efficacious individualised treatments, thus contributing to precision medicine in psychiatry.
Collapse
|
21
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
22
|
Khan F, Mehan A. Addressing opioid tolerance and opioid-induced hypersensitivity: Recent developments and future therapeutic strategies. Pharmacol Res Perspect 2021; 9:e00789. [PMID: 34096178 PMCID: PMC8181203 DOI: 10.1002/prp2.789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Opioids are a commonly prescribed and efficacious medication for the treatment of chronic pain but major side effects such as addiction, respiratory depression, analgesic tolerance, and paradoxical pain hypersensitivity make them inadequate and unsafe for patients requiring long-term pain management. This review summarizes recent advances in our understanding of the outcomes of chronic opioid administration to lay the foundation for the development of novel pharmacological strategies that attenuate opioid tolerance and hypersensitivity; the two main physiological mechanisms underlying the inadequacies of current therapeutic strategies. We also explore mechanistic similarities between the development of neuropathic pain states, opioid tolerance, and hypersensitivity which may explain opioids' lack of efficacy in certain patients. The findings challenge the current direction of analgesic research in developing non-opioid alternatives and we suggest that improving opioids, rather than replacing them, will be a fruitful avenue for future research.
Collapse
Affiliation(s)
- Faris Khan
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Aman Mehan
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
23
|
Dhukhwa A, Al Aameri RFH, Sheth S, Mukherjea D, Rybak L, Ramkumar V. Regulator of G protein signaling 17 represents a novel target for treating cisplatin induced hearing loss. Sci Rep 2021; 11:8116. [PMID: 33854102 PMCID: PMC8046767 DOI: 10.1038/s41598-021-87387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Regulators of G protein signaling (RGS) accelerate the GTPase activity of G proteins to enable rapid termination of the signals triggered by G protein-coupled receptors (GPCRs). Activation of several GPCRs, including cannabinoid receptor 2 (CB2R) and adenosine A1 receptor (A1AR), protects against noise and drug-induced ototoxicity. One such drug, cisplatin, an anticancer agent used to treat various solid tumors, produces permanent hearing loss in experimental animals and in a high percentage of cancer patients who undergo treatments. In this study we show that cisplatin induces the expression of the RGS17 gene and increases the levels of RGS17 protein which contributes to a significant proportion of the hearing loss. Knockdown of RGS17 suppressed cisplatin-induced hearing loss in male Wistar rats, while overexpression of RGS17 alone produced hearing loss in vivo. Furthermore, RGS17 and CB2R negatively regulate the expression of each other. These data suggest that RGS17 mediates cisplatin ototoxicity by uncoupling cytoprotective GPCRs from their normal G protein interactions, thereby mitigating the otoprotective contributions of endogenous ligands of these receptors. Thus, RGS17 represents a novel mediator of cisplatin ototoxicity and a potential therapeutic target for treating hearing loss.
Collapse
Affiliation(s)
- Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, 33169, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Leonard Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
24
|
Liu P, Chu Z, Lei G, Deng L, Yang L, Dang Y. The role of HINT1 protein in morphine addiction: An animal model-based study. Addict Biol 2021; 26:e12897. [PMID: 32171181 DOI: 10.1111/adb.12897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 01/17/2023]
Abstract
Drug addiction is a recurrent, chronic brain disease. The existing treatment methods have limitations, such as poor adherence and inability to completely avoid relapse. Histidine triad nucleotide-binding protein 1 (HINT1) is involved in many neuropsychiatric diseases, such as schizophrenia, pain, and drug dependence. Studies have confirmed that there is a genetic link between HINT1 and addictions such as nicotine and cocaine. However, there is no research on the role of HINT1 protein in morphine addiction at home and abroad. Thus, we designed this project by constructing different types of morphine addiction animal models, including conditioned place preference and behavioral sensitization. We comprehensively examined the participation of HINT1 protein in key brain regions associated with addiction, including prefrontal cortex, nucleus accumbens, corpus striatum, and hippocampus, in different stages of different models. In addition, we used HINT1 knockout mice to establish the above models and physical dependence model to investigate the effect of HINT1 protein deletion on morphine addiction-related behaviors. We found that HINT1 has varying degrees of involvement in different stages of multiple addictive animal models. The absence of HINT1 can attenuate morphine-mediated addictive behavior to a certain extent and can alleviate the withdrawal symptoms of morphine.
Collapse
Affiliation(s)
- Peng Liu
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
- Department of Pharmacology and Toxicology Institute of Basic Medicine Science, Xi'an Medical University Xi'an 710021 China
| | - Zheng Chu
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Gang Lei
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Li‐sha Deng
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Liu Yang
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Yong‐hui Dang
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| |
Collapse
|
25
|
Razavi Y, Keyhanfar F, Shabani R, Haghparast A, Mehdizadeh M. Therapeutic Effects of Cannabidiol on Methamphetamine Abuse: A Review of Preclinical Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:152-164. [PMID: 35194436 PMCID: PMC8842591 DOI: 10.22037/ijpr.2021.114918.15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As a strong and addictive psychostimulant, methamphetamine (METH) is often misused worldwide. Although relapse is the greatest challenge to the effective treatment of drug dependency, now, for METH addiction, there is not available accepted pharmacotherapy. To characterize a probable new target in this indication, a biological system comprised of endocannabinoids, known as the endocannabinoid system (ECS), has been advised. As a non-psychotomimetic Phytocannabinoid in Cannabis sativa, cannabidiol (CBD) has been used in preclinical and clinical studies for treating neuropsychiatric disorders. In this review article, we focus on the effects of CBD in the treatment of addiction in a preclinical investigation concerning the pharmaceutic effectiveness and the underlying mechanisms of action on drug abuse specially METH. Growing evidence shows that CBD is a potential therapeutic agent in reducing drug reward, as evaluated in conditioned place preference (CPP), brain-stimulation reward paradigms, and self- administration. Furthermore, CBD plays an effective role in decreasing relapse in animal research. Through multiple-mechanisms, there is a belief that CBD modulates brain dopamine responding to METH, resulting in a reduction of METH-seeking behaviors. As our studies indicate, CBD can decrease METH addiction-associated problems, for example, symptoms of withdrawal and craving. It is needed for conducting more preclinical investigations and upcoming clinical trials to entirely assess the CBD capability as interference for METH addiction.
Collapse
Affiliation(s)
- Yasaman Razavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariborz Keyhanfar
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ronak Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail: ;
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail: ;
| |
Collapse
|
26
|
Bustos E, Manríquez J, Colín-González AL, Rangel-López E, Santamaría A. Electrochemical Detection of Neurotransmitters in the Brain and Other Molecules with Biological Activity in the Nervous System: Dopamine Analysis. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200204121746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monitoring the appropriate functions of the brain is a priority when the diagnosis
of neurological diseases is carried out. In this regard, there are different analytical
techniques to detect neurotransmitters and other molecules with biological activity in
the nervous system. Among several analytical procedures, electrochemical techniques are
very important since they can be applied in situ, without loss of sensibility and/or minimal
handling of samples. In addition, it is also possible to combine them with specific detectors
designed on the basis of chemically-modified electrodes in order to improve detection
limits by promoting molecular recognition capabilities at their surfaces, thus favoring the
development of electrochemical detection in vivo by microelectrodes. In this mini-review,
we will describe the major characteristics of this analytical method and its advantages for
the detection of neurotransmitters (mostly dopamine) in vivo.
Collapse
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., CIDETEQ, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, 76703, Queretaro, Mexico
| | - Juan Manríquez
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., CIDETEQ, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, 76703, Queretaro, Mexico
| | - Ana Laura Colín-González
- Insttuto Nacional de Neurologia y Neurocirugia, INNN, Insurgentes Sur No. 3877, Mexico, D.F., C.P. 14269, Mexico
| | - Edgar Rangel-López
- Insttuto Nacional de Neurologia y Neurocirugia, INNN, Insurgentes Sur No. 3877, Mexico, D.F., C.P. 14269, Mexico
| | - Abel Santamaría
- Insttuto Nacional de Neurologia y Neurocirugia, INNN, Insurgentes Sur No. 3877, Mexico, D.F., C.P. 14269, Mexico
| |
Collapse
|
27
|
Longaretti A, Forastieri C, Toffolo E, Caffino L, Locarno A, Misevičiūtė I, Marchesi E, Battistin M, Ponzoni L, Madaschi L, Cambria C, Bonasoni MP, Sala M, Perrone D, Fumagalli F, Bassani S, Antonucci F, Tonini R, Francolini M, Battaglioli E, Rusconi F. LSD1 is an environmental stress-sensitive negative modulator of the glutamatergic synapse. Neurobiol Stress 2020; 13:100280. [PMID: 33457471 PMCID: PMC7794663 DOI: 10.1016/j.ynstr.2020.100280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Along with neuronal mechanisms devoted to memory consolidation –including long term potentiation of synaptic strength as prominent electrophysiological correlate, and inherent dendritic spines stabilization as structural counterpart– negative control of memory formation and synaptic plasticity has been described at the molecular and behavioral level. Within this work, we report a role for the epigenetic corepressor Lysine Specific Demethylase 1 (LSD1) as a negative neuroplastic factor whose stress-enhanced activity may participate in coping with adverse experiences. Constitutively increasing LSD1 activity via knocking out its dominant negative splicing isoform neuroLSD1 (neuroLSD1KO mice), we observed extensive structural, functional and behavioral signs of excitatory decay, including disrupted memory consolidation. A similar LSD1 increase, obtained with acute antisense oligonucleotide-mediated neuroLSD1 splicing knock down in primary neuronal cultures, dampens spontaneous glutamatergic transmission, reducing mEPSCs. Remarkably, LSD1 physiological increase occurs in response to psychosocial stress-induced glutamatergic signaling. Since this mechanism entails neuroLSD1 splicing downregulation, we conclude that LSD1/neuroLSD1 ratio modulation in the hippocampus is instrumental to a negative homeostatic feedback, restraining glutamatergic neuroplasticity in response to glutamate. The active process of forgetting provides memories with salience. With our work, we propose that softening memory traces of adversities could further represent a stress-coping process in which LSD1/neuroLSD1 ratio modulation may help preserving healthy emotional references.
Collapse
Affiliation(s)
- A Longaretti
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - C Forastieri
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - E Toffolo
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - L Caffino
- Dept. of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti, 9, Milano, Italy
| | - A Locarno
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - I Misevičiūtė
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - E Marchesi
- Dept. of Chemical and Pharmaceutical Sciences, Università di Ferrara, Via Borsari, 46, Ferrara, Italy
| | - M Battistin
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - L Ponzoni
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - L Madaschi
- UNITECH NO LIMITS, Università Degli Studi di Milano, Via Celoria, 26, Milan, Italy
| | - C Cambria
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - M P Bonasoni
- ASMN Santa Maria Nuova Via Risorgimento, 80 Reggio Emilia, Italy
| | - M Sala
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - D Perrone
- Dept. of Chemical and Pharmaceutical Sciences, Università di Ferrara, Via Borsari, 46, Ferrara, Italy
| | - F Fumagalli
- Dept. of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti, 9, Milano, Italy
| | - S Bassani
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - F Antonucci
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - R Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - M Francolini
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - E Battaglioli
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - F Rusconi
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| |
Collapse
|
28
|
Elmazoglu Z, Rangel-López E, Medina-Campos ON, Pedraza-Chaverri J, Túnez I, Aschner M, Santamaría A, Karasu Ç. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ 1-42 peptide in rat hippocampal neurons. Neurochem Int 2020; 140:104817. [PMID: 32781098 PMCID: PMC7572748 DOI: 10.1016/j.neuint.2020.104817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder linked to various converging toxic mechanisms. Evidence suggests that hyperglycemia induces oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity, all of which play important roles in the onset and progression of AD pathogenesis. The endocannabinoid system (ECS) orchestrates major physiological responses, including neuronal plasticity, neuroprotection, and redox homeostasis, to name a few. The multi-targeted effectiveness of the ECS emerges as a potential approach to treat AD. Here we characterized the protective properties of the endocannabinoids arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), the synthetic cannabinoids CP 55-940 and WIN 55,212-2, and the fatty acid amide hydrolase (FAAH) inhibitor URB597, on a combined hyperglycemia + oligomeric amyloid β peptide (Aβ1-42) neurotoxic model in primary hippocampal neurons which exhibit several AD features. Cells were treated with cannabinoid agents at increased concentrations (1 nM-1 μM) for 6 h, and then co-treated with 150 mM glucose (GLU, 24 h), followed by incubation with 500 nM Aβ1-42 (24 h). Cell viability/survival, reactive oxygen species (ROS) levels, antioxidant enzyme (SOD, CAT, GPx and GRx) activities, biological products of oxidative damage (AGE and HNE adducts) and nitrosative stress (3-NT), several endpoints of inflammation (iNOS, IL-1β and TNF-α), amyloid quantification, mitochondrial membrane potential, and the involvement of the Nrf2 pathway, were all evaluated. The combined high glucose + amyloid beta 1-42 (GLU + Aβ1-42) condition decreased cell viability and mitochondrial membrane potential, while augmenting oxidative damage and inflammation. All agents tested preserved cell viability and stimulated mitochondrial membrane potential, while reducing all the evaluated toxic endpoints in a differential manner, with URB597 showing the highest efficacy. The neuroprotective efficacy of all cannabinoid agents, except for URB597, led to partial recruitment of specific antioxidant activity and Nrf2 pathway regulation. Our results support the neuroprotective potential of these agents at low concentrations against the damaging effects of GLU + Aβ1-42, affording new potential modalities for the design of AD therapies.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, 14004, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey.
| |
Collapse
|
29
|
López DE, Ballaz SJ. The Role of Brain Cyclooxygenase-2 (Cox-2) Beyond Neuroinflammation: Neuronal Homeostasis in Memory and Anxiety. Mol Neurobiol 2020; 57:5167-5176. [PMID: 32860157 DOI: 10.1007/s12035-020-02087-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases are a group of heme-containing isozymes (namely Cox-1 and Cox-2) that catalyze the conversion of arachidonic acid to largely bioactive prostaglandins (PGs). Cox-1 is the ubiquitous housekeeping enzyme, and the mitogen-inducible Cox-2 is activated to cause inflammation. Interestingly, Cox-2 is constitutively expressed in the brain at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Neuronal Cox-2 is activated in response to synaptic excitation to yield PGE2, the predominant Cox-2 metabolite in the brain, which in turn stimulates the release of glutamate and neuronal firing in a retrograde fashion. Cox-2 is also engaged in the metabolism of new endocannabinoids from 2-arachidonoyl-glycerol to modulate their actions at presynaptic terminals. In addition to these interactions, the induction of neuronal Cox-2 is coupled to the trans-synaptic activation of the dopaminergic mesolimbic system and some serotoninergic receptors, which might contribute to the development of emotional behavior. Although much of the focus regarding the induction of Cox-2 in the brain has been centered on neuroinflammation-related neurodegenerative and psychiatric disorders, some evidence also suggests that Cox-2 release during neuronal signaling may be pivotal for the fine tuning of cortical networks to regulate behavior. This review compiles the evidence supporting the homeostatic role of neuronal Cox-2 in synaptic transmission and plasticity, since neuroinflammation is originally triggered by the induction of glial Cox-2 expression. The goal is to provide perspective on the roles of Cox-2 beyond neuroinflammation, such as those played in memory and anxiety, and whose evidence is still scant.
Collapse
Affiliation(s)
- Diana E López
- Biomedical Sciences Graduate Program, Yachay Tech University, Urcuquí, Ecuador
| | - Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador.
| |
Collapse
|
30
|
Abstract
Cannabis ranks among the most commonly used psychotropic drugs worldwide. In the context of the global movement toward more widespread legalisation, there is a growing need toward developing a better understanding of the physiological and pathological effects. We provide an overview of the current evidence on the effects of cannabinoids on the eye. Of the identified cannabinoids, Δ9-tetrahydrocannabinol is recognized to be the primary psychotropic compound, and cannabidiol is the predominant nonpsychoactive ingredient. Despite demonstrating ocular hypotensive and neuroprotective activity, the use of cannabinoids as a treatment for glaucoma is limited by a large number of potential systemic and ophthalmic side effects. Anterior segment effects of cannabinoids are complex, with preliminary evidence showing decreased corneal endothelial density in chronic cannabinoid users. Experiments in rodents, however, have shown potential promise for the treatment of ocular surface injury via antinociceptive and antiinflammatory effects. Electroretinography studies demonstrating adverse effects on photoreceptor, bipolar, and ganglion cell function suggest links between cannabis and neuroretinal dysfunction. Neuro-ophthalmic associations include ocular motility deficits and decrements in smooth pursuit and saccadic eye movements, although potential therapeutic effects for congenital and acquired nystagmus have been observed.
Collapse
|
31
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
32
|
Bahji A, Meyyappan AC, Hawken ER. Cannabinoids for the Neuropsychiatric Symptoms of Dementia: A Systematic Review and Meta-Analysis. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:365-376. [PMID: 31835954 PMCID: PMC7265608 DOI: 10.1177/0706743719892717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND In 2016, the global number of individuals living with dementia was 43.8 million, representing a 117% increase from 1990-mainly due to increases in aging and population growth. Up to 90% of individuals with dementia experience neuropsychiatric symptoms (NPS). However, the limitations of current treatments for NPS have drivent he search for safer pharmacotherapies-including cannabinoids. AIM To assess the efficacy and acceptability of cannabinoids for the treatment of NPS in individuals with dementia. DESIGN Systematic review and meta-analysis of clinical trials. SETTING AND PARTICIPANTS Of 6,902 papers, 9 were eligible (n = 205, 44% female, 78 ± 7 years, 85% Alzheimer disease). Trials were in North America and Europe and explored tetrahydrocannabinol (n = 3), dronabinol (n = 5), or nabilone (n = 1). MEASUREMENT Titles/abstracts were independently screened by one reviewer and reviewed by a second. Full-text screening was by two reviewers with discrepancies resolved via a third reviewer. We extracted data on the standardized mean difference (SMD) for several NPS instruments, trial completion, and adverse events. Data were pooled using random-effects models. FINDINGS Cannabinoids led to significant improvements across NPS instruments, including the Cohen Mansfield Agitation Inventory (SMD = -0.80; 95% confidence interval [CI], -1.45 to -0.16), the Neuropsychiatric Inventory (SMD = -0.61; CI, -1.07 to -0.15), and nocturnal actigraphy (SMD = -1.05; CI, -1.56 to -0.54h). Cannabinoids were well-tolerated, with an overall trial completion rate of 93% (193/205) and no serious treatment-related adverse events. Treatment efficacy was associated with baseline dementia severity and dose, but not dementia subtype, age, or sex. The overall study quality was rated as low. CONCLUSIONS There is preliminary evidence for the efficacy and tolerability of cannabinoids as treatments for NPS. Population-based studies are needed to characterize their real-world effectiveness and acceptability.
Collapse
Affiliation(s)
- Anees Bahji
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.,Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Arthi Chinna Meyyappan
- Providence Care Hospital, Kingston, Ontario, Canada.,Centre for Neurosciences, Queen's University, Kingston, Ontario, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.,Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
34
|
Tapley P, Kellett S. Cannabis-based medicines and the perioperative physician. Perioper Med (Lond) 2019; 8:19. [PMID: 31827774 PMCID: PMC6898917 DOI: 10.1186/s13741-019-0127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing availability of cannabis for both recreational and medicinal purposes means that anaesthetists will encounter an increasing number of patients taking cannabis-based medications. The existing evidence base is conflicted and incomplete regarding the indications, interactions and long-term effects of these substances. Globally, most doctors have had little education regarding the pharmacology of cannabis-based medicines, despite the endocannabinoid system being one of the most widespread in the human body. Much is unknown, and much is to be decided, including clarifying definitions and nomenclature, and therapeutic indications and dosing. Anaesthetists, Intensivists, Pain and Perioperative physicians will want to contribute to this evidence base and attempt to harness such therapeutic benefits in terms of pain relief and opiate-avoidance, anti-emesis and seizure control. We present a summary of the pharmacology of cannabis-based medicines including anaesthetic interactions and implications, to assist colleagues encountering these medicines in clinical practice.
Collapse
Affiliation(s)
- Patrick Tapley
- Department of Anaesthesia, Sunnybrook Health Sciences Centre, Bayview Avenue, Toronto, Canada
| | - Suzanne Kellett
- Shackleton Department of Anaesthesia, University Hospital Southampton, Tremona Road, Southampton, UK
| |
Collapse
|
35
|
Tatip S, Taggart J, Wang Y, MacDiarmid CW, Eide DJ. Changes in transcription start sites of Zap1-regulated genes during zinc deficiency: Implications for HNT1 gene regulation. Mol Microbiol 2019; 113:285-296. [PMID: 31692084 DOI: 10.1111/mmi.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2019] [Indexed: 12/01/2022]
Abstract
Changes in RNA are often poor predictors of protein accumulation. One factor disrupting this relationship are changes in transcription start sites (TSSs). Therefore, we explored how alterations in TSS affected expression of genes regulated by the Zap1 transcriptional activator of Saccharomyces cerevisiae. Zap1 controls their response to zinc deficiency. Among over 80 known Zap1-regulated genes, several produced long leader transcripts (LLTs) in one zinc status condition and short leader transcripts (SLTs) in the other. Fusing LLT and SLT transcript leaders to green fluorescent protein indicated that for five genes, the start site shift likely has little effect on protein synthesis. For four genes, however, the different transcript leaders greatly affected translation. We focused on the HNT1 gene. Zap1 caused a shift from SLT HNT1 RNA in zinc-replete cells to LLT HNT1 RNA in deficient cells. This shift correlated with decreased protein production despite increased RNA. The LLT RNA contains multiple upstream open reading frames that can inhibit translation. Expression of the LLT HNT1 RNA was dependent on Zap1. However, expression of the long transcript was not required to decrease SLT HNT1 mRNA. Our results suggest that the Zap1-activated LLT RNA is a "fail-safe" mechanism to ensure decreased Hnt1 protein in zinc deficiency.
Collapse
Affiliation(s)
- Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
36
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
37
|
Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. Cannabidiol (CBD) use in psychiatric disorders: A systematic review. Neurotoxicology 2019; 74:282-298. [PMID: 31412258 DOI: 10.1016/j.neuro.2019.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/21/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are the most represented phytocannabinoids in Cannabis sativa plants. However, CBD may present with a different activity compared with the psychotomimetic THC. Most typically, CBD is reported to be used in some medical conditions, including chronic pain. Conversely, the main aim of this systematic review is to assess and summarise the available body of evidence relating to both efficacy and safety of CBD as a treatment for psychiatric disorders, alone and/or in combination with other treatments. Eligible studies included randomized controlled trials (RCT) assessing the effect of CBD in a range of psychopathological conditions, such as substance use; psychosis, anxiety, mood disturbances, and other psychiatric (e.g., cognitive impairment; sleep; personality; eating; obsessive-compulsive; post-traumatic stress/PTSD; dissociative; and somatic) disorders. For data gathering purposes, the PRISMA guidelines were followed. The initial search strategy identified some n = 1301 papers; n = 190 studies were included after the abstract's screening and n = 27 articles met the inclusion criteria. There is currently limited evidence regarding the safety and efficacy of CBD for the treatment of psychiatric disorders. However, available trials reported potential therapeutic effects for specific psychopathological conditions, such as substance use disorders, chronic psychosis, and anxiety. Further large-scale RCTs are required to better evaluate the efficacy of CBD in both acute and chronic illnesses, special categories, as well as to exclude any possible abuse liability.
Collapse
Affiliation(s)
| | - Angelo Ricciardi
- Camden and Islington NHS Mental Health Foundation Trust, London, UK; Department of Mental Health, ASL Roma 1, Rome, Italy
| | - Caroline Zangani
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Stefania Chiappini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
38
|
Di Maio R, Colangeli R, Di Giovanni G. WIN 55,212-2 Reverted Pilocarpine-Induced Status Epilepticus Early Changes of the Interaction among 5-HT 2C/NMDA/CB 1 Receptors in the Rat Hippocampus. ACS Chem Neurosci 2019; 10:3296-3306. [PMID: 30912644 DOI: 10.1021/acschemneuro.9b00080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular basis for temporal lobe epileptogenesis remains poorly defined. Recent evidence shows that serotonin 2C receptors (5-HT2CRs), NR2A and NR2B subunit-containing N-methyl-d-aspartate receptors (NMDARs) and cannabinoid 1 receptors (CB1Rs) may be involved in the progression of the epileptic disorders. Moreover, CB1R activation has been reported to modulate the activity of 5-HT2C and NMDA receptors. Here, we treated Sprague-Dawley rats with the pro-convulsant agent pilocarpine (PILO) to induce status epilepticus (SE) in order to study the effect, with regards to receptor signaling and their interactions, of the preactivation of the CB1Rs on early changes that occur 24 h from the initial insult in the hippocampus. Pretreatment with the synthetic CB1/2R agonist WIN 55,212-2 (2 mg/kg, ip) counteracted PILO-induced 5-HT2CR downregulation. Moreover, WIN 55,212-2 uncoupled PILO-induced 5-HT2CR/NR2A and prevented NR2ATyr1325 phosphorylation indirectly since no 5-HT2CR/CB1R interactions were observed. WIN 55,212-2 treatment also prevented PILO-mediated impairment of CB1R/NR2B interactions and NR2B subunit internalization, suggesting a possible role of CB1R in NR2B-containing NMDAR turn over. All the effects observed in animals treated with WIN 55,212-2 were blocked by pretreatment with the selective CB1R antagonist AM251 (1 mg/kg, ip) given 45 min before PILO injection. These results, obtained in vivo in post-PILO-induced SE, provide new insights on the early cellular responses during epileptogenesis and identify new CB1R-mediated mechanisms by which cannabinoids may prevent the development of chronic epilepsy.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
39
|
Maya-López M, Rubio-López LC, Rodríguez-Alvarez IV, Orduño-Piceno J, Flores-Valdivia Y, Colonnello A, Rangel-López E, Túnez I, Prospéro-García O, Santamaría A. A Cannabinoid Receptor-Mediated Mechanism Participates in the Neuroprotective Effects of Oleamide Against Excitotoxic Damage in Rat Brain Synaptosomes and Cortical Slices. Neurotox Res 2019; 37:126-135. [DOI: 10.1007/s12640-019-00083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
|
40
|
Ballesta A, Orio L, Arco R, Vargas A, Romero-Sanchiz P, Nogueira-Arjona R, de Heras RG, Antón M, Ramírez-López M, Serrano A, Pavón FJ, de Fonseca FR, Suárez J, Alen F. Bupropion, a possible antidepressant without negative effects on alcohol relapse. Eur Neuropsychopharmacol 2019; 29:756-765. [PMID: 31064683 DOI: 10.1016/j.euroneuro.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
RATIONALE the role that antidepressants play on alcohol consumption is not well understood. Previous studies have reported that treatment with a Selective Serotonin Reuptake Inhibitor (SSRIs) increases alcohol consumption in an animal model of relapse, however it is unknown whether this effect holds for other antidepressants such as the atypical dopamine/norepinephrine reuptake inhibitors (SNDRI). OBJECTIVES the main goal of the present study was to compare the effects of two classes of antidepressants drugs, bupropion (SNDRI) and fluoxetine (SSRI), on alcohol consumption during relapse. Since glutamatergic and endocannabinoid signaling systems plays an important role in alcohol abuse and relapse, we also evaluated the effects of both antidepressants onthe expression of the main important genes and proteins of both systems in the prefrontal cortex, a critical brain region in alcohol relapse. METHODS rats were trained to self-administered alcohol. During abstinence, rats received a 14d-treatment with vehicle, fluoxetine (10 mg/kg) or bupropion (20 mg/kg), and we evaluated alcohol consumption during relapse for 3 weeks. Samples of prefrontal cortex were taken to evaluate the mRNA and protein expression of the different components of glutamatergic and endocannabinoid signaling systems. RESULTS fluoxetine treatment induced a long-lasting increase in alcohol consumption during relapse, an effect that was not observed in the case of bupropion treatment. The observed increases in alcohol consumption were accompanied by distinct alterations in the glutamate and endocannabinoid systems. CONCLUSIONS our results suggest that SSRIs can negatively impact alcohol consumption in relapse while SNDRIs have no effects. The observed increase in alcohol consumption are accompanied by functional alterations in the glutamatergic and endocannabinoid systems. This finding could open new strategies for the treatment of depression in patients with alcohol use disorders.
Collapse
Affiliation(s)
- Antonio Ballesta
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Laura Orio
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Rocío Arco
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Antonio Vargas
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Pablo Romero-Sanchiz
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain; Unidad de Salud Mental, Hospital Universitario Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain; Departamento de Personalidad, Evaluación y Tratamientos Psicológicos. Universidad de Málaga, Málaga, Spain
| | - Raquel Nogueira-Arjona
- Unidad de Salud Mental, Hospital Universitario Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain; Department of Psychology and Neuroscience, Dalhousie University, Canada
| | - Raquel Gómez de Heras
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - María Antón
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Mayte Ramírez-López
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain; Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain.
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain.
| | - Francisco Alen
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28224 Spain; Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional Universitario de Málaga, Av. Carlos Haya 82, sótano, Málaga 29010, Spain.
| |
Collapse
|
41
|
Abstract
Novel pharmacological treatments are needed for Tourette syndrome. Our goal was to examine the current evidence base and biological rationale for the use of cannabis-derived medications or medications that act on the cannabinoid system in Tourette syndrome. We conducted a comprehensive literature search of PubMed for randomized controlled trials or clinical trials of cannabis-derived medications in Tourette syndrome. Data regarding the population, intervention, safety profile, and outcomes for each trial were extracted and reported and the evidence supporting use of individual cannabis-derived medications was critiqued. There is a strong biological rationale regarding how cannabis-derived medications could affect tic severity. Anecdotal case reports and series have noted that many patients report that their tics improve after using cannabis. However, only two small randomized, placebo-controlled trials of Δ9-tetrahydrocannabinol have been published; these suggested possible benefits of cannabis-derived agents for the treatment of tics. Trials examining other agents active on the cannabinoid system for tic disorders are currently ongoing. Cannabinoid-based treatments are a promising avenue of new research for medications that may help the Tourette syndrome population. However, given the limited research available, the overall efficacy and safety of cannabinoid-based treatments is largely unknown. Further trials are needed to examine dosing, active ingredients, and optimal mode of administration of cannabis-derived compounds, assuming initial trials suggest efficacy. Clinical use for refractory patients should at the very least be restricted to adult populations, given the uncertain efficacy and risk of developmental adverse effects that cannabinoids may have in children. Even in adult populations, cannabis-derived medications are associated with significant issues such as the effects they have on driving safety and the fact that they cause positive urine drug screens that can affect employment.
Collapse
Affiliation(s)
- Bekir B Artukoglu
- Yale University, Yale Child Study Center, PO Box 207900, New Haven, CT, 06520, USA.
| | - Michael H Bloch
- Department of Psychiatry, Yale University, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
42
|
Milando R, Friedman A. Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases. Am J Clin Dermatol 2019; 20:167-180. [PMID: 30542832 DOI: 10.1007/s40257-018-0410-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system is a complex and nearly ubiquitous network of endogenous ligands, enzymes, and receptors that can also be stimulated by exogenous compounds such as those derived from the marijuana plant, Cannabis sativa. Recent data have shown that the endocannabinoid system is fully functional in the skin and is responsible for maintaining many aspects of skin homeostasis, such as proliferation, differentiation, and release of inflammatory mediators. Because of its role in regulating these key processes, the endocannabinoid system has been studied for its modulating effects on both inflammatory disorders of the skin and skin cancer. Although legal restrictions on marijuana as a Schedule I drug in the USA have made studying cannabinoid compounds unfavorable, an increasing number of studies and clinical trials have focused on the therapeutic uses of cannabinoids. This review seeks to summarize the current, and rapidly expanding field of research on the broad potential uses of cannabinoids in inflammatory and neoplastic diseases of the skin.
Collapse
Affiliation(s)
- Rose Milando
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Friedman
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Dermatology, The George Washington University Medical Faculty Associates, 2150 Pennsylvania Avenue NW, Suite 2B-430, Washington, DC, 20037, USA.
| |
Collapse
|
43
|
Cannabinoids Induce Cell Death and Promote P2X7 Receptor Signaling in Retinal Glial Progenitors in Culture. Mol Neurobiol 2019; 56:6472-6486. [DOI: 10.1007/s12035-019-1537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
|
44
|
Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front Behav Neurosci 2019; 13:23. [PMID: 30890922 PMCID: PMC6411818 DOI: 10.3389/fnbeh.2019.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood.
Collapse
Affiliation(s)
- Milene Borsoi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Antonia Manduca
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anissa Bara
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Olivier Lassalle
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Conception, Service de Psychiatrie, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Olivier J Manzoni
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| |
Collapse
|
45
|
Effect of Electroacupuncture at Different Acupoints on the Expression of NMDA Receptors in ACC and Colon in IBS Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4213928. [PMID: 30854008 PMCID: PMC6377955 DOI: 10.1155/2019/4213928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Objective To observe the effects of electroacupuncture (EA) at different acupoints on the expression of N-methyl-D-aspartate receptor (NMDA receptor ) and behaviors in irritable bowel syndrome (IBS) rats. Methods Wistar rats were randomly divided into blank control group (blank group, n=10) and model preparation group (n=50); experimental rat model of IBS was established by the “neonatal maternal separation and acetic acid enema” combined with “colorectal distension stimulation” method. A total of 50 IBS rats were randomly assigned to five groups of 10 each: model group, Yintang (GV29) group, Neiguan (PC6) group, Tianshu (ST25) group, and Zusanli (ST36) group. Rats in four treatment groups, aged 9 weeks old, were treated with EA by HANS with a sparse-dense wave with a frequency of 2/100 Hz, current of 0.1-0.3mA, and 20 min/stimulation, every other day for a total of 5 sessions. After treatment, the abdominal visceral sensitivity was evaluated by abdominal withdrawal reflex (AWR), and the psychological and emotional behavior of rats were evaluated by the open-field test (OFT). The expression of NMDA receptors in anterior cingulate cortex (ACC) was detected by Quantitative Real-time PCR, and the positive expression of NMDA receptors in colon was detected by immunohistochemistry. Results The IBS rat's abdomen is more sensitive and irritable; NR1, NR2A, and NR2B in ACC and NR1 and NR2B in colon of rats significantly increased in the model group versus the normal group (P<0.01) and were inhibited in all treatment groups (P<0.01, P<0.05). Additionally, NR2A and NR2B in ACC reduced more in GV29 group (P<0.01) than in other treatment groups (P all<0.05) compared with the model group. The expression of NR2B in colon was significantly inhibited in ST36 group (P<0.01) and inhibited in GV29 group and ST25 group (P all <0.05) compared with the model group. And the expression of NR2B in colon was more inhibited in ST36 group than in PC6 group (P<0.01). Conclusions EA at different acupoints could obviously relieve abdominal pain and abnormal behaviors in IBS rats in different degrees of effects. The effect of abdominal pain-relief, from greatest to least, is ST25, ST36, GV29, and PC6, while the effect of relieving abnormal behaviors caused by IBS, from greatest to least, is GV29, PC6, ST36, and ST25. There are significant differences in the expressions of NMDA receptors in ACC and colon among different acupoints. This difference should be related to the location distribution and indications of acupoints.
Collapse
|
46
|
Kotlar I, Rangel-López E, Colonnello A, Aguilera-Portillo G, Serratos IN, Galván-Arzate S, Pedraza-Chaverri J, Túnez I, Wajner M, Santamaría A. Anandamide Reduces the Toxic Synergism Exerted by Quinolinic Acid and Glutaric Acid in Rat Brain Neuronal Cells. Neuroscience 2019; 401:84-95. [PMID: 30668975 DOI: 10.1016/j.neuroscience.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
Abstract
The endocannabinoid system (ECS) regulates several physiological processes in the Central Nervous System, including the modulation of neuronal excitability via activation of cannabinoid receptors (CBr). Both glutaric acid (GA) and quinolinic acid (QUIN) are endogenous metabolites that, under pathological conditions, recruit common toxic mechanisms. A synergistic effect between them has already been demonstrated, supporting potential implications for glutaric acidemia type I (GA I). Here we investigated the possible involvement of a cannabinoid component in the toxic model exerted by QUIN + GA in rat cortical slices and primary neuronal cell cultures. The effects of the CB1 receptor agonist anandamide (AEA), and the fatty acid amide hydrolase inhibitor URB597, were tested on cell viability in cortical brain slices and primary neuronal cultures exposed to QUIN, GA, or QUIN + GA. As a pre-treatment to the QUIN + GA condition, AEA prevented the loss of cell viability in both preparations. URB597 only protected in a moderate manner the cultured neuronal cells against the QUIN + GA-induced damage. The use of the CB1 receptor reverse agonist AM251 in both biological preparations prevented partially the protective effects exerted by AEA, thus suggesting a partial role of CB1 receptors in this toxic model. AEA also prevented the cell damage and apoptotic death induced by the synergic model in cell cultures. Altogether, these findings demonstrate a modulatory role of the ECS on the synergic toxic actions exerted by QUIN + GA, thus providing key information for the understanding of the pathophysiological events occurring in GA I.
Collapse
Affiliation(s)
- Ilan Kotlar
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Gabriela Aguilera-Portillo
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Cordoba, Spain
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Sáude, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico.
| |
Collapse
|
47
|
Walker OLS, Holloway AC, Raha S. The role of the endocannabinoid system in female reproductive tissues. J Ovarian Res 2019; 12:3. [PMID: 30646937 PMCID: PMC6332911 DOI: 10.1186/s13048-018-0478-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
There has been increasing interest in the role of endocannabinoids as critical modulators of the female reproductive processes. Endocannabinoids are natural ligands of cannabinoid, vanilloid, and peroxisome proliferator-activated receptors. Together with their receptors, enzymes and downstream signaling targets, they form the endocannabinoid system (ECS). While the ECS is known to modulate pain and neurodevelopment, it is also known to impact the female reproductive system where it affects folliculogenesis, oocyte maturation, and ovarian endocrine secretion. In addition, the ECS affects oviductal embryo transport, implantation, uterine decidualization and placentation. There is a complex interplay between the ECS and the hypothalamic-pituitary-ovarian axis, and an intricate crosstalk between the ECS and steroid hormone production and secretion. Exogenous cannabinoids, derived from plants such as Cannabis sativa, are also ligands for cannabinoid receptors. These have been shown to have clinical outcomes related to ECS dysregulation, including multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, along with adverse effects on female reproduction. The aim of this review is to describe and discuss data from human, animal, and in vitro studies that support the important role of the endocannabinoid system in female reproductive tissues and processes. In particular, we will discuss some of the mechanisms by which endocannabinoid signaling can affect ovarian function in both physiological and pathophysiological states.
Collapse
Affiliation(s)
- O’ Llenecia S. Walker
- Department of Pediatrics, and the Graduate Program in Medical Sciences, McMaster University, 1280 Main Street West, HSC 3N11H, Hamilton, ON L8S 4K1 Canada
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology and the Graduate Program in Medical Sciences, McMaster University, 1280 Main Street West, HSC 3N52A, Hamilton, ON L8S 4K1 Canada
| | - Sandeep Raha
- Department of Pediatrics, and the Graduate Program in Medical Sciences, McMaster University, 1280 Main Street West, HSC 3N11H, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
48
|
Augustine F, Singer HS. Merging the Pathophysiology and Pharmacotherapy of Tics. Tremor Other Hyperkinet Mov (N Y) 2019; 8:595. [PMID: 30643668 PMCID: PMC6329776 DOI: 10.7916/d8h14jtx] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background Anatomically, cortical-basal ganglia-thalamo-cortical (CBGTC) circuits have an essential role in the expression of tics. At the biochemical level, the proper conveyance of messages through these circuits requires several functionally integrated neurotransmitter systems. In this manuscript, evidence supporting proposed pathophysiological abnormalities, both anatomical and chemical is reviewed. In addition, the results of standard and emerging tic-suppressing therapies affecting nine separate neurotransmitter systems are discussed. The goal of this review is to integrate our current understanding of the pathophysiology of Tourette syndrome (TS) with present and proposed pharmacotherapies for tic suppression. Methods For this manuscript, literature searches were conducted for both current basic science and clinical information in PubMed, Google-Scholar, and other scholarly journals to September 2018. Results The precise primary site of abnormality for tics remains undetermined. Although many pathophysiologic hypotheses favor a specific abnormality of the cortex, striatum, or globus pallidus, others recognize essential influences from regions such as the thalamus, cerebellum, brainstem, and ventral striatum. Some prefer an alteration within direct and indirect pathways, whereas others believe this fails to recognize the multiple interactions within and between CBGTC circuits. Although research and clinical evidence supports involvement of the dopaminergic system, additional data emphasizes the potential roles for several other neurotransmitter systems. Discussion A greater understanding of the primary neurochemical defect in TS would be extremely valuable for the development of new tic-suppressing therapies. Nevertheless, recognizing the varied and complex interactions that exist in a multi-neurotransmitter system, successful therapy may not require direct targeting of the primary abnormality.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey S. Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Hupli AMM. Medical Cannabis for Adult Attention Deficit Hyperactivity Disorder: Sociological Patient Case Report of Cannabinoid Therapeutics in Finland. Med Cannabis Cannabinoids 2018; 1:112-118. [PMID: 34676327 DOI: 10.1159/000495307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
This paper presents a detailed patient case report of a male patient who was diagnosed in adulthood (aged 33) with attention deficit hyperactivity disorder (ADHD) and treated initially with immediate-release methylphenidate (Ritalin® 10 mg twice daily). After experiencing adverse effects from prolonged use of this medication and afterwards other medications that were prescribed as alternatives, the patient discovered that cannabinoid therapeutics (CT) had been experimented inside the EU area to treat patients with ADHD. Subsequently, he was evaluated by a physician in Germany (June 2010) who prescribed CT (Bedrocan®, Bediol®). A Finnish neurologist later confirmed the two prescribed medicines (Bedrocan®, October 2010; Bediol®, May 2011) in the patient's own country of permanent residence (Finland). During a 5-year period of access, Bedrocan®, which mainly contains Δ9-tetrahydrocannabinol (Δ9-THC), was found to be helpful in alleviating the patient's ADHD symptoms, in particular poor tolerance to frustration, outbursts of anger, boredom, and problems related to concentration. The second CT medication, Bediol®, which contains both Δ9-THC and the phytocannabinoid cannabidiol, was found to neutralize the excessive dronabinol effects of Bedrocan® as well as zo offer other medical benefits (e.g., improved sleep). In addition to the case report, this paper also offers a brief review of the literature surrounding the medical benefits of CT for AD(H)D, which includes observational studies, clinical case reports, and one randomized clinical experiment. This paper also briefly discusses the endocannabinoid system in relation to ADHD, although more preclinical and clinical research is warranted to establish the optimal levels of cannabinoids, terpenes, and dosing regimens, which vary between different ADHD patients.
Collapse
|
50
|
Sánchez-Blázquez P, Cortés-Montero E, Rodríguez-Muñoz M, Garzón J. Sigma 1 Receptor Antagonists Inhibit Manic-Like Behaviors in Two Congenital Strains of Mice. Int J Neuropsychopharmacol 2018; 21:938-948. [PMID: 29860313 PMCID: PMC6165958 DOI: 10.1093/ijnp/pyy049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background Several currently available animal models reproduce select behavioral facets of human mania as well as the abnormal glutamatergic neurotransmission and dysregulation of glycogen synthase kinase 3β that accompanies this disease. Methods In this study, we addressed the therapeutic potential of ligands of sigma receptor type 1 (σ1R) in 2 putative models of mania: the "manic" Black Swiss outbred mice from Taconic farms (BStac) and mice with the 129 genetic background and histidine triad nucleotide-binding protein 1 (HINT1) deletion (HINT1-/- mice) that exhibit bipolar-like behaviors. Results The activity of control mice, which do not exhibit manic-like behaviors in the forced swim test, was significantly enhanced by MK801, an inhibitor of glutamate N-methyl-D-aspartate receptor activity, an effect that was not or barely observed in manic-like mice. Typical mood stabilizers, such as glycogen synthase kinase 3β inhibitors, but not σ1R ligands, reduced the N-methyl-D-aspartate receptor-mediated behaviors in control mice. Notably, σ1R antagonists S1RA, PD144418, BD1047, and BD1063, but not σ1R agonists PRE084 and PPCC, attenuated the manic-like behaviors of BStac and HINT1-/- mice by increasing antiactivity behaviors. The antimanic effects of a single administration of σ1R antagonists persisted for at least 24 hours, and these drugs did not alter the behavior of the "bipolar" HINT1-/- mice during pro-depressive episodes. Conclusions σ1R antagonists exhibit a selective normalizing effect on specific behavioral domains of mania without altering control (normal) or depressive-like behaviors.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - Elsa Cortés-Montero
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - María Rodríguez-Muñoz
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - Javier Garzón
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|