1
|
Ingoglia F, Tanfous M, Ellezam B, Anderson KJ, Pasquali M, Botto LD. MADD-like pattern of acylcarnitines associated with sertraline use. Mol Genet Metab Rep 2024; 41:101142. [PMID: 39318848 PMCID: PMC11421287 DOI: 10.1016/j.ymgmr.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a primary mitochondrial dysfunction affecting mitochondrial fatty acid and protein metabolism, caused by biallelic pathogenic variants in ETFA, ETFB, or ETFDH genes. The heterogeneous phenotypes associated with MADD have been classified into three groups: neonatal onset with congenital anomalies (type 1), neonatal onset without congenital anomalies (type 2), and attenuated and/or later onset (type 3). Here, we present two cases with biochemical profiles mimicking late-onset MADD but negative genetic testing, associated with the use of sertraline, a commonly used antidepressant. Case 1 is a 22 yo woman diagnosed with depression and profound fatigue who was referred to the metabolic clinic because of carnitine deficiency and a plasma acylcarnitine profile with a MADD-like pattern. Case 2 is a 61 yo woman with a history of chronic fatigue who was admitted to the emergency department with difficulty swallowing, metabolic acidosis, and mild rhabdomyolysis. Plasma acylcarnitine profile showed a MADD-like pattern. The muscle biopsy revealed lipid droplet accumulation and proliferation of mitochondria with abnormal osmiophilic inclusions, and a biochemical assay of the respiratory chain showed a deficit in complex II activity. In both cases, urine organic acid profile was normal, and genetic tests did not detect variants in the genes involved in MADD. Sertraline was on their list of medications and considering its association with inhibition of mitochondrial function and rhabdomyolysis, the team recommended the discontinuation under medical supervision. In Case 1 after discontinuation, the plasma acylcarnitine test normalized, only to return abnormal when the patient resumed sertraline. In Case 2, after sertraline was discontinued rhabdomyolysis resolved, and the muscle biopsy and biochemical assay of the respiratory chain normalized. Although sertraline is considered a safe drug, these two cases suggest that the use of sertraline may be associated with a potentially reversible form of mitochondrial dysfunction mimicking MADD. Further studies are needed to confirm and estimate the risk of MADD-like presentations with the use of sertraline, as well as identifying additional contributing factors, including genetic factors. Metabolic physicians should consider sertraline use in the differential diagnosis of MADD, particularly when genetic testing is negative.
Collapse
Affiliation(s)
- Filippo Ingoglia
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Mohsen Tanfous
- CHAUR CIUSSS-MCQ University Hospital, Trois-Rivieres, Canada
| | - Benjamin Ellezam
- Department of Pathology, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada
| | - Katherine J. Anderson
- Department of Pediatrics, Division of Clinical Genetics, University of Vermont, Burlington, VT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- CHAUR CIUSSS-MCQ University Hospital, Trois-Rivieres, Canada
- Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
2
|
Puentes-Orozco M, Albarracin SL, Velásquez MM. Neuroinflammation and major depressive disorder: astrocytes at the crossroads. Front Cell Neurosci 2024; 18:1504555. [PMID: 39650796 PMCID: PMC11620873 DOI: 10.3389/fncel.2024.1504555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Major depressive disorder is a complex and multifactorial condition, increasingly linked to neuroinflammation and astrocytic dysfunction. Astrocytes, along with other glial cells, beyond their classic functions in maintaining brain homeostasis, play a crucial role in regulating neuroinflammation and neuroplasticity, key processes in the pathophysiology of depression. This mini-review explores the involvement of astrocytes in depression emphasizing their mediation in neuroinflammation processes, the impact of astrocytic dysfunction on neuroplasticity, and the effect of some antidepressants on astrocyte reactivity. Recent evidence suggests that targeting astrocyte-related signaling pathways, particularly the balance between different astrocytic phenotypes, could offer promising evidence for therapeutic strategies for affective disorders. Therefore, a deeper understanding of astrocyte biology may open the way to innovative treatments aimed at mitigating depressive symptoms by impacting both neuroinflammation and imbalances in neuroplasticity.
Collapse
Affiliation(s)
- Melissa Puentes-Orozco
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L. Albarracin
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Marcela Velásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
3
|
Giatti S, Cioffi L, Diviccaro S, Chrostek G, Piazza R, Melcangi RC. Transcriptomic Profile of the Male Rat Hypothalamus and Nucleus Accumbens After Paroxetine Treatment and Withdrawal: Possible Causes of Sexual Dysfunction. Mol Neurobiol 2024:10.1007/s12035-024-04592-9. [PMID: 39495228 DOI: 10.1007/s12035-024-04592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), may induce sexual dysfunction during treatment and upon discontinuation. The mechanisms involved have been poorly explored so far. We have analyzed, by RNA sequencing, the whole transcriptomic profile in the hypothalamus and nucleus accumbens (NAc) (two brain regions involved in sexual behavior) of male rats daily treated for 2 weeks with paroxetine (T0) and at 1 month of withdrawal (T1). Data here reported show seven differentially expressed genes (DEGs) at T0 and 1 at T1 in the hypothalamus and 245 at T0 and 6 at T1 in the NAc. In addition, Gene-Set Enrichment, Gene Ontology, and Reactome analyses confirm that inflammatory signature and immune system activation were present at T0 in both brain areas. Considering that inflammation is generally associated with depression and that no paradigms inducing the pathology were here applied, these SSRI pro-depressive effects should be considered in patients without a clear indication of depression. Moreover, DEGs related to neurotransmitters with a role in sexual behavior and the reward system, such as dopamine (e.g., sialyltransferase 8B-ST8SIA3), glutamate (e.g., glutamate receptor ionotropic delta-2-GRID2) and GABA (e.g., glutamate decarboxylase type 2-GAD2) or associated with neurexin and neuroligin pathways and brain-derived neurotrophic factor (BDNF) signaling, were reported to be dysregulated in the NAc, further confirming dysfunction in this brain area. Interestingly, the analysis of DEGs altered at T1 in the NAc confirms the persistence of some of these side effects providing further information for post-SSRI sexual dysfunction (PSSD) etiopathogenesis.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Lucia Cioffi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gabriela Chrostek
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Rocco Piazza
- Dipartimento Di Medicina E Chirurgia, Università Di Milano-Bicocca, Milan, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
4
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
5
|
Fatehi R, Nouraei M, Panahiyan M, Rashedinia M, Firouzabadi N. Modulation of ACE2/Ang1-7/Mas and ACE/AngII/AT1 axes affects anticancer properties of sertraline in MCF-7 breast cancer cells. Biochem Biophys Rep 2024; 38:101738. [PMID: 38831897 PMCID: PMC11145238 DOI: 10.1016/j.bbrep.2024.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The renin-angiotensin system (RAS) is best known for playing a major role in maintaining the physiology of the cardiovascular system. Dysregulation of the RAS pathway has been proposed as a link to some malignancies and contributes to cancer metastasis. Breast cancer is considered as one of the leading causes of cancer death in women and its prevention remains yet a challenge. Elements of RAS are expressed in both normal breast tissue and cancerous cells, signifying the essential role of RAS in breast cancer pathology. Sertraline, a widely used antidepressant, has shown anti-proliferative properties on a variety of malignancies. This study aimed to investigate the effect of sertraline and its combination with agonists and antagonists of RAS (A779, Ang 1-7 and losartan) on viability of MCF-7 cells along with their effect on apoptosis and distribution of cell cycle. Our results indicated that sertraline, losartan and Ang 1-7 significantly decreased cell viability, induced apoptosis and cell cycle arrest. A779 blunted the effect of sertraline on cell viability, ROS generation and cell cycle arrest. Combination treatment of sertraline with losartan as well as Ang 1-7 caused a remarkable decline in cell viability. In conclusion, results of the present study support the anti-cancer properties of sertraline, losartan and Ang 1-7 via induction of apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nouraei
- Student Research Comittee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Panahiyan
- Student Research Comittee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Beltrame FL, Moysés THP, Coelho MP, Steinvascher MCR, de Oliveira SA, da Silva AAS, Cerri PS, Sasso-Cerri E. Role of serotonin, estrogen, and TNF-α in the paroxetine-impaired steroidogenesis and testicular macrophages polarization. Andrology 2024; 12:655-673. [PMID: 37675929 DOI: 10.1111/andr.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Paroxetine, a selective serotonin reuptake inhibitor (SSRI) antidepressant, has caused male sexual dysfunction; however, the paroxetine mechanisms of action in testes are still unclear. OBJECTIVES Paroxetine serotonergic effects in testes were evaluated, focusing on steroidogenesis and the correlation between macrophages population and possible TNF-α-derived oxidative stress. We also verified whether the changes are reversible following treatment interruption. MATERIALS AND METHODS Adult rats received paroxetine (PG35 and PG65) or tap water (CG) for 35 days. PG65 was maintained without treatment for 30 more days. Intratesticular testosterone (IT), nitrite, and malondialdehyde concentrations were measured. To confirm serotonergic and estrogenic effects, Htr1b and Esr1 expressions were analyzed. The daily sperm production (DSP), frequency of abnormal seminiferous tubules (ST), SC number, ST area, and Leydig cells nuclear area (LCnu) were evaluated. TUNEL+ germ cells, M1 (CD68+ ), and M2 (Perls+ ) macrophages were quantified. 17β-HSD7, CYP19A1, NDRG2, oxytocin, TNF-α, and iNOS were evaluated by immunoreactions. Oxytocin and NDRG2 protein levels as well as Tnfa mRNA expression were also analyzed. RESULTS The Htr1b downregulation in testes confirmed the paroxetine serotonergic effect. The testicular sections showed abnormal ST frequency, ST atrophy and reduction of DSP, LCnu, SC number and Perls+ macrophages. TUNEL+ germ cells and LC were associated with strong NDRG2 immunoexpression. Paroxetine reduced IT levels and 17β-HSD7 immunoexpression in parallel to increased CYP19A1, oxytocin, TNF-α and iNOS. Esr1 and Tnfa overexpression and increased number of CD68+ macrophages were also observed together with high nitrite and malondialdehyde levels. Most parameters were not recovered in PG65. CONCLUSIONS Paroxetine serotonergic effect impairs LC steroidogenesis, via aromatization, increasing estrogen/testosterone ratio, which in turn upregulate NDRG2, promoting apoptosis, and impairing sperm production. Serotonin-estrogen pathways may be responsible for M2/M1 polarization, Tnfa upregulation, and induction of oxidative stress. The unrecovered testicular changes after treatment discontinuation are due to persistent paroxetine serotonin/estrogen effects.
Collapse
Affiliation(s)
- Flávia Luciana Beltrame
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
- Institute of Health Sciences, Paulista University (UNIP), São Paulo, Brazil
| | | | | | - Maria Clara Rossetto Steinvascher
- School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | | | | | - Paulo Sérgio Cerri
- School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - Estela Sasso-Cerri
- School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| |
Collapse
|
7
|
Blalock ZN, Wu GWY, Lindqvist D, Trumpff C, Flory JD, Lin J, Reus VI, Rampersaud R, Hammamieh R, Gautam A, Doyle FJ, Marmar CR, Jett M, Yehuda R, Wolkowitz OM, Mellon SH. Circulating cell-free mitochondrial DNA levels and glucocorticoid sensitivity in a cohort of male veterans with and without combat-related PTSD. Transl Psychiatry 2024; 14:22. [PMID: 38200001 PMCID: PMC10781666 DOI: 10.1038/s41398-023-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a biomarker of cellular injury or cellular stress and is a potential novel biomarker of psychological stress and of various brain, somatic, and psychiatric disorders. No studies have yet analyzed ccf-mtDNA levels in post-traumatic stress disorder (PTSD), despite evidence of mitochondrial dysfunction in this condition. In the current study, we compared plasma ccf-mtDNA levels in combat trauma-exposed male veterans with PTSD (n = 111) with those who did not develop PTSD (n = 121) and also investigated the relationship between ccf mt-DNA levels and glucocorticoid sensitivity. In unadjusted analyses, ccf-mtDNA levels did not differ significantly between the PTSD and non-PTSD groups (t = 1.312, p = 0.191, Cohen's d = 0.172). In a sensitivity analysis excluding participants with diabetes and those using antidepressant medication and controlling for age, the PTSD group had lower ccf-mtDNA levels than did the non-PTSD group (F(1, 179) = 5.971, p = 0.016, partial η2 = 0.033). Across the entire sample, ccf-mtDNA levels were negatively correlated with post-dexamethasone adrenocorticotropic hormone (ACTH) decline (r = -0.171, p = 0.020) and cortisol decline (r = -0.149, p = 0.034) (viz., greater ACTH and cortisol suppression was associated with lower ccf-mtDNA levels) both with and without controlling for age, antidepressant status and diabetes status. Ccf-mtDNA levels were also significantly positively associated with IC50-DEX (the concentration of dexamethasone at which 50% of lysozyme activity is inhibited), a measure of lymphocyte glucocorticoid sensitivity, after controlling for age, antidepressant status, and diabetes status (β = 0.142, p = 0.038), suggesting that increased lymphocyte glucocorticoid sensitivity is associated with lower ccf-mtDNA levels. Although no overall group differences were found in unadjusted analyses, excluding subjects with diabetes and those taking antidepressants, which may affect ccf-mtDNA levels, as well as controlling for age, revealed decreased ccf-mtDNA levels in PTSD. In both adjusted and unadjusted analyses, low ccf-mtDNA levels were associated with relatively increased glucocorticoid sensitivity, often reported in PTSD, suggesting a link between mitochondrial and glucocorticoid-related abnormalities in PTSD.
Collapse
Affiliation(s)
- Zachary N Blalock
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Gwyneth W Y Wu
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Janine D Flory
- James J. Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Victor I Reus
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Aarti Gautam
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Rachel Yehuda
- James J. Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Liao MH, Lin YK, Gau FY, Tseng CC, Wu DC, Hsu CY, Chung KH, Li RC, Hu CJ, Then CK, Shen SC. Antidepressant sertraline increases thioflavin-S and Congo red deposition in APPswe/PSEN1dE9 transgenic mice. Front Pharmacol 2024; 14:1260838. [PMID: 38259283 PMCID: PMC10800414 DOI: 10.3389/fphar.2023.1260838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Depression is strongly associated with Alzheimer's disease (AD). Antidepressants are commonly used in patients before and after their diagnosis of AD. To date, the relationship between antidepressants and AD remains unclear. Methods: In our study, we administered sertraline or paroxetine to wild type (WT) and APPswe/PSEN1dE9 (APP/PSEN1) transgenic mouse models for up to 12 months. We quantified the drug concentrations using LC-MS/MS analysis and measured serum serotonin level using an ELISA assay. Additionally, we evaluated the amyloid burdens through thioflavin-S and Congo red stainings, and recognition memory using the novel object recognition test. Results: Our findings revealed that mice treated with paroxetine exhibited a significantly higher level of weight gain compared to the control group and increased mortality in APP/PSEN1 mice. After 12 months of antidepressant treatment, the sertraline level was measured at 289.8 ng/g for cerebellum, while the paroxetine level was 792.9 ng/g for cerebellum. Sertraline significantly increased thioflavin-S and Congo red depositions, along with gliosis, in both isocortex and hippocampus of APP/PSEN1 mice compared to the control group. Both antidepressants also led to a decreased recognition index in APP/PSEN1 mice. Conclusion: These findings suggest a potential role of sertraline in AD pathogenesis, emphasizing the need to reassess the use of these antidepressants in patients with AD.
Collapse
Affiliation(s)
- Ming-Hsuan Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Fong-Ying Gau
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chun-Che Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Da-Chih Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Yuan Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rung-Chi Li
- Division of Allergy and Immunology, University of Virginia, Charlottesville, VA, United States
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Fayyaz S, Atia-Tul-Wahab, Irshad R, Siddiqui RA, Choudhary MI. Antidepressant Sertraline Hydrochloride Inhibits the Growth of HER2+ AU565 Breast Cancer Cell Line through Induction of Apoptosis and Cell Cycle Arrest. Anticancer Agents Med Chem 2024; 24:1038-1046. [PMID: 38766835 DOI: 10.2174/0118715206304918240509111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Drug repurposing in oncology promises benefits to many patients through its ability to provide novel, and fast-tracked treatments. Previous studies have demonstrated that depression may influence tumor progression. Anti-proliferative activity of certain antidepressants, mainly selective serotonin reuptake inhibitors (SSRIs), are reported in the literature. OBJECTIVE This study was conducted to repurpose selective serotonin reuptake inhibitors (SSRIs) for the treatment of breast cancers, and it merits further validation and research. METHODS Changes in cell morphology were studied using DAPI staining, while the Annexin V/PI method was employed for apoptotic analysis. The expression of specific genes involved in cancer progression was also analyzed via RT-PCR. Caspase-3 activation was measured through fluorometric assay. RESULTS We have identified that sertraline hydrochloride significantly inhibited the growth of breast cancer cell in vitro. Preliminary mechanistic studies demonstrated that the cytotoxicity of sertraline hydrochloride was possibly through the induction of apoptosis, as inferred from enhanced nuclear fragmentation, flow cytometric data, and caspase-3/7 activation. Gene expression analysis also showed an increased expression of pro-apoptotic Bax, and a slight decrease in oncogene c-myc in the presence of sertraline hydrochloride. CONCLUSION In conclusion, our study suggest that sertraline hydrochloride, an antidepressant drug, can potentially be used for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sharmeen Fayyaz
- National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Rimsha Irshad
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Rafat A Siddiqui
- Food Chemistry and Nutrition Science Laboratory, College of Agriculture, Virginia State University, VA-23806, USA
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| |
Collapse
|
10
|
Karmakar S, Lal G. Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses. Methods Mol Biol 2024; 2761:181-207. [PMID: 38427238 DOI: 10.1007/978-1-0716-3662-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India.
| |
Collapse
|
11
|
Gamboa-Sánchez C, Becerril-Villanueva E, Alvarez-Herrera S, Leyva-Mascareño G, González-López SL, Estudillo E, Fernández-Molina AE, Elizalde-Contreras JM, Ruiz-May E, Segura-Cabrera A, Jiménez-Genchi J, Pavón L, Zamudio SR, Pérez-Sánchez G. Upregulation of S100A8 in peripheral blood mononuclear cells from patients with depression treated with SSRIs: a pilot study. Proteome Sci 2023; 21:23. [PMID: 38049858 PMCID: PMC10694904 DOI: 10.1186/s12953-023-00224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) affects more than 350 million people worldwide, and there is currently no laboratory test to diagnose it. This pilot study aimed to identify potential biomarkers in peripheral blood mononuclear cells (PBMCs) from MDD patients. METHODS We used tandem mass tagging coupled to synchronous precursor selection (mass spectrometry) to obtain the differential proteomic profile from a pool of PBMCs from MDD patients and healthy subjects, and quantitative PCR to assess gene expression of differentially expressed proteins (DEPs) of our interest. RESULTS We identified 247 proteins, of which 133 had a fold change ≥ 2.0 compared to healthy volunteers. Using pathway enrichment analysis, we found that some processes, such as platelet degranulation, coagulation, and the inflammatory response, are perturbed in MDD patients. The gene-disease association analysis showed that molecular alterations in PBMCs from MDD patients are associated with cerebral ischemia, vascular disease, thrombosis, acute coronary syndrome, and myocardial ischemia, in addition to other conditions such as inflammation and diabetic retinopathy. CONCLUSIONS We confirmed by qRT-PCR that S100A8 is upregulated in PBMCs from MDD patients and thus could be an emerging biomarker of this disorder. This report lays the groundwork for future studies in a broader and more diverse population and contributes to a deeper characterization of MDD.
Collapse
Affiliation(s)
- Concepción Gamboa-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Ciudad de México, México
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
| | - Gabriela Leyva-Mascareño
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
| | - Sandra L González-López
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur 3877 Del. Tlalpan, 14269. Col. La Fama., Ciudad de México, México
| | - Alberto E Fernández-Molina
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
| | - José Miguel Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación El Haya, 91073, Xalapa, Veracruz, México
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación El Haya, 91073, Xalapa, Veracruz, México
| | - Aldo Segura-Cabrera
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación El Haya, 91073, Xalapa, Veracruz, México
- Genomic Sciences, GSK, Stevenage, UK
| | - Janeth Jiménez-Genchi
- Hospital Psiquiátrico Fray Bernardino Álvarez. Av, Niño Jesús, San Buenaventura 214000, Tlalpan, Ciudad de Mexico, México
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México
| | - Sergio Roberto Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Ciudad de México, México.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Colonia San Lorenzo Huipulco, Calzada México-Xochimilco 101, Tlalpan, 14370, Ciudad de Mexico, México.
| |
Collapse
|
12
|
Zosen D, Kondratskaya E, Kaplan-Arabaci O, Haugen F, Paulsen RE. Antidepressants escitalopram and venlafaxine up-regulate BDNF promoter IV but down-regulate neurite outgrowth in differentiating SH-SY5Y neurons. Neurochem Int 2023; 169:105571. [PMID: 37451345 DOI: 10.1016/j.neuint.2023.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Antidepressants are used to treat depression and some anxiety disorders, including use in pregnant patients. The pharmacological actions of these drugs generally determine the uptake and metabolism of a series of neurotransmitters, such as serotonin, norepinephrine, or dopamine, along with an increase in BDNF expression. However, many aspects of antidepressant action remain unknown, particularly whether antidepressants interfere with normal neurodevelopment when taken by pregnant women. In order to reveal cellular and molecular implications crucial to the functioning of pathways related to antidepressant effects, we performed an investigation on neuronally differentiating human SH-SY5Y cells. To our knowledge, this is the first time human SH-SY5Y cells in cultures of purely neuronal cells induced by controlled differentiation with retinoic acid are followed by short-term 48-h exposure to 0.1-10 μM escitalopram or venlafaxine. Treatment with antidepressants (1 μM) did not affect the electrophysiological properties of SH-SY5Y cells. However, the percentage of mature neurons exhibiting voltage-gated sodium currents was substantially higher in cultures pre-treated with either antidepressant. After exposure to escitalopram or venlafaxine, we observed a concentration-dependent increase in activity-dependent BDNF promoter IV activation. The assessment of neurite metrics showed significant down-regulation of neurite outgrowth upon exposure to venlafaxine. Identified changes may represent links to molecular processes of importance to depression and be involved in neurodevelopmental alterations observed in postpartum children exposed to antidepressants antenatally.
Collapse
Affiliation(s)
- Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Elena Kondratskaya
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oykum Kaplan-Arabaci
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Department of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Marinho LSR, Chiarantin GMD, Ikebara JM, Cardoso DS, de Lima-Vasconcellos TH, Higa GSV, Ferraz MSA, De Pasquale R, Takada SH, Papes F, Muotri AR, Kihara AH. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023; 144:67-76. [PMID: 36115764 DOI: 10.1016/j.semcdb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.
Collapse
Affiliation(s)
| | | | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | | | - Guilherme Shigueto Vilar Higa
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil; Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | | | - Roberto De Pasquale
- Department of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, São Paulo, SP 05508-000, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; Center for Medicinal Chemistry, University of Campinas, Campinas, SP 13083-875, Brazil; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037, USA.
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-045, Brazil.
| |
Collapse
|
14
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
15
|
Aghajani R, Tavalaee M, Sadeghi N, Razi M, Gharagozloo P, Arbabian M, Drevet JR, Nasr-Esfahani MH. Paroxetine treatment in an animal model of depression improves sperm quality. PLoS One 2022; 17:e0271217. [PMID: 36480503 PMCID: PMC9731436 DOI: 10.1371/journal.pone.0271217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Depression in mammals is known to be associated with poor reproductive capacity. In males, it has been associated with decreased efficiency of spermatogenesis as well as the production of spermatozoa of reduced structural and functional integrity. Although antidepressants are effective in correcting depressive states, there is controversy regarding their effectiveness in restoring male reproductive function. Here, using an animal model of depression induced by a forced swim test, we confirmed that depression is accompanied by impaired male reproductive function. We further show that administration of a conventional antidepressant of the serotonin reuptake inhibitor class (paroxetine) impairs male reproductive performance in terms of sperm production and quality when administered to healthy animals. Intriguingly, when paroxetine is administered to "depressed" animals, it resulted in a complete restoration of the animal's ability to produce sperm that appears to be as capable of meeting the parameters evaluated here as those of control animals. The one-carbon cycle (1CC) is one of the most important metabolic cycles that include the methionine and folate cycles and plays a major role in DNA synthesis, amino acids, and also the production of antioxidants. Our results show that depression affects the main components of this cycle and paroxetine on healthy mice increases homocysteine levels, decreases glycine and vitamin B12, while in depressed mice, it increases folate levels and decreases vitamin B12. Thus, paroxetine exerts negative impacts on male reproductive function when administered to healthy animals and it well correlate with the altered sperm parameters and functions of depressed animals, and its mechanism remains to be explored.
Collapse
Affiliation(s)
- Reyhane Aghajani
- ACECR Institute of higher Education (Isfahan branch), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- ACECR Institute of higher Education (Isfahan branch), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Niloofar Sadeghi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mazdak Razi
- Faculty of Veterinary Medicine, Department of Histology, Urmia University, Urmia, Iran
| | | | - Maryam Arbabian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Joël R. Drevet
- Faculty of Medicine, GReD laboratory, CNRS UMR6293-INSERM U1103-Université Clermont Auvergne, Clermont-Ferrand, France
- * E-mail: (MHN-E); (JRD)
| | - Mohammad Hossein Nasr-Esfahani
- ACECR Institute of higher Education (Isfahan branch), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (MHN-E); (JRD)
| |
Collapse
|
16
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Nabekura T, Ishikawa S, Tanase M, Okumura T, Kawasaki T. Antidepressants induce toxicity in human placental BeWo cells. Curr Res Toxicol 2022; 3:100073. [PMID: 35602006 PMCID: PMC9120053 DOI: 10.1016/j.crtox.2022.100073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline reuptake inhibitors (SNRIs), and noradrenergic and specific serotonergic antidepressants (NaSSAs) are broadly used for the treatment of depression. Depression is one of the most common psychiatric disorders in pregnant women and SSRIs are commonly prescribed for depression during pregnancy. The placenta regulates the transport of nutrients and oxygen between the maternal and fetal circulation, and is essential for the survival and growth of the fetus. The present study investigated the effects of antidepressants on human placental BeWo cells. BeWo cell viability was significantly decreased following exposure to sertraline (SSRI), paroxetine (SSRI), fluvoxamine (SSRI), and duloxetine (SNRI), whereas escitalopram (SSRI), venlafaxine (SNRI), and mirtazapine (NaSSA) showed little or no effects. Extracellular lactate dehydrogenase activity was increased by sertraline, paroxetine, fluvoxamine, and duloxetine, indicating toxicity to the cells. Sertraline increased the production of cellular reactive oxygen species (ROS) and decreased the mitochondrial membrane potential. Sertraline decreased the cellular ATP content in a time and concentration-dependent manner. Caspase-3/7 activity and apoptotic cells, detected using the phosphatidylserine-specific fluorescent probe Apotracker Green, were increased by sertraline. Our findings suggest that antidepressants, such as sertraline, paroxetine, fluvoxamine, and duloxetine, induce toxicity in human placental BeWo cells. Sertraline may induce ROS-dependent apoptosis in human placental cells. These results are useful for further studies to determine the optimal dosage of antidepressants for pregnant women.
Collapse
Key Words
- ATP, adenosine triphosphate
- Antidepressant
- Apoptosis
- DCF, 2′,7′-dichlorofluorescin
- DCFDA, 2′,7′-dichlorofluorescin diacetate
- LDH, lactate dehydrogenase
- NaSSA, noradrenergic and specific serotonergic antidepressant
- PS, phosphatidylserine
- Placenta
- ROS, reactive oxygen species
- Reactive oxygen species
- SNRI, serotonin and noradrenaline reuptake inhibitor
- SSRI, selective serotonin reuptake inhibitor
- Toxicity
Collapse
Affiliation(s)
- Tomohiro Nabekura
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shinya Ishikawa
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Makoto Tanase
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Taichi Okumura
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tatsuya Kawasaki
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
18
|
Tollis S, Rizzotto A, Pham NT, Koivukoski S, Sivakumar A, Shave S, Wildenhain J, Zuleger N, Keys JT, Culley J, Zheng Y, Lammerding J, Carragher NO, Brunton VG, Latonen L, Auer M, Tyers M, Schirmer EC. Chemical Interrogation of Nuclear Size Identifies Compounds with Cancer Cell Line-Specific Effects on Migration and Invasion. ACS Chem Biol 2022; 17:680-700. [PMID: 35199530 PMCID: PMC8938924 DOI: 10.1021/acschembio.2c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Background: Lower survival rates for many cancer
types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific
manner. Hypothesizing that such changes might confer an advantage
to tumor cells, we aimed at the identification of commercially available
compounds to guide further mechanistic studies. We therefore screened
for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved
compounds that reverse the direction of characteristic tumor nuclear
size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively,
prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous
lung cancer. Results: We found distinct, largely
nonoverlapping sets of compounds that rectify nuclear size changes
for each tumor cell line. Several classes of compounds including,
e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, β-adrenergic
receptor agonists, and Na+/K+ ATPase inhibitors,
displayed coherent nuclear size phenotypes focused on a particular
cell line or across cell lines and treatment conditions. Several compounds
from classes far afield from current chemotherapy regimens were also
identified. Seven nuclear size-rectifying compounds selected for further
investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that
nuclear size might be a valuable target to reduce cell migration/invasion
in cancer treatment and (b) the most thorough collection of tool compounds
to date reversing nuclear size changes specific to individual cancer-type
cell lines. Although these compounds still need to be tested in primary
cancer cells, the cell line-specific nuclear size and migration/invasion
responses to particular drug classes suggest that cancer type-specific
nuclear size rectifiers may help reduce metastatic spread.
Collapse
Affiliation(s)
- Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Andrea Rizzotto
- The Institute of Cell Biology, University of Edinburgh, Kings Buildings, Michael Swann Buildings, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - Nhan T. Pham
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Aishwarya Sivakumar
- The Institute of Cell Biology, University of Edinburgh, Kings Buildings, Michael Swann Buildings, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - Steven Shave
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Jan Wildenhain
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Nikolaj Zuleger
- The Institute of Cell Biology, University of Edinburgh, Kings Buildings, Michael Swann Buildings, Max Born Crescent, Edinburgh EH9 3BF, U.K
| | - Jeremy T. Keys
- Nancy E. and Peter C. Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jayne Culley
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, U.K
| | - Yijing Zheng
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, U.K
| | - Valerie G. Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, U.K
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Manfred Auer
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Eric C. Schirmer
- The Institute of Cell Biology, University of Edinburgh, Kings Buildings, Michael Swann Buildings, Max Born Crescent, Edinburgh EH9 3BF, U.K
| |
Collapse
|
19
|
Pt(IV) Prodrugs with NSAIDs as Axial Ligands. Int J Mol Sci 2021; 22:ijms22083817. [PMID: 33917027 PMCID: PMC8067705 DOI: 10.3390/ijms22083817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
A chemo-anti-inflammatory strategy is of interest for the treatment of aggressive cancers. The platinum (IV) prodrug with non-steroidal anti-inflammatory drugs (NSAIDs) as axial ligands is designed to efficiently enter tumor cells due to high lipophilicity and release the cytotoxic metabolite and NSAID intracellularly, thereby reducing side effects and increasing the therapeutic efficacy of platinum chemotherapy. Over the last 7 years, a number of publications have been devoted to the design of such Pt(IV) prodrugs in combination with anti-inflammatory chemotherapy, with high therapeutic efficacy in vitro and In vivo. In this review, we summarize the studies devoted to the development of Pt(IV) prodrugs with NSAIDs as axial ligands, the study of the mechanism of their cytotoxic action and anti-inflammatory activity, the structure-activity ratio, and therapeutic efficacy.
Collapse
|
20
|
He JH, Liu RP, Peng YM, Guo Q, Zhu LB, Lian YZ, Hu BL, Fan HH, Zhang X, Zhu JH. Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation. J Neuroinflammation 2021; 18:47. [PMID: 33602262 PMCID: PMC7890881 DOI: 10.1186/s12974-021-02097-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used new-generation drugs for depression. Depressive symptoms are thought to be closely related to neuroinflammation. In this study, we used up-to-date protocols of culture and stimulation and aimed to understand how astrocytes respond to the antidepressants. Methods Primary astrocytes were isolated and cultured using neurobasal-based serum-free medium. The cells were treated with a cytokine mixture comprising complement component 1q, tumor necrosis factor α, and interleukin 1α with or without pretreatments of antidepressants. Cell viability, phenotypes, inflammatory responses, and the underlying mechanisms were analyzed. Results All the SSRIs, including paroxetine, fluoxetine, sertraline, citalopram, and fluvoxamine, show a visible cytotoxicity within the range of applied doses, and a paradoxical effect on astrocytic inflammatory responses as manifested by the promotion of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) and the inhibition of interleukin 6 (IL-6) and/or interleukin 1β (IL-1β). The SNRI venlafaxine was the least toxic to astrocytes and inhibited the production of IL-6 and IL-1β but with no impact on iNOS and NO. All the drugs had no regulation on the polarization of astrocytic A1 and A2 types. Mechanisms associated with the antidepressants in astrocytic inflammation route via inhibition of JNK1 activation and STAT3 basal activity. Conclusions The study demonstrated that the antidepressants possess differential cytotoxicity to astrocytes and function differently, also paradoxically for the SSRIs, to astrocytic inflammation. Our results provide novel pieces into understanding the differential efficacy and tolerability of the antidepressants in treating patients in the context of astrocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02097-z.
Collapse
Affiliation(s)
- Jia-Hui He
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Neurology, The Second Affiliated Hospital, Zhejiang University Medical College, Hangzhou, 310009, Zhejiang, China
| | - Rong-Pei Liu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi-Man Peng
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qing Guo
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lan-Bing Zhu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi-Zhi Lian
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Bei-Lei Hu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hui-Hui Fan
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
21
|
Balakrishna P, George S, Hatoum H, Mukherjee S. Serotonin Pathway in Cancer. Int J Mol Sci 2021; 22:1268. [PMID: 33525332 PMCID: PMC7865972 DOI: 10.3390/ijms22031268] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine produced from the essential amino acid tryptophan. Serotonin's role as a neurotransmitter in the central nervous system and a motility mediator in the gastrointestinal tract has been well defined, and its function in tumorigenesis in various cancers (gliomas, carcinoids, and carcinomas) is being studied. Many studies have shown a potential stimulatory effect of serotonin on cancer cell proliferation, invasion, dissemination, and tumor angiogenesis. Although the underlying mechanism is complex, it is proposed that serotonin levels in the tumor and its interaction with specific receptor subtypes are associated with disease progression. This review article describes serotonin's role in cancer pathogenesis and the utility of the serotonin pathway as a potential therapeutic target in cancer treatment. Octreotide, an inhibitor of serotonin release, is used in well-differentiated neuroendocrine cancers, and the tryptophan hydroxylase (TPH) inhibitor, telotristat, is currently being investigated in clinical trials to treat patients with metastatic neuroendocrine tumors and advanced cholangiocarcinoma. Several in vitro studies have shown the anticancer effect of 5-HT receptor antagonists in various cancers such as prostate cancer, breast cancer, urinary bladder, colorectal cancer, carcinoid, and small-cell lung cancer. More in vivo studies are needed to assess serotonin's role in cancer and its potential use as an anticancer therapeutic target. Serotonin is also being evaluated for its immunoregulatory properties, and studies have shown its potential anti-inflammatory effect. Therefore, it would be of interest to explore the combination of serotonin antagonists with immunotherapy in the future.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/therapeutic use
- Carcinoma, Neuroendocrine/blood supply
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cholangiocarcinoma/blood supply
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Octreotide/therapeutic use
- Phenylalanine/analogs & derivatives
- Phenylalanine/therapeutic use
- Pyrimidines/therapeutic use
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Serotonin Antagonists/therapeutic use
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Pragathi Balakrishna
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.B.); (S.G.)
| | - Sagila George
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.B.); (S.G.)
| | - Hassan Hatoum
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.B.); (S.G.)
| | | |
Collapse
|
22
|
Lee S, Kwok N, Holsapple J, Heldt T, Bourouiba L. Enhanced wall shear stress prevents obstruction by astrocytes in ventricular catheters. J R Soc Interface 2020; 17:20190884. [PMID: 32603649 PMCID: PMC7423414 DOI: 10.1098/rsif.2019.0884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 01/09/2023] Open
Abstract
The treatment of hydrocephalus often involves the placement of a shunt catheter into the cerebrospinal ventricular space, though such ventricular catheters often fail by tissue obstruction. While diverse cell types contribute to the obstruction, astrocytes are believed to contribute to late catheter failure that can occur months after shunt insertion. Using in vitro microfluidic cultures of astrocytes, we show that applied fluid shear stress leads to a decrease of cell confluency and the loss of their typical stellate cell morphology. Furthermore, we show that astrocytes exposed to moderate shear stress for an extended period of time are detached more easily upon suddenly imposed high fluid shear stress. In light of these findings and examining the range of values of wall shear stress in a typical ventricular catheter through computational fluid dynamics (CFD) simulation, we find that the typical geometry of ventricular catheters has low wall shear stress zones that can favour the growth and adhesion of astrocytes, thus promoting obstruction. Using high-precision direct flow visualization and CFD simulations, we discover that the catheter flow can be formulated as a network of Poiseuille flows. Based on this observation, we leverage a Poiseuille network model to optimize ventricular catheter design such that the distribution of wall shear stress is above a critical threshold to minimize astrocyte adhesion and growth. Using this approach, we also suggest a novel design principle that not only optimizes the wall shear stress distribution but also eliminates a stagnation zone with low wall shear stress, which is common to current ventricular catheters.
Collapse
Affiliation(s)
- S. Lee
- The Fluid Dynamics of Disease Transmission Laboratory, MIT, Cambridge, MA 02139, USA
| | - N. Kwok
- Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| | - J. Holsapple
- Department of Neurosurgery, Boston Medical Center, Boston, MA 02118, USA
| | - T. Heldt
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| | - L. Bourouiba
- The Fluid Dynamics of Disease Transmission Laboratory, MIT, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
The Challenge of Antidepressant Therapeutics in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32304037 DOI: 10.1007/978-3-030-42667-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The link between depression and Alzheimer's disease (AD) is controversial, because it is not clear if depression is an independent risk factor for the disease or a prodromal symptom in the older population. Cerebral amyloid-β (Aβ) peptide deposition is associated with both cognitive symptoms and neuropsychiatric symptoms (NPS), which may be a biological mechanism of compensation. Despite the widespread use of antidepressant therapeutics (30-50% of patients with AD/dementia are on antidepressants), there is mixed evidence regarding the benefits from their use in AD depression. Monoaminergic antidepressant drugs have shown only modest or no clinical benefits. Therefore, it is important to understand the reason of this drug-resistance and the relationship between antidepressant drugs and the Aβ peptide. The goal of the present review is to highlight the etiology of depression in patients affected by AD in comparison to depressive disorders without AD, and to speculate on more appropriate and alternative therapeutics.
Collapse
|
24
|
Otto-Meyer S, DeFaccio R, Dussold C, Ladomersky E, Zhai L, Lauing KL, Bollu LR, Amidei C, Lukas RV, Scholtens DM, Wainwright DA. A retrospective survival analysis of Glioblastoma patients treated with selective serotonin reuptake inhibitors. Brain Behav Immun Health 2020; 2:100025. [PMID: 32190845 PMCID: PMC7079579 DOI: 10.1016/j.bbih.2019.100025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant glioma in adults with a median overall survival (OS) time of 16-18 months and a median age of diagnosis at 64 years old. Recent work has suggested that depression and psychosocial distress are associated with worse outcomes in patients with GBM. We therefore hypothesized that the targeted neutralization of psychosocial distress with selective serotonin reuptake inhibitor (SSRI) antidepressant treatment would be associated with a longer OS among patients with GBM. To address this hypothesis, we retrospectively studied the association between adjuvant SSRI usage and OS in GBM patients treated by Northwestern Medicine-affiliated providers. The medical records of 497 GBM patients were analyzed after extraction from the Northwestern Medicine Enterprise Data Warehouse. Data were retrospectively studied using a multivariable Cox model with SSRI use defined as a time-dependent variable for estimating the association with OS. Of the 497 patients, 315 individuals died, while 182 were censored due to the loss of follow-up or were alive at the end of our study. Of the 497 patients, 151 had a recorded use of SSRI treatment during the disease course. Unexpectedly, SSRI usage was not associated with an OS effect in both naïve (HR = 0.81, 95% CI = 0.64-1.03) and adjusted time-dependent (HR = 1.26, 95% CI = 0.97-1.63) Cox models. Ultimately, we failed to find an association between SSRI treatment and an improved OS of patients with GBM. Additional work is necessary for understanding the potential therapeutic effects of SSRIs when combined with other treatment approaches, and immunotherapies in particular, for subjects with GBM.
Collapse
Affiliation(s)
| | - Rian DeFaccio
- Department of Preventative Medicine-Biostatistics, Chicago, IL, 60611, USA
| | - Corey Dussold
- Department of Neurological Surgery, Chicago, IL, 60611, USA
| | | | - Lijie Zhai
- Department of Neurological Surgery, Chicago, IL, 60611, USA
| | | | | | | | - Rimas V. Lukas
- Department of Neurology, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Denise M. Scholtens
- Department of Preventative Medicine-Biostatistics, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine-Division of Hematology and Oncology, Chicago, IL, 60611, USA
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
25
|
Associations of Patient Mood, Modulators of Quality of Life, and Pharmaceuticals with Amyotrophic Lateral Sclerosis Survival Duration. Behav Sci (Basel) 2020; 10:bs10010033. [PMID: 31936812 PMCID: PMC7016647 DOI: 10.3390/bs10010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Associations of modulators of quality of life (QoL) and survival duration are assessed in the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. Major categories include clinical impression of mood (CIM); physical health; patient social support; and usage of interventions, pharmaceuticals, and supplements. Associations were assessed at p < 0.05 and p < 0.001 significance thresholds using applicable methods (Chi-square, t-test, ANOVA, logistical regression, random forests, Fisher’s exact test) within a retrospective cohort of 1585 patients. Factors significantly correlated with positive (happy or normal) mood included family support and usage of bi-level positive airway pressure (Bi-PAP) and/or cough assist. Decline in physical factors like presence of dysphagia, drooling, general pain, and decrease in ALSFRS-R total score or forced vital capacity (FVC) significantly correlated with negative (depressed or anxious) mood (p < 0.05). Use of antidepressants or pain medications had no association with ALS patient mood (p > 0.05), but were significantly associated with increased survival (p < 0.05). Positive patient mood, Bi-PAP, cough assist, percutaneous endoscopic gastrostomy (PEG), and accompaniment to clinic visits associated with increased survival duration (p < 0.001). Of the 47 most prevalent pharmaceutical and supplement categories, 17 associated with significant survival duration increases ranging +4.5 to +16.5 months. Tricyclic antidepressants, non-opioids, muscle relaxants, and vitamin E had the highest associative increases in survival duration (p < 0.05). Random forests, which examined complex interactions, identified the following pharmaceuticals and supplements as most predictive to survival duration: Vitamin A, multivitamin, PEG supplements, alternative herbs, antihistamines, muscle relaxants, stimulant laxatives, and antispastics. Statins, metformin, and thiazide diuretics had insignificant associations with decreased survival.
Collapse
|
26
|
Park S, Lim W, You S, Song G. Ochratoxin A exerts neurotoxicity in human astrocytes through mitochondria-dependent apoptosis and intracellular calcium overload. Toxicol Lett 2019; 313:42-49. [DOI: 10.1016/j.toxlet.2019.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/15/2022]
|
27
|
Kisby B, Jarrell JT, Agar ME, Cohen DS, Rosin ER, Cahill CM, Rogers JT, Huang X. Alzheimer's Disease and Its Potential Alternative Therapeutics. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2019; 9. [PMID: 31588368 PMCID: PMC6777730 DOI: 10.4172/2161-0460.1000477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that affects over 5 million individuals in the United States alone. Currently, there are only two kinds of pharmacological interventions available for symptomatic relief of AD; Acetyl Cholinesterase Inhibitors (AChEI) and N-methyl-D-aspartic Acid (NMDA) receptor antagonists and these drugs do not slow down or stop the progression of the disease. Several molecular targets have been implicated in the pathophysiology of AD, such as the tau (τ) protein, Amyloid-beta (Aβ), the Amyloid Precursor Protein (APP) and more and several responses have also been observed in the advancement of the disease, such as reduced neurogenesis, neuroinflammation, oxidative stress and iron overload. In this review, we discuss general features of AD and several small molecules across different experimental AD drug classes that have been studied for their effects in the context of the molecular targets and responses associated with the AD progression. These drugs include: Paroxetine, Desferrioxamine (DFO), N-acetylcysteine (NAC), Posiphen/-(−)Phenserine, JTR-009, Carvedilol, LY450139, Intravenous immunoglobulin G 10%, Indomethacin and Lithium Carbonate (Li2CO3).
Collapse
Affiliation(s)
- Brent Kisby
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Enes Agar
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
28
|
The interplay among psychological distress, the immune system, and brain tumor patient outcomes. Curr Opin Behav Sci 2019; 28:44-50. [PMID: 31049368 DOI: 10.1016/j.cobeha.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A malignant brain tumor diagnosis is often accompanied with intense feelings and can be associated with psychosocial conditions including depression, anxiety, and/or increased distress levels. Previous work has highlighted the impact of uncontrolled psychological distress among brain tumor patients. Given the negative impact of maladaptive psychosocial and biobehavioral factors on normal immune system functions, the question remains as to how psychological conditions potentially affect the brain tumor patient anti-tumor immune response. Since immunotherapy has yet to show efficacy at increasing malignant glioma patient survival in all randomized, phase III clinical trials to-date, this review provides new insights into the potential negative effects of chronic distress on brain tumor patient immune functions and outcomes.
Collapse
|
29
|
Roque C, Mendes-Oliveira J, Baltazar G. G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes. J Neurochem 2019; 149:27-40. [PMID: 30570746 DOI: 10.1111/jnc.14648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Selective activation of the G protein-coupled estrogen receptor has been proposed to avoid some of the side effects elicited by the activation of classical estrogen receptors α and β. Although its contribution to neuroprotection triggered by estradiol in brain disorders has been explored, the results regarding ischemic stroke are contradictory, and currently, there is no consensus on the role that this receptor may play. The present study aimed to investigate the role of GPER in the ischemic insult. For that, primary cortical cultures exposed to oxygen and glucose deprivation (OGD) were used as a model. Our results demonstrate that neuronal survival was strongly affected by the ischemic insult and concurrent GPER activation with G1 had no further impact. In contrast, OGD had a smaller impact on astrocytes survival but G1, alone or combined with OGD, promoted their apoptosis. This effect was prevented by the GPER antagonist G15. The results also show that ischemia did not change the expression levels of GPER in neurons and astrocytes. In this study, we also demonstrate that selective activation of GPER induced astrocyte apoptosis via the phospholipase C pathway and subsequent intracellular calcium rise, whereas in neurons, this effect was not observed. Taken together, this evidence supports a direct impact of GPER activity on the viability of astrocytes, which seems to be associated with the regulation of different signaling pathways in astrocytes and neurons.
Collapse
Affiliation(s)
- Cláudio Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
30
|
Avecilla V, Avecilla A. Inhibitor of DNA-Binding/Differentiation Proteins and Environmental Toxicants: Genomic Impact on the Onset of Depressive Dysfunction. ACTA ACUST UNITED AC 2019; 7:medsci7010007. [PMID: 30634536 PMCID: PMC6358799 DOI: 10.3390/medsci7010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
The ongoing growth of the international occurrence of depression and its ability to co-occur with other serious medical disorders, such as heart disease, cancer, diabetes, and Parkinson’s disease, is a current public health problem. Inhibitor of DNA-Binding/Differentiation (ID) proteins are part of a group of transcriptional factors that have shown involvement in neurocognitive disorders and, therefore, may have influence on depressive disorders. Previously, it has been established that exposure to environmental estrogenic endocrine disruptors (EEDs), such as polychlorinated biphenyls (PCBs) and bisphenol A (BPA), have played an important role in the modulation of depressive disorders. Hence, based on many studies, we consider the impact of these environmental pollutants on the group of ID proteins and how they impact depressive outcomes. Improved knowledge of how ID proteins interact with depressive disorders, through EED exposure, will contribute essential evidence that can further benefit our public health community with innovative knowledge to prevent these types of mental illnesses.
Collapse
Affiliation(s)
- Vincent Avecilla
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA.
- Celgene Corporation, Summit, NJ 07901, USA.
| | - Andrea Avecilla
- Department of Clinical Psychology, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA.
| |
Collapse
|
31
|
Paroxetine Induces Apoptosis of Human Breast Cancer MCF-7 Cells through Ca 2+-and p38 MAP Kinase-Dependent ROS Generation. Cancers (Basel) 2019; 11:cancers11010064. [PMID: 30634506 PMCID: PMC6356564 DOI: 10.3390/cancers11010064] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
Abstract
Depression is more common in women with breast cancer than the general population. Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are widely used for the treatment of patients with depression and a range of anxiety-related disorders. The association between the use of antidepressant medication and breast cancer is controversial. In this study, we investigated whether and how SSRIs induce the death of human breast cancer MCF-7 cells. Of the antidepressants tested in this study (amitriptyline, bupropion, fluoxetine, paroxetine, and tianeptine), paroxetine most reduced the viability of MCF-7 cells in a time-and dose-dependent manner. The exposure of MCF-7 cells to paroxetine resulted in mitochondrion-mediated apoptosis, which is assessed by increase in the number of cells with sub-G1 DNA content, caspase-8/9 activation, poly (ADP-ribose) polymerase cleavage, and Bax/Bcl-2 ratio and a reduction in the mitochondrial membrane potential. Paroxetine increased a generation of reactive oxygen species (ROS), intracellular Ca2+ levels, and p38 MAPK activation. The paroxetine-induced apoptotic events were reduced by ROS scavengers and p38 MAPK inhibitor, and the paroxetine’s effect was dependent on extracellular Ca2+ level. Paroxetine also showed a synergistic effect on cell death induced by chemotherapeutic drugs in MCF-7 and MDA-MB-231 cells. Our results showed that paroxetine induced apoptosis of human breast cancer MCF-7 cells through extracellular Ca2+-and p38 MAPK-dependent ROS generation. These results suggest that paroxetine may serve as an anticancer adjuvant to current cancer therapies for breast cancer patients with or without depression.
Collapse
|
32
|
Jia Y, Han Y, Wang X, Han F. Role of apoptosis in the Post-traumatic stress disorder model-single prolonged stressed rats. Psychoneuroendocrinology 2018; 95:97-105. [PMID: 29843020 DOI: 10.1016/j.psyneuen.2018.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related mental disorder which occurs following exposure to traumatic events. A number of brain neuroimaging studies have revealed that PTSD patients have reduced volume and abnormal functions in the hippocampus and the amygdala. However, the pathogenesis of abnormalities in certain brain regions, as induced by PTSD, remains unclear. Recent studies, using the single prolonged stress (SPS) model, an animal model of PTSD, have found that abnormal apoptosis in certain brain regions, including the hippocampus, the amygdala, and the medial prefrontal cortex (mPFC); these areas are closely associated with emotion and cognition. In this review, we summarize the mechanism of apoptosis in SPS rats, including the endoplasmic reticulum (ER) and the mitochondria pathways. For the ER pathway, three individual pathways: PERK, IRE1, and ATF6 showed different roles on apoptosis and neuroprotection. Three key factors are thought to be involved in the mitochondrial pathway and PTSD-induced apoptosis: corticosteroid receptors, apoptosis-related factors, and anti-apoptosis factors. We have investigated the role of these factors and have attempted to identify which factors of the pathways are more focused towards neuronal protection, and which are more direct towards apoptosis. We also discussed the role of autophagy and the specific differences between autophagy and apoptosis in SPS rats. Finally, we discussed emerging researches related to anti-apoptosis treatment, including PERK inhibitors, IRE1 inhibitors, and metformin; collectively, these were exciting, but limited, This review provides a summary of the current understanding of apoptosis in SPS rats and the potential anti-apoptosis treatment strategies for PTSD.
Collapse
Affiliation(s)
- Yunbo Jia
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Yunhe Han
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Xinyue Wang
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Fang Han
- PTSD laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
33
|
Lozupone M, La Montagna M, D'Urso F, Piccininni C, Sardone R, Dibello V, Giannelli G, Solfrizzi V, Greco A, Daniele A, Quaranta N, Seripa D, Bellomo A, Logroscino G, Panza F. Pharmacotherapy for the treatment of depression in patients with alzheimer's disease: a treatment-resistant depressive disorder. Expert Opin Pharmacother 2018; 19:823-842. [PMID: 29726758 DOI: 10.1080/14656566.2018.1471136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pharmacotherapy for the treatment of depressive disorders in Alzheimer's Disease (AD) represents a clinical challenge. pharmacological options are often attempted after a period of watchful waiting (8-12 weeks). monoaminergic antidepressant drugs have shown only modest or null clinical benefits, maybe because the etiology of depressive symptoms in ad patients is fundamentally different from that of nondemented subjects. AREAS COVERED The following article looks at the selective serotonin reuptake inhibitor sertraline, which is one of the most frequently studied antidepressant medications in randomized controlled trials (RCTs). It also discusses many other pharmacological approaches that have proven to be inadequate (antipsychotics, acetylcholinesterase inhibitors, anticonvulsants, hormone replacement therapy) and new drug classes (mainly affecting glutamate transmission) that are being studied for treating depression in AD. It also gives discussion to the phase II RCT on the alternative drug S47445 and the potential effect on cognition of the multimodal antidepressant vortioxetine in older depressed patients. Finally, it discusses the N-methyl-D-aspartate antagonist ketamine. EXPERT OPINION The present RCT methodologies are too disparate to draw firm conclusions. Future studies are required to identify effective and multimodal pharmacological treatments that efficiently treat depression in AD. Genotyping may boost antidepressant treatment success.
Collapse
Affiliation(s)
- Madia Lozupone
- a Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy
| | - Maddalena La Montagna
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Francesca D'Urso
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Carla Piccininni
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Rodolfo Sardone
- c Department of Epidemiology and Biostatistics , National Institute of Gastroenterology "S. de Bellis" Research Hospital , Castellana Grotte, Bari , Italy
| | - Vittorio Dibello
- d Interdisciplinary Department of Medicine (DIM), Section of Dentistry , University of Bari Aldo Moro , Bari , Italy
| | - Gianluigi Giannelli
- c Department of Epidemiology and Biostatistics , National Institute of Gastroenterology "S. de Bellis" Research Hospital , Castellana Grotte, Bari , Italy
| | - Vincenzo Solfrizzi
- e Geriatric Medicine-Memory Unit and Rare Disease Centre , University of Bari Aldo Moro , Bari , Italy
| | - Antonio Greco
- f Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS "Casa Sollievo della Sofferenza" , San Giovanni Rotondo, Foggia , Italy
| | - Antonio Daniele
- g Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Nicola Quaranta
- h Otolaryngology Unit , University of Bari "Aldo Moro" , Bari , Italy
| | - Davide Seripa
- f Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS "Casa Sollievo della Sofferenza" , San Giovanni Rotondo, Foggia , Italy
| | - Antonello Bellomo
- b Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Giancarlo Logroscino
- a Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,i Department of Clinical Research in Neurology , University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico" , Tricase, Lecce , Italy
| | - Francesco Panza
- a Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,f Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS "Casa Sollievo della Sofferenza" , San Giovanni Rotondo, Foggia , Italy.,i Department of Clinical Research in Neurology , University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico" , Tricase, Lecce , Italy
| |
Collapse
|