1
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
2
|
Isola S, Gammeri L, Furci F, Gangemi S, Pioggia G, Allegra A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int J Mol Sci 2024; 25:7284. [PMID: 39000393 PMCID: PMC11241675 DOI: 10.3390/ijms25137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Vitamin C is a water-soluble vitamin introduced through the diet with anti-inflammatory, immunoregulatory, and antioxidant activities. Today, this vitamin is integrated into the treatment of many inflammatory pathologies. However, there is increasing evidence of possible use in treating autoimmune and neoplastic diseases. We reviewed the literature to delve deeper into the rationale for using vitamin C in treating this type of pathology. There is much evidence in the literature regarding the beneficial effects of vitamin C supplementation for treating autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) and neoplasms, particularly hematological neoplastic diseases. Vitamin C integration regulates the cytokines microenvironment, modulates immune response to autoantigens and cancer cells, and regulates oxidative stress. Moreover, integration therapy has an enhanced effect on chemotherapies, ionizing radiation, and target therapy used in treating hematological neoplasm. In the future, integrative therapy will have an increasingly important role in preventing pathologies and as an adjuvant to standard treatments.
Collapse
Affiliation(s)
- Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Luca Gammeri
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
3
|
Bradford HF, McDonnell TCR, Stewart A, Skelton A, Ng J, Baig Z, Fraternali F, Dunn-Walters D, Isenberg DA, Khan AR, Mauro C, Mauri C. Thioredoxin is a metabolic rheostat controlling regulatory B cells. Nat Immunol 2024; 25:873-885. [PMID: 38553615 PMCID: PMC11065695 DOI: 10.1038/s41590-024-01798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/28/2024] [Indexed: 05/04/2024]
Abstract
Metabolic programming is important for B cell fate, but the bioenergetic requirement for regulatory B (Breg) cell differentiation and function is unknown. Here we show that Breg cell differentiation, unlike non-Breg cells, relies on mitochondrial electron transport and homeostatic levels of reactive oxygen species (ROS). Single-cell RNA sequencing analysis revealed that TXN, encoding the metabolic redox protein thioredoxin (Trx), is highly expressed by Breg cells, unlike Trx inhibitor TXNIP which was downregulated. Pharmacological inhibition or gene silencing of TXN resulted in mitochondrial membrane depolarization and increased ROS levels, selectively suppressing Breg cell differentiation and function while favoring pro-inflammatory B cell differentiation. Patients with systemic lupus erythematosus (SLE), characterized by Breg cell deficiencies, present with B cell mitochondrial membrane depolarization, elevated ROS and fewer Trx+ B cells. Exogenous Trx stimulation restored Breg cells and mitochondrial membrane polarization in SLE B cells to healthy B cell levels, indicating Trx insufficiency underlies Breg cell impairment in patients with SLE.
Collapse
Affiliation(s)
- Hannah F Bradford
- Institute of Immunity and Transplantation, Pears Building, UCL Division of Infection and Immunity, University College London, London, UK.
| | | | - Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Joseph Ng
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Zara Baig
- Institute of Immunity and Transplantation, Pears Building, UCL Division of Infection and Immunity, University College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | | | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claudia Mauri
- Institute of Immunity and Transplantation, Pears Building, UCL Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
4
|
Dagsuyu E, Yanardag R. Purification of thioredoxin reductase from Spirulina platensis by affinity chromatography and investigation of kinetic properties. Protein Expr Purif 2024; 216:106417. [PMID: 38110108 DOI: 10.1016/j.pep.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH). Spirulina platensis, which is one of the blue-green algae in the form of spiral rings, belongs to the cyanobacteria class. Spirulina platensis can produce Trx under stress conditions. If it can produce Trx, it also has TrxR activity. Therefore, in this study, the TrxR enzyme was purified for the first time from Spirulina platensis, an algae the most grown and also used as a nutritional supplement in the world. A two-step purification process was used: preparation of the homogenate and 2',5'-ADP sepharose 4B affinity chromatography. The enzyme was purified with a purification fold of 1059.51, a recovery yield of 9.7 %, and a specific activity of 5.77 U/mg protein. The purified TrxR was tested for purity by SDS-PAGE. The molecular weight of its subunit was found to be about 45 kDa. Optimum pH, temperature and ionic strength of the enzyme were pH 7.0, 40 °C and 750 mM in phosphate buffer respectively. The Michaelis constant (Km) and maximum velocity of enzyme (Vmax) values for NADPH and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) are 5 μM and 2.2 mM, and 0.0033 U/mL and 0.0044 U/mL, respectively. Storage stability of the purified enzyme was determined at several temperatures. The inhibition effects of Ag+, Cu2+, Al3+ and Se4+ metal ions on the purified TrxR activity were investigated in vitro. While Se4+ ion increased the enzyme activity, other tested metal ions showed different type of inhibitory effects on the Lineweaver-Burk graphs.
Collapse
Affiliation(s)
- Eda Dagsuyu
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320, Avcilar, Istanbul, Turkey.
| | - Refiye Yanardag
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320, Avcilar, Istanbul, Turkey.
| |
Collapse
|
5
|
Dagsuyu E, Yanardag R. Purification and characterization of thioredoxin reductase enzyme from commercial Spirulina platensis tablets by affinity chromatography and investigation of the effects of some chemicals and drugs on enzyme activity. Biotechnol Appl Biochem 2024; 71:176-192. [PMID: 37864368 DOI: 10.1002/bab.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Thioredoxin reductase (TrxR, enzyme code [E.C.] 1.6.4.5) is a widely distributed flavoenzyme that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of thioredoxin and many other physiologically important substrates. Spirulina platensis is a blue-green algae that is often used as a dietary supplement. S. platensis is rich in protein, lipid, polysaccharide, pigment, carotenoid, enzyme, vitamins and many other chemicals and exhibits a variety of pharmacological functions. In the present study, a simple and efficient method to purify TrxR from S. platensis tablets is reported. The extractions were carried out using two different methods: heat denaturation and 2',5'-adenosine diphosphate Sepharose 4B affinity chromatography. The enzyme was purified by 415.04-fold over the crude extract, with a 19% yield, and specific activity of 0.7640 U/mg protein. Optimum pH, temperature and ionic strength of the enzyme activity, as well as the Michaelis constant (Km ) and maximum velocity of enzyme (Vmax ) values for NADPH and 5,5'-dithiobis(2-nitrobenzoic acid) were determined. Tested metal ions, vitamins, and drugs showed inhibition effects, except Se4+ ion, cefazolin sodium, teicoplanin, and tobramycin that increased the enzyme activity in vitro. Ag+ , Cu2+ , Mg2+ , Ni2+ , Pb2+ , Zn2+ , Al3+ , Cr3+ , Fe3+ , and V4+ ions; vitamin B3 , vitamin B6 , vitamin C, and vitamin U and aciclovir, azithromycin, benzyladenine, ceftriaxone sodium, clarithromycin, diclofenac, gibberellic acid, glurenorm, indole-3-butyric acid, ketorolac, metformin, mupirocin, mupirocin calcium, paracetamol, and tenofovir had inhibitory effects on TrxR. Ag+ exhibited stronger inhibition than 1-chloro-2,4-dinitrobenzene (a positive control).
Collapse
Affiliation(s)
- Eda Dagsuyu
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
6
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Asif Ali M, Khan N, Kaleem N, Ahmad W, Alharethi SH, Alharbi B, Alhassan HH, Al-Enazi MM, Razis AFA, Modu B, Calina D, Sharifi-Rad J. Anticancer properties of sulforaphane: current insights at the molecular level. Front Oncol 2023; 13:1168321. [PMID: 37397365 PMCID: PMC10313060 DOI: 10.3389/fonc.2023.1168321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate with multiple biomedical applications. Sulforaphane can be extracted from the plants of the genus Brassica. However, broccoli sprouts are the chief source of sulforaphane and are 20 to 50 times richer than mature broccoli as they contain 1,153 mg/100 g. SFN is a secondary metabolite that is produced as a result of the hydrolysis of glucoraphanin (a glucosinolate) by the enzyme myrosinase. This review paper aims to summarize and understand the mechanisms behind the anticancer potential of sulforaphane. The data was collected by searching PubMed/MedLine, Scopus, Web of Science, and Google Scholar. This paper concludes that sulforaphane provides cancer protection through the alteration of various epigenetic and non-epigenetic pathways. It is a potent anticancer phytochemical that is safe to consume with minimal side effects. However, there is still a need for further research regarding SFN and the development of a standard dose.
Collapse
Affiliation(s)
- Muhammad Asif Ali
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Noohela Khan
- Department of Nutrition Sciences, Rashid Latif Medical College, Lahore, Pakistan
| | - Nabeeha Kaleem
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmad
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, Saudi Arabia
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maher M. Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
8
|
Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The Importance of Thioredoxin-1 in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12051078. [PMID: 37237944 DOI: 10.3390/antiox12051078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thioredoxin-1 (Trx-1) is a multifunctional protein ubiquitously found in the human body. Trx-1 plays an important role in various cellular functions such as maintenance of redox homeostasis, proliferation, and DNA synthesis, but also modulation of transcription factors and control of cell death. Thus, Trx-1 is one of the most important proteins for proper cell and organ function. Therefore, modulation of Trx gene expression or modulation of Trx activity by various mechanisms, including post-translational modifications or protein-protein interactions, could cause a transition from the physiological state of cells and organs to various pathologies such as cancer, and neurodegenerative and cardiovascular diseases. In this review, we not only discuss the current knowledge of Trx in health and disease, but also highlight its potential function as a biomarker.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Leonie Kraft
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Moritz Schanz
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Jörg Latus
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Severin Schricker
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| |
Collapse
|
9
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol 2023; 119:110069. [PMID: 37150014 DOI: 10.1016/j.intimp.2023.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
The redox state is essential to the process of cell life, which determines cell fate. As an important signaling molecule of the redox state, reactive oxygen species (ROS) are crucial for the homeostasis of immune cells and participate in the pathological processes of different diseases. We discuss the underlying mechanisms and possible signaling pathways of ROS to fine-tune the proliferation, differentiation, polarization and function of immune cells, including T cells, B cells, neutrophils, macrophages, myeloid-derived inhibitory cells (MDSCs) and dendritic cells (DCs). We further emphasize how excessive ROS lead to programmed immune cell death such as apoptosis, ferroptosis, pyroptosis, NETosis and necroptosis, providing valuable insights for future therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Benqi Huang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Jingdong Cao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yifei Wang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Hao Xiao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| |
Collapse
|
10
|
Tan Z, Dong F, Wu L, Feng Y, Zhang M, Zhang F. Transcutaneous Electrical Nerve Stimulation (TENS) Alleviates Brain Ischemic Injury by Regulating Neuronal Oxidative Stress, Pyroptosis, and Mitophagy. Mediators Inflamm 2023; 2023:5677865. [PMID: 37101593 PMCID: PMC10125764 DOI: 10.1155/2023/5677865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Background As a noninvasive treatment, transcutaneous electrical nerve stimulation (TENS) has been utilized to treat various diseases in clinic. However, whether TENS can be an effective intervention in the acute stage of ischemic stroke still remains unclear. In the present study, we aimed to explore whether TENS could alleviate brain infarct volume, reduce oxidative stress and neuronal pyroptosis, and activate mitophagy following ischemic stroke. Methods TENS was performed at 24 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats for 3 consecutive days. Neurological scores, the volume of infarction, and the activity of SOD, MDA, GSH, and GSH-px were measured. Moreover, western blot was performed to detect the related protein expression, including Bcl-2, Bax, TXNIP, GSDMD, caspase-1, NLRP3, BRCC3, HIF-1α, BNIP3, LC3, and P62. Real-time PCR was performed to detect NLRP3 expression. Immunofluorescence was performed to detect the levels of LC3. Results There was no significant difference of neurological deficit scores between the MCAO group and the TENS group at 2 h after MCAO/R operation (P > 0.05), while the neurological deficit scores of TENS group significantly decreased in comparison with MCAO group at 72 h following MACO/R injury (P < 0.05). Similarly, TENS treatment significantly reduced the brain infarct volume compared with the MCAO group (P < 0.05). Moreover, TENS decreased the expression of Bax, TXNIP, GSDMD, caspase-1, BRCC3, NLRP3, and P62 and the activity of MDA as well as increasing the level of Bcl-2, HIF-1α, BNIP3, and LC3 and the activity of SOD, GSH, and GSH-px (P < 0.05). Conclusions In conclusion, our results indicated that TENS alleviated brain damage following ischemic stroke via inhibiting neuronal oxidative stress and pyroptosis and activating mitophagy, possibly via the regulation of TXNIP, BRCC3/NLRP3, and HIF-1α/BNIP3 pathways.
Collapse
Affiliation(s)
- Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, China
| | - Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Yashuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050051, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China
| |
Collapse
|
11
|
Muri J, Kopf M. The thioredoxin system: Balancing redox responses in immune cells and tumors. Eur J Immunol 2023; 53:e2249948. [PMID: 36285367 PMCID: PMC10100330 DOI: 10.1002/eji.202249948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
The thioredoxin (TRX) system is an important contributor to cellular redox balance and regulates cell growth, apoptosis, gene expression, and antioxidant defense in nearly all living cells. Oxidative stress, the imbalance between reactive oxygen species (ROS) and antioxidants, can lead to cell death and tissue damage, thereby contributing to aging and to the development of several diseases, including cardiovascular and allergic diseases, diabetes, and neurological disorders. Targeting its activity is also considered as a promising strategy in the treatment of cancer. Over the past years, immunologists have established an essential function of TRX for activation, proliferation, and responses in T cells, B cells, and macrophages. Upon activation, immune cells rearrange their redox system and activate the TRX pathway to promote proliferation through sustainment of nucleotide biosynthesis, and to support inflammatory responses in myeloid cells by allowing NF-κB and NLRP3 inflammasome responses. Consequently, targeting the TRX system may therapeutically be exploited to inhibit immune responses in inflammatory conditions. In this review, we summarize recent insights revealing key roles of the TRX pathway in immune cells in health and disease, and lessons learnt for cancer therapy.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
13
|
Newly Synthesized Thymol Derivative and Its Effect on Colorectal Cancer Cells. Molecules 2022; 27:molecules27092622. [PMID: 35565973 PMCID: PMC9103784 DOI: 10.3390/molecules27092622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Thymol affects various types of tumor cell lines, including colorectal cancer cells. However, the hydrophobic properties of thymol prevent its wider use. Therefore, new derivatives (acetic acid thymol ester, thymol β-D-glucoside) have been synthesized with respect to hydrophilic properties. The cytotoxic effect of the new derivatives on the colorectal cancer cell lines HT-29 and HCT-116 was assessed via MTT assay. The genotoxic effect was determined by comet assay and micronucleus analysis. ROS production was evaluated using ROS-Glo™ H2O2 Assay. We confirmed that one of the thymol derivatives (acetic acid thymol ester) has the potential to have a cyto/genotoxic effect on colorectal cancer cells, even at much lower (IC50~0.08 μg/mL) concentrations than standard thymol (IC50~60 μg/mL) after 24 h of treatment. On the other side, the genotoxic effect of the second studied derivative-thymol β-D-glucoside was observed at a concentration of about 1000 μg/mL. The antiproliferative effect of studied derivatives of thymol on the colorectal cancer cell lines was found to be both dose- and time-dependent at 100 h. Moreover, thymol derivative-treated cells did not show any significantly increased rate of micronuclei formation. New derivatives of thymol significantly increased ROS production too. The results confirmed that the effect of the derivative on tumor cells depends on its chemical structure, but further detailed research is needed. However, thymol and its derivatives have great potential in the prevention and treatment of colorectal cancer, which remains one of the most common cancers in the world.
Collapse
|
14
|
Expanding the armory for treating lymphoma: Targeting redox cellular status through thioredoxin reductase inhibition. Pharmacol Res 2022; 177:106134. [DOI: 10.1016/j.phrs.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
|
15
|
Huang J, Li JX, Ma LR, Xu DH, Wang P, Li LQ, Yu LL, Li Y, Li RZ, Zhang H, Zheng YH, Tang L, Yan PY. Traditional Herbal Medicine: A Potential Therapeutic Approach for Adjuvant Treatment of Non-small Cell Lung Cancer in the Future. Integr Cancer Ther 2022; 21:15347354221144312. [PMID: 36567455 PMCID: PMC9806388 DOI: 10.1177/15347354221144312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
Lung carcinoma is the primary reason for cancer-associated mortality, and it exhibits the highest mortality and incidence in developed and developing countries. Non-small cell lung cancer (NSCLC) and SCLC are the 2 main types of lung cancer, with NSCLC contributing to 85% of all lung carcinoma cases. Conventional treatment mainly involves surgery, chemoradiotherapy, and immunotherapy, but has a dismal prognosis for many patients. Therefore, identifying an effective adjuvant therapy is urgent. Historically, traditional herbal medicine has been an essential part of complementary and alternative medicine, due to its numerous targets, few side effects and substantial therapeutic benefits. In China and other East Asian countries, traditional herbal medicine is increasingly popular, and is highly accepted by patients as a clinical adjuvant therapy. Numerous studies have reported that herbal extracts and prescription medications are effective at combating tumors. It emphasizes that, by mainly regulating the P13K/AKT signaling pathway, the Wnt signaling pathway, and the NF-κB signaling pathway, herbal medicine induces apoptosis and inhibits the proliferation and migration of tumor cells. The present review discusses the anti-NSCLC mechanisms of herbal medicines and provides options for future adjuvant therapy in patients with NSCLC.
Collapse
Affiliation(s)
- Jie Huang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Jia-Xin Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Lin-Rui Ma
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Dong-Han Xu
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Peng Wang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Li-Qi Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Li-Li Yu
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Yu Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Run-Ze Li
- Second Affiliated Hospital of Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Zhang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Yu-Hong Zheng
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Ling Tang
- Southern Medical University, Guangzhou,
Guangdong, China
- Guangdong Provincial Key Laboratory of
Chinese Medicine Pharmaceutics, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering
Laboratory of Chinese Medicine Preparation Technology, Guangzhou, Guangdong,
China
| | - Pei-Yu Yan
- Macau University of Science and
Technology, Taipa, Macau, China
| |
Collapse
|
16
|
Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021; 9:biomedicines9121942. [PMID: 34944758 PMCID: PMC8698563 DOI: 10.3390/biomedicines9121942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.
Collapse
|
17
|
Jovanovic B, Eiermann N, Talwar D, Boulougouri M, Dick TP, Stoecklin G. Thioredoxin 1 is required for stress granule assembly upon arsenite-induced oxidative stress. Food Chem Toxicol 2021; 156:112508. [PMID: 34390821 DOI: 10.1016/j.fct.2021.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 10/25/2022]
Abstract
Arsenic is a major water pollutant and health hazard, leading to acute intoxication and, upon chronic exposure, several diseases including cancer development. Arsenic exerts its pronounced cellular toxicity through its trivalent oxide arsenite (ASN), which directly inhibits numerous proteins including Thioredoxin 1 (Trx1), and causes severe oxidative stress. Cells respond to arsenic by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic condensates of stalled mRNAs, translation factors and RNA-binding proteins. The biological role of SGs is diverse and not completely understood; they are important for regulation of cell signaling and survival under stress conditions, and for adapting de novo protein synthesis to the protein folding capacity during the recovery from stress. In this study, we identified Trx1 as a novel component of SGs. Trx1 is required for the assembly of ASN-induced SGs, but not for SGs induced by energy deprivation or heat shock. Importantly, our results show that Trx1 is essential for cell survival upon acute exposure to ASN, through a mechanism that is independent of translation inhibition.
Collapse
Affiliation(s)
- Bogdan Jovanovic
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Deepti Talwar
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Boulougouri
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Citarinostat and Momelotinib co-target HDAC6 and JAK2/STAT3 in lymphoid malignant cell lines: a potential new therapeutic combination. Apoptosis 2021; 25:370-387. [PMID: 32394008 PMCID: PMC7244621 DOI: 10.1007/s10495-020-01607-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylase (HDAC) inhibitors represent an encouraging class of antitumor drugs. HDAC inhibitors induce a series of molecular and biological responses and minimal toxicity to normal cells. Citarinostat (Acy-241) is a second generation, orally administered, HDAC6-selective inhibitor. Momelotinib (CYT387) is an orally administered inhibitor of Janus kinase/signal transducer of transcription-3 (JAK/STAT3) signaling. Momelotinib showed efficacy in patients with myelofibrosis. We hypothesized that both HDAC and JAK/STAT pathways were important in lymphoproliferative disorders, and that inhibiting JAK/STAT3 and HDAC simultaneously might enhance the efficacy of momelotinib and citarinostat without increasing toxicity. Accordingly, we tested the citarinostat + momelotinib combination in lymphoid cell lines. Citarinostat + momelotinib showed strong cytotoxicity; it significantly reduced mitochondrial membrane potential, down-regulated Bcl-2 and Bcl-xL, and activated caspases 9 and 3. Caspase-8 was upregulated in only two lymphoid cell lines, which indicated activation of the extrinsic apoptotic pathway. We identified a lymphoid cell line that was only slightly sensitive to the combination treatment. We knocked down thioredoxin expression by transfecting with small interfering RNA that targeted thioredoxin. This knockdown increased cell sensitivity to the combination-induced cell death. The combination treatment reduced Bcl-2 expression, activated caspase 3, and significantly inhibited cell viability and clonogenic survival.
Collapse
|
19
|
Testis-Specific Thioredoxins TXNDC2, TXNDC3, and TXNDC6 Are Expressed in Both Testicular and Systemic DLBCL and Correlate with Clinical Disease Presentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8026941. [PMID: 33603952 PMCID: PMC7870302 DOI: 10.1155/2021/8026941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
DLBCL is the most common type of non-Hodgkin lymphoma with a substantial group of patients suffering a poor prognosis. Therefore more specific markers are required for better understanding of disease biology and treatment. This study demonstrates that testis-specific antioxidant enzymes TXNDC2, TXNDC3, and TXNDC6 alongside oxidative stress marker 8-OHdG are expressed in both testicular and systemic DLBCL, and their presence or absence has correlations with clinical risk factors such as the number of extranodal effusion, the appearance of B-symptoms, and treatment response. Biopsy samples were collected from 28 systemic and 21 testicular male DLBCL patients. The samples were histostained with TXNDC2, TXNDC3, TXNDC6, and 8-OHdG, then graded by a hematopathologist blinded to clinical data. Immunoelectron microscopy was used as a second method to confirm the reliability of the acquired immunohistochemistry data. The absence of nuclear TXNDC2 expression in testicular DLBCL cells correlated with worse primary treatment response, cytoplasmic TXNDC3 expression in testicular and systemic DLBCL associated with lower frequency of B-symptoms, and TXNDC6 expression in cytoplasm in systemic DLBCL had a clinical significance with higher LD levels suggesting a role in the biological nature of these lymphomas. Overall, TXNDC3 cytoplasmic expression is correlated with a more positive outcome in both testicular and systemic DLBCL, while TXNDC6 cytoplasmic expression is associated with a negative outcome in systemic DLBCL.
Collapse
|
20
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
21
|
Merk R, Heßelbach K, Osipova A, Popadić D, Schmidt-Heck W, Kim GJ, Günther S, Piñeres AG, Merfort I, Humar M. Particulate Matter (PM 2.5) from Biomass Combustion Induces an Anti-Oxidative Response and Cancer Drug Resistance in Human Bronchial Epithelial BEAS-2B Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8193. [PMID: 33171923 PMCID: PMC7664250 DOI: 10.3390/ijerph17218193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Nearly half of the world's population relies on combustion of solid biofuels to cover fundamental energy demands. Epidemiologic data demonstrate that particularly long-term emissions adversely affect human health. However, pathological molecular mechanisms are insufficiently characterized. Here we demonstrate that long-term exposure to fine particulate matter (PM2.5) from biomass combustion had no impact on cellular viability and proliferation but increased intracellular reactive oxygen species (ROS) levels in bronchial epithelial BEAS-2B cells. Exposure to PM2.5 induced the nuclear factor erythroid 2-related factor 2 (Nrf2) and mediated an anti-oxidative response, including enhanced levels of intracellular glutathione (GSH) and nuclear accumulation of heme oxygenase-1 (HO-1). Activation of Nrf2 was promoted by the c-Jun N-terminal kinase JNK1/2, but not p38 or Akt, which were also induced by PM2.5. Furthermore, cells exposed to PM2.5 acquired chemoresistance to doxorubicin, which was associated with inhibition of apoptosis and elevated levels of GSH in these cells. Our findings propose that exposure to PM2.5 induces molecular defense mechanisms, which prevent cellular damage and may thus explain the initially relative rare complications associated with PM2.5. However, consistent induction of pro-survival pathways may also promote the progression of diseases. Environmental conditions inducing anti-oxidative responses may have the potential to promote a chemoresistant cellular phenotype.
Collapse
Affiliation(s)
- Regina Merk
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Katharina Heßelbach
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Anastasiya Osipova
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Désirée Popadić
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Wolfgang Schmidt-Heck
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll Institute (HKI), 07745 Jena, Germany;
| | - Gwang-Jin Kim
- Department of Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany; (G.-J.K.); (S.G.)
| | - Stefan Günther
- Department of Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany; (G.-J.K.); (S.G.)
| | - Alfonso García Piñeres
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, 11501-2060 San José, Costa Rica;
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Matjaz Humar
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| |
Collapse
|
22
|
Balan DJ, Rajavel T, Das M, Sathya S, Jeyakumar M, Devi KP. Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacol Rep 2020; 73:240-254. [PMID: 33095436 DOI: 10.1007/s43440-020-00171-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thymol is a monoterpene phenol found in thyme species plants. The present study was carried out to investigate the effect of thymol and its molecular mechanism on non-small lung cancer (A549) cells. METHODS The cytotoxic effect of thymol on A549 cells was assessed via MTT assay. ROS production, macromolecular damage, apoptosis were determined using DCF-DA, PI, AO/EtBr stains, respectively. ROS-dependent effect of thymol was confirmed using NAC. The expression of caspase-9, Bcl-2, Bax and cell cycle profile was analyzed via western blot and FACS, respectively. RESULTS The antiproliferative effect of thymol on A549 cells was found to be both dose and time dependent with IC50 values of 112 μg/ml (745 μM) at 24 h. Thymol treatment favored apoptotic cell death and caused G0/G1 cell cycle arrest. It mediated cellular and nuclear morphological changes, phosphatidylserine translocation, and mitochondrial membrane depolarization. Additionally, upregulation of Bax, downregulation of Bcl-2, and apoptotic fragmented DNA were also observed. Thymol induced ROS by reducing the SOD level which was confirmed via in vitro and in silico analysis. Furthermore, the levels of lipid peroxides and protein carbonyl content were elevated in thymol-treated groups. Notably, N-acetyl cysteine pretreatment reversed the efficacy of thymol on A549 cells. Moreover, thymol-treated human PBMC cells did not show any significant cytotoxicity. CONCLUSION Overall, our results confirmed that thymol can act as a safe and potent therapeutic agent to treat NSCLC.
Collapse
Affiliation(s)
- Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
23
|
Kari EJM, Kuusisto MEL, Honkavaara P, Hakalahti A, Haapasaari KM, Bloigu R, Karihtala P, Teppo HR, Pirinen R, Turpeenniemi-Hujanen T, Kuittinen O. Thioredoxin-1 as a biological predictive marker for selecting diffuse large B-cell lymphoma patients for etoposide-containing treatment. Eur J Haematol 2020; 105:156-163. [PMID: 32248578 DOI: 10.1111/ejh.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE In diffuse large B-cell lymphoma (DLBCL), there is an unmet medical need to select patients who would benefit from intensified frontline treatments such as adding etoposide to an R-CHOP regimen. METHODS The present work included a retrospective clinical analysis of two patient cohorts and an in vitro study. Primary biopsy samples from DLBCL patients treated with an etoposide-containing high-dose regimen (n = 37) and etoposide-containing frontline treatment (n = 69, R-CHOEP) were studied using immunohistochemical thioredoxin-1 (Trx1) staining. Two DLBCL cell lines expressing Trx1 were cultured, and their expression was silenced using the small interfering RNA knockdown technique. Chemoresistance was tested with doxorubicin, etoposide, vincristine, prednisolone and carboplatin. RESULTS Thioredoxin-1 knockdown sensitised DLBCL cells to doxorubicin (P < .0001) but decreased etoposide-induced cell death (P < .00001). In DLBCL patients who received etoposide-containing frontline treatment, low cytoplasmic Trx1 expression was associated with inferior 5-year overall survival (46% vs 76%, P = .026) and disease-specific survival (68% vs 90%, P = .026). CONCLUSIONS Strong Trx1 expression appears to increase drug resistance to doxorubicin but sensitises cells to etoposide. This implies that Trx1 expression might be the first predictive biological marker to select the patients who might benefit from adding etoposide to R-CHOP immunochemotherapy.
Collapse
Affiliation(s)
- Esa Jarkko Mikael Kari
- Department of Oncology and Radiotherapy, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Milla Elvi Linnea Kuusisto
- Department of Oncology and Radiotherapy, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Päivi Honkavaara
- Department of Oncology and Radiotherapy, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Anna Hakalahti
- Department of Oncology and Radiotherapy, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | | | - Risto Bloigu
- Medical Informatics and Statistics Research Group, University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Hanna-Riikka Teppo
- Department of Pathology, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Risto Pirinen
- Department of Pathology, North Karelia Central Hospital, Joensuu, Finland
| | - Taina Turpeenniemi-Hujanen
- Department of Oncology and Radiotherapy, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Outi Kuittinen
- Department of Oncology, Faculty of Health Medicine, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Mao Z, Yang X, Mizutani S, Huang Y, Zhang Z, Shinmori H, Gao K, Yao J. Hydrogen Sulfide Mediates Tumor Cell Resistance to Thioredoxin Inhibitor. Front Oncol 2020; 10:252. [PMID: 32219063 PMCID: PMC7078679 DOI: 10.3389/fonc.2020.00252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Thioredoxin (Trx) is a pro-oncogenic molecule that underlies tumor initiation, progression and chemo-resistance. PX-12, a Trx inhibitor, has been used to treat certain tumors. Currently, factors predicting tumor sensitivity to PX-12 are unclear. Given that hydrogen sulfide (H2S), a gaseous bio-mediator, promotes Trx activity, we speculated that it might affect tumor response to PX-12. Here, we tested this possibility. Exposure of several different types of tumor cells to PX-12 caused cell death, which was reversely correlated with the levels of H2S-synthesizing enzyme CSE and endogenous H2S. Inhibition of CSE sensitized tumor cells to PX-12, whereas addition of exogenous H2S elevated PX-12 resistance. Further experiments showed that H2S abolished PX-12-mediated inhibition on Trx. Mechanistic analyses revealed that H2S stimulated Trx activity. It promoted Trx from the oxidized to the reduced state. In addition, H2S directly cleaved the disulfide bond in PX-12, causing PX-12 deactivation. Additional studies found that, besides Trx, PX-12 also interacted with the thiol residues of other proteins. Intriguingly, H2S-mediated cell resistance to PX-12 could also be achieved through promotion of the thiol activity of these proteins. Addition of H2S-modified protein into culture significantly enhanced cell resistance to PX-12, whereas blockade of extracellular sulfhydryl residues sensitized cells to PX-12. Collectively, our study revealed that H2S mediated tumor cell resistance to PX-12 through multiple mechanisms involving induction of thiol activity in multiple proteins and direct inactivation of PX-12. H2S could be used to predict tumor response to PX-12 and could be targeted to enhance the therapeutic efficacy of PX-12.
Collapse
Affiliation(s)
- Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan.,Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Xiawen Yang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Sayumi Mizutani
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Hideyuki Shinmori
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| |
Collapse
|
25
|
Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules 2020; 10:biom10010135. [PMID: 31947673 PMCID: PMC7023176 DOI: 10.3390/biom10010135] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s.
Collapse
|
26
|
Zhang D, Liu Y, Luo Z, Chen Y, Xu A, Liang Y, Wu B, Tong X, Liu X, Shen H, Liu L, Wei Y, Zhou H, Liu Y, Zhou F. The novel thioredoxin reductase inhibitor A-Z2 triggers intrinsic apoptosis and shows efficacy in the treatment of acute myeloid leukemia. Free Radic Biol Med 2020; 146:275-286. [PMID: 31730934 DOI: 10.1016/j.freeradbiomed.2019.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/24/2022]
Abstract
Chemoresistance and high incidence of relapse in acute myeloid leukemia (AML) patients are associated with thioredoxin (Trx) overexpression. Thus, targeting the Trx system has emerged as a promising approach to treating AML. Both arsenicals and azelaic acid (AZA) are thioredoxin reductase (TrxR) inhibitors and possess antileukemic effects. In this study, to exploit agents with higher potency and lower toxicity, we got some organic arsenicals and further synthesized a series of targeted compounds by binding AZA to organic arsenicals, and then screened the most effective one, N-(4-(1, 3, 2-dithiarsinan-2-yl) phenyl)-azelamide (A-Z2). A-Z2 showed a stronger inhibitory effect against TrxR activity and in AML cell lines than did AZA or arsenicals. Additionally, A-Z2 was less toxic to healthy cells compared with traditional chemotherapeutic drugs. A-Z2 induces apoptosis by collapsing of mitochondrial membrane potential, reducing ATP level, releasing of cytochrome c and TNF-α, activating of caspase 9, 8 and 3. Analysis of the mechanism revealed that A-Z2 activates the intrinsic apoptotic pathway by directly selectively targeting TrxR/Trx and indirectly inhibiting NF-κB. A-Z2's better efficacy and safety profile against arsenicals and azelaic acid were also evident in vivo. A-Z2 had better plasma stability and biological activity in rats. A-Z2-treated mice displayed significant symptom relief and prolonged survival in a patient-derived xenograft (PDX) AML model. Herein, our study provides a novel antitumor candidate and approach for treating AML.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yujiao Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyi Luo
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yanling Chen
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Anjie Xu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Haibing Zhou
- State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China.
| |
Collapse
|
27
|
Spatial oxidation of L-plastin downmodulates actin-based functions of tumor cells. Nat Commun 2019; 10:4073. [PMID: 31501427 PMCID: PMC6733871 DOI: 10.1038/s41467-019-11909-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/06/2019] [Indexed: 01/15/2023] Open
Abstract
Several antitumor therapies work by increasing reactive oxygen species (ROS) within the tumor micromilieu. Here, we reveal that L-plastin (LPL), an established tumor marker, is reversibly regulated by ROS-induced thiol oxidation on Cys101, which forms a disulfide bridge with Cys42. LPL reduction is mediated by the Thioredoxin1 (TRX1) system, as shown by TRX1 trapping, TRX1 knockdown and blockade of Thioredoxin1 reductase (TRXR1) with auranofin. LPL oxidation diminishes its actin-bundling capacity. Ratiometric imaging using an LPL-roGFP-Orp1 fusion protein and a dimedone-based proximity ligation assay (PLA) reveal that LPL oxidation occurs primarily in actin-based cellular extrusions and strongly inhibits cell spreading and filopodial extension formation in tumor cells. This effect is accompanied by decreased tumor cell migration, invasion and extracellular matrix (ECM) degradation. Since LPL oxidation occurs following treatment of tumors with auranofin or γ-irradiation, it may be a molecular mechanism contributing to the effectiveness of tumor treatment with redox-altering therapies. The actin-remodelling protein L-plastin promotes tumour migration and invasion. Here, the authors show that L-plastin is regulated spatially by ROS-induced thiol oxidation which inhibits its actin-bundling function and cell spreading and filopodial extension formation in tumor cells.
Collapse
|
28
|
Zhu H, Tao X, Zhou L, Sheng B, Zhu X, Zhu X. Expression of thioredoxin 1 and peroxiredoxins in squamous cervical carcinoma and its predictive role in NACT. BMC Cancer 2019; 19:865. [PMID: 31470801 PMCID: PMC6716838 DOI: 10.1186/s12885-019-6046-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/16/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND This study aims to investigate the expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 in bulky cervical squamous carcinoma and its predictive role in cisplatin-based neoadjuvant chemotherapy. METHODS Initially, the expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 protein was analyzed in 13 human cervical squamous cancer tissues and their paired adjacent non-cancerous tissues by western-blotting and immunohistochemistry. Then, correlation between the expression of thioredoxin 1, peroxiredoxin 1, peroxiredoxin 2 and responses to cisplatin-based neoadjuvant chemotherapy was analyzed in 35 paired tumor samples (pre- and post-chemotherapy) from bulky cervical squamous cancer patients by immunohistochemistry. RESULTS A clinical response occurred in 48.6% (17/35) of patients, including 14.3% (5/35) with a complete response and 34.3% (12/35) with a partial response. The expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 was much higher in cervical squamous cancer tissues compared with paired adjacent non-cancerous tissues by western-blotting and immunohistochemistry. Additionally, the expression of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 was significantly up-regulated in post-chemotherapy tissues compared to pre-chemotherapy cervical cancer tissues. High levels of thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 were associated with a poor chemotherapy response in cervical squamous cancer patients. CONCLUSIONS Thioredoxin 1, peroxiredoxin 1 and peroxiredoxin 2 are frequently over-expressed in cervical squamous cancer. High expression levels of these proteins were related to a poor response to cisplatin-based neoadjuvant chemotherapy. The present study is the first report that thioredoxin peroxidase system may serve as a prediction of the responses to neoadjuvant chemotherapy in cervical squamous cancer.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xuejiao Tao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Lulu Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Bo Sheng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xuejie Zhu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Shangcaicun Road, Wenzhou, 325000 China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
29
|
Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549 cells via targeting thioredoxin reductase by a p53 dependent mechanism. Eur J Pharmacol 2019; 855:112-123. [DOI: 10.1016/j.ejphar.2019.04.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
|
30
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
|
31
|
Inhibition of thioredoxin-dependent H 2O 2 removal sensitizes malignant B-cells to pharmacological ascorbate. Redox Biol 2018; 21:101062. [PMID: 30576925 PMCID: PMC6302138 DOI: 10.1016/j.redox.2018.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/31/2023] Open
Abstract
L-ascorbate (L-ASC) is a widely-known dietary nutrient which holds promising potential in cancer therapy when given parenterally at high doses. The anticancer effects of L-ASC involve its autoxidation and generation of H2O2, which is selectively toxic to malignant cells. Here we present that thioredoxin antioxidant system plays a key role in the scavenging of extracellularly-generated H2O2 in malignant B-cells. We show that inhibition of peroxiredoxin 1, the enzyme that removes H2O2 in a thioredoxin system-dependent manner, increases the sensitivity of malignant B-cells to L-ASC. Moreover, we demonstrate that auranofin (AUR), the inhibitor of the thioredoxin system that is used as an antirheumatic drug, diminishes the H2O2-scavenging capacity of malignant B-cells and potentiates pharmacological ascorbate anticancer activity in vitro and in vivo. The addition of AUR to L-ASC-treated cells triggers the accumulation of H2O2 in the cells, which results in iron-dependent cytotoxicity. Importantly, the synergistic effects are observed at as low as 200 µM L-ASC concentrations. In conclusion, we observed strong, synergistic, cancer-selective interaction between L-ASC and auranofin. Since both of these agents are available in clinical practice, our findings support further investigations of the efficacy of pharmacological ascorbate in combination with auranofin in preclinical and clinical settings. Lack of peroxiredoxin 1 potentiates antileukemic activity of L-ascorbate in vitro and in vivo. Auranofin and L-ascorbate synergistically kill malignant B cells. Auranofin leads to intracellular accumulation of H2O2 generated by L-ascorbate. Auranofin and L-ascorbate trigger iron-dependent oxidative damage and cytotoxicity.
Collapse
|
32
|
Eckhardt BL, Gagliardi M, Iles L, Evans K, Ivan C, Liu X, Liu CG, Souza G, Rao A, Meric-Bernstam F, Ueno NT, Bartholomeusz GA. Clinically relevant inflammatory breast cancer patient-derived xenograft-derived ex vivo model for evaluation of tumor-specific therapies. PLoS One 2018; 13:e0195932. [PMID: 29768500 PMCID: PMC5955489 DOI: 10.1371/journal.pone.0195932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive presentation of invasive breast cancer with a 62% to 68% 5-year survival rate. It is the most lethal form of breast cancer, and early recognition and treatment is important for patient survival. Like non-inflammatory breast cancer, IBC comprises multiple subtypes, with the triple-negative subtype being overrepresented. Although the current multimodality treatment regime of anthracycline- and taxane-based neoadjuvant therapy, surgery, and radiotherapy has improved the outcome of patients with triple-negative IBC, overall survival continues to be worse than in patients with non-inflammatory locally advanced breast cancer. Translation of new therapies into the clinics to successfully treat IBC has been poor, in part because of the lack of in vitro preclinical models that can accurately predict the response of the original tumor to therapy. We report the generation of a preclinical IBC patient-derived xenograft (PDX)-derived ex vivo (PDXEx) model and show that it closely replicates the tissue architecture of the original PDX tumor harvested from mice. The gene expression profile of our IBC PDXEx model had a high degree of correlation to that of the original tumor. This suggests that the process of generating the PDXEx model did not significantly alter the molecular signature of the original tumor. We demonstrate a high degree of similarity in drug response profile between a PDX mouse model and our PDXEx model generated from the same original PDX tumor tissue and treated with the same panel of drugs, indicating that our PDXEx model had high predictive value in identifying effective tumor-specific therapies. Finally, we used our PDXEx model as a platform for a robotic-based high-throughput drug screen of a 386-drug anti-cancer compound library. The top candidates identified from this drug screen all demonstrated greater therapeutic efficacy than the standard-of-care drugs used in the clinic to treat triple-negative IBC, doxorubicin and paclitaxel. Our PDXEx model is simple, and we are confident that it can be incorporated into a PDX mouse system for use as a first-pass screening platform. This will permit the identification of effective tumor-specific therapies with high predictive value in a resource-, time-, and cost-efficient manner.
Collapse
Affiliation(s)
- Bedrich L. Eckhardt
- Department of Breast Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Maria Gagliardi
- Department of Breast Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - LaKesla Iles
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Kurt Evans
- Department of Investigational Cancer Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Glauco Souza
- Nano3D Biosciences, Houston, Texas, United States of America
- University of Texas Health Science Center, Houston, Texas, United States of America
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Geoffrey A. Bartholomeusz
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Raninga PV, Di Trapani G, Tonissen KF. The Multifaceted Roles of DJ-1 as an Antioxidant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:67-87. [PMID: 29147904 DOI: 10.1007/978-981-10-6583-5_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The DJ-1 protein was originally linked with Parkinson's disease and is now known to have antioxidant functions. The protein has three redox-sensitive cysteine residues, which are involved in its dimerisation and functional properties. A mildly oxidised form of DJ-1 is the most active form and protects cells from oxidative stress conditions. DJ-1 functions as an antioxidant through a variety of mechanisms, including a weak direct antioxidant activity by scavenging reactive oxygen species. DJ-1 also regulates a number of signalling pathways, including the inhibition of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis under oxidative stress conditions. Other proteins regulated by DJ-1 include enzymes, chaperones, the 20S proteasome and transcription factors, including Nrf2. Once activated by oxidative stress, Nrf2 upregulates antioxidant gene expression including members of the thioredoxin and glutathione pathways, which in turn mediate an antioxidant protective function. Crosstalk between DJ-1 and both the thioredoxin and glutathione systems has also been identified. Thioredoxin reduces a cysteine residue on DJ-1 to modulate its activity, while glutaredoxin1 de-glutathionylates DJ-1, preventing degradation of DJ-1 and resulting in its accumulation. DJ-1 also regulates the activity of glutamate cysteine ligase, which is the rate-limiting step for glutathione synthesis. These antioxidant functions of DJ-1 are key to its role in protecting neurons from oxidative stress and are hypothesised to protect the brain from the development of neurodegenerative diseases such as Parkinson's disease (PD) and to protect cardiac tissues from ischaemic-reperfusion injury. However, DJ-1, as an antioxidant, also protects cancer cells from undergoing oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Prahlad V Raninga
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Giovanna Di Trapani
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Kathryn F Tonissen
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
34
|
Mieszala K, Rudewicz M, Gomulkiewicz A, Ratajczak-Wielgomas K, Grzegrzolka J, Dziegiel P, Borska S. Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncol Lett 2018; 15:5825-5832. [PMID: 29552213 DOI: 10.3892/ol.2018.8022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR) is a notable problem in the use of chemotherapy. Therefore, studies aimed at identifying substances capable of overcoming resistance of cancer cells are required. Examples of these compounds are polyphenols, including resveratrol, that exert a range of various biological activities. The aim of the present study was to demonstrate the effect of 3,5,4'-trihydroxy-trans-stilbene (resveratrol) on the expression of ATP binding cassette subfamily B member 1, Annexin A1 (ANXA1) and thioredoxin (TXN) genes, and the proteins encoded by these genes, which are associated with MDR. The experiments were performed in human gastric cancer cell lines EPG85-257RDB (RDB) and EPG85-257RNOV (RNOV), which are resistant to daunorubicin and mitoxantrone, respectively, in addition to EPG85-257P (control), which is sensitive to cytostatic drugs. Cells were treated with 30 or 50 µM resveratrol for 72 h and changes in the expression levels of the genes were analysed with the use of a reverse transcription-quantitative polymerase chain reaction. The cellular levels of P-glycoprotein (P-gp), ANXA1 and TXN were evaluated using immunofluorescence and western blot analysis. Resveratrol in both concentrations has been shown to have a statistically significant influence on expression of the mentioned genes, compared with untreated cells. In RDB cells, resveratrol reduced the expression level of all analyzed genes, compared with untreated cells. Similar results at the protein level were obtained for P-gp and TXN. In turn, in the RNOV cell line, resveratrol reduced TXN expression at mRNA and protein levels, compared with untreated cells. The results of the present study indicate that resveratrol may reduce the resistance of cancer cells by affecting the expression of a number of the genes and proteins associated with MDR.
Collapse
Affiliation(s)
- Katarzyna Mieszala
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.,Faculty of Chemistry, Wroclaw University of Science and Technology, 50-373 Wroclaw, Poland
| | - Malgorzata Rudewicz
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.,Faculty of Chemistry, Wroclaw University of Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Gomulkiewicz
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Jedrzej Grzegrzolka
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | - Sylwia Borska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
35
|
Zuo Z, Zhang P, Lin F, Shang W, Bi R, Lu F, Wu J, Jiang L. Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation. J Cell Mol Med 2018; 22:2430-2441. [PMID: 29383839 PMCID: PMC5867135 DOI: 10.1111/jcmm.13541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022] Open
Abstract
We previously reported a novel positive feedback loop between thioredoxin‐1 (Trx‐1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx‐1 and S100P in CRC epithelial‐to‐mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx‐1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx‐1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx‐1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P‐ or Trx‐1‐mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P‐ or Trx‐1‐induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx‐1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx‐1 knockdown‐induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx‐1 and S100P promoted CRC EMT as well as migration and invasion by up‐regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC.
Collapse
Affiliation(s)
- Zhigui Zuo
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peili Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feiyan Lin
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Shang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruichun Bi
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengying Lu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianbo Wu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Chen X, Hu Q, Wu T, Wang C, Xia J, Yang L, Cheng B, Chen X. Proteomics-based investigation of multiple stages of OSCC development indicates that the inhibition of Trx-1 delays oral malignant transformation. Int J Oncol 2018; 52:733-742. [PMID: 29328386 PMCID: PMC5807042 DOI: 10.3892/ijo.2018.4235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/31/2017] [Indexed: 12/30/2022] Open
Abstract
The majority of cases of oral squamous cell carcinoma (OSCC) develop from oral potentially malignant disorders, which have been confirmed to be involved in chronic oxidative stimulation. However, no effective treatment approaches have been used to prevent the development of dysplasia into cancerous lesions thus far. In the present study, a well-established OSCC model was used to detect proteomics profiles at different stages during oral malignant transformation. Of the 15 proteins that were found to be upregulated in both the dysplasia and carcinoma stages, the oxidative stress-associated proteins, thioredoxin-1 (Trx-1), glutaredoxin-1 and peroxiredoxin-2 were note as the proteins with significant changes in expression Trx-1 was identified to be the most significantly upregulated protein in the precancerous stage. Validation experiments confirmed that Trx-1 was overex-pressed both in dysplasia and cancerous tissue samples, and the inhibition of Trx-1 was able to promote the apoptosis of OSCC cells under hypoxic conditions. Furthermore, the experimental application of a Trx-1-specific inhibitory agent in an animal model led to a lower cancerization rate and a delay in tumor formation. The possible mechanisms were associated with the increased apoptosis via a reactive oxygen species (ROS)-dependent pathway. Taken together, our findings indicate that Trx-1 may be an important target for delaying oral malignant transformation, which provides a novel therapeutic strategy for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Xijuan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Qinchao Hu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Tong Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chunyang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Xia
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Linglan Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bin Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaobing Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
37
|
Kekulandara DN, Nagi S, Seo H, Chow CS, Ahn YH. Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling. Biochemistry 2018; 57:772-780. [PMID: 29261301 DOI: 10.1021/acs.biochem.7b01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.
Collapse
Affiliation(s)
- Dilini N Kekulandara
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Shima Nagi
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
38
|
The Role of Redox-Regulating Enzymes in Inoperable Breast Cancers Treated with Neoadjuvant Chemotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2908039. [PMID: 29348788 PMCID: PMC5733970 DOI: 10.1155/2017/2908039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Although validated predictive factors for breast cancer chemoresistance are scarce, there is emerging evidence that the induction of certain redox-regulating enzymes may contribute to a poor chemotherapy effect. We investigated the possible association between chemoresistance and cellular redox state regulation in patients undergoing neoadjuvant chemotherapy (NACT) for breast cancer. In total, 53 women with primarily inoperable or inflammatory breast cancer who were treated with NACT were included in the study. Pre-NACT core needle biopsies and postoperative tumor samples were immunohistochemically stained for nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), thioredoxin (Trx), and peroxiredoxin I (Prx I). The expression of all studied markers increased during NACT. Higher pre-NACT nuclear Prx I expression predicted smaller size of a resected tumor (p = 0.00052; r = −0.550), and higher pre-NACT cytoplasmic Prx I expression predicted a lower amount of evacuated nodal metastasis (p = 0.0024; r = −0.472). Pre-NACT nuclear Trx expression and pre-NACT nuclear Keap1 expression had only a minor prognostic significance as separate factors, but when they were combined, low expression for both antibodies before NACT predicted dismal disease-free survival (log-rank p = 0.0030). Our results suggest that redox-regulating enzymes may serve as potential prognostic factors in primarily inoperable breast cancer patients.
Collapse
|
39
|
Abstract
Purpose of review The goal of this review is to summarize recent advances in our understanding of the regulation of redox homeostasis and the subtype-specific role of antioxidant enzymes in B-cell-derived malignancies. Furthermore, it presents selected prooxidative therapeutic strategies against B-cell neoplasms. Recent findings Recent reports have shown that the disturbed redox homeostasis in B-cell malignancies is regulated by cancer-specific signaling pathways and therefore varies between the individual subtypes. For instance, in a subtype of diffuse large B-cell lymphoma with increased oxidative phosphorylation, elevated reactive oxygen species are accompanied by higher levels of thioredoxin and glutathione and inhibition of either of these systems is selectively toxic to this subtype. In addition, growing number of small molecule inhibitors targeting antioxidant enzymes, such as auranofin, SK053, adenanthin, or decreasing glutathione level, such as imexon, buthionine sulfoximine, and L-cysteinase, trigger specific cytotoxic effects against B-cell malignancies. Lastly, attention is drawn to recent reports of effective treatment modalities involving prooxidative agents and interfering with redox homeostasis provided by stromal cells. Summary Recent findings reveal important differences in redox homeostasis within the distinct subsets of B-cell-derived malignancies that can be therapeutically exploited to improve existing treatment and to overcome drug resistance.
Collapse
|
40
|
You BR, Park WH. Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Mol Carcinog 2017; 56:2566-2577. [PMID: 28667779 DOI: 10.1002/mc.22701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/15/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) inhibitors, especially suberoylanilide hydroxamic acid (SAHA) induce apoptosis in various cancer cells. Here, we investigated the effect of SAHA on apoptosis in lung cancer cells and addressed the role of reactive oxygen species (ROS), glutathione (GSH), and thioredoxin1 (Trx1) levels in this process. We also identified the miRNAs that down-regulate Trx1 expression at RNA level and thereby influence apoptotic cell death of SAHA increased intracellular ROS levels and promoted apoptotic cell death in cancerous cells but not in non-cancerous normal lung cells. Likewise, SAHA induced GSH depletion specifically in cancerous cells. While N-acetyl cysteine (NAC) reduced ROS level and reversed the effect of SAHA on cell death, L-buthionine sulfoximine (BSO) further enhanced GSH depletion, and promoted cell death. SAHA decreased the mRNA and protein levels of Trx1 in lung cancer cells. Knockdown/suppression of Trx1 intensified apoptosis in SAHA-treated lung cancer cells whereas overexpression of Trx1 prevented the cell death in these cells. SAHA up-regulated the level of miR-129-5p, which binds to 3' untranslated region (3'UTR) of Trx1 and down-regulates Trx1 expression. Down-regulation of Trx1 led to activation of apoptosis-signal regulating kinase (ASK), which induced apoptotic cell death by triggering ASK-JNK or ASK-p38 kinase pathway. In conclusion, changes in ROS and GSH levels in SAHA-treated lung cancer cells partially co-related with cell death. SAHA induced apoptosis via the down-regulation of Trx1, which was regulated by miR-129-5p.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea
| |
Collapse
|
41
|
Lin F, Zhang P, Zuo Z, Wang F, Bi R, Shang W, Wu A, Ye J, Li S, Sun X, Wu J, Jiang L. Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P. Cancer Lett 2017; 401:1-10. [DOI: 10.1016/j.canlet.2017.04.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
42
|
P Vassilakopoulos T, Levidou G, Milionis V, Hartmann S, Lakiotaki E, Sepsa A, Thymara I, Ntailiani P, Spanou K, K Angelopoulou M, P Siakantaris M, Moschogiannis M, A Pangalis G, Panayiotidis P, Konstantopoulos K, Patsouris E, Hansmann ML, Korkolopoulou P. Thioredoxin-1, chemokine (C-X-C motif) ligand-9 and interferon-γ expression in the neoplastic cells and macrophages of Hodgkin lymphoma: clinicopathologic correlations and potential prognostic implications. Leuk Lymphoma 2017; 58:1-13. [PMID: 28571489 DOI: 10.1080/10428194.2017.1289520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Expression of thioredoxin-1 (TXN) and CXCL9 is not restricted to THRLBCL macrophages, but may be observed in histiocytes and neoplastic (HRS) cells of EBV + mixed cellularity (MC) classical Hodgkin lymphoma (cHL) and nodular lymphocyte predominant HL. We aimed to validate and extend the above observations in 174 cHL patients evaluating the immunohistochemical expression of TXN, CXCL9 and IFN-γ. HRS-cell CXCL9 expression was higher in latent membrane protein-1 (LMP1)+, MC and Stage IV. TXN and CXCL9 expression by cHL histiocytes was more frequent in LMP1+, MC and older patients (only for CXCL9). TXN expression by HRS cells (≥80%) was independently associated with better failure-free survival. In conclusion, markers of TCHRLBCL histiocytes (TXN, CXCL9), as well as IFN-γ are also expressed by histiocyte subsets and neoplastic cells of cHL. The expression of some of them is more prominent in EBV + MC, but not restricted to this subtype. The prognostic implication of TXN needs further evaluation.
Collapse
Affiliation(s)
- Theodoros P Vassilakopoulos
- a Department of Haematology, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Levidou
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Vassilis Milionis
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Sylvia Hartmann
- c Dr Senckenberg Institute of Pathology, Goethe University Hospital Frankfurt , Frankfurt , Germany
| | - Eleftheria Lakiotaki
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasia Sepsa
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Irene Thymara
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Panagiota Ntailiani
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Kallirroi Spanou
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Maria K Angelopoulou
- a Department of Haematology, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina P Siakantaris
- a Department of Haematology, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Moschogiannis
- d Department of Haematology , Athens Medical Center , Psychikon , Athens , Greece
| | | | - Panayiotis Panayiotidis
- c Dr Senckenberg Institute of Pathology, Goethe University Hospital Frankfurt , Frankfurt , Germany
| | - Kostas Konstantopoulos
- c Dr Senckenberg Institute of Pathology, Goethe University Hospital Frankfurt , Frankfurt , Germany
| | - Efstratios Patsouris
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Martin-Leo Hansmann
- c Dr Senckenberg Institute of Pathology, Goethe University Hospital Frankfurt , Frankfurt , Germany
| | - Penelope Korkolopoulou
- b Department of Pathology , Laikon General Hospital, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
43
|
Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Samadi N. Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair (Amst) 2017; 54:13-21. [DOI: 10.1016/j.dnarep.2017.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022]
|
44
|
Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, Malinowska A, Czerwoniec A, Barankiewicz J, Domagala A, Chlebowska J, Prochorec-Sobieszek M, Winiarska M, Ostaszewski R, Gwizdalska I, Golab J, Nowis D, Firczuk M. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget 2016; 7:1717-31. [PMID: 26636537 PMCID: PMC4811492 DOI: 10.18632/oncotarget.6435] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease.
Collapse
Affiliation(s)
- Anna Trzeciecka
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Szymon Klossowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Bajor
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Radoslaw Zagozdzon
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Gaj
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Agata Malinowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Czerwoniec
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Barankiewicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Department of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Antoni Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Chlebowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Department of Pathology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland.,Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
45
|
Raninga PV, Di Trapani G, Vuckovic S, Tonissen KF. TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF-кβ inhibition. Cell Cycle 2016; 15:559-72. [PMID: 26743692 DOI: 10.1080/15384101.2015.1136038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Introduction of the proteasome-inhibitor bortezomib has improved MM prognosis and survival; however hypoxia-induced or acquired bortezomib resistance remains a clinical problem. This study highlighted the role of thioredoxin reductase 1 (TrxR1) in the hypoxia-induced and acquired bortezomib resistance in MM. Higher TrxR1 gene expression correlated with high-risk disease, adverse overall survival, and poor prognosis in myeloma patients. We demonstrated that hypoxia induced bortezomib resistance in myeloma cells and increased TrxR1 protein levels. Inhibition of TrxR1 using auranofin overcame hypoxia-induced bortezomib resistance and restored the sensitivity of hypoxic-myeloma cells to bortezomib. Hypoxia increased NF-кβ subunit p65 nuclear protein levels and TrxR1 inhibition decreased hypoxia-induced NF-кβ p65 protein levels in the nucleus and reduced the expression of NF-кβ-regulated genes. In addition, higher TrxR1 protein levels were observed in bortezomib-resistant myeloma cells compared to the naïve cells, and its inhibition using either auranofin or TrxR1-specific siRNAs reversed bortezomib resistance. TrxR1 inhibition reduced p65 mRNA and protein expression in bortezomib-resistant myeloma cells, and also decreased the expression of NF-кβ-regulated anti-apoptotic and proliferative genes. Thus, TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance by inhibiting the NF-кβ signaling pathway. Our findings demonstrate that elevated TrxR1 levels correlate with the acquisition of bortezomib resistance in MM. We propose considering TrxR1-inhibiting drugs, such as auranofin, either for single agent or combination therapy to circumvent bortezomib-resistance and improve survival outcomes of MM patients.
Collapse
Affiliation(s)
- Prahlad V Raninga
- a School of Natural Sciences, Griffith University , Nathan , QLD , Australia.,b Eskitis Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Giovanna Di Trapani
- a School of Natural Sciences, Griffith University , Nathan , QLD , Australia
| | - Slavica Vuckovic
- c QIMR Berghofer Medical Research Institute , Herston , QLD , Australia.,d School of Medicine, University of Queensland , Herston , QLD , Australia
| | - Kathryn F Tonissen
- a School of Natural Sciences, Griffith University , Nathan , QLD , Australia.,b Eskitis Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| |
Collapse
|
46
|
Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:366-378. [PMID: 27913503 PMCID: PMC6142522 DOI: 10.1182/asheducation-2016.1.366] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) is the standard treatment for patients with diffuse large B-cell lymphoma (DLBCL), ∼30% to 50% of patients are not cured by this treatment, depending on disease stage or prognostic index. Among patients for whom R-CHOP therapy fails, 20% suffer from primary refractory disease (progress during or right after treatment) whereas 30% relapse after achieving complete remission (CR). Currently, there is no good definition enabling us to identify these 2 groups upon diagnosis. Most of the refractory patients exhibit double-hit lymphoma (MYC-BCL2 rearrangement) or double-protein-expression lymphoma (MYC-BCL2 hyperexpression) which have a more aggressive clinical picture. New strategies are currently being explored to obtain better CR rates and fewer relapses. Although young relapsing patients are treated with high-dose therapy followed by autologous transplant, there is an unmet need for better salvage regimens in this setting. To prevent relapse, maintenance therapy with immunomodulatory agents such as lenalidomide is currently undergoing investigation. New drugs will most likely be introduced over the next few years and will probably be different for relapsing and refractory patients.
Collapse
Affiliation(s)
- Bertrand Coiffier
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Clémentine Sarkozy
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
47
|
Kamal AM, El-Hefny NH, Hegab HM, El-Mesallamy HO. Expression of thioredoxin-1 (TXN) and its relation with oxidative DNA damage and treatment outcome in adult AML and ALL: A comparative study. ACTA ACUST UNITED AC 2016; 21:567-575. [PMID: 27158980 DOI: 10.1080/10245332.2016.1173341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Thioredoxin-1 (TXN) is a key element in the elimination of reactive oxygen species as well as activation of tumor suppressor genes and DNA repair enzymes. Several studies showed that TXN was over expressed in solid tumors and this was correlated to poorer prognosis. However, TXN expression has been insufficiently studied, particularly in newly diagnosed adult acute leukemia. METHODS This study was designed to evaluate the gene expression of TXN in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) adult patients and to investigate its association with oxidative DNA damage. The expression of TXN was analyzed using quantitative reverse transcriptase-polymerase chain reaction while oxidative DNA damage was evaluated by measuring serum 8-hydroxy-2-deoxyguanosine (8-OHdG) by enzyme-linked immunosorbent assay and strand breaks by the comet assay. RESULTS We found that TXN was under expressed in both AML and ALL groups (P < 0.001 for both) as compared to the control group. Also TXN expression level was negatively correlated with serum 8-OHdG and tail moment in both AML (P = 0.042 and 0.047, respectively) and ALL (P < 0.001 and P = 0.02, respectively) while it showed no correlation with treatment outcome in either groups. DISCUSSION This study suggests that TXN expression is hindered in adult acute leukemia which augments oxidative DNA damage and hence mutagenesis. CONCLUSION This study provides a new insight into the pathogenesis of acute leukemia and suggests TXN as a new screening test for the risk for acute leukemia.
Collapse
Affiliation(s)
- Amany M Kamal
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Nadia H El-Hefny
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Hany M Hegab
- b Department of Clinical Hematology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Hala O El-Mesallamy
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
48
|
Sewastianik T, Szydlowski M, Jablonska E, Bialopiotrowicz E, Kiliszek P, Gorniak P, Polak A, Prochorec-Sobieszek M, Szumera-Cieckiewicz A, Kaminski TS, Markowicz S, Nowak E, Grygorowicz MA, Warzocha K, Juszczynski P. FOXO1 is a TXN- and p300-dependent sensor and effector of oxidative stress in diffuse large B-cell lymphomas characterized by increased oxidative metabolism. Oncogene 2016; 35:5989-6000. [PMID: 27132507 DOI: 10.1038/onc.2016.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Molecular profiling has led to identification of subtypes of diffuse large B-cell lymphomas (DLBCLs) differing in terms of oncogenic signaling and metabolic programs. The OxPhos-DLBCL subtype is characterized by enhanced mitochondrial oxidative phosphorylation. As increased oxidative metabolism leads to overproduction of potentially toxic reactive oxygen species (ROS), we sought to identify mechanisms responsible for adaptation of OxPhos cells to these conditions. Herein, we describe a mechanism involving the FOXO1-TXN-p300 redox-dependent circuit protecting OxPhos-DLBCL cells from ROS toxicity. We identify a BCL6-dependent transcriptional mechanism leading to relative TXN overexpression in OxPhos cells. We found that OxPhos cells lacking TXN were uniformly more sensitive to ROS and doxorubicin than control cells. Consistent with this, the overall survival of patients with high TXN mRNA expression, treated with doxorubicin-containing regimens, is significantly shorter than of those with low TXN mRNA expression. TXN overexpression curtails p300-mediated FOXO1 acetylation and its nuclear translocation in response to oxidative stress, thus attenuating FOXO1 transcriptional activity toward genes involved in apoptosis and cell cycle inhibition. We also demonstrate that FOXO1 knockdown in cells with silenced TXN expression markedly reduces ROS-induced apoptosis, indicating that FOXO1 is the major sensor and effector of oxidative stress in OxPhos-DLBCLs. These data highlight dynamic, context-dependent modulation of FOXO1 tumor-suppressor functions via acetylation and reveal potentially targetable vulnerabilities in these DLBCLs.
Collapse
Affiliation(s)
- T Sewastianik
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - M Szydlowski
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - E Jablonska
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - E Bialopiotrowicz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - P Kiliszek
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - P Gorniak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - A Polak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - M Prochorec-Sobieszek
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - A Szumera-Cieckiewicz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - T S Kaminski
- Department of Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - S Markowicz
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center-Institute of Oncology, Warsaw, Poland
| | - E Nowak
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center-Institute of Oncology, Warsaw, Poland
| | - M A Grygorowicz
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center-Institute of Oncology, Warsaw, Poland
| | - K Warzocha
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - P Juszczynski
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
49
|
Cort A, Ozben T, Saso L, De Luca C, Korkina L. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4251912. [PMID: 26881027 PMCID: PMC4736404 DOI: 10.1155/2016/4251912] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Abstract
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed.
Collapse
Affiliation(s)
- Aysegul Cort
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sanko University, İncili Pınar, Gazi Muhtar Paşa Bulvarı, Sehitkamil, 27090 Gaziantep, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Akdeniz University Medical Faculty, Campus, Dumlupınar Street, 07070 Antalya, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara De Luca
- Evidence-Based Well-Being (EB-WB) Ltd., 31 Alt-Stralau, 10245 Berlin, Germany
| | - Liudmila Korkina
- Centre of Innovative Biotechnological Investigations Nanolab, 197 Vernadskogo Prospekt, Moscow 119571, Russia
| |
Collapse
|
50
|
Upregulation of connexin43 contributes to PX-12-induced oxidative cell death. Tumour Biol 2015; 37:7535-46. [PMID: 26684802 DOI: 10.1007/s13277-015-4620-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/10/2015] [Indexed: 01/24/2023] Open
Abstract
Thioredoxin (Trx) is a small redox protein that underlies aggressive tumor growth and resistance to chemotherapy. Inhibition of Trx with the chemical inhibitor PX-12 suppresses tumor growth and induces cell apoptosis. Currently, the mechanism underlying the therapeutic actions of PX-12 and the molecules influencing cell susceptibility to PX-12 are incompletely understood. Given that connexin43 (Cx43), a tumor suppressor, regulates tumor cell susceptibility to chemotherapy, we examined the possible involvement of Cx43 in PX-12-induced cell death. Exposure of cells to PX-12 led to a loss of cell viability, which was associated with the activation of oxidative sensitive c-Jun N-terminal kinase (JNK). Inhibition of JNK or supplement of cells with anti-oxidants prevented the cell-killing action of PX-12. The forced expression of Cx43 in normal and tumor cells increased cell sensitivity to PX-12-induced JNK activation and cell death. In contrast, the downregulation of Cx43 with siRNA or the suppression of gap junctions with chemical inhibitors attenuated JNK activation and enhanced cell resistance to PX-12. Further analysis revealed that PX-12 at low concentrations induced a JNK-dependent elevation in the Cx43 protein, which was also preventable by supplementing the cells with anti-oxidants. Our results thus indicate that Cx43 is a determinant in the regulation of cell susceptibility to PX-12 and that the upregulation of Cx43 may be an additional mechanism by which PX-12 exerts its anti-tumor actions.
Collapse
|