1
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01005-z. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Wei K, Hill BL, Miller ZA, Mueller A, Thompson JC, Lee RJ, Carey RM. Bitter Taste Receptor Agonists Induce Apoptosis in Papillary Thyroid Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618693. [PMID: 39484580 PMCID: PMC11527002 DOI: 10.1101/2024.10.18.618693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy, with a 20% recurrence rate. Bitter taste receptors (T2Rs) and their genes ( TAS2Rs ) may regulate survival in solid tumors. This study examined T2R expression and function in PTC cells. Methods Three PTC cell lines (MDA-T32, MDA-T68, MDA-T85) were analyzed for expression using RT-qPCR and immunofluorescence. Live cell imaging measured calcium responses to six bitter agonists. Viability and apoptosis effects were assessed using crystal violet and caspase 3/7 activation assays. Genome analysis of survival was conducted. Results TAS2R14 was consistently highly expressed in all cell lines. Five bitter agonists produced significant calcium responses across all cell lines. All bitter agonists significantly decreased viability and induced apoptosis. Higher TAS2R14 expression correlated with better progression-free survival in patients (p<0.05). Conclusions T2R activation by bitter agonists induces apoptosis and higher TAS2R expression is associated with survival, suggesting potential therapeutic relevance in thyroid cancer management.
Collapse
|
3
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Flores-Percino D, Osorio-Llanes E, Sepulveda Y, Castellar-López J, Madera RB, Rada WR, Meléndez CM, Mendoza-Torres E. Mechanisms of the Quorum Sensing Systems of Pseudomonas aeruginosa: Host and Bacteria. Curr Med Chem 2024; 31:5755-5767. [PMID: 37605403 DOI: 10.2174/0929867331666230821110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.
Collapse
Affiliation(s)
- Diana Flores-Percino
- Department of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estefanie Osorio-Llanes
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Yanireth Sepulveda
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Jairo Castellar-López
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Ricardo Belón Madera
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Carlos Mario Meléndez
- Department of Chemistry, Faculty of Basic Sciencies, Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico, Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| |
Collapse
|
5
|
Pal P, Shastry RP. Exploring the complex role of gut microbiome in the development of precision medicine strategies for targeting microbial imbalance-induced colon cancer. Folia Microbiol (Praha) 2023; 68:691-701. [PMID: 37624549 DOI: 10.1007/s12223-023-01085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The gut microbiome has been increasingly recognized as a key player in the development and progression of colon cancer. Alterations in the gut microbiota, known as dysbiosis, can lead to a variety of medical issues. Microbial adaptation through signals and small molecules can enhance pathogen colonization and modulate host immunity, significantly impacting disease progression. Quorum sensing peptides and molecules have been linked to the progression of colon cancer. Various interventions, such as fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and antibiotics, have been used to reverse dysbiosis with mixed results and potential side effects. Thus, a personalized approach to treatment selection based on patient characteristics, such as individual gut microbiota manipulation, is necessary to prevent and treat diseases like colon cancer. With advances in metagenomic sequencing and other omics technologies, there has been a growing interest in developing precision medicine strategies for microbial imbalance-induced colon cancer. This review serves as a comprehensive synthesis of current knowledge on the gut microbiome involvement in colon cancer. By exploring the potential of utilizing the gut microbiome as a target for precision medicine, this review underscores the exciting opportunities that lie ahead. Although challenges exist, the integration of microbiome data into precision medicine approaches has the potential to revolutionize the management of colon cancer, providing patients with more personalized and effective treatment options.
Collapse
Affiliation(s)
- Pamela Pal
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India.
| |
Collapse
|
6
|
Zheng Z, Li X, Chen G, Chen J, Zhu X, Teng Y. Transcriptome analyses reveal new insights on key determinants of perineural invasion in high-grade serous ovarian cancer. Front Cell Dev Biol 2023; 11:1109710. [PMID: 37799274 PMCID: PMC10548129 DOI: 10.3389/fcell.2023.1109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Perineural invasion (PNI) is a pathological feature of many cancers associated with poor outcomes, metastases, and recurrence. In relation to ovarian cancer (OC), there is no information about PNI's role and mechanisms. Our study found that patients with PNI-positive symptoms had significantly shorter overall survival (OS) time than patients with PNI-negative symptoms. Multivariate analyses demonstrated that PNI represented a substantial independent prognostic factor in OC patients. At the transcriptome level, it is noteworthy that PNI positivity was negatively correlated with the degree of infiltration of immune killer cells in OC tumor tissues, including macrophage, central memory CD4 T-cell, natural killer cells, monocyte, and central memory CD4 T-cell. The results of this study revealed that TAS2Rs proteins were markedly upregulated in PNI-positive OC tissues and predicted poor prognoses. Moreover, Immunohistochemical analysis demonstrated that the TAS2R10 protein was associated with poor prognoses and PNI in OC. Consequently, we found for the first time that PNI was a powerful predictor of poor prognosis in OC and analyzed its expression pattern and some preliminary biochemical characterization, providing new clues for guiding clinical prevention and treatment of OC.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Obstetrics and Gynecology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Chen
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Zhu
- Department of Obstetrics and Gynecology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yincheng Teng
- Department of Obstetrics and Gynecology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Hung J, Perez SM, Dasa SSK, Hall SP, Heckert DB, Murphy BP, Crawford HC, Kelly KA, Brinton LT. A Bitter Taste Receptor as a Novel Molecular Target on Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2023; 16:389. [PMID: 36986488 PMCID: PMC10058050 DOI: 10.3390/ph16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) execute diverse and complex functions in cancer progression. While reprogramming the crosstalk between CAFs and cancer epithelial cells is a promising avenue to evade the adverse effects of stromal depletion, drugs are limited by their suboptimal pharmacokinetics and off-target effects. Thus, there is a need to elucidate CAF-selective cell surface markers that can improve drug delivery and efficacy. Here, functional proteomic pulldown with mass spectrometry was used to identify taste receptor type 2 member 9 (TAS2R9) as a CAF target. TAS2R9 target characterization included binding assays, immunofluorescence, flow cytometry, and database mining. Liposomes conjugated to a TAS2R9-specific peptide were generated, characterized, and compared to naked liposomes in a murine pancreatic xenograft model. Proof-of-concept drug delivery experiments demonstrate that TAS2R9-targeted liposomes bind with high specificity to TAS2R9 recombinant protein and exhibit stromal colocalization in a pancreatic cancer xenograft model. Furthermore, the delivery of a CXCR2 inhibitor by TAS2R9-targeted liposomes significantly reduced cancer cell proliferation and constrained tumor growth through the inhibition of the CXCL-CXCR2 axis. Taken together, TAS2R9 is a novel cell-surface CAF-selective target that can be leveraged to facilitate small-molecule drug delivery to CAFs, paving the way for new stromal therapies.
Collapse
Affiliation(s)
- Jessica Hung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Siva Sai Krishna Dasa
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, MI 48202, USA
| | - Kimberly A. Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- ZielBio Inc., Charlottesville, VA 22902, USA
| | - Lindsey T. Brinton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- ZielBio Inc., Charlottesville, VA 22902, USA
| |
Collapse
|
8
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
10
|
O'Connor G, Quintero MA, Deo SK, Abreu MT, Daunert S. Bacterial Quorum-Sensing Molecules in Serum: A Potential Tool for Crohn's Disease Management. Clin Transl Gastroenterol 2022; 13:e00547. [PMID: 36413804 PMCID: PMC9780115 DOI: 10.14309/ctg.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Crohn's disease (CD) is an idiopathic inflammatory condition of the gastrointestinal tract with the primary method of diagnosis and follow-up being colonoscopy. A disturbed host-microbiome interaction, including the presence of pathobionts, is implicated in initiation and perpetuation of inflammation. As such, we hypothesized that bacterial quorum-sensing (QS) molecules (QSMs), small molecules bacteria generate to regulate gene expression, would be elevated in patients with CD. We collected serum at the time of colonoscopy from patients with CD and healthy controls, determining through biosensors for QSMs that patients with CD had significantly elevated levels of QSMs in serum. Expansion of these studies may allow for QSM levels in serum to serve as a biomarker for intestinal inflammation in patients with CD.
Collapse
Affiliation(s)
- Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Maria A. Quintero
- Division of Gastroenterology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute, Miami, Florida, USA
| |
Collapse
|
11
|
White MG, Wargo JA. The Microbiome in Gastrointestinal Cancers. Gastroenterol Clin North Am 2022; 51:667-680. [PMID: 36153116 DOI: 10.1016/j.gtc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The human microbiome has been recognized as increasingly important to health and disease. This is especially prescient in the development of various cancers, their progression, and the microbiome's modulation of various anticancer therapeutics. Mechanisms behind these interactions have been increasingly well described through modulation of the host immune system as well as induction of genetic changes and local inactivation of cancer therapeutics. Here, we review these associations for a variety of gastrointestinal malignancies as well as contemporary strategies proposed to leverage these associations to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA.
| |
Collapse
|
12
|
3-oxo-C12:2-HSL, quorum sensing molecule from human intestinal microbiota, inhibits pro-inflammatory pathways in immune cells via bitter taste receptors. Sci Rep 2022; 12:9440. [PMID: 35676403 PMCID: PMC9177545 DOI: 10.1038/s41598-022-13451-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
In the gut ecosystem, microorganisms regulate group behaviour and interplay with the host via a molecular system called quorum sensing (QS). The QS molecule 3-oxo-C12:2-HSL, first identified in human gut microbiota, exerts anti-inflammatory effects and could play a role in inflammatory bowel diseases where dysbiosis has been described. Our aim was to identify which signalling pathways are involved in this effect. We observed that 3-oxo-C12:2-HSL decreases expression of pro-inflammatory cytokines such as Interleukine-1β (− 35%) and Tumor Necrosis Factor-α (TNFα) (− 40%) by stimulated immune RAW264.7 cells and decreased TNF secretion by stimulated PBMC in a dose-dependent manner, between 25 to 100 µM. Transcriptomic analysis of RAW264.7 cells exposed to 3-oxo-C12:2-HSL, in a pro-inflammatory context, highlighted JAK-STAT, NF-κB and TFN signalling pathways and we confirmed that 3-oxo-C12:2-HSL inhibited JAK1 and STAT1 phosphorylation. We also showed through a screening assay that 3-oxo-C12:2-HSL interacted with several human bitter taste receptors. Its anti-inflammatory effect involved TAS2R38 as shown by pharmacologic inhibition and led to an increase in intracellular calcium levels. We thus unravelled the involvement of several cellular pathways in the anti-inflammatory effects exerted by the QS molecule 3-oxo-C12:2-HSL.
Collapse
|
13
|
Carey RM, Kim T, Cohen NA, Lee RJ, Nead KT. Impact of sweet, umami, and bitter taste receptor (TAS1R and TAS2R) genomic and expression alterations in solid tumors on survival. Sci Rep 2022; 12:8937. [PMID: 35624283 PMCID: PMC9142493 DOI: 10.1038/s41598-022-12788-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Originally identified on the tongue for their chemosensory role, the receptors for sweet, umami, and bitter taste are expressed in some cancers where they regulate important cellular processes including apoptosis and proliferation. We examined DNA mutations (n = 5103), structural variation (n = 7545), and expression (n = 6224) of genes encoding sweet or umami receptors (TAS1Rs) and bitter receptors (TAS2Rs) in 45 solid tumors subtypes compared to corresponding normal tissue using The Cancer Genome Atlas and the Genotype Tissue Expression Project databases. Expression of TAS1R and TAS2R genes differed between normal and cancer tissue, and nonsilent mutations occurred in many solid tumor taste receptor genes (~ 1-7%). Expression levels of certain TAS1Rs/TAS2Rs were associated with survival differences in 12 solid tumor subtypes. Increased TAS1R1 expression was associated with improved survival in lung adenocarcinoma (mean survival difference + 1185 days, p = 0.0191). Increased TAS2R14 expression was associated with worse survival in adrenocortical carcinoma (-1757 days, p < 0.001) and esophageal adenocarcinoma (-640 days, p = 0.0041), but improved survival in non-papillary bladder cancer (+ 343 days, p = 0.0436). Certain taste receptor genes may be associated with important oncologic pathways and could serve as biomarkers for disease outcomes.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology - Head and Neck Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 5th floor Ravdin Suite A, Philadelphia, PA, 19104, USA.
| | - TaeBeom Kim
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology - Head and Neck Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 5th floor Ravdin Suite A, Philadelphia, PA, 19104, USA
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Robert J Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 5th floor Ravdin Suite A, Philadelphia, PA, 19104, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin T Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
15
|
Fan Q, Wang H, Mao C, Li J, Zhang X, Grenier D, Yi L, Wang Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:429-445. [PMID: 34989570 DOI: 10.1021/acs.jafc.1c04751] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Quorum sensing (QS) is a signaling mechanism for cell-to-cell communication between bacteria, fungi, and even eukaryotic hosts such as plant and animal cells. Bacteria in real life do not exist as isolated organisms but are found in complex, dynamic, and microecological environments. The study of interspecies QS and interkingdom QS is a valuable approach for exploring bacteria-bacteria interactions and bacteria-host interaction mechanisms and has received considerable attention from researchers. The correct combination of QS signals and receptors is key to initiating the QS process. Compared with intraspecies QS, the signal regulation mechanism of interspecies QS and interkingdom QS is often more complicated, and the distribution of receptors is relatively wide. The present review focuses on the latest progress with respect to the distribution, structure, and signal transduction of interspecies and interkingdom QS receptors and provides a guide for the investigation of new QS receptors in the future.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec G1 V 0A6, Canada
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang 471023, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| |
Collapse
|
16
|
|
17
|
Huang X, Li M, Hou S, Tian B. Role of the microbiome in systemic therapy for pancreatic ductal adenocarcinoma (Review). Int J Oncol 2021; 59:101. [PMID: 34738624 PMCID: PMC8577795 DOI: 10.3892/ijo.2021.5281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
A large body of evidence has revealed that the microbiome serves a role in all aspects of cancer, particularly cancer treatment. To date, studies investigating the relationship between the microbiome and systemic therapy for pancreatic ductal adenocarcinoma (PDAC) are lacking. PDAC is a high‑mortality malignancy (5‑year survival rate; <9% for all stages). Systemic therapy is one of the most important treatment choices for all patients; however, resistance or toxicity can affect its efficacy. Studies have supported the hypothesis that the microbiome is closely associated with the response to systemic therapy in PDAC, including the induction of drug resistance, or toxicity and therapy‑related changes in microbiota composition. The present review comprehensively summarized the role of the microbiome in systemic therapy for PDAC and the associated molecular mechanisms in an attempt to provide a novel direction for the improvement of treatment response and proposed potential directions for in‑depth research.
Collapse
Affiliation(s)
| | | | - Shengzhong Hou
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
18
|
Zehentner S, Reiner AT, Grimm C, Somoza V. The Role of Bitter Taste Receptors in Cancer: A Systematic Review. Cancers (Basel) 2021; 13:5891. [PMID: 34885005 PMCID: PMC8656863 DOI: 10.3390/cancers13235891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Since it is known that bitter taste receptors (TAS2Rs) are expressed and functionally active in various extra-oral cells, their genetic variability and functional response initiated by their activation have become of broader interest, including in the context of cancer. METHODS A systematic research was performed in PubMed and Google Scholar to identify relevant publications concerning the role of TAS2Rs in cancer. RESULTS While the findings on variations of TAS2R genotypes and phenotypes and their association to the risk of developing cancer are still inconclusive, gene expression analyses revealed that TAS2Rs are expressed and some of them are predominately downregulated in cancerous compared to non-cancerous cell lines and tissue samples. Additionally, receptor-specific, agonist-mediated activation induced various anti-cancer effects, such as decreased cell proliferation, migration, and invasion, as well as increased apoptosis. Furthermore, the overexpression of TAS2Rs resulted in a decreased tumour incidence in an in vivo study and TAS2R activation could even enhance the therapeutic effect of chemotherapeutics in vitro. Finally, higher expression levels of TAS2Rs in primary cancerous cells and tissues were associated with an improved prognosis in humans. CONCLUSION Since current evidence demonstrates a functional role of TAS2Rs in carcinogenesis, further studies should exploit their potential as (co-)targets of chemotherapeutics.
Collapse
Affiliation(s)
- Sofie Zehentner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
| | - Agnes T. Reiner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
| | - Christoph Grimm
- Comprehensive Cancer Center Vienna, Gynecologic Cancer Unit, Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Chair of Nutritional Systems Biology, School of Life Science, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
19
|
Carey RM, McMahon DB, Miller ZA, Kim T, Rajasekaran K, Gopallawa I, Newman JG, Basu D, Nead KT, White EA, Lee RJ. T2R bitter taste receptors regulate apoptosis and may be associated with survival in head and neck squamous cell carcinoma. Mol Oncol 2021; 16:1474-1492. [PMID: 34717036 PMCID: PMC8978516 DOI: 10.1002/1878-0261.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022] Open
Abstract
Better management of head and neck squamous cell carcinomas (HNSCCs) requires a clearer understanding of tumor biology and disease risk. Bitter taste receptors (T2Rs) have been studied in several cancers, including thyroid, salivary, and GI, but their role in HNSCC has not been explored. We found that HNSCC patient samples and cell lines expressed functional T2Rs on both the cell and nuclear membranes. Bitter compounds, including bacterial metabolites, activated T2R‐mediated nuclear Ca2+ responses leading to mitochondrial depolarization, caspase activation, and ultimately apoptosis. Buffering nuclear Ca2+ elevation blocked caspase activation. Furthermore, increased expression of T2Rs in HNSCCs from The Cancer Genome Atlas is associated with improved overall survival. This work suggests that T2Rs are potential biomarkers to predict outcomes and guide treatment selection, may be leveraged as therapeutic targets to stimulate tumor apoptosis, and may mediate tumor‐microbiome crosstalk in HNSCC.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - TaeBeom Kim
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Indiwari Gopallawa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason G Newman
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin T Nead
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
21
|
Abstract
Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.
Collapse
Affiliation(s)
- Kamila Tuzim
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
22
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
23
|
Pu Q, Guo K, Lin P, Wang Z, Qin S, Gao P, Combs C, Khan N, Xia Z, Wu M. Bitter receptor TAS2R138 facilitates lipid droplet degradation in neutrophils during Pseudomonas aeruginosa infection. Signal Transduct Target Ther 2021; 6:210. [PMID: 34083514 PMCID: PMC8175399 DOI: 10.1038/s41392-021-00602-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
Bitter receptors function primarily in sensing taste, but may also have other functions, such as detecting pathogenic organisms due to their agile response to foreign objects. The mouse taste receptor type-2 member 138 (TAS2R138) is a member of the G-protein-coupled bitter receptor family, which is not only found in the tongue and nasal cavity, but also widely distributed in other organs, such as the respiratory tract, gut, and lungs. Despite its diverse functions, the role of TAS2R138 in host defense against bacterial infection is largely unknown. Here, we show that TAS2R138 facilitates the degradation of lipid droplets (LDs) in neutrophils during Pseudomonas aeruginosa infection through competitive binding with PPARG (peroxisome proliferator-activated receptor gamma) antagonist: N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), which coincidently is a virulence-bound signal produced by this bacterium (P. aeruginosa). The released PPARG then migrates from nuclei to the cytoplasm to accelerate the degradation of LDs by binding PLIN2 (perilipin-2). Subsequently, the TAS2R138-AHL-12 complex targets LDs to augment their degradation, and thereby facilitating the clearance of AHL-12 in neutrophils to maintain homeostasis in the local environment. These findings reveal a crucial role for TAS2R138 in neutrophil-mediated host immunity against P. aeruginosa infection.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Colin Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
24
|
Medapati MR, Bhagirath AY, Singh N, Chelikani P. Pharmacology of T2R Mediated Host-Microbe Interactions. Handb Exp Pharmacol 2021; 275:177-202. [PMID: 33580389 DOI: 10.1007/164_2021_435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. Humans express 25 T2Rs that are known to detect several bitter compounds including bacterial quorum sensing molecules (QSM). Primarily found to be key receptors for bitter sensation T2Rs are known to play an important role in mediating innate immune responses in oral and extraoral tissues. Several studies have led to identification of Gram-negative and Gram-positive bacterial QSMs as agonists for T2Rs in airway epithelial cells and immune cells. However, the pharmacological characterization for many of the QSM-T2R interactions remains poorly defined. In this chapter, we discuss the extraoral roles including localization of T2Rs in extracellular vesicles, molecular pharmacology of QSM-T2R interactions, role of T2Rs in mediating innate immune responses, and some of the challenges in understanding T2R pharmacology.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Y Bhagirath
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
25
|
Shastry RP, Rekha PD. Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol (Praha) 2020; 66:15-24. [PMID: 32949007 DOI: 10.1007/s12223-020-00821-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiota exists in a complicated symbiotic relationship which postulates to impact health and disease conditions on the host. Interestingly, the gut microbiome shows different mechanisms to regulate host physiology and metabolism including cell-to-cell communications. But microbiota imbalance is characterized to change in the host normal functioning and lead to the development and progression of major human diseases. Therefore, the direct cross talk through the microbial metabolites or peptides suggests the evidence of host health and disease. Recent reports highlight the adaptation signals/small molecules promoting microbial colonization which allows modulating immunity of host and leads to pathogen colonization. Moreover, quorum sensing peptides are also evident in the involvement of host disease conditions. Here, we review the current understanding of the gut microbiota cross talk with mammalian cells through metabolites and peptides. These studies are providing insight into the prediction of signature molecules which significantly provide information for the understanding of the interaction for precision medicine applications.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
26
|
Peruzzo R, Costa R, Bachmann M, Leanza L, Szabò I. Mitochondrial Metabolism, Contact Sites and Cellular Calcium Signaling: Implications for Tumorigenesis. Cancers (Basel) 2020; 12:E2574. [PMID: 32927611 PMCID: PMC7564994 DOI: 10.3390/cancers12092574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are organelles that are mainly involved in the generation of ATP by cellular respiration. In addition, they modulate several intracellular functions, ranging from cell proliferation and differentiation to cell death. Importantly, mitochondria are social and can interact with other organelles, such as the Endoplasmic Reticulum, lysosomes and peroxisomes. This symbiotic relationship gives advantages to both partners in regulating some of their functions related to several aspects of cell survival, metabolism, sensitivity to cell death and metastasis, which can all finally contribute to tumorigenesis. Moreover, growing evidence indicates that modulation of the length and/or numbers of these contacts, as well as of the distance between the two engaged organelles, impacts both on their function as well as on cellular signaling. In this review, we discuss recent advances in the field of contacts and communication between mitochondria and other intracellular organelles, focusing on how the tuning of mitochondrial function might impact on both the interaction with other organelles as well as on intracellular signaling in cancer development and progression, with a special focus on calcium signaling.
Collapse
Affiliation(s)
| | | | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy; (R.P.); (R.C.); (M.B.); (I.S.)
| | | |
Collapse
|
27
|
Coquant G, Grill JP, Seksik P. Impact of N-Acyl-Homoserine Lactones, Quorum Sensing Molecules, on Gut Immunity. Front Immunol 2020; 11:1827. [PMID: 32983093 PMCID: PMC7484616 DOI: 10.3389/fimmu.2020.01827] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Abstract
Among numerous molecules found in the gut ecosystem, quorum sensing (QS) molecules represent an overlooked part that warrants highlighting. QS relies on the release of small molecules (auto-inducers) by bacteria that accumulate in the environment depending on bacterial cell density. These molecules not only are sensed by the microbial community but also interact with host cells and contribute to gut homeostasis. It therefore appears entirely appropriate to highlight the role of these molecules on the immune system in dysbiosis-associated inflammatory conditions where the bacterial populations are imbalanced. Here, we intent to focus on one of the most studied QS molecule family, namely, the type I auto-inducers represented by N-acyl-homoserine lactones (AHL). First described in pathogens such as Pseudomonas aeruginosa, these molecules have also been found in commensals and have been recently described within the complex microbial communities of the mammalian intestinal tract. In this mini-review, we will expound on this emergent field of research. We will first recall evidence on AHL structure, synthesis, receptors, and functions regarding interbacterial communication. Then, we will discuss their interactions with the host and particularly with agents of the innate and adaptive gut mucosa immunity. This will reveal how this new set of molecules, driven by microbial imbalance, can interact with inflammation pathways and could be a potential target in inflammatory bowel disease (IBD). The discovery of the general impact of these compounds on the detection of the bacterial quorum and on the dynamic and immune responses of eukaryotic cells opens up a new field of pathophysiology.
Collapse
Affiliation(s)
- Garance Coquant
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Hôpital Saint Antoine, Paris, France
| | - Jean-Pierre Grill
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Hôpital Saint Antoine, Paris, France
| | - Philippe Seksik
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Hôpital Saint Antoine, Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
28
|
Salvestrini V, Ciciarello M, Pensato V, Simonetti G, Laginestra MA, Bruno S, Pazzaglia M, De Marchi E, Forte D, Orecchioni S, Martinelli G, Bertolini F, Méndez-Ferrer S, Adinolfi E, Di Virgilio F, Cavo M, Curti A. Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells. Front Oncol 2020; 10:1225. [PMID: 32793492 PMCID: PMC7393209 DOI: 10.3389/fonc.2020.01225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Marilena Ciciarello
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Valentina Pensato
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Giorgia Simonetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Martina Pazzaglia
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Dorian Forte
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Simon Méndez-Ferrer
- Laboratory of Hematology-Oncology, IRCCS European Institute of Oncology, Milan, Italy
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Antonio Curti
- Department of Oncology and Hematology, Institute of Hematology “L. and A. Seràgnoli”, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
29
|
Jeruzal-Świątecka J, Fendler W, Pietruszewska W. Clinical Role of Extraoral Bitter Taste Receptors. Int J Mol Sci 2020; 21:E5156. [PMID: 32708215 PMCID: PMC7404188 DOI: 10.3390/ijms21145156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Humans can recognise five basic tastes: sweet, sour, salty, bitter and umami. Sour and salty substances are linked to ion channels, while sweet, bitter and umami flavours are transmitted through receptors linked to the G protein (G protein-coupled receptors; GPCRs). There are two main types of GPCRs that transmit information about sweet, umami and bitter tastes-the Tas1r and TAS2R families. There are about 25 functional TAS2R genes coding bitter taste receptor proteins. They are found not only in the mouth and throat, but also in the intestines, brain, bladder and lower and upper respiratory tract. The determination of their purpose in these locations has become an inspiration for much research. Their presence has also been confirmed in breast cancer cells, ovarian cancer cells and neuroblastoma, revealing a promising new oncological marker. Polymorphisms of TAS2R38 have been proven to have an influence on the course of chronic rhinosinusitis and upper airway defensive mechanisms. TAS2R receptors mediate the bronchodilatory effect in human airway smooth muscle, which may lead to the creation of another medicine group used in asthma or chronic obstructive pulmonary disease. The discovery that functionally compromised TAS2R receptors negatively impact glucose homeostasis has produced a new area of diabetes research. In this article, we would like to focus on what facts have been already established in the matter of extraoral TAS2R receptors in humans.
Collapse
Affiliation(s)
- Joanna Jeruzal-Świątecka
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
30
|
The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165834. [PMID: 32437958 DOI: 10.1016/j.bbadis.2020.165834] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca2+) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca2+ flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies. In the present review, we summarize the current understanding of basic MAM biology, composition and function and discuss the possible role of MAM-resident oncogenes and tumor suppressors.
Collapse
|
31
|
Bloxham CJ, Foster SR, Thomas WG. A Bitter Taste in Your Heart. Front Physiol 2020; 11:431. [PMID: 32457649 PMCID: PMC7225360 DOI: 10.3389/fphys.2020.00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Simon R Foster
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
32
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
33
|
Duarte AC, Santos J, Costa AR, Ferreira CL, Tomás J, Quintela T, Ishikawa H, Schwerk C, Schroten H, Ferrer I, Carro E, Gonçalves I, Santos CRA. Bitter taste receptors profiling in the human blood-cerebrospinal fluid-barrier. Biochem Pharmacol 2020; 177:113954. [PMID: 32251676 DOI: 10.1016/j.bcp.2020.113954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
The choroid plexus (CP) epithelial cells establish an important blood-brain interface, the blood-cerebrospinal fluid barrier (BCSFB), which constitutes a complementary gateway to the blood-brain-barrier for the entrance of several molecules into the central nervous system (CNS). However, the mechanisms that operate at the BCSFB to regulate the molecular traffic are still poorly understood. The taste signalling machinery, present in many extra-oral tissues, is involved in the chemical sensing of the composition of body fluids. We have identified this pathway in rat CP and hypothesised that it could also be present in the human BCSFB. In this study, we characterised the bitter taste receptors (TAS2Rs) expression profiling in human CP by combining data retrieved from available databases of the human CP transcriptome with its expression analysis in a human CP cell line and immunohistochemistry of human CP sections from men and women. TAS2R4, 5, 14 and 39 expression was confirmed in human CP tissue by immunohistochemistry and in HIBCPP cells by RT-PCR, immunofluorescence and Western blot. Moreover, the presence of downstream effector proteins GNAT3, PLCβ2 and TRPM5 was also detected in HIBCPP cells. Then, we demonstrated that HIBCPP cells respond to chloramphenicol via TAS2R39 and to quercetin via TAS2R14. Our findings support an active role of TAS2Rs at the human BCSFB, as surveyors of the bloodstream and CSF compositions. These findings open new avenues for studies on the uptake of relevant compounds for targeted therapies of the CNS.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Catarina L Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Neuropathology, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| | - Eva Carro
- Instituto de Investigacion Hospital 12 de Octubre (i+12), Network Center for Biomedical Research in Neurodegenerative Diseases. CIBERNED, Madrid, Spain
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
34
|
Ayyagari VN, Wang X, Diaz-Sylvester PL, Groesch K, Brard L. Assessment of acyl-CoA cholesterol acyltransferase (ACAT-1) role in ovarian cancer progression-An in vitro study. PLoS One 2020; 15:e0228024. [PMID: 31978092 PMCID: PMC6980601 DOI: 10.1371/journal.pone.0228024] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/06/2020] [Indexed: 02/05/2023] Open
Abstract
Abnormal accumulation of acyl-CoA cholesterol acyltransferase-1 (ACAT-1) mediated cholesterol ester has been shown to contribute to cancer progression in various cancers including leukemia, glioma, breast, pancreatic and prostate cancers. However, the significance of ACAT-1 and cholesterol esters (CE) is relatively understudied in ovarian cancer. In this in vitro study, we assessed the expression and contribution of ACAT-1 in ovarian cancer progression. We observed a significant increase in the expression of ACAT-1 and CE levels in a panel of ovarian cancer cell lines (OC-314, SKOV-3 and IGROV-1) compared to primary ovarian epithelial cells (normal controls). To confirm the tumor promoting capacity of ACAT-1, we inhibited ACAT-1 expression and activity by treating our cell lines with an ACAT inhibitor, avasimibe, or by stable transfection with ACAT-1 specific short hairpin RNA (shRNA). We observed significant suppression of cell proliferation, migration and invasion in ACAT-1 knockdown ovarian cancer cell lines compared to their respective controls (cell lines transfected with scrambled shRNA). ACAT-1 inhibition enhanced apoptosis with a concurrent increase in caspases 3/7 activity and decreased mitochondrial membrane potential. Increased generation of reactive oxygen species (ROS) coupled with increased expression of p53 may be the mechanism(s) underlying pro-apoptotic action of ACAT-1 inhibition. Additionally, ACAT-1 inhibited ovarian cancer cell lines displayed enhanced chemosensitivity to cisplatin treatment. These results suggest ACAT-1 may be a potential new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Vijayalakshmi N. Ayyagari
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Xinjia Wang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Paula L. Diaz-Sylvester
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Kathleen Groesch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Laurent Brard
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
- Simmons Cancer Institute at Southern Illinois University School of Medicine, Springfield, IL, United States America
- * E-mail:
| |
Collapse
|
35
|
Singh N, Shaik FA, Myal Y, Chelikani P. Chemosensory bitter taste receptors T2R4 and T2R14 activation attenuates proliferation and migration of breast cancer cells. Mol Cell Biochem 2020; 465:199-214. [PMID: 31894529 DOI: 10.1007/s11010-019-03679-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
The emerging significance of the bitter taste receptors (T2Rs) role in the extraoral tissues alludes to their potential role in many pathophysiological conditions. The dysregulation of T2R expression and function in disease conditions has now been demonstrated in airways diseases, neurological disorders, and in some cancers. However, the role of T2Rs in the pathophysiology of breast cancer is unexplored thus far. Previously, we demonstrated differential expression of the 25 T2Rs in breast cancer (BC) cells. Based on our previous findings we selected two T2Rs, T2R4 and T2R14 for this work. The objective of the current study is to investigate the expression of T2R4 and T2R14 in BC clinical samples and to examine their physiological role using highly metastatic BC and non-cancerous cell lines. Using approaches, which involve receptor knockdown, pharmacological activation and biochemical assays we report that (i) T2R4 and T2R14 expression patterns are dissimilar, with decreased levels of T2R4 and increased levels of T2R14 in BC clinical samples compared to non-cancerous controls. (ii) Activation of T2Rs with their respective agonist elicited physiological responses in metastatic breast cancer cells, and no responses were seen in non-tumorigenic breast epithelial cells. (iii) Agonist activation of T2Rs (irrespective of T2R subtype) induced anti-proliferative, pro-apoptotic, and anti-migratory responses in highly metastatic breast cancer cells. Taken together, our findings demonstrate that the chemosensory T2R signaling network is involved in evoking physiological responses in the metastatic breast cancer cell line.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, Children's Hospital Research Institute of Manitoba, University of Manitoba, D319, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W3, Canada
| | - Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, Children's Hospital Research Institute of Manitoba, University of Manitoba, D319, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W3, Canada
| | - Yvonne Myal
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, Children's Hospital Research Institute of Manitoba, University of Manitoba, D319, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W3, Canada.
| |
Collapse
|
36
|
Wang Y, Yang G, You L, Yang J, Feng M, Qiu J, Zhao F, Liu Y, Cao Z, Zheng L, Zhang T, Zhao Y. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol Cancer 2019; 18:173. [PMID: 31785619 PMCID: PMC6885316 DOI: 10.1186/s12943-019-1103-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Recent studies indicated that development of pancreatic cancer may be intimately connected with the microbiome. In this review, we discuss the mechanisms through which microbiomes affect the development of pancreatic cancer, including inflammation and immunomodulation. Potential therapeutic and diagnostic applications of microbiomes are also discussed. For example, microbiomes may serve as diagnostic markers for pancreatic cancer, and may also play an important role in determining the efficacies of treatments such as chemo- and immunotherapies. Future studies will provide additional insights into the various roles of microbiomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| |
Collapse
|
37
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
38
|
Canivenc-Lavier MC, Neiers F, Briand L. Plant polyphenols, chemoreception, taste receptors and taste management. Curr Opin Clin Nutr Metab Care 2019; 22:472-478. [PMID: 31490201 DOI: 10.1097/mco.0000000000000595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Polyphenols display beneficial health effects through chemopreventive actions on numerous chronic diseases including cancers, metabolic disorders, reproductive disorders and eating behaviour disorders. According to the principle of chemoreception, polyphenols bind cellular targets capable of accepting their stereochemistry, namely metabolizing enzymes and protein receptors, including taste receptors. The extraoral expression of taste receptors and their pharmacological interest in terms of novel drug therapies open up new perspectives on the potential use of these compounds and their interactions with other chemicals in cells. These new perspectives suggest the need to examine these phytochemicals further. However, most polyphenols have a bitterness property that may disrupt the acceptability of healthy foods or dietary supplements. RECENT FINDINGS Polyphenols bind to oral and extraoral bitter type 2 taste receptors, which modulate the signalling pathways involved in anti-inflammatory processes and metabolic and dietary regulations. Depending on their chemical nature, polyphenols may act as activators or inhibitors of taste receptors, and combinations of polyphenols (or herbal mixtures) may be used to modulate the acceptability of bitterness. SUMMARY The current review summarizes recent findings on polyphenol chemoreception and highlights the evidence of healthy effects through type 2 taste receptor mediation in signalling pathways, such as new targets, with promising perspectives.
Collapse
Affiliation(s)
- Marie-Chantal Canivenc-Lavier
- Centre des Sciences du GoÛt et de l'Alimentation (CSGA), INRA, Université de Bourgogne Franche-Comté, AgroSup, CNRS, Dijon, France
| | | | | |
Collapse
|
39
|
Zheng X, Tizzano M, Redding K, He J, Peng X, Jiang P, Xu X, Zhou X, Margolskee RF. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat Commun 2019; 10:4496. [PMID: 31582750 PMCID: PMC6776549 DOI: 10.1038/s41467-019-12505-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
Solitary chemosensory cells (SCCs) are epithelial sentinels that utilize bitter Tas2r receptors and coupled taste transduction elements to detect pathogenic bacterial metabolites, triggering host defenses to control the infection. Here we report that SCCs are present in mouse gingival junctional epithelium, where they express several Tas2rs and the taste signaling components α-gustducin (Gnat3), TrpM5, and Plcβ2. Gnat3-/- mice have altered commensal oral microbiota and accelerated naturally occurring alveolar bone loss. In ligature-induced periodontitis, knockout of taste signaling molecules or genetic absence of gingival SCCs (gSCCs) increases the bacterial load, reduces bacterial diversity, and renders the microbiota more pathogenic, leading to greater alveolar bone loss. Topical treatment with bitter denatonium to activate gSCCs upregulates the expression of antimicrobial peptides and ameliorates ligature-induced periodontitis in wild-type but not in Gnat3-/- mice. We conclude that gSCCs may provide a promising target for treating periodontitis by harnessing innate immunity to regulate the oral microbiome.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Marco Tizzano
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Kevin Redding
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | | |
Collapse
|
40
|
Choi JH, Kim J. TAS2R38 Bitterness Receptor Genetic Variation and Risk of Gastrointestinal Neoplasm: A Meta-Analysis. Nutr Cancer 2019; 71:585-593. [PMID: 30663393 DOI: 10.1080/01635581.2018.1559935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic variation in TAS2R38 bitterness taste receptor could alter the efficacy of molecular sensing, hence may be associated with cancer risk. Thus, we performed a meta-analysis to verify the association between the risk of gastrointestinal (GI) neoplasm and TAS2R38 genetic variation. Studies with TAS2R38 diplotype distribution and GI neoplasm phenotypes were searched from PubMed, EMBASE and SCOPUS, and five articles including eight studies were finally selected. The association between diplotype and neoplasm risk was estimated with summarized odds ratios (ORs) and 95% confidence intervals (CIs), applying of fixed- or random-effects models. The findings suggested TAS2R38 diplotype was not associated with GI neoplasms susceptibility [AVI vs. PAV: OR = 1.03 (95%CI: 0.97-1.09), AVI/PAV vs. PAV/PAV: OR = 1.05, (95%CI: 0.94-1.17), AVI/* vs. PAV/PAV: OR = 1.04 (95%CI: 0.94-1.16)]. Because of the presence of heterogeneity under the two genetic models (AVI/AVI vs. PAV/PAV and AVI/AVI vs. PAV/*), further subgroup analyses by ethnicity and neoplasm type were performed. However, results failed to show the neoplasm risk was altered by diplotype. In conclusion, the meta-analysis indicates that TAS2R38 diplotype minimally modified the GI neoplasm risk. Given the limited study size and resources, further well-designed and larger studies are required to validate the true effect of TAS2R38 polymorphisms on neoplasm risk.
Collapse
Affiliation(s)
- Jeong-Hwa Choi
- a Department of Cancer Biomedical Science Graduate School of Cancer Science and Policy , National Cancer Center , Goyang-si , Gyeonggi-do , Korea.,b Department of Food Science and Nutrition , Keimyung University , Dalseo-gu , Daegu , Korea
| | - Jeongseon Kim
- a Department of Cancer Biomedical Science Graduate School of Cancer Science and Policy , National Cancer Center , Goyang-si , Gyeonggi-do , Korea
| |
Collapse
|
41
|
Hernández-Corbacho MJ, Obeid LM. A novel role for DGATs in cancer. Adv Biol Regul 2018; 72:89-101. [PMID: 30579761 DOI: 10.1016/j.jbior.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY, 11794, USA; The Northport VA Medical Center, Northport, NY, 11768, USA.
| |
Collapse
|
42
|
Courtens F, Demangeat JL, Benabdallah M. Could the Olfactory System Be a Target for Homeopathic Remedies as Nanomedicines? J Altern Complement Med 2018; 24:1032-1038. [PMID: 29889551 PMCID: PMC6247980 DOI: 10.1089/acm.2018.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Homeopathic remedies (HRs) contain odorant molecules such as flavonoids or terpenes and can lose their efficiency in presence of some competitive odors. Such similarities, along with extreme sensitivity of the olfactory system, widespread presence of olfactory receptors over all organic tissues (where they have metabolic roles besides perception of odors), and potential direct access to the brain through olfactory nerves (ONs) and trigeminal nerves, may suggest the olfactory system as target for HRs. Recent works highlighted that HRs exist in a dual form, that is, a still molecular form at low dilution and a nanoparticulate form at high dilution, and that remnants of source remedy persist in extremely high dilutions. From the literature, both odorants and nanoparticles (NPs) can enter the body through inhalation, digestive absorption, or through the skin, especially, NPs or viruses can directly reach the brain through axons of nerves. Assuming that HRs are recognized by olfactory receptors, their information could be transmitted to numerous tissues through receptor-ligand interaction, or to the brain by either activating the axon potential of ONs and trigeminal nerves or, in their nanoparticulate form, by translocating through axons of these nerves. Moreover, the nanoparticulate form may activate the immune system at multiple levels, induce systemic various biological responses through the pituitary axis and inflammation factors, or modulate gene expression at the cellular level. As immunity, inflammation, pituitary axis, and olfactory system are closely linked together, their permanent interaction triggered by olfactory receptors may thus ensure homeostasis.
Collapse
|
43
|
Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival. Mol Cell Biochem 2018; 454:203-214. [PMID: 30350307 DOI: 10.1007/s11010-018-3464-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023]
Abstract
Bitter taste receptors (Tas2Rs) are a subfamily of G-protein coupled receptors expressed not only in the oral cavity but also in several extra-oral tissues and disease states. Several natural bitter compounds from plants, such as bitter melon extract and noscapine, have displayed anti-cancer effects against various cancer types. In this study, we examined the prevalence of Tas2R subtype expression in several epithelial ovarian or prostate cancer cell lines, and the functionality of Tas2R14 was determined. qPCR analysis of five TAS2Rs demonstrated that mRNA expression often varies greatly in cancer cells in comparison to normal tissue. Using receptor-specific siRNAs, we also demonstrated that noscapine stimulation of ovarian cancer cells increased apoptosis in ovarian cancer cells in a receptor-dependent, but ROS-independent manner. This study furthers our understanding of the function of Tas2Rs in ovarian cancer by demonstrating that their activation has an impact on cell survival.
Collapse
|
44
|
Jaggupilli A, Singh N, Jesus VCD, Duan K, Chelikani P. Characterization of the Binding Sites for Bacterial Acyl Homoserine Lactones (AHLs) on Human Bitter Taste Receptors (T2Rs). ACS Infect Dis 2018; 4:1146-1156. [PMID: 29799189 DOI: 10.1021/acsinfecdis.8b00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 25 bitter taste receptors (T2Rs) in humans are novel players in mediating host-pathogen responses in the airways and innate immunity. The chemosensory T2Rs are expressed in different extraoral tissues and perform diverse pathophysiological roles from mediating bronchodilation to detecting bacterial infection in the airways. T2Rs were suggested to be activated by multiple bacterial quorum sensing molecules (QSMs). However, whether bacterial QSMs bind to T2Rs and the structural features on T2Rs has not yet been characterized. Here, we analyzed the taste sensory profiles of QSMs including acyl homoserine lactones (C4-AHL, C8-AHL, and 3-oxo-C12-AHL) and hydroxyquinolones (HHQ and NHQ) predominantly secreted by Gram-negative bacteria and characterized the candidate T2Rs interacting with different QSMs using structure-function approaches. The potency of the above QSMs for T2Rs significantly expressed in the airways, namely T2R4, T2R14, and T2R20, was characterized. 3-Oxo-C12-AHL activated T2R4, T2R14, and T2R20, while C8-AHL activated T2R4 and T2R14 with strong potency. The T2R amino acid residues involved in the interactions were characterized by molecular-model-guided site-directed mutagenesis. AHLs bind to a similar orthosteric site present on the extracellular surface in all three T2Rs with significant contributions from residues in extracellular loop 2. Our results reveal the mode of binding of AHLs for different T2Rs and provide biochemical insights into their interactions. This study will facilitate mechanistic studies aimed at understanding the role of these T2Rs as "sensors" of bacteria and in host-pathogen interactions.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Vivianne Cruz De Jesus
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| |
Collapse
|
45
|
Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38:27. [PMID: 29784041 PMCID: PMC5993136 DOI: 10.1186/s40880-018-0301-4] [Citation(s) in RCA: 453] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic structure of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
46
|
Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem 2018; 293:9824-9840. [PMID: 29748385 DOI: 10.1074/jbc.ra117.001005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Bitter taste receptors (taste family 2 bitter receptor proteins; T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We have shown previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2R4, -14, -16, and -38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones activate T2Rs and stimulate these responses in primary airway cells. Quinolones are another type of quorum-sensing molecule used by Pseudomonas aeruginosa To elucidate whether bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors. T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at the air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone, and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, -16, and -38, whereas HHQ activated T2R14. 2,4-Dihydroxyquinolone had no effect. PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells. In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests that airway T2R-mediated immune responses are activated by bacterial quinolones as well as acyl-homoserine lactones.
Collapse
Affiliation(s)
- Jenna R Freund
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | | | | | - Nithin D Adappa
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - James N Palmer
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - David W Kennedy
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - Danielle R Reed
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and .,Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
47
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
48
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Stern L, Giese N, Hackert T, Strobel O, Schirmacher P, Felix K, Gaida MM. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10. J Cancer 2018; 9:711-725. [PMID: 29556329 PMCID: PMC5858493 DOI: 10.7150/jca.21803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022] Open
Abstract
Bitter taste receptors (T2Rs) are G-protein coupled transmembrane proteins initially identified in the gustatory system as sensors for the taste of bitter. Recent evidence on expression of these receptors outside gustatory tissues suggested alternative functions, and there is growing interest of their potential role in cancer biology. In this study, we report for the first time, expression and functionality of the bitter receptor family member T2R10 in both human pancreatic ductal adenocarcinoma (PDAC) tissue and PDAC derived cell lines. Caffeine, a known ligand for T2R10, rendered the tumor cells more susceptible to two standard chemotherapeutics, Gemcitabine and 5-Fluoruracil. Knocking down T2R10 in the cell line BxPC-3 reduced the caffeine-induced effect. As possible underlying mechanism, we found that caffeine via triggering T2R10 inhibited Akt phosphorylation and subsequently downregulated expression of ABCG2, the so-called multi-drug resistance protein that participates in rendering cells resistant to a variety of chemotherapeutics. In conclusion, T2R10 is expressed in pancreatic cancer and it downmodulates the chemoresistance of the tumor cells.
Collapse
Affiliation(s)
- Louisa Stern
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Yangyu L, Ranhui X, Xin Z, Jinzhi H, Xin X. [Taste signal transduction and the role of taste receptors in the regulation of microbial infection]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:549-554. [PMID: 29188655 DOI: 10.7518/hxkq.2017.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Taste receptors guide individuals to consume nutrients while avoiding potentially noxious substances. Interestingly, recent studies have shown that taste receptors are also expressed beyond the taste buds, including brain, respiratory system, and digestive system, etc. These extragustatory taste receptors play important roles in microbial infection, nutrient uptake and host homeostasis. Mang extragustatory taste receptors have been proposed to sense microorganisms and regulate host innate defense. More importantly, polymorphisms of genes encoding taste receptor, particularly bitter taste receptor, are linked to different innate defensive responses. This review introduces the molecular basis of taste signal transduction, and the role of taste receptors in the regulation of innate immunity during microbial infection were further discussed in detail.
Collapse
Affiliation(s)
- Lu Yangyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Ranhui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - He Jinzhi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|