1
|
Barros M, Liang M, Iannucci N, Dickinson R. Xenon and Argon as Neuroprotective Treatments for Perinatal Hypoxic-Ischemic Brain Injury: A Preclinical Systematic Review and Meta-Analysis. Anesth Analg 2024:00000539-990000000-01012. [PMID: 39453983 DOI: 10.1213/ane.0000000000007223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Xenon and argon are currently being evaluated as potential neuroprotective treatments for acquired brain injuries. Xenon has been evaluated clinically as a treatment for brain ischemia with equivocal results in small trials, but argon has not yet undergone clinical evaluation. Several preclinical studies have investigated xenon or argon as treatments in animal models of perinatal hypoxic-ischemic encephalopathy (HIE). A systematic review of MEDLINE and Embase databases was performed. After screening of titles, abstracts, and full text, data were extracted from included studies. A pairwise meta-analysis of neuroprotective efficacy was performed using a random effects model. Heterogeneity was investigated using subgroup analysis, funnel plot asymmetry, and Egger's regression. The protocol was prospectively registered on PROSPERO (CRD42022301986). A total of 21 studies met the inclusion criteria. The data extracted included measurements from 1591 animals, involving models of HIE in mice, rats, and pigs. The meta-analysis found that both xenon and argon had significant (P < .0001) neuroprotective efficacies. The summary estimate for xenon was 39.7% (95% confidence interval [CI], 28.3%-51.1%) and for argon it was 70.3% (95% CI, 59.0%-81.7%). The summary effect for argon was significantly (P < .001) greater than that of xenon. Our results provide evidence supporting further investigation of xenon and argon as neuroprotective treatments for HIE.
Collapse
Affiliation(s)
- Mariana Barros
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Min Liang
- Anaesthesiology Research Institute, Department of Anaesthesiology, First Affiliated Hospital of Fujian Medical University, Binhai Campus, Fuzhou, China
| | - Noemi Iannucci
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Robert Dickinson
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Bao L, Liu Y, Jia Q, Chu S, Jiang H, He S. Argon neuroprotection in ischemic stroke and its underlying mechanism. Brain Res Bull 2024; 212:110964. [PMID: 38670471 DOI: 10.1016/j.brainresbull.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Li Bao
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yongxin Liu
- Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qi Jia
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Sihao Chu
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Han Jiang
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Shuang He
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
3
|
Merigo G, Florio G, Madotto F, Magliocca A, Silvestri I, Fumagalli F, Cerrato M, Motta F, De Giorgio D, Panigada M, Zanella A, Grasselli G, Ristagno G. Treatment with inhaled Argon: a systematic review of pre-clinical and clinical studies with meta-analysis on neuroprotective effect. EBioMedicine 2024; 103:105143. [PMID: 38691938 PMCID: PMC11070688 DOI: 10.1016/j.ebiom.2024.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.
Collapse
Affiliation(s)
- Giulia Merigo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ivan Silvestri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Fumagalli
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Cerrato
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Motta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daria De Giorgio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Ristagno
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Mike JK, White Y, Hutchings RS, Vento C, Ha J, Iranmahboub A, Manzoor H, Gunewardena A, Cheah C, Wang A, Goudy BD, Lakshminrusimha S, Long-Boyle J, Fineman JR, Ferriero DM, Maltepe E. Effect of Clemastine on Neurophysiological Outcomes in an Ovine Model of Neonatal Hypoxic-Ischemic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1728. [PMID: 38002819 PMCID: PMC10670092 DOI: 10.3390/children10111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Originally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis. Here, we conducted an in-depth analysis of the feasibility, safety, and neuroprotective efficacy of clemastine administration in near-term lambs (n = 25, 141-143 days) following a global ischemic insult induced via an umbilical cord occlusion (UCO) model. Lambs were randomly assigned to receive clemastine or placebo postnatally, and outcomes were assessed over a six-day period. Clemastine administration was well tolerated. While treated lambs demonstrated improvements in inflammatory scores, their neurodevelopmental outcomes were unchanged.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Yasmine White
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Rachel S. Hutchings
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Christian Vento
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Janica Ha
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Ariana Iranmahboub
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Hadiya Manzoor
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Anya Gunewardena
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Cheryl Cheah
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
| | - Aijun Wang
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, USA;
| | - Brian D. Goudy
- Department of Pediatrics, University of California Davis, Davis, CA 95817, USA (S.L.)
| | | | - Janel Long-Boyle
- School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA (R.S.H.); (A.I.); (C.C.); (D.M.F.)
- Initiative for Pediatric Drug and Device Development, San Francisco, CA 94143, USA
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Chen ZG, Shi X, Zhang XX, Yang FF, Li KR, Fang Q, Cao C, Chen XH, Peng Y. Neuron-secreted NLGN3 ameliorates ischemic brain injury via activating Gαi1/3-Akt signaling. Cell Death Dis 2023; 14:700. [PMID: 37880221 PMCID: PMC10600254 DOI: 10.1038/s41419-023-06219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xian-Xian Zhang
- Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Fang-Fang Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ke-Ran Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xiong-Hui Chen
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
6
|
Scheid S, Goebel U, Ulbrich F. Neuroprotection Is in the Air-Inhaled Gases on Their Way to the Neurons. Cells 2023; 12:2480. [PMID: 37887324 PMCID: PMC10605176 DOI: 10.3390/cells12202480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
7
|
Liu TT, Shi X, Hu HW, Chen JP, Jiang Q, Zhen YF, Cao C, Liu XW, Liu JG. Endothelial cell-derived RSPO3 activates Gαi1/3-Erk signaling and protects neurons from ischemia/reperfusion injury. Cell Death Dis 2023; 14:654. [PMID: 37805583 PMCID: PMC10560285 DOI: 10.1038/s41419-023-06176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The current study explores the potential function and the underlying mechanisms of endothelial cell-derived R-spondin 3 (RSPO3) neuroprotection against ischemia/reperfusion-induced neuronal cell injury. In both neuronal cells (Neuro-2a) and primary murine cortical neurons, pretreatment with RSPO3 ameliorated oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced neuronal cell death and oxidative injury. In neurons RSPO3 activated the Akt, Erk and β-Catenin signaling cascade, but only Erk inhibitors reversed RSPO3-induced neuroprotection against OGD/R. In mouse embryonic fibroblasts (MEFs) and neuronal cells, RSPO3-induced LGR4-Gab1-Gαi1/3 association was required for Erk activation, and either silencing or knockout of Gαi1 and Gαi3 abolished RSPO3-induced neuroprotection. In mice, middle cerebral artery occlusion (MCAO) increased RSPO3 expression and Erk activation in ischemic penumbra brain tissues. Endothelial knockdown or knockout of RSPO3 inhibited Erk activation in the ischemic penumbra brain tissues and increased MCAO-induced cerebral ischemic injury in mice. Conversely, endothelial overexpression of RSPO3 ameliorated MCAO-induced cerebral ischemic injury. We conclude that RSPO3 activates Gαi1/3-Erk signaling to protect neuronal cells from ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ting-Tao Liu
- Shandong University, Department of Neurology, Shandong Provincial Hospital, Jinan, China
- Department of Neurology, Shouguang Hospital of T.C.M, Shouguang, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Ping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Changshu, China
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yun-Fang Zhen
- Department of Orthopedics, Children's hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xue-Wu Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jian-Gang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Zhao G, Zhao H, Hou X, Wang J, Cheng P, Xu S, Cui W, Shen W. An unexpected discovery toward argon-rich water amelioration of cadmium toxicity in Medicago sativa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158137. [PMID: 35988609 DOI: 10.1016/j.scitotenv.2022.158137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/24/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Argon has organ-protective effects on animals. However, whether or how argon influences plant responses remains elusive. In this study, we discovered that the growth inhibition of hydroponically cultured alfalfa seedlings under 100 μM CdCl2 condition was significantly ameliorated by 100 % saturated argon-rich water (ARW). Less Cd uptake and accumulation were also observed in both root and shoot parts, which could be explained by the modified root cell walls, including the increased cell wall thickness, lignin content, and demethylation degree of covalently bound and ion-bound pectin, as well as the down-regulated expression of natural-resistance-associated-macrophage protein1 (Nramp1) encoding a heavy metal ion transporter in root tissue. The hindered Cd translocation from root to shoot achieved by ARW addition was validated by the decreased expression of heavy metal ATPase 2/4 (HMA2/4) in roots and decreased Cd content in xylem saps. The reestablished glutathione (GSH) homeostasis and redox balance, two important indicators of plant defense against Cd poisoning, were also observed. Further greenhouse experiments demonstrated that the phenotypic and physiological performances of alfalfa plants cultured in Cd-contaminated soil were significantly improved by irrigating with ARW. Above results implied that ARW confers plants tolerance against cadmium toxicity by impairing Cd uptake and accumulation and restoring GSH and redox homeostasis. These findings might open a new window for understanding argon biology in higher plants.
Collapse
Affiliation(s)
- Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haiyang Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xutian Hou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: From bench to bedside. Front Pharmacol 2022; 13:1028688. [PMID: 36532733 PMCID: PMC9750501 DOI: 10.3389/fphar.2022.1028688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 07/26/2023] Open
Abstract
In recent years, inert gases such as helium, argon, and xenon have gained considerable attention for their medical value. Noble gases present an intriguing scientific paradox: although extremely chemically inert, they display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge about their mechanisms of action, some noble gases have been used successfully in clinical practice. The neuroprotection elicited by these noble gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Collectively, these central nervous system injuries are a leading cause of morbidity and mortality every year worldwide. Treatment options are presently limited to thrombolytic drugs and clot removal for ischemic stroke, or therapeutic cooling for other brain injuries before the application of noble gas. Currently, there is increasing interest in noble gases as novel treatments for various brain injuries. In recent years, neuroprotection elicited by particular noble gases, xenon, for example, has been reported under different conditions. In this article, we have reviewed the latest in vitro and in vivo experimental and clinical studies of the actions of xenon, argon, and helium, and discuss their potential use as neuroprotective agents.
Collapse
Affiliation(s)
- Haiying Yin
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zijun Chen
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hailin Zhao
- Division of Anesthetics, Department of Surgery and Cancer, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Ministry of Education, Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| |
Collapse
|
10
|
Scheid S, Lejarre A, Wollborn J, Buerkle H, Goebel U, Ulbrich F. Argon preconditioning protects neuronal cells with a Toll-like receptor-mediated effect. Neural Regen Res 2022; 18:1371-1377. [PMID: 36453425 PMCID: PMC9838174 DOI: 10.4103/1673-5374.355978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The noble gas argon has the potential to protect neuronal cells from cell death. So far, this effect has been studied in treatment after acute damage. Preconditioning using argon has not yet been investigated. In this study, human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon (25%, 50%, and 74%; 21% O2, 5% CO2, balance nitrogen) at different time intervals before inflicting damage with rotenone (20 µM, 4 hours). Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining. Surface expressions of Toll-like receptors 2 and 4 were also examined. Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins, such as extracellular-signal regulated kinase (ERK1/2), nuclear transcription factor-κB (NF-κB), protein kinase B (Akt), caspase-3, Bax, Bcl-2, interleukin-8, and heat shock proteins. Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8. Cells were also pretreated with OxPAPC, an antagonist of TLR2 and 4 to elucidate the molecular mechanism. Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells. Preconditioning with 74% argon for 2 hours was used for further experiments showing the most promising results. Argon decreased the surface expression of TLR2 and 4, whereas OxPAPC treatment partially abolished the protective effect of argon. Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt. Preconditioning inhibited mitochondrial apoptosis and the heat shock response. Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8. Immunohistochemistry confirmed the alteration of TLRs and interleukin-8. OxPAPC reversed the argon effect on ERK1/2, Bax, Bcl-2, caspase-3, and interleukin-8 expression, but not on NF-κB and the heat shock proteins. Taken together, argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors. Argon may represent a promising therapeutic alternative in various clinical settings, such as the treatment of stroke.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Adrien Lejarre
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, Muenster, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Correspondence to: Felix Ulbrich, .
| |
Collapse
|
11
|
Antonova VV, Silachev DN, Ryzhkov IA, Lapin KN, Kalabushev SN, Ostrova IV, Varnakova LA, Grebenchikov OA. Three-Hour Argon Inhalation Has No Neuroprotective Effect after Open Traumatic Brain Injury in Rats. Brain Sci 2022; 12:brainsci12070920. [PMID: 35884727 PMCID: PMC9313057 DOI: 10.3390/brainsci12070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo studies of the therapeutic effects of argon in traumatic brain injury (TBI) are limited, and their results are contradictory. The aim of this study was to evaluate the effect of a three-hour inhalation of argon (70%Ar/30%O2) after an open TBI on the severity of the neurological deficit and the degree of brain damage in rats. The experiments were performed on male Wistar rats (n = 35). The TBI was simulated by the dosed open brain contusion injury. The animals were divided into three groups: sham-operated (SO, n = 7); TBI + 70%N2/30%O2 (TBI, n = 14); TBI + 70%Ar/30%O2 (TBI + iAr, n = 14). The Neurological status was assessed over a 14-day period (using the limb-placing and cylinder tests). Magnetic resonance imaging (MRI) scans and a histological examination of the brain with an assessment of the volume of the lesions were performed 14 days after the injury. At each of the time points (days 1, 7, and 14), the limb-placing test score was lower in the TBI and TBI + iAr groups than in the SO group, while there were no significant differences between the TBI and TBI + iAr groups. Additionally, no differences were found between these groups in the cylinder test scores (day 13). The volume of brain damage (tissue loss) according to both the MRI and histological findings did not differ between the TBI and TBI + iAr groups. A three-hour inhalation of argon (70%Ar/30%O2) after a TBI had no neuroprotective effect.
Collapse
Affiliation(s)
- Viktoriya V. Antonova
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
- Correspondence: ; Tel.: +7-938-500-3034
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Ivan A. Ryzhkov
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
| | - Konstantin N. Lapin
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
| | - Sergey N. Kalabushev
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
- Institute of Functional Genomics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina V. Ostrova
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
| | - Lydia A. Varnakova
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
| | - Oleg A. Grebenchikov
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.A.R.); (K.N.L.); (S.N.K.); (I.V.O.); (L.A.V.); (O.A.G.)
| |
Collapse
|
12
|
Wang J, Cai C, Geng P, Tan F, Yang Q, Wang R, Shen W. A New Discovery of Argon Functioning in Plants: Regulation of Salinity Tolerance. Antioxidants (Basel) 2022; 11:antiox11061168. [PMID: 35740064 PMCID: PMC9220380 DOI: 10.3390/antiox11061168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Argon, a non-polar molecule, easily diffuses into deeper tissue and interacts with larger proteins, protein cavities, or even receptors. Some of the biological effects of argon, notably its activity as an antioxidant, have been revealed in animals. However, whether and how argon influences plant physiology remains elusive. Here, we provide the first report that argon can enable plants to cope with salinity toxicity. Considering the convenience of the application, argon gas was dissolved into water (argon-rich water (ARW)) to investigate the argon’s functioning in phenotypes of alfalfa seed germination and seedling growth upon salinity stress. The biochemical evidence showed that NaCl-decreased α/β-amylase activities were abolished by the application of ARW. The qPCR experiments confirmed that ARW increased NHX1 (Na+/H+ antiporter) transcript and decreased SKOR (responsible for root-to-shoot translocation of K+) mRNA abundance, the latter of which could be used to explain the lower net K+ efflux and higher K accumulation. Subsequent results using non-invasive micro-test technology showed that the argon-intensified net Na+ efflux and its reduced Na accumulation resulted in a lower Na+/K+ ratio. NaCl-triggered redox imbalance and oxidative stress were impaired by ARW, as confirmed by histochemical and confocal analyses, and increased antioxidant defense was also detected. Combined with the pot experiments in a greenhouse, the above results clearly demonstrated that argon can enable plants to cope with salinity toxicity via reestablishing ion and redox homeostasis. To our knowledge, this is the first report to address the function of argon in plant physiology, and together these findings might open a new window for the study of argon biology in plant kingdoms.
Collapse
Affiliation(s)
- Jun Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Chenxu Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Puze Geng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Feng Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (C.C.); (P.G.); (F.T.); (Q.Y.)
- Correspondence: ; Tel.: +86-025-84399032
| |
Collapse
|
13
|
Post-stroke treatment with argon preserved neurons and attenuated microglia/macrophage activation long-termly in a rat model of transient middle cerebral artery occlusion (tMCAO). Sci Rep 2022; 12:691. [PMID: 35027642 PMCID: PMC8758662 DOI: 10.1038/s41598-021-04666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
In a previous study from our group, argon has shown to significantly attenuate brain injury, reduce brain inflammation and enhance M2 microglia/macrophage polarization until 7 days after ischemic stroke. However, the long-term effects of argon have not been reported thus far. In the present study, we analyzed the underlying neuroprotective effects and potential mechanisms of argon, up to 30 days after ischemic stroke. Argon administration with a 3 h delay after stroke onset and 1 h after reperfusion demonstrated long-term neuroprotective effect by preserving the neurons at the ischemic boundary zone 30 days after stroke. Furthermore, the excessive microglia/macrophage activation in rat brain was reduced by argon treatment 30 days after ischemic insult. However, long-lasting neurological improvement was not detectable. More sensorimotor functional measures, age- and disease-related models, as well as further histological and molecular biological analyses will be needed to extend the understanding of argon’s neuroprotective effects and mechanism of action after ischemic stroke.
Collapse
|
14
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
15
|
Creed J, Cantillana-Riquelme V, Yan BH, Ma S, Chu D, Wang H, Turner DA, Laskowitz DT, Hoffmann U. Argon Inhalation for 24 h After Closed-Head Injury Does not Improve Recovery, Neuroinflammation, or Neurologic Outcome in Mice. Neurocrit Care 2021; 34:833-843. [PMID: 32959200 DOI: 10.1007/s12028-020-01104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVE In recent years, the noble gas argon (Ar) has been extensively studied for its organ protection properties. While mounting in vitro and in vivo evidence indicates that argon provides neuroprotection in ischemic brain injury, its neuroprotective potential in traumatic brain injury (TBI) has not been evaluated in vivo. We tested the hypothesis that prolonged inhalation of 70% or 79% argon for 24 h after closed-head injury (CHI) improves neurologic outcome and overall recovery at 36 days post-injury. We also compared effects of the 30% or 21% residual oxygen on argon's potential neuroprotective capacity. METHODS Adult male C57/black mice (n = 240) were subjected to closed-head traumatic brain injury, followed by inhalation of 70% argon or nitrogen (30% oxygen), or 79% argon or nitrogen (21% oxygen) for 24 h. Neurologic outcome (rotarod, neuroscore, and Morris water maze) was evaluated for up to 36 days post-injury. Histologic parameters of neurologic degeneration (Fluoro-Jade staining) and inflammation (F4/80 microglia immunostaining) were assessed in subgroups at 24 h and on post-injury day 7. RESULTS Our CHI protocol consistently resulted in significant brain injury. After argon inhalation for 24 h at either concentration, mice did not show significant improvement with regard to neuroscores, rotarod performance, Morris water maze performance, or overall recovery (body weight), compared to nitrogen controls, up to 36 days. At 7 days post-injury, histologic markers of neurodegeneration and inflammation, particularly in the hippocampus, consistently demonstrated significant injury. Notably, recovery was reduced in mice treated with the higher oxygen concentration (30%) after CHI compared to 21%. CONCLUSIONS Prolonged argon treatment did not improve neurologic outcome, overall recovery (weight), nor markers of neurodegeneration or neuroinflammation after significant CHI compared to nitrogen. While neuroprotective in predominately ischemic injury, argon did not provide protection after TBI in this model, highlighting the crucial importance of assessing argon's strengths and weaknesses in preclinical models to fully understand its organ protective potential in different pathologies and gas mixtures.
Collapse
Affiliation(s)
- Jennifer Creed
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | | | - Bai Hui Yan
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an JiaoTong University, Xi'an, ShaanXi Province, China
| | - Shuang Ma
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Dongmei Chu
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Pediatrics, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Departments of Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Daniel T Laskowitz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
| | - Ulrike Hoffmann
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Li YJ, Zhan Y, Li C, Sun J, Yang C. CPI-1189 protects neuronal cells from oxygen glucose deprivation/re-oxygenation-induced oxidative injury and cell death. Aging (Albany NY) 2021; 13:6712-6723. [PMID: 33621193 PMCID: PMC7993696 DOI: 10.18632/aging.202528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) induces profound oxidative injury and neuronal cell death. It mimics ischemia-reperfusion neuronal injury. CPI-1189 is a novel tumor necrosis factor alpha-inhibiting compound with potential neuroprotective function. Here in SH-SY5Y neuronal cells and primary murine cortical neurons, CPI-1189 pretreatment potently inhibited OGDR-induced viability reduction and cell death. In OGDR-stimulated neuronal cells, p38 phosphorylation was blocked by CPI-1189. In addition, CPI-1189 alleviated OGDR-induced reactive oxygen species production, lipid peroxidation, and glutathione consumption. OGDR-induced neuronal cell apoptosis was also inhibited by CPI-1189 pretreatment. Furthermore, in SH-SY5Y cells and cortical neurons, CPI-1189 alleviated OGDR-induced programmed necrosis by inhibiting mitochondrial p53-cyclophilin D-adenine nucleotide translocase 1 association, mitochondrial depolarization, and lactate dehydrogenase release to the medium. In summary, CPI-1189 potently inhibited OGDR-induced oxidative injury and neuronal cell death.
Collapse
Affiliation(s)
- Yong-Jun Li
- Department of Anesthesiology, Lianshui County People's Hospital, Lianshui, China
| | - Yueli Zhan
- Anxi Maternal and Child Health Hospital, Anxi, China
| | - Chengrui Li
- Department of Anesthesiology, Lianshui County People's Hospital, Lianshui, China
| | - Jianhong Sun
- Department of Anesthesiology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Chengliang Yang
- Department of Anesthesiology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Goebel U, Scheid S, Spassov S, Schallner N, Wollborn J, Buerkle H, Ulbrich F. Argon reduces microglial activation and inflammatory cytokine expression in retinal ischemia/reperfusion injury. Neural Regen Res 2021; 16:192-198. [PMID: 32788476 PMCID: PMC7818862 DOI: 10.4103/1673-5374.290098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously found that argon exerts its neuroprotective effect in part by inhibition of the toll-like receptors (TLR) 2 and 4. The downstream transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB) are also affected by argon and may play a role in neuroprotection. It also has been demonstrated that argon treatment could mitigate brain damage, reduce excessive microglial activation, and subsequently attenuate brain inflammation. Despite intensive research, the further exact mechanism remains unclear. In this study, human neuroblastoma cells were damaged in vitro with rotenone over a period of 4 hours (to mimic cerebral ischemia and reperfusion damage), followed by a 2-hour post-conditioning with argon (75%). In a separate in vivo experiment, retinal ischemia/reperfusion injury was induced in rats by increasing intraocular pressure for 1 hour. Upon reperfusion, argon was administered by inhalation for 2 hours. Argon reduced the binding of the transcription factors signal transducer and activator of transcription 3, nuclear factor kappa B, activator protein 1, and nuclear factor erythroid 2-related factor 2, which are involved in regulation of neuronal damage. Flow cytometry analysis showed that argon downregulated the Fas ligand. Some transcription factors were regulated by toll-like receptors; therefore, their effects could be eliminated, at least in part, by the TLR2 and TLR4 inhibitor oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC). Argon treatment reduced microglial activation after retinal ischemia/reperfusion injury. Subsequent quantitative polymerase chain reaction analysis revealed a reduction in the pro-inflammatory cytokines interleukin (IL-1α), IL-1β, IL-6, tumor necrosis factor α, and inducible nitric oxide synthase. Our results suggest that argon reduced the extent of inflammation in retinal neurons after ischemia/reperfusion injury by suppression of transcription factors crucial for microglial activation. Argon has no known side effects or narcotic properties; therefore, therapeutic use of this noble gas appears ideal for treatment of patients with neuronal damage in retinal ischemia/reperfusion injury. The animal experiments were approved by the Commission for Animal Care of the University of Freiburg (approval No. 35-9185.81/G14-122) on October 19, 2012.
Collapse
Affiliation(s)
- Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sashko Spassov
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Farfán N, Carril J, Redel M, Zamorano M, Araya M, Monzón E, Alvarado R, Contreras N, Tapia-Bustos A, Quintanilla ME, Ezquer F, Valdés JL, Israel Y, Herrera-Marschitz M, Morales P. Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia. Int J Mol Sci 2020; 21:ijms21207800. [PMID: 33096871 PMCID: PMC7589575 DOI: 10.3390/ijms21207800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal Asphyxia (PA) is a leading cause of motor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-α+IFN-γ (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 °C for 21 min. Thereafter, 16 μL of MSC-S (containing 6 μg of protein derived from 2 × 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-κB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia.
Collapse
Affiliation(s)
- Nancy Farfán
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Jaime Carril
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Martina Redel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Marta Zamorano
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Maureen Araya
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Estephania Monzón
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Raúl Alvarado
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Norton Contreras
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - María Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - José Luis Valdés
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine University of Chile, Santiago 8380453, Chile; (N.F.); (J.C.); (M.R.); (M.Z.); (M.A.); (E.M.); (R.A.); (M.E.Q.); (Y.I.); (M.H.-M.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (N.C.); (J.L.V.)
- Correspondence: ; Tel.: +56-229786788
| |
Collapse
|
19
|
Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation. Cell Death Dis 2020; 11:816. [PMID: 32999283 PMCID: PMC7528015 DOI: 10.1038/s41419-020-03021-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. In SH-SY5Y cells and primary murine neurons, we report that OGD/R induces the accumulation of the microRNA miR-422a, leading to downregulation of miR-422a targets myocyte enhancer factor-2D (MEF2D) and mitogen-activated protein kinase kinase 6 (MAPKK6). Ectopic miR-422a inhibition attenuated OGD/R-induced cell death and apoptosis, whereas overexpression of miR-422a induced significant neuronal cell apoptosis. In addition, OGD/R decreased the expression of the long non-coding RNA D63785 (Lnc-D63785) to regulate miR-422a accumulation. Lnc-D63785 directly associated with miR-422a and overexpression of Lnc-D63785 reversed OGD/R-induced miR-422a accumulation and neuronal cell death. OGD/R downregulated Lnc-D63785 expression through increased methyltransferase-like protein 3 (METTL3)-dependent Lnc-D63785 m6A methylation. Conversely METTL3 shRNA reversed OGD/R-induced Lnc-D63785 m6A methylation to decrease miR-422a accumulation. Together, Lnc-D63785 m6A methylation by OGD/R causes miR-422a accumulation and neuronal cell apoptosis.
Collapse
|
20
|
Moro F, Fossi F, Magliocca A, Pascente R, Sammali E, Baldini F, Tolomeo D, Micotti E, Citerio G, Stocchetti N, Fumagalli F, Magnoni S, Latini R, Ristagno G, Zanier ER. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth 2020; 126:256-264. [PMID: 32977957 DOI: 10.1016/j.bja.2020.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. METHODS Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. RESULTS iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. CONCLUSIONS iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue.
Collapse
Affiliation(s)
- Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Fossi
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Aurora Magliocca
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Sammali
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federico Baldini
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Nino Stocchetti
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sandra Magnoni
- Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari Della Provincia di Trento-APSS, Trento, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
21
|
Nespoli F, Redaelli S, Ruggeri L, Fumagalli F, Olivari D, Ristagno G. A complete review of preclinical and clinical uses of the noble gas argon: Evidence of safety and protection. Ann Card Anaesth 2020; 22:122-135. [PMID: 30971592 PMCID: PMC6489383 DOI: 10.4103/aca.aca_111_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The noble gas argon (Ar) is a "biologically" active element and has been extensively studied preclinically for its organ protection properties. This work reviews all preclinical studies employing Ar and describes the clinical uses reported in literature, analyzing 55 pertinent articles found by means of a search on PubMed and Embase. Ventilation with Ar has been tested in different models of acute disease at concentrations ranging from 20% to 80% and for durations between a few minutes up to days. Overall, lesser cell death, smaller infarct size, and better functional recovery after ischemia have been repeatedly observed. Modulation of the molecular pathways involved in cell survival, with resulting anti-apoptotic and pro-survival effects, appeared as the determinant mechanism by which Ar fulfills its protective role. These beneficial effects have been reported regardless of onset and duration of Ar exposure, especially after cardiac arrest. In addition, ventilation with Ar was safe both in animals and humans. Thus, preclinical and clinical data support future clinical studies on the role of inhalatory Ar as an organ protector.
Collapse
Affiliation(s)
- Francesca Nespoli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Simone Redaelli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Ruggeri
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Olivari
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
22
|
Argon Inhalation for 24 Hours After Onset of Permanent Focal Cerebral Ischemia in Rats Provides Neuroprotection and Improves Neurologic Outcome. Crit Care Med 2020; 47:e693-e699. [PMID: 31094741 DOI: 10.1097/ccm.0000000000003809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We tested the hypothesis that prolonged inhalation of 70% argon for 24 hours after in vivo permanent or temporary stroke provides neuroprotection and improves neurologic outcome and overall recovery after 7 days. DESIGN Controlled, randomized, double-blinded laboratory study. SETTING Animal research laboratories. SUBJECTS Adult Wistar male rats (n = 110). INTERVENTIONS Rats were subjected to permanent or temporary focal cerebral ischemia via middle cerebral artery occlusion, followed by inhalation of 70% argon or nitrogen in 30% oxygen for 24 hours. On postoperative day 7, a 48-point neuroscore and histologic lesion size were assessed. MEASUREMENTS AND MAIN RESULTS After argon inhalation for 24 hours immediately following "severe permanent ischemia" induction, neurologic outcome (neuroscore, p = 0.034), overall recovery (body weight, p = 0.02), and infarct volume (total infarct volume, p = 0.0001; cortical infarct volume, p = 0.0003; subcortical infarct volume, p = 0.0001) were significantly improved. When 24-hour argon treatment was delayed for 2 hours after permanent stroke induction or until after postischemic reperfusion treatment, neurologic outcomes remained significantly improved (neuroscore, p = 0.043 and p = 0.014, respectively), as was overall recovery (body weight, p = 0.015), compared with nitrogen treatment. However, infarct volume and 7-day mortality were not significantly reduced when argon treatment was delayed. CONCLUSIONS Neurologic outcome (neuroscore), overall recovery (body weight), and infarct volumes were significantly improved after 24-hour inhalation of 70% argon administered immediately after severe permanent stroke induction. Neurologic outcome and overall recovery were also significantly improved even when argon treatment was delayed for 2 hours or until after reperfusion.
Collapse
|
23
|
Keap1-targeting microRNA-941 protects endometrial cells from oxygen and glucose deprivation-re-oxygenation via activation of Nrf2 signaling. Cell Commun Signal 2020; 18:32. [PMID: 32102665 PMCID: PMC7045607 DOI: 10.1186/s12964-020-0526-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mimicking ischemia-reperfusion injury, oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) applied to endometrial cells produces significant oxidative stress and programmed necrosis, which can be inhibited by nuclear-factor-E2-related factor 2 (Nrf2) signaling. MicroRNA (miRNA)-induced repression of Keap1, a Nrf2 suppressor protein that facilitates Nrf2 degradation, is novel strategy to activate Nrf2 cascade. METHODS MicroRNA-941 (miR-941) was exogenously expressed in HESC and primary human endometrial cells, and the Nrf2 pathway examined by Western blotting and real-time quantitative PCR analysis. The endometrial cells were treated with OGDR, cell programmed necrosis and apoptosis were tested. RESULTS MiR-941 is a novel Keap1-targeting miRNA that regulates Nrf2 activity. In T-HESC cells and primary human endometrial cells, ectopic overexpression of miR-941 suppressed Keap1 3'-UTR (untranslated region) expression and downregulated its mRNA/protein expression, leading to activation of the Nrf2 cascade. Conversely, inhibition of miR-941 elevated Keap1 expression and activity in endometrial cells, resulting in suppression of Nrf2 activation. MiR-941 overexpression in endometrial cells attenuated OGDR-induced oxidative stress and programmed necrosis, whereas miR-941 inhibition enhanced oxidative stress and programmed necrosis. MiR-941 overexpression and inhibition were completely ineffective in Keap1-/Nrf2-KO T-HESC cells (using CRISPR/Cas9 strategy). Restoring Keap1 expression, using an UTR-depleted Keap1 construct, abolished miR-941-induced anti-OGDR activity in T-HESC cells. Thus Keap1-Nrf2 cascade activation is required for miR-941-induced endometrial cell protection. CONCLUSIONS Targeting Keap1 by miR-941 activates Nrf2 cascade to protect human endometrial cells from OGDR-induced oxidative stress and programmed necrosis. Video Abstract.
Collapse
|
24
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
25
|
Xu HB, Zheng YF, Wu D, Li Y, Zhou LN, Chen YG. microRNA-1203 targets and silences cyclophilin D to protect human endometrial cells from oxygen and glucose deprivation-re-oxygenation. Aging (Albany NY) 2020; 12:3010-3024. [PMID: 32041924 PMCID: PMC7041737 DOI: 10.18632/aging.102795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) stimulation to the human endometrial cells mimics ischemia-reperfusion injury. Cyclophilin D (CypD)-dependent programmed necrosis pathway mediates OGDR-induced cytotoxicity to human endometrial cells. We here identified a novel CypD-targeting miRNA, microRNA-1203 (miR-1203). In T-HESC and primary human endometrial cells, ectopic overexpression of miR-1203, using a lentiviral construct, potently downregulated the CypD 3’-untranslated region (3’-UTR) activity and its expression. Both were however upregulated in endometrial cells with forced miR-1203 inhibition by its anti-sense sequence. Functional studies demonstrated that ectopic miR-1203 overexpression in endometrial cells alleviated OGDR-induced programmed necrosis, inhibiting mitochondrial CypD-p53-adenine nucleotide translocator 1 association, mitochondrial depolarization, reactive oxygen species production, and medium lactate dehydrogenase release. Contrarily OGDR-induced programmed necrosis and cytotoxicity were intensified with forced miR-1203 inhibition in endometrial cells. Significantly, ectopic miR-1203 overexpression or inhibition failed to change OGDR-induced cytotoxicity in CypD-knockout T-HESC cells. Furthermore, ectopic miR-1203 overexpression was unable to protect T-HESC endometrial cells from OGDR when CypD was restored by an UTR-depleted CypD construct. Collectively, these results show that miR-1203 targets and silences CypD to protect human endometrial cells from OGDR
Collapse
Affiliation(s)
- Hong-Bin Xu
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Soochow University, Suzhou, China.,Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu-Fan Zheng
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Di Wu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya Li
- The Central Lab, North District, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Li-Na Zhou
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - You-Guo Chen
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Mo Y, Zhu JL, Jiang A, Zhao J, Ye L, Han B. Compound 13 activates AMPK-Nrf2 signaling to protect neuronal cells from oxygen glucose deprivation-reoxygenation. Aging (Albany NY) 2019; 11:12032-12042. [PMID: 31852839 PMCID: PMC6949105 DOI: 10.18632/aging.102534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Oxygen glucose deprivation-reoxygenation (OGD-R) causes the production of reactive oxygen species (ROS) and oxidative injury in neuronal cells. We tested the potential neuroprotective function of compound 13 (C13), a novel AMP-activated protein kinase (AMPK) activator, against OGD-R. We show that C13 pretreatment protected SH-SY5Y neuronal cells and primary hippocampal neurons from OGD-R. C13 activated AMPK signaling in SH-SY5Y cells and primary neurons. It significantly inhibited OGD-R-induced apoptosis activation in neuronal cells. Conversely, AMPKα1 shRNA or knockout reversed C13-mediated neuroprotection against OGD-R. C13 potently inhibited OGD-R-induced ROS production and oxidative stress in SH-SY5Y cells and primary neurons. Furthermore, C13 induced Keap1 downregulation and Nrf2 activation, causing Nrf2 stabilization, nuclear accumulation, and expression of Nrf2-dependent genes. Nrf2 silencing or knockout in SH-SY5Y cells abolished C13-mediated neuroprotection against OGD-R. In conclusion, C13 activates AMPK-Nrf2 signaling to protect neuronal cells from OGD-R.
Collapse
Affiliation(s)
- Yanqing Mo
- Minhang Hospital, Fudan University, Minhang District, Shanghai, China
| | - Jian-Liang Zhu
- Department of Emergency and Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Aihua Jiang
- Minhang Hospital, Fudan University, Minhang District, Shanghai, China
| | - Jing Zhao
- Minhang Hospital, Fudan University, Minhang District, Shanghai, China
| | - Liping Ye
- Minhang Hospital, Fudan University, Minhang District, Shanghai, China
| | - Bin Han
- Minhang Hospital, Fudan University, Minhang District, Shanghai, China
| |
Collapse
|
27
|
Zhao H, Chen Q, Huang H, Suen KC, Alam A, Cui J, Ciechanowicz S, Ning J, Lu K, Takata M, Gu J, Ma D. Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats. Br J Anaesth 2019; 123:519-530. [DOI: 10.1016/j.bja.2019.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/15/2022] Open
|
28
|
Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth 2019; 123:601-609. [PMID: 31470983 PMCID: PMC6871267 DOI: 10.1016/j.bja.2019.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background Noble gases may provide novel treatments for neurological injuries such as ischaemic and traumatic brain injury. Few studies have evaluated the complete series of noble gases under identical conditions in the same model. Methods We used an in vitro model of hypoxia–ischaemia to evaluate the neuroprotective properties of the series of noble gases, helium, neon, argon, krypton, and xenon. Organotypic hippocampal brain slices from mice were subjected to oxygen-glucose deprivation, and injury was quantified using propidium iodide fluorescence. Results Both xenon and argon were equally effective neuroprotectants, with 0.5 atm of xenon or argon reducing injury by 96% (P<0.0001), whereas helium, neon, and krypton were devoid of any protective effect. Neuroprotection by xenon, but not argon, was reversed by elevated glycine. Conclusions Xenon and argon are equally effective as neuroprotectants against hypoxia–ischaemia in vitro, with both gases preventing injury development. Although xenon's neuroprotective effect may be mediated by inhibition of the N-methyl-d-aspartate receptor at the glycine site, argon acts via a different mechanism. These findings may have important implications for their clinical use as neuroprotectants.
Collapse
Affiliation(s)
- Mariia Koziakova
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Katie Harris
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, London, UK; Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, London Road, Reading, UK
| | | | - Ian L White
- Department of Anaesthetics, St Peter's Hospital, Chertsey, UK
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
29
|
Liu J, Nolte K, Brook G, Liebenstund L, Weinandy A, Höllig A, Veldeman M, Willuweit A, Langen KJ, Rossaint R, Coburn M. Post-stroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Crit Care 2019; 23:198. [PMID: 31159847 PMCID: PMC6547472 DOI: 10.1186/s13054-019-2493-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent years, argon has been shown to exert neuroprotective effects in an array of models. However, the mechanisms by which argon exerts its neuroprotective characteristics remain unclear. Accumulating evidence imply that argon may exert neuroprotective effects via modulating the activation and polarization of microglia/macrophages after ischemic stroke. In the present study, we analyzed the underlying neuroprotective effects of delayed argon application until 7 days after reperfusion and explored the potential mechanisms. METHODS Twenty-one male Wistar rats underwent transient middle cerebral artery occlusion or sham surgery randomly for 2 h using the endoluminal thread model. Three hours after transient middle cerebral artery occlusion induction and 1 h after reperfusion, animals received either 50% vol Argon/50% vol O2 or 50% vol N2/50% vol O2 for 1 h. The primary outcome was the 6-point neuroscore from 24 h to d7 after reperfusion. Histological analyses including infarct volume, survival of neurons (NeuN) at the ischemic boundary zone, white matter integrity (Luxol Fast Blue), microglia/macrophage activation (Iba1), and polarization (Iba1/Arginase1 double staining) on d7 were conducted as well. Sample size calculation was performed using nQuery Advisor + nTerim 4.0. Independent t test, one-way ANOVA and repeated measures ANOVA were performed, respectively, for statistical analysis (SPSS 23.0). RESULTS The 6-point neuroscore from 24 h to d7 after reperfusion showed that tMCAO Ar group displayed significantly improved neurological performance compared to tMCAO N2 group (p = 0.026). The relative numbers of NeuN-positive cells in the ROIs of tMCAO Ar group significantly increased compared to tMCAO N2 group (p = 0.010 for cortex and p = 0.011 for subcortex). Argon significantly suppressed the microglia/macrophage activation as revealed by Iba1 staining (p = 0.0076) and promoted the M2 microglia/macrophage polarization as revealed by Iba1/Arginase 1 double staining (p = 0.000095). CONCLUSIONS Argon administration with a 3 h delay after stroke onset and 1 h after reperfusion significantly alleviated neurological deficit within the first week and preserved the neurons at the ischemic boundary zone 7 days after stroke. Moreover, argon reduced the excessive microglia/macrophage activation and promoted the switch of microglia/macrophage polarization towards the anti-inflammatory M2 phenotype. Studies making efforts to further elucidate the protective mechanisms and to benefit the translational application are of great value.
Collapse
Affiliation(s)
- Jingjin Liu
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Gary Brook
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Lisa Liebenstund
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Agnieszka Weinandy
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Anke Höllig
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
|
31
|
LncRNA NKILA upregulation mediates oxygen glucose deprivation/re-oxygenation-induced neuronal cell death by inhibiting NF-κB signaling. Biochem Biophys Res Commun 2018; 503:2524-2530. [DOI: 10.1016/j.bbrc.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022]
|
32
|
Zhao H, Huang H, Alam A, Chen Q, Suen KC, Cui J, Sun Q, Ologunde R, Zhang W, Lian Q, Ma D. VEGF mitigates histone-induced pyroptosis in the remote liver injury associated with renal allograft ischemia-reperfusion injury in rats. Am J Transplant 2018; 18:1890-1903. [PMID: 29446207 PMCID: PMC6175002 DOI: 10.1111/ajt.14699] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 01/25/2023]
Abstract
Clinical evidence has indicated a possible link between renal injury and remote liver injury. We investigated whether extracellular histone mediates remote hepatic damage after renal graft ischemia-reperfusion injury, while vascular endothelial growth factor (VEGF) is protective against remote hepatic injury. In vitro, hepatocyte HepG2 cultures were treated with histone. In vivo, the Brown-Norway renal graft was stored in 4°C preservation solution for 24 hours and then transplanted into a Lewis rat recipient; blood samples and livers from recipients were harvested 24 hours after surgery. Prolonged cold ischemia in renal grafts enhanced liver injury 24 hours after engraftment. Caspase-1, ASC, NLRP3, and AIM2 expressions in hepatocyte, CD68+ -infiltrating macrophages, tissue, and serum interleukin-1β and -18 were greatly elevated, indicating that pyroptosis occurred in the liver and resulted in acute liver functional impairment. Blocking the caspase-1 pathway decreased the number of necrotic hepatocytes. VEGF treatment suppressed the hepatocyte pyroptosis and liver function was partially restored. Our data suggested that renal allograft ischemia-reperfusion injury is likely associated with acute liver damage due to hepatocyte pyroptosis induced by histone and such injury may be protected by VEGF administration. VEGF, therefore, may serve as a new strategy against other remote organ injuries related to renal transplantation.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Han Huang
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK,Department of AnaesthesiologyWest China Second University HospitalSichuan UniversityChengduChina
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK,Department of AnaesthesiologySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Ka Chuen Suen
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Jiang Cui
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Qizhe Sun
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Rele Ologunde
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Wenwen Zhang
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK,The Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Qingquan Lian
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| |
Collapse
|
33
|
Shi X, Liu HY, Li SP, Xu HB. Keratinocyte growth factor protects endometrial cells from oxygen glucose deprivation/re-oxygenation via activating Nrf2 signaling. Biochem Biophys Res Commun 2018; 501:178-185. [DOI: 10.1016/j.bbrc.2018.04.208] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
|
34
|
Savary G, Lidouren F, Rambaud J, Kohlhauer M, Hauet T, Bruneval P, Costes B, Cariou A, Ghaleh B, Mongardon N, Tissier R. Argon attenuates multiorgan failure following experimental aortic cross-clamping. Br J Clin Pharmacol 2018; 84:1170-1179. [PMID: 29388238 DOI: 10.1111/bcp.13535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/27/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Argon has been shown to prevent ischaemic injuries in several scenarios of regional ischaemia. We determined whether it could provide a systemic effect in a model of multiorgan failure (MOF) induced by aortic cross-clamping. METHODS Anaesthetized rabbits were submitted to aortic cross-clamping (30 min) and subsequent reperfusion (300 min). They were either ventilated with oxygen-enriched air throughout the protocol [fraction of inspired oxygen (FiO2 ) = 30%; control group) or with a mixture of 30% oxygen and 70% argon (argon groups). In a first group treated with argon ('Argon-Total'), its administration was started 30 min before ischaemia and maintained throughout the protocol. In the two other groups, the administration was started either 30 min before ischaemia ('Argon-Pre') or at the onset of reperfusion ('Argon-Post'), for a total duration of 2 h. Cardiovascular, renal and inflammatory endpoints were assessed throughout protocol. RESULTS Compared with control, shock was significantly attenuated in Argon-Total and Argon-Pre but not Argon-Post groups (e.g. cardiac output = 62±5 vs. 29 ± 5 ml min-1 kg-1 in Argon-Total and control groups at the end of the follow-up). Shock and renal failure were reduced in all argon vs. control groups. Histopathological examination of the gut showed attenuation of ischaemic lesions in all argon vs. control groups. Blood transcription levels of interleukin (IL) 1β, IL-8, IL-10 and hypoxia-inducible factor 1α were not significantly different between groups. CONCLUSION Argon attenuated clinical and biological modifications of cardiovascular, renal and intestinal systems, but not the inflammatory response, after aortic cross-clamping. The window of administration was crucial to optimize organ protection.
Collapse
Affiliation(s)
- Guillaume Savary
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Jérôme Rambaud
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Thierry Hauet
- Faculté de Médecine et de Pharmacie, Inserm, U1082, Université de Poitiers, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologique, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Paris, France
| | | | - Alain Cariou
- Service de Réanimation Médicale, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nicolas Mongardon
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.,Service d'Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Renaud Tissier
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
35
|
Abstract
Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways.
Collapse
|
36
|
Gardner A, Menon D. Moving to human trials for argon neuroprotection in neurological injury: a narrative review. Br J Anaesth 2018; 120:453-468. [DOI: 10.1016/j.bja.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
|
37
|
Zhang Q, Wang J, Zhang C, Liao S, Li P, Xu D, Lv Y, Yang M, Kong L. The components of Huang-Lian-Jie-Du-Decoction act synergistically to exert protective effects in a rat ischemic stroke model. Oncotarget 2018; 7:80872-80887. [PMID: 27779107 PMCID: PMC5348361 DOI: 10.18632/oncotarget.12645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction (HLJDD, Oren-gedoku-to in Japanese) is commonly used in traditional Chinese medicine (TCM) to treat ischemic stroke. This study investigated the efficacy of various combinations of the major components of HLJDD, berberine (A), baicalin (B), and jasminoidin (C), on the treatment of ischemic stroke modeled by middle cerebral artery occlusion (MCAO) in rats. The effects of A, B and C individually and their combinations were investigated using proton nuclear magnetic resonance (1H NMR)-based metabolomics complemented with neurologic deficit scoring, infarct volume measurement, biochemistry, histopathology and immunohistochemistry, as well as quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Ischemic stroke produces severe oxidative stress, which induces further damage. Our results show that the ABC combination treatment increased levels of cellular antioxidants that scavenged reactive oxygen species during ischemia-reperfusion via the nuclear erythroid 2-related factor 2 (Nrf2) signaling cascade. These protective effects were not observed with the other treatments. These results suggest that a combination of component herbs in HLJDD exhibit stronger effects than the individual herbs alone. Our integrated metabolomics approach also provides a tractable, powerful tool for understanding the science behind TCM formulations.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Pei Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Dingqiao Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yan Lv
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
38
|
Liu X, Ma Y, Wei X, Fan T. Neuroprotective effect of licochalcone A against oxygen-glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the SIRT1/Nrf2 pathway. J Cell Biochem 2017; 119:3210-3219. [PMID: 29105819 DOI: 10.1002/jcb.26477] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of neonatal death and neurological disability. Oxidative stress and neuroinflammation are typical pathogenic factors of HIE. Licochalcone A (LCA) exerts various biological properties, including anti-inflammatory and antioxidant activities. However, no data have been reported to elucidate the role of LCA in the development of HIE. In the present study, primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro to simulate the in vivo situation of neonatal HIE. Interestingly, LCA significantly antagonized cell injury under OGD/R by increasing cell survival, inhibiting lactate dehydrogenase (LDH) release and cell apoptosis. Furthermore, treatment with LCA suppressed oxidative stress by decreasing reactive oxygen species (ROS) production and malondialdehyde (MDA) content, and increasing superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in primary rat cortical neurons after OGD/R. LCA stimulation also restrained OGD/R-triggered increase in pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production. Importantly, LCA treatment effectively counteracts OGD/R-mediated downregulation of silent information regulator 1 (SIRT1), nuclear factor erythroid2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1), and upregulation of nuclear factor kappa B p65 (NF-κB p65). Moreover, administration with SIRT1 inhibitor EX527 partly abolished LCA-induced neuroprotective effects on rat cortical neurons exposed to OGD/R. In conclusion, our study indicates that LCA exerts a neuroprotective effect against OGD/R-induced neuronal injury in rat primary cortical neurons, suggesting that LCA might act as a candidate therapeutic target drug used for HIE and related diseases.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Neonatology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Ying Ma
- Department of Neonatology, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xiaodi Wei
- Department of Neonatology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Ting Fan
- Department of Neonatology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Weng Y, Lin J, Liu H, Wu H, Yan Z, Zhao J. AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation. Oncotarget 2017; 9:4511-4521. [PMID: 29435120 PMCID: PMC5796991 DOI: 10.18632/oncotarget.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species production, lipid peroxidation and DNA damages in neuronal cells were significantly attenuated by ThIIA. ThIIA activated AMP-activated protein kinase (AMPK) signaling, which was essential for neuroprotection against OGDR. AMPKα1 knockdown or complete knockout in SH-SY5Y cells abolished ThIIA-induced AMPK activation and neuroprotection against OGDR. Further studies found that ThIIA up-regulated microRNA-135b to downregulate the AMPK phosphatase Ppm1e. Notably, knockdown of Ppm1e by targeted shRNA or forced microRNA-135b expression also activated AMPK and protected SH-SY5Y cells from OGDR. Together, AMPK activation by ThIIA protects neuronal cells from OGDR. microRNA-135b-mediated silence of Ppm1e could be the key mechanism of AMPK activation by ThIIA.
Collapse
Affiliation(s)
- Yingfeng Weng
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jixian Lin
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Wu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhimin Yan
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Sneyd J. Thiopental to desflurane - an anaesthetic journey. Where are we going next? Br J Anaesth 2017; 119:i44-i52. [DOI: 10.1093/bja/aex328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 01/06/2023] Open
|
41
|
Ginseng Rh2 protects endometrial cells from oxygen glucose deprivation/re-oxygenation. Oncotarget 2017; 8:105703-105713. [PMID: 29285285 PMCID: PMC5739672 DOI: 10.18632/oncotarget.22390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
In this study, oxygen glucose deprivation/re-oxygenation (OGDR) was applied to cultured endometrial cells to mimic ischemic-reperfusion injuries. We also tested the potential effect of Ginseng Rh2 (GRh2) against the process. In established T-HESC human endometrial cells and primary murine endometrial cells, GRh2 largely inhibited OGDR-induced viability reduction and cell death. Remarkably, OGDR induced programmed necrosis in the endometrial cells, evidenced by cyclophilin D-p53-adenine nucleotide translocator 1 (ANT-1) mitochondrial association, mitochondrial depolarization, reactive oxygen species production, and lactate dehydrogenase release. Notably, such effects by OGDR were largely attenuated with co-treatment of GRh2. Further, cyclophilin D inhibition or knockdown also protected endometrial cells from OGDR. On the other hand, forced over-expression of cyclophilin D facilitated OGDR-induced T-HESC cell necrosis, which was dramatically inhibited by GRh2. Together, GRh2 protects endometrial cells from OGDR possibly via inhibiting CypD-dependent programmed necrosis pathway.
Collapse
|
42
|
Zheng J, Cui E, Yang H, Li M, Zhou J, Yan M, Sun J, Tang DR. Targeting cyclophilin-D by compound 19 protects neuronal cells from oxygen glucose deprivation/re-oxygenation. Oncotarget 2017; 8:90238-90249. [PMID: 29163824 PMCID: PMC5685745 DOI: 10.18632/oncotarget.21655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023] Open
Abstract
Oxygen and glucose deprivation (OGD) with re-oxygenation (OGDR) is applied to neuronal cells to mimic ischemia-reperfusion injuries. Activation of cyclophilin D (Cyp-D)-dependent programmed necrosis pathway mediates OGDR-induced neuronal cell damages. Here, we tested the potential effect of Compound 19 (C19), a novel Cyp-D inhibitor, in this process. In both established neuronal cell lines (Neuro-2a and NB41A3 cells) and the primary murine CA1 hippocampal neurons, pretreatment with C19 largely attenuated OGDR-induced cell viability reduction and cell death. Significantly, C19 was ineffective in Cyp-D-silenced Neuro-2a cells. OGDR induced mitochondria-dependent programmed necrosis in neuronal cells. OGDR induced p53 translocation to mitochondria and association with Cyp-D, causing mitochondrial depolarization, cytochrome C release and reactive oxygen species production. Such effects were largely attenuated with pre-treatment of C19. Importantly, C19 was significantly more efficient than other known Cyp-D inhibitors in protecting neuronal cells from OGDR. These results suggest that targeting Cyp-D by C19 protects neuronal cells from OGDR.
Collapse
Affiliation(s)
- Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, China
| | - Enhui Cui
- Department of Anesthesiology, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical School, Huai'an, China
| | - Haikou Yang
- Department of Anesthesiology, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical School, Huai'an, China
| | - Mao Li
- Department of Anesthesiology, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical School, Huai'an, China
| | - Jing Zhou
- Department of Anesthesiology, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical School, Huai'an, China
| | - Ming Yan
- Department of Anesthesiology, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical School, Huai'an, China
| | - Jian Sun
- Department of Anesthesiology, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical School, Huai'an, China
| | - De-Rong Tang
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
43
|
MIND4-17 protects retinal pigment epithelium cells and retinal ganglion cells from UV. Oncotarget 2017; 8:89793-89801. [PMID: 29163788 PMCID: PMC5685709 DOI: 10.18632/oncotarget.21131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Nrf2 activation would efficiently protect retinal cells from UV radiation (UVR). Recent studies have developed a Nrf2-targeting thiazole-containing compound MIND4-17, which activates Nrf2 through blocking its association with Keap1. In the current study, we demonstrated that pretreatment with MIND4-17 efficiently protected retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs) from UVR. UVR-induced apoptosis in the retinal cells was also largely attenuated by MIND4-17 pretreatment. MIND4-17 presumably separated Nrf2 from Keap1, allowing its stabilization and accumulation in retinal cells, which then translocated to cell nuclei and promoted transcription of ARE-dependent anti-oxidant genes, including HO1, NQO1 and GCLM. Significantly, shRNA-mediated knockdown of Nrf2 almost completely abolished MIND4-17-induced cytoprotection against UVR. Further studies showed that MIND4-17 largely ameliorated UVR-induced ROS production, lipid peroxidation and DNA damages in RPEs and RGCs. Together, MIND4-17 protects retinal cells from UVR by activating Nrf2 signaling.
Collapse
|
44
|
AntagomiR-613 protects neuronal cells from oxygen glucose deprivation/re-oxygenation via increasing SphK2 expression. Biochem Biophys Res Commun 2017; 493:188-194. [PMID: 28916166 DOI: 10.1016/j.bbrc.2017.09.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 01/06/2023]
Abstract
Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) causes damages to neuronal cells. Sphingosine kinase 2 (SphK2) expression could exert neuroprotective functions. Here, we aim to induce SphK2 expression via inhibiting the anti-SphK2 microRNA: microRNA-613 ("miR-613"). In both SH-SY5Y neuronal cells and primary murine hippocampal neurons, transfection of the miR-613's specific inhibitor, antagomiR-613 ("antamiR-613"), induced miR-613 depletion and SphK2 expression. Reversely, forced over-expression of miR-613 caused SphK2 downregulation in SH-SY5Y cells. OGDR-induced cytotoxicity in neuronal cells was largely attenuated by antamiR-613. SphK2 is required for antamiR-613-induced actions in neuronal cells. SphK2 knockdown (by targeted-shRNAs) or inhibition (by its inhibitor ABC294640) almost completely abolished antamiR-613-mediated neuroprotection against OGDR. Further studies showed that OGDR-induced reactive oxygen species (ROS) production, lipid peroxidation, and DNA damages in SH-SY5Y cells were largely attenuated by antamiR-613, but were intensified by miR-613 expression. Taken together, we conclude that antamiR-613 protects neuronal cells from OGDR probably via inducing SphK2 expression.
Collapse
|
45
|
Liu S, Xin D, Wang L, Zhang T, Bai X, Li T, Xie Y, Xue H, Bo S, Liu D, Wang Z. Therapeutic effects of L-Cysteine in newborn mice subjected to hypoxia-ischemia brain injury via the CBS/H 2S system: Role of oxidative stress and endoplasmic reticulum stress. Redox Biol 2017; 13:528-540. [PMID: 28735240 PMCID: PMC5524226 DOI: 10.1016/j.redox.2017.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a major cause of neonatal death and neurological dysfunction. H2S has been shown to protect against hypoxia-induced injury and apoptosis of neurons. L-Cysteine is catalyzed by cystathionine-β-synthase (CBS) in the brain and sequentially produces endogenous H2S. The present study was designed to investigate whether L-Cysteine could attenuate the acute brain injury and improve neurobehavioral outcomes following HI brain injury in neonatal mice by releasing endogenous H2S. L-Cysteine treatment significantly attenuated brain edema and decreased infarct volume and neuronal cell death, as shown by a decrease in the Bax/Bcl-2 ratio, suppression of caspase-3 activation, and reduced phosphorylation of Akt and ERK at 72 h after HI. Additionally, L-Cysteine substantially up-regulated NF-E2-related factor 2 and heme oxygenase-1 expression. L-Cysteine also decreased endoplasmic reticulum (ER) stress-associated pro-apoptotic protein expression. Furthermore, L-Cysteine had long-term effects by protecting against the loss of ipsilateral brain tissue and improving neurobehavioral outcomes. Importantly, pre-treatment with a CBS inhibitor significantly attenuated the neuroprotection of L-Cysteine on HI insult. Thus, L-Cysteine exerts neuroprotection against HI-induced injury in neonates via the CBS/H2S pathway, mediated in part by anti-apoptotic effects and reduced oxidative stress and ER stress. Thus, L-Cysteine may be a promising treatment for HI. L-Cysteine administration at 24 h after HI insult has neuroprotective effect. L-Cysteine administration attenuated HI-induced oxidative stress and ER stress. L-Cysteine administration had long-term effects in improving neurobehavioral function at 14 and 28 days after HI insult. Pre-treatment with a CBS inhibitor significantly attenuated the neuroprotection of L-Cysteine on HI in neonatal mice.
Collapse
Affiliation(s)
- Song Liu
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Lingxiao Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tiantian Zhang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tong Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yunkai Xie
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province 250012, PR China
| | - Shishi Bo
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
46
|
Cui X, Song H, Su J. Curcumin attenuates hypoxic-ischemic brain injury in neonatal rats through induction of nuclear factor erythroid-2-related factor 2 and heme oxygenase-1. Exp Ther Med 2017; 14:1512-1518. [PMID: 28781627 PMCID: PMC5526188 DOI: 10.3892/etm.2017.4683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/03/2017] [Indexed: 01/27/2023] Open
Abstract
Curcumin has previously demonstrated anti-inflammatory, anti-infective and immuno-suppressive effects. In the present study, whether the attenuating effects of curcumin against hypoxic-ischemic brain injury in neonatal rats are mediated via nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was investigated. A model of hypoxic-ischemic brain injury was created using 1-week-old Sprague Dawley rats (weight, 52±1 g). The model rats were treated with 150 mg/kg curcumin by gavage for 3 days. Malondialdehyde levels, and superoxide dismutase and caspase-3 activities were assayed using commercial kits and western blot analysis was used to measure inducible nitric oxide synthase (iNOS), Nrf2 and HO-1 expression levels. Treatment with curcumin effectively reduced the brain injury score, increased myelin basic protein (MBP) expression and increased the quantity of neuronal cells in neonatal rats with hypoxic-ischemic brain injury. Furthermore, treatment with curcumin significantly attenuated the changes in SOD activity and MDA levels and suppressed the iNOS protein expression induced in neonatal rats by hypoxic-ischemic brain injury. Treatment with curcumin significantly increased Nrf2 and HO-1 expression in the neonatal rats with hypoxic-ischemic brain injury. The present study indicated that curcumin attenuates hypoxic-ischemic brain injury in neonatal rats through the induction of Nrf2 and HO-1.
Collapse
Affiliation(s)
- Xiaolu Cui
- Department of Rehabilitation Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hongquan Song
- Department of Spleen and Stomach, Affiliated Hospital of Shandong University of TCM, Jinan, Shandong 250013, P.R. China
| | - Jie Su
- Department of Cadres and Health Care, The Second Affiliated Hospital of Shandong University of TCM, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
47
|
Lavaur J, Le Nogue D, Lemaire M, Pype J, Farjot G, Hirsch EC, Michel PP. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem 2017; 142:14-28. [PMID: 28398653 PMCID: PMC5518208 DOI: 10.1111/jnc.14041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/24/2023]
Abstract
Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic‐ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N‐methyl‐d‐aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N‐methyl‐d‐aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. ![]()
Collapse
Affiliation(s)
- Jérémie Lavaur
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Déborah Le Nogue
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Marc Lemaire
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Jan Pype
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Etienne C Hirsch
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrick P Michel
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
48
|
Martens A, Ordies S, Vanaudenaerde BM, Verleden SE, Vos R, Verleden GM, Verbeken EK, Van Raemdonck DE, Claes S, Schols D, Chalopin M, Katz I, Farjot G, Neyrinck AP. A porcine ex vivo lung perfusion model with maximal argon exposure to attenuate ischemia-reperfusion injury. Med Gas Res 2017; 7:28-36. [PMID: 28480029 PMCID: PMC5402344 DOI: 10.4103/2045-9912.202907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Argon (Ar) is a noble gas with known organoprotective effects in rodents and in vitro models. In a previous study we failed to find a postconditioning effect of Ar during ex vivo lung perfusion (EVLP) on warm-ischemic injury in a porcine model. In this study, we further investigated a prolonged exposure to Ar to decrease cold ischemia-reperfusion injury after lung transplantation in a porcine model with EVLP assessment. Domestic pigs (n = 6/group) were pre-conditioned for 6 hours with 21% O2 and 79% N2 (CONTR) or 79% Ar (ARG). Subsequently, lungs were cold flushed and stored inflated on ice for 18 hours inflated with the same gas mixtures. Next, lungs were perfused for 4 hours on EVLP (acellular) while ventilated with 12% O2 and 88% N2 (CONTR group) or 88% Ar (ARG group). The perfusate was saturated with the same gas mixture but with the addition of CO2 to an end-tidal CO2 of 35-45 mmHg. The saturated perfusate was drained and lungs were perfused with whole blood for an additional 2 hours on EVLP. Evaluation at the end of EVLP did not show significant effects on physiologic parameters by prolonged exposure to Ar. Also wet-to-dry weight ratio did not improve in the ARG group. Although in other organ systems protective effects of Ar have been shown, we did not detect beneficial effects of a high concentration of Ar on cold pulmonary ischemia-reperfusion injury in a porcine lung model after prolonged exposure to Ar in this porcine model with EVLP assessment.
Collapse
Affiliation(s)
- An Martens
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium.,Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Ordies
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium.,Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Robin Vos
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Eric K Verbeken
- University Hospitals Leuven, Department of Histopathology, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthieu Chalopin
- Air Liquide Santé International Medical R&D; Paris-Saclay Research Center, Jouy-en Josas, France
| | - Ira Katz
- Air Liquide Santé International Medical R&D; Paris-Saclay Research Center, Jouy-en Josas, France
| | - Geraldine Farjot
- Air Liquide Santé International Medical R&D; Paris-Saclay Research Center, Jouy-en Josas, France
| | - Arne P Neyrinck
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium.,Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
49
|
The Molecular Pathway of Argon-Mediated Neuroprotection. Int J Mol Sci 2016; 17:ijms17111816. [PMID: 27809248 PMCID: PMC5133817 DOI: 10.3390/ijms17111816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response.
Collapse
|