1
|
Chen X, Li Y, Su J, Zhang L, Liu H. Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. BIOSENSORS 2024; 14:501. [PMID: 39451714 PMCID: PMC11506746 DOI: 10.3390/bios14100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Lung cancer is a major threat to human health and a leading cause of death. Accurate localization of tumors in vivo is crucial for subsequent treatment. In recent years, fluorescent imaging technology has become a focal point in tumor diagnosis and treatment due to its high sensitivity, strong selectivity, non-invasiveness, and multifunctionality. Molecular probes-based fluorescent imaging not only enables real-time in vivo imaging through fluorescence signals but also integrates therapeutic functions, drug screening, and efficacy monitoring to facilitate comprehensive diagnosis and treatment. Among them, near-infrared (NIR) fluorescence imaging is particularly prominent due to its improved in vivo imaging effect. This trend toward multifunctionality is a significant aspect of the future advancement of fluorescent imaging technology. In the past years, great progress has been made in the field of NIR fluorescence imaging for lung cancer management, as well as the emergence of new problems and challenges. This paper generally summarizes the application of NIR fluorescence imaging technology in these areas in the past five years, including the design, detection principles, and clinical applications, with the aim of advancing more efficient NIR fluorescence imaging technologies to enhance the accuracy of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xinglong Chen
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuning Li
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jialin Su
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Lemeng Zhang
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China;
| |
Collapse
|
2
|
Zeng F, Li C, Wang H, Wang Y, Ren T, He F, Jiang J, Xu J, Wang B, Wu Y, Yu Y, Hu Z, Tian J, Wang S, Tang X. Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIR-II Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310167. [PMID: 38502871 PMCID: PMC11434027 DOI: 10.1002/advs.202310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Complete removal of all tumor tissue with a wide surgical margin is essential for the treatment of osteosarcoma (OS). However, it's difficult, sometimes impossible, to achieve due to the invisible small satellite lesions and blurry tumor boundaries. Besides, intraoperative frozen-section analysis of resection margins of OS is often restricted by the hard tissues around OS, which makes it impossible to know whether a negative margin is achieved. Any unresected small tumor residuals will lead to local recurrence and worse prognosis. Herein, based on the high expression of B7H3 in OS, a targeted probe B7H3-IRDye800CW is synthesized by conjugating anti-B7H3 antibody and IRDye800CW. B7H3-IRDye800CW can accurately label OS areas after intravenous administration, thereby helping surgeons identify and resect residual OS lesions (<2 mm) and lung metastatic lesions. The tumor-background ratio reaches 4.42 ± 1.77 at day 3. After incubating fresh human OS specimen with B7H3-IRDye800CW, it can specifically label the OS area and even the microinvasion area (confirmed by hematoxylin-eosin [HE] staining). The probe labeled area is consistent with the tumor area shown by magnetic resonance imaging and complete HE staining of the specimen. In summary, B7H3-IRDye800CW has translational potential in intraoperative resection guidance and rapid pathological diagnosis of OS.
Collapse
Affiliation(s)
- Fanwei Zeng
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Changjian Li
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Han Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Fangzhou He
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Jiang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Wu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yiyang Yu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shidong Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
3
|
Pisano G, Wendler T, Valdés Olmos RA, Garganese G, Rietbergen DDD, Giammarile F, Vidal-Sicart S, Oonk MHM, Frumovitz M, Abu-Rustum NR, Scambia G, Rufini V, Collarino A. Molecular image-guided surgery in gynaecological cancer: where do we stand? Eur J Nucl Med Mol Imaging 2024; 51:3026-3039. [PMID: 38233609 PMCID: PMC11300493 DOI: 10.1007/s00259-024-06604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this review is to give an overview of the current status of molecular image-guided surgery in gynaecological malignancies, from both clinical and technological points of view. METHODS A narrative approach was taken to describe the relevant literature, focusing on clinical applications of molecular image-guided surgery in gynaecology, preoperative imaging as surgical roadmap, and intraoperative devices. RESULTS The most common clinical application in gynaecology is sentinel node biopsy (SNB). Other promising approaches are receptor-target modalities and occult lesion localisation. Preoperative SPECT/CT and PET/CT permit a roadmap for adequate surgical planning. Intraoperative detection modalities span from 1D probes to 2D portable cameras and 3D freehand imaging. CONCLUSION After successful application of radio-guided SNB and SPECT, innovation is leaning towards hybrid modalities, such as hybrid tracer and fusion of imaging approaches including SPECT/CT and PET/CT. Robotic surgery, as well as augmented reality and virtual reality techniques, is leading to application of these innovative technologies to the clinical setting, guiding surgeons towards a precise, personalised, and minimally invasive approach.
Collapse
Affiliation(s)
- Giusi Pisano
- Section of Nuclear Medicine, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Thomas Wendler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Chair for Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Garching, Near Munich, Germany
| | - Renato A Valdés Olmos
- Interventional Molecular Imaging Laboratory & Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Giorgia Garganese
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory & Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Sergi Vidal-Sicart
- Nuclear Medicine Department, Hospital Clinic Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Maaike H M Oonk
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittoria Rufini
- Section of Nuclear Medicine, University Department of Radiological Sciences and Haematology, Università Cattolica del Sacro Cuore, Rome, Italy
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Collarino
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
4
|
Pace J, Lee JJ, Srinivasarao M, Kallepu S, Low PS, Niedre M. In Vivo Labeling and Detection of Circulating Tumor Cells in Mice Using OTL38. Mol Imaging Biol 2024; 26:603-615. [PMID: 38594545 PMCID: PMC11281960 DOI: 10.1007/s11307-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.
Collapse
Affiliation(s)
- Joshua Pace
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jane J Lee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 047906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Ullah Z, Roy S, Muhammad S, Yu C, Huang H, Chen D, Long H, Yang X, Du X, Guo B. Fluorescence imaging-guided surgery: current status and future directions. Biomater Sci 2024; 12:3765-3804. [PMID: 38961718 DOI: 10.1039/d4bm00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Surgery is one of the most important paradigms for tumor therapy, while fluorescence imaging (FI) offers real-time intraoperative guidance, greatly boosting treatment prognosis. The imaging fidelity heavily relies on not only imaging facilities but also probes for imaging-guided surgery (IGS). So far, a great number of IGS probes with emission in visible (400-700 nm) and near-infrared (NIR 700-1700 nm) windows have been developed for pinpointing disease margins intraoperatively. Herein, the state-of-the-art fluorescent probes for IGS are timely updated, with a special focus on the fluorescent probes under clinical examination. For a better demonstration of the superiority of NIR FI over visible FI, both imaging modalities are critically compared regarding signal-to-background ratio, penetration depth, resolution, tissue autofluorescence, photostability, and biocompatibility. Various types of fluorescence IGS have been summarized to demonstrate its importance in the medical field. Furthermore, the most recent progress of fluorescent probes in NIR-I and NIR-II windows is summarized. Finally, an outlook on multimodal imaging, FI beyond NIR-II, efficient tumor targeting, automated IGS, the use of AI and machine learning for designing fluorescent probes, and the fluorescence-guided da Vinci surgical system is given. We hope this review will stimulate interest among researchers in different areas and expedite the translation of fluorescent probes from bench to bedside.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Dongxiang Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Haodong Long
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Xiulan Yang
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China.
| | - Xuelian Du
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
6
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
7
|
Kedrzycki MS, Chon HTW, Leiloglou M, Chalau V, Leff DR, Elson DS. Fluorescence guided surgery imaging systems for breast cancer identification: a systematic review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:030901. [PMID: 38440101 PMCID: PMC10911048 DOI: 10.1117/1.jbo.29.3.030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
Significance Breast-conserving surgery (BCS) is limited by high rates of positive margins and re-operative interventions. Fluorescence-guided surgery seeks to detect the entire lesion in real time, thus guiding the surgeons to remove all the tumor at the index procedure. Aim Our aim was to identify the optimal combination of a camera system and fluorophore for fluorescence-guided BCS. Approach A systematic review of medical databases using the terms "fluorescence," "breast cancer," "surgery," and "fluorescence imaging" was performed. Cameras were compared using the ratio between the fluorescent signal from the tumor compared to background fluorescence, as well as diagnostic accuracy measures, such as sensitivity, specificity, and positive predictive value. Results Twenty-one studies identified 14 camera systems using nine different fluorophores. Twelve cameras worked in the infrared spectrum. Ten studies reported on the difference in strength of the fluorescence signal between cancer and normal tissue, with results ranging from 1.72 to 4.7. In addition, nine studies reported on whether any tumor remained in the resection cavity (5.4% to 32.5%). To date, only three studies used the fluorescent signal for guidance during real BCS. Diagnostic accuracy ranged from 63% to 98% sensitivity, 32% to 97% specificity, and 75% to 100% positive predictive value. Conclusion In this systematic review, all the studies reported a clinically significant difference in signal between the tumor and normal tissue using various camera/fluorophore combinations. However, given the heterogeneity in protocols, including camera setup, fluorophore studied, data acquisition, and reporting structure, it was impossible to determine the optimal camera and fluorophore combination for use in BCS. It would be beneficial to develop a standardized reporting structure using similar metrics to provide necessary data for a comparison between camera systems.
Collapse
Affiliation(s)
- Martha S. Kedrzycki
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
- Imperial College Healthcare NHS Trust, Department of Breast Surgery, London, United Kingdom
| | - Hazel T. W. Chon
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Maria Leiloglou
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Vadzim Chalau
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Daniel R. Leff
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
- Imperial College Healthcare NHS Trust, Department of Breast Surgery, London, United Kingdom
| | - Daniel S. Elson
- Institute of Global Health Innovation, Imperial College London, Hamlyn Centre, London, United Kingdom
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| |
Collapse
|
8
|
Kondo T, Nishio N, Park JS, Mani LD, Naveed A, Tanaka H, Lewis JS, Rosenthal EL, Hom ME. Identification of Optimal Tissue-Marking Dye Color for Pathological Evaluation in Fluorescence Imaging Using IRDye800CW. Mol Imaging Biol 2024; 26:162-172. [PMID: 38057647 DOI: 10.1007/s11307-023-01882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Fluorescence-guided surgery using a tumor-specific antibody-dye conjugate is useful in various cancer types. Fluorescence imaging is a valuable tool both intraoperatively and postoperatively for ex vivo imaging. The color of inks used for tumor specimens during ex vivo specimen processing in pathology is an important consideration for fluorescence imaging since the absorption/emission of the dyes may interfere with the fluorescent dye. This study assesses suitable ink colors for use specifically with IRDye800CW fluorescence imaging. PROCEDURES Eight tissue-marking inks or dyes (TMDs) commonly used for pathological evaluation were assessed. Agarose tissue-mimicking phantoms containing Panitumumab-IRDye800CW were used as an initial model. Mean fluorescence intensity was measured at 800 nm using both Pearl Trilogy as a closed-field fluorescence imaging system and pde-neo II as an open-field fluorescence imaging system before and after TMD application. An in vivo mouse xenograft model using the human head and neck squamous cell carcinoma FaDu cell line was then used in conjunction with TMDs. RESULTS The retained IRDye800CW fluorescence on Pearl Trilogy was as follows: yellow at 91.0 ± 4.5%, red at 90.6 ± 2.7%, orange at 88.2 ± 2.2%, violet at 56.6 ± 1.1%, lime at 40.9 ± 1.8%, green at 19.3 ± 2.8%, black at 13.3 ± 0.6%, and blue at 8.1 ± 0.2%. The retained IRDye800CW fluorescence on pde-neo II was as follows: yellow at 86.5 ± 6.4%, red at 77.0 ± 6.2%, orange at 76.9 ± 2.8%, lime at 72.5 ± 9.5%, violet at 59.7 ± 0.4%, green at 30.1 ± 6.9%, black at 17.0 ± 2.7%, and blue at 6.7 ± 1.7%. The retained IRDye800CW fluorescence in yellow and blue TMDs was 42.1 ± 14.9% and 0.2 ± 0.2%, respectively in the mouse experiment (p = 0.039). CONCLUSION Yellow, red, and orange TMDs should be used, and blue and black TMDs should be avoided for evaluating tumor specimens through fluorescence imaging using IRDye800CW.
Collapse
Affiliation(s)
- Takahito Kondo
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoki Nishio
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jason S Park
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lucas D Mani
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abdullah Naveed
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hidenori Tanaka
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James S Lewis
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisa E Hom
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Zhang Y, Luo Z, Guo L, Zhang H, Su T, Tan Z, Ren Q, Zhang C, Fu Y, Xing R, Guo R, Shi X, Guo H, Liu Y, Wang L. Discovery of novel tumor-targeted near-infrared probes with 6-substituted pyrrolo[2,3-d]pyrimidines as targeting ligands. Eur J Med Chem 2023; 262:115914. [PMID: 37925763 DOI: 10.1016/j.ejmech.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Since the overexpression of folate receptors (FRs) in certain types of cancers, a variety of FR-targeted fluorescent probes for tumor detection have been developed. However, the reported probes almost all have the same targeting ligand of folic acid with various fluorophores and/or linkers. In the present study, a series of novel tumor-targeted near-infrared (NIR) molecular fluorescent probes were designed and synthesized based on previously reported 6-substituted pyrrolo[2,3-d]pyrimidine antifolates. All newly synthesized probes showed specific FR binding in vitro, whereas GT-NIR-4 and GT-NIR-5 with a benzene and a thiophene ring, respectively, on the side chain of pyrrolo[2,3-d]pyrimidine exhibited better FR binding affinity than that of GT-NIR-6 with folic acid as targeting ligand. GT-NIR-4 also showed high tumor uptake in KB tumor-bearing mice with good pharmacokinetic properties and biological safety. This work demonstrates the first attempt to replace folic acid with antifolates as targeting ligands for tumor-targeted NIR probes.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Zijun Luo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Lixiao Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Haofeng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Tongdan Su
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Qian Ren
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Can Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Ruijuan Xing
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Ran Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Xiaowei Shi
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, PR China.
| |
Collapse
|
10
|
Gul Z, Henary M. Pafolacianine, the magic wand of intraoperative imaging of folate-receptor positive ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:394. [PMID: 37970599 PMCID: PMC10632580 DOI: 10.21037/atm-23-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Zaryab Gul
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center For Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Seah D, Cheng Z, Vendrell M. Fluorescent Probes for Imaging in Humans: Where Are We Now? ACS NANO 2023; 17:19478-19490. [PMID: 37787658 PMCID: PMC10604082 DOI: 10.1021/acsnano.3c03564] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Optical imaging has become an indispensable technology in the clinic. The molecular design of cell-targeted and highly sensitive materials, the validation of specific disease biomarkers, and the rapid growth of clinically compatible instrumentation have altogether revolutionized the way we use optical imaging in clinical settings. One prime example is the application of cancer-targeted molecular imaging agents in both trials and routine clinical use to define the margins of tumors and to detect lesions that are "invisible" to the surgeons, leading to improved resection of malignant tissues without compromising viable structures. In this Perspective, we summarize some of the key research advances in chemistry, biology, and engineering that have accelerated the translation of optical imaging technologies for use in human patients. Finally, our paper comments on several research areas where further work will likely render the next generation of technologies for translational optical imaging.
Collapse
Affiliation(s)
- Deborah Seah
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore 637371, Singapore
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Zhiming Cheng
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
12
|
Marker S, Espinoza AF, King AP, Woodfield SE, Patel RH, Baidoo K, Nix MN, Ciaramicoli LM, Chang YT, Escorcia FE, Vasudevan SA, Schnermann MJ. Development of Iodinated Indocyanine Green Analogs as a Strategy for Targeted Therapy of Liver Cancer. ACS Med Chem Lett 2023; 14:1208-1215. [PMID: 37736195 PMCID: PMC10510512 DOI: 10.1021/acsmedchemlett.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Liver cancer is one of the leading causes of cancer-related deaths, with a significant increase in incidence worldwide. Novel therapies are needed to address this unmet clinical need. Indocyanine green (ICG) is a broadly used fluorescence-guided surgery (FGS) agent for liver tumor resection and has significant potential for conversion to a targeted therapy. Here, we report the design, synthesis, and investigation of a series of iodinated ICG analogs (I-ICG), which can be used to develop ICG-based targeted radiopharmaceutical therapy. We applied a CRISPR-based screen to identify the solute carrier transporter, OATP1B3, as a likely mechanism for ICG uptake. Our lead I-ICG compound specifically localizes to tumors in mice bearing liver cancer xenografts. This study introduces the chemistry needed to incorporate iodine onto the ICG scaffold and defines the impact of these modifications on key properties, including targeting liver cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Sierra
C. Marker
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Andres F. Espinoza
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - A. Paden King
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Sarah E. Woodfield
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Roma H. Patel
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kwamena Baidoo
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Meredith N. Nix
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Larissa Miasiro Ciaramicoli
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Young-Tae Chang
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Freddy E. Escorcia
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Sanjeev A. Vasudevan
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
Tummers FHMP, Bazelmans MK, Jansen FW, Blikkendaal MD, Vahrmeijer AL, Kuppen PJK. Biomarker identification for endometriosis as a target for real-time intraoperative fluorescent imaging: A new approach using transcriptomic analysis to broaden the search for potential biomarkers. Eur J Obstet Gynecol Reprod Biol 2023; 288:114-123. [PMID: 37506597 DOI: 10.1016/j.ejogrb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Intra-operative fluorescent imaging of endometriosis could help to optimize surgical treatment. Potential biomarkers to use as target for endometriosis-binding fluorescent probes were identified using a new five-phase transcriptomics-based approach to broaden the search for biomarkers. Using publicly available datasets, a differentially expressed gene (DEG) analysis was performed for endometriosis versus surgically relevant surrounding tissue (peritoneum, bladder, sigmoid, rectum, transverse colon, small intestine, vagina, and fallopian tubes) for which data was available. The remaining relevant surrounding tissues were analyzed for low expression levels. DEGs with a predicted membranous or extracellular location and with low expression levels in surrounding tissue were identified as candidate targets. Modified Target Selection Criteria were used to rank candidate targets based on the highest potential for use in fluorescent imaging. 29 potential biomarkers were ranked, resulting in Folate receptor 1 as the most potential biomarker. This is a first step towards finding a fluorescent tracer for intra-operative visualization of endometriosis. Additionally, this approach, using transcriptomics analysis to identifying candidate targets for a specific type of tissue for use in fluorescence-guided surgery could be translated to other surgical fields. TWEETABLE ABSTRACT: A new approach using transcriptomics analysis is shown to identify candidate targets for intra-operative fluorescent imaging for endometriosis, resulting in 29 potential candidates.
Collapse
Affiliation(s)
- Fokkedien H M P Tummers
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Maria K Bazelmans
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank Willem Jansen
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Mathijs D Blikkendaal
- Nederlandse Endometriose Kliniek, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
14
|
Bashkeran T, Kamaruddin AH, Ngo TX, Suda K, Umakoshi H, Watanabe N, Nadzir MM. Niosomes in cancer treatment: A focus on curcumin encapsulation. Heliyon 2023; 9:e18710. [PMID: 37593605 PMCID: PMC10428065 DOI: 10.1016/j.heliyon.2023.e18710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Curcumin is widely used as a therapeutic drug for cancer treatment. However, its limited absorption and rapid excretion are the major therapeutic limitations to its clinical use. Using niosomes as a curcumin delivery system is a cheap, easy, and less toxic strategy for enhancing the absorption of curcumin by cells and delaying its excretion. Thus, there is a vital need to explore curcumin niosomes to configure the curcumin to suitably serve and aid current pharmacokinetics in treatments for cancer. To date, no comprehensive review has focused on the cytotoxic effects of curcumin niosomes on malignant cells. Thus, this review provides a critical analysis of the curcumin niosomes in cancer treatment, formulations of curcumin niosomes, characterizations of curcumin niosomes, and factors influencing their performance. The findings from this review article can strongly accelerate the understanding of curcumin niosomes and pave a brighter direction towards advances in the pharmaceutical, biotechnology, and medical industries.
Collapse
Affiliation(s)
- Thaaranni Bashkeran
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Azlina Harun Kamaruddin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Trung Xuan Ngo
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Kazuma Suda
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
15
|
García de Jalón E, Kleinmanns K, Fosse V, Davidson B, Bjørge L, Haug BE, McCormack E. Comparison of Five Near-Infrared Fluorescent Folate Conjugates in an Ovarian Cancer Model. Mol Imaging Biol 2023; 25:144-155. [PMID: 34888759 PMCID: PMC9971101 DOI: 10.1007/s11307-021-01685-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Fluorescence imaging (FLI) using targeted near-infrared (NIR) conjugates aids the detection of tumour lesions pre- and intraoperatively. The optimisation of tumour visualisation and contrast is essential and can be achieved through high tumour-specificity and low background signal. However, the choice of fluorophore is recognised to alter biodistribution and clearance of conjugates and is therefore a determining factor in the specificity of target binding. Although ZW800-1, IRDye® 800CW and ICG are the most commonly employed NIR fluorophores in clinical settings, the fluorophore with optimal in vivo characteristics has yet to be determined. Therefore, we aimed to characterise the impact the choice of fluorophore has on the biodistribution, specificity and contrast, by comparing five different NIR fluorophores conjugated to folate, in an ovarian cancer model. PROCEDURES ZW800-1, ZW800-1 Forte, IRDye® 800CW, ICG-OSu and an in-house synthesised Cy7 derivative were conjugated to folate through an ethylenediamine linker resulting in conjugates 1-5, respectively. The optical properties of all conjugates were determined by spectroscopy, the specificity was assessed in vitro by flow cytometry and FLI, and the biodistribution was studied in vivo and ex vivo in a subcutaneous Skov-3 ovarian cancer model. RESULTS We demonstrated time- and receptor-dependent binding of folate conjugates in vitro and in vivo. Healthy tissue clearance characteristics and tumour-specific signal varied between conjugates 1-5. ZW800-1 Forte (2) revealed the highest contrast in folate receptor alpha (FRα)-positive xenografts and showed statistically significant target specificity. While conjugates 1, 2 and 3 are renally cleared, hepatobiliary excretion and no or very low accumulation in tumours was observed for 4 and 5. CONCLUSIONS The choice of fluorophore has a significant impact on the biodistribution and tumour contrast. ZW800-1 Forte (2) exhibited the best properties of those tested, with significant specific fluorescence signal.
Collapse
Affiliation(s)
- Elvira García de Jalón
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway.,Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Katrin Kleinmanns
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Vibeke Fosse
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, and Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway.,Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Bengt Erik Haug
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, N-5007, Bergen, Norway.
| | - Emmet McCormack
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway. .,Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway. .,Vivarium, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021, Bergen, Norway.
| |
Collapse
|
16
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
17
|
El-Swaify ST, Laban M, Ali SH, Sabbour M, Refaat MA, Farrag N, Ibrahim EA, Coleman RL. Can fluorescence-guided surgery improve optimal surgical treatment for ovarian cancer? A systematic scoping review of clinical studies. Int J Gynecol Cancer 2023; 33:549-561. [PMID: 36707085 DOI: 10.1136/ijgc-2022-003846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The predicament of achieving optimal surgical intervention faced by surgeons in treating ovarian cancer has driven research into improving intra-operative detection of cancer using fluorescent materials. OBJECTIVE To provide a literature overview on the clinical use of intra-operative fluorescence-guided surgery for ovarian cancer, either for cytoreductive surgery or sentinel lymph node (SLN) biopsy. METHODS The systematic review included studies from June 2002 until October 2021 from PubMed, Web of Science, and Scopus as well as those from a search of related literature. Studies were included if they investigated the use of fluorescence-guided surgery in patients with a diagnosis of ovarian cancer. Authors charted variables related to study characteristics, patient demographics, baseline clinical characteristics, fluorescence-guided surgery material, and treatment details, and surgical, oncological, and survival outcome variables. After screening 2817 potential studies, 24 studies were included. RESULTS Studies investigating the role of fluorescence-guided surgery to visualize tumor deposits or SLN biopsy included the data of 410 and 118 patients, respectively. Six studies used indocyanine green tracer with a mean SLN detection rate of 92.3% with a pelvic and para-aortic detection rate of 94.8% and 96.7%, respectively. The sensitivity, specificity, and positive predictive value for micrometastases detection of OTL38 and 5-aminolevulinc acid at time of cytoreduction were 92.2% vs 79.8%, 67.3% vs 94.8%, and 55.8% vs 95.8%, respectively. CONCLUSION Fluorescence -guided surgery is a technique that may improve the detection rate of micrometastases and SLN identification in ovarian cancer. Further research is needed to establish whether this will lead to improved patient outcomes.
Collapse
Affiliation(s)
| | - Mohamed Laban
- Gynecologic Oncology Unit, Ain Shams University Hospitals, Cairo, Egypt
| | - Sara H Ali
- Ain Shams University Hospitals, Cairo, Egypt
| | | | | | | | - Eman A Ibrahim
- Department of Pathology, Ain Shams University Hospitals, Cairo, Egypt
| | | |
Collapse
|
18
|
Wang R, Deutsch RJ, Sunassee ED, Crouch BT, Ramanujam N. Adaptive Design of Fluorescence Imaging Systems for Custom Resolution, Fields of View, and Geometries. BME FRONTIERS 2023; 4:0005. [PMID: 37849673 PMCID: PMC10521686 DOI: 10.34133/bmef.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/27/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement: We developed a generalized computational approach to design uniform, high-intensity excitation light for low-cost, quantitative fluorescence imaging of in vitro, ex vivo, and in vivo samples with a single device. Introduction: Fluorescence imaging is a ubiquitous tool for biomedical applications. Researchers extensively modify existing systems for tissue imaging, increasing the time and effort needed for translational research and thick tissue imaging. These modifications are application-specific, requiring new designs to scale across sample types. Methods: We implemented a computational model to simulate light propagation from multiple sources. Using a global optimization algorithm and a custom cost function, we determined the spatial positioning of optical fibers to generate 2 illumination profiles. These results were implemented to image core needle biopsies, preclinical mammary tumors, or tumor-derived organoids. Samples were stained with molecular probes and imaged with uniform and nonuniform illumination. Results: Simulation results were faithfully translated to benchtop systems. We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings. The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model. Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used. Conclusion: We demonstrate the significance of using a computationally designed illumination for in vitro, ex vivo, and in vivo fluorescence imaging. Application-specific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features. This approach is generalizable across light sources, biological applications, and detectors.
Collapse
Affiliation(s)
- Roujia Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Riley J. Deutsch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Tanyi JL, Randall LM, Chambers SK, Butler KA, Winer IS, Langstraat CL, Han ES, Vahrmeijer AL, Chon HS, Morgan MA, Powell MA, Tseng JH, Lopez AS, Wenham RM. A Phase III Study of Pafolacianine Injection (OTL38) for Intraoperative Imaging of Folate Receptor-Positive Ovarian Cancer (Study 006). J Clin Oncol 2023; 41:276-284. [PMID: 36070540 DOI: 10.1200/jco.22.00291] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The adjunctive use of intraoperative molecular imaging (IMI) is gaining acceptance as a potential means to improve outcomes for surgical resection of targetable tumors. This confirmatory study examined the use of pafolacianine for real-time detection of folate receptor-positive ovarian cancer. METHODS This phase III, open-label, 11-center study included subjects with known or suspected ovarian cancer, scheduled to undergo cytoreductive surgery. The objectives were to confirm safety and efficacy of pafolacianine (0.025 mg/kg IV), given ≥ 1 hour before intraoperative near-infrared imaging to detect macroscopic lesions not detected by palpation and normal white light. RESULTS From March 2018 through April 2020, 150 patients received a single infusion of pafolacianine (safety analysis set); 109 patients with folate receptor-positive ovarian cancer comprised the full analysis set for efficacy. In 33.0% of patients (95% CI, 24.3 to 42.7; P < .001), pafolacianine with near-infrared imaging identified additional cancer on tissue not planned for resection and not detected by white light assessment and palpation, exceeding the prespecified threshold of 10%. Among patients who underwent interval debulking surgery, the rate was 39.7% (95% CI, 27.0 to 53.4; P < .001). The sensitivity to detect ovarian cancer was 83%, and the patient false-positive rate was 24.8%. Investigators reported achieving complete R0 resection in 62.4% (68 of 109) of patients. Drug-related adverse events were reported by 30% of patients (45 of 150) and most commonly included nausea, vomiting, and abdominal pain. No drug-related serious adverse events or deaths were reported. CONCLUSION This phase III study of pafolacianine met its primary efficacy end point, identifying additional cancers not otherwise identified or planned for resection. Pafolacianine may offer an important real-time adjunct to current surgical approaches for ovarian cancer.
Collapse
Affiliation(s)
- Janos L Tanyi
- Hospital of the University of Pennsylvania, Abramson Cancer Center, West Pavilion, Philadelphia, PA
| | - Leslie M Randall
- Virginia Commonwealth University Health, Massey Cancer Center, Richmond, VA
| | | | | | | | | | - Ernest S Han
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | - Mark A Morgan
- Hospital of the University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA
| | | | | | | | | |
Collapse
|
20
|
Kedrzycki MS, Elson DS, Leff DR. Guidance in breast-conserving surgery: tumour localization versus identification. Br J Surg 2022:6901362. [PMID: 36515686 PMCID: PMC10361673 DOI: 10.1093/bjs/znac409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Martha S Kedrzycki
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Breast Surgery, Charing Cross Hospital, Imperial Healthcare Trust, London, UK
| | - Daniel S Elson
- Department of Surgery and Cancer, Imperial College London, London, UK.,Hamlyn Centre, Imperial College London, Institute of Global Health Innovation, London, UK
| | - Daniel R Leff
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Breast Surgery, Charing Cross Hospital, Imperial Healthcare Trust, London, UK
| |
Collapse
|
21
|
Colombo E, Coppini DA, Maculan S, Seneci P, Santini B, Testa F, Salvioni L, Vanacore GM, Colombo M, Passarella D. Folic acid functionalization for targeting self-assembled paclitaxel-based nanoparticles. RSC Adv 2022; 12:35484-35493. [PMID: 36544466 PMCID: PMC9744106 DOI: 10.1039/d2ra06306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hetero-nanoparticles self-assembled from a conjugate bearing folic acid as the targeting agent, and another bearing paclitaxel as the active agent are reported. Hetero-nanoparticles containing varying percentages of folic acid conjugates are characterised, and their biological activity is determined.
Collapse
Affiliation(s)
- Eleonora Colombo
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133 MilanoItaly
| | - Davide Andrea Coppini
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133 MilanoItaly
| | - Simone Maculan
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133 MilanoItaly
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133 MilanoItaly
| | - Benedetta Santini
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133 MilanoItaly
| | - Filippo Testa
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano BicoccaPiazza della Scienza 220126 MilanoItaly
| | - Lucia Salvioni
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano BicoccaPiazza della Scienza 220126 MilanoItaly
| | - Giovanni Maria Vanacore
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano BicoccaVia Roberto Cozzi 5520125 MilanoItaly
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano BicoccaPiazza della Scienza 220126 MilanoItaly
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133 MilanoItaly
| |
Collapse
|
22
|
Yadav K, Krishnan MA, Chelvam V. In Vitro and In Vivo Evaluation of Targeted Fluorescent Imaging Agents for Diagnosis and Resection of Cancer. Curr Protoc 2022; 2:e623. [PMID: 36571584 DOI: 10.1002/cpz1.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Local re-occurrence of cancer in patients with solid tumors is currently the most common reason for failure of treatment strategies. This fact indicates that prevailing approaches for tumor resection can cure only 50% of patients. A major cause of failure in tumor resection is off-target drug cytotoxicity and lack of sensitivity in tumor detection methods. These disadvantages are addressed with the development of targeted therapy and diagnostics, which significantly aid treatment strategies. Targeted diagnostics exploit properties of tumor cells that show significant up-regulation of tumor biomarkers. These biomarkers are targeted by a homing ligand attached to a fluorophore for visual inspection during surgery. However, these approaches suffer from disadvantages like high autofluorescence from background tissues, tissue absorption, and scattering, resulting in decreased image sensitivity and resolution. The use of near-infrared (NIR) fluorophores to overcome these drawbacks has generated unprecedented interest among researchers. The NIR window lies within the range of 650 to 1,700 nm, which results in reduced absorption and scattering by the tissues, thereby providing deeper tissue penetration and reduced autofluorescence. NIR fluorophores can be designed to target tumor biomarkers such as prostate specific membrane antigen (PSMA) or folate receptors found over-expressed on cancer tissues. These targeted fluorophores consist of small-molecule ligands conjugated with NIR dyes that bind with high specificity to PSMA and folic acid receptors. In this protocol, we have extensively described the methodology for the synthesis of targeted NIR agents for PSMA (DUPA-NIR bioconjugate) and folic acid (folate-NIR bioconjugate), along with detailed steps for preclinical evaluation. Procedures to calculate the binding affinity to cancer cells in vitro are described, along with uptake and biodistribution in different mice models in vivo. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis and purification of DUPA and folate-peptide linkers via a SPPS strategy Basic Protocol 2: Conjugation, purification, and characterization of targeted bioconjugates with NIR probe for deep-tissue imaging applications Basic Protocol 3: In vitro evaluation of binding affinity of targeted DUPA-NIR and folate-NIR bioconjugates using a spectrophotometer Basic Protocol 4: Induction of tumor in mice to develop CDX or metastatic tumor models Basic Protocol 5: Intravenous administration of targeted DUPA-NIR and folate-NIR bioconjugates in mouse CDX or metastatic tumor models for deep-tissue NIR imaging and tumor resection.
Collapse
Affiliation(s)
- Kratika Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Mena Asha Krishnan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Venkatesh Chelvam
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.,Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
23
|
PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe. Eur J Nucl Med Mol Imaging 2022; 49:4325-4337. [PMID: 35838757 DOI: 10.1007/s00259-022-05890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The surgery of glioblastoma (GBM) requires a maximal resection of the tumor when it is safe and feasible. The infiltrating growth property of the GBM makes it a challenge for neurosurgeons to identify the tumor tissue even with the assistance of the surgical microscope. This highlights the urgent requirement for imaging techniques that can differentiate tumor tissues during surgery in real time. Fluorescence image-guided surgery of GBM has been investigated using several non-specific fluorescent probes that emit light in the visible and the first near-infrared window (NIR-I, 700-900 nm), which limit the detection accuracy because of the non-specific targeting mechanism and spectral characteristics. Targeted NIR-II (1000-1700 nm) fluorescent probes for GBM are thus highly desired. The folate receptor (FR) has been reported to be upregulated in GBM, which renders it to be a promising target for specific tumor imaging. METHODS In this study, the folic acid (FA) that can target the FR was conjugated with the clinically approved indocyanine green (ICG) dye and DOTA chelator for radiolabeling with 64Cu to achieve targeted positron emission tomography (PET) and fluorescence imaging of GBM. RESULTS Surprisingly it was found that the resulted bioconjugate, DOTA-FA-ICG and non-radioactive natCu-DOTA-FA-ICG, were both self-assembled into nanoparticles with NIR-II emission signal. The radiolabeled DOTA-FA-ICG, 64Cu-DOTA-FA-ICG, was found to specifically accumulate in the orthotopic GBM models using in vivo PET, NIR-II, and NIR-I fluorescence imaging. The best time window of fluorescence imaging was demonstrated to be 24 h after DOTA-FA-ICG injection. NIR-II fluorescence image-guided surgery was successfully conducted in the orthotopic GBM models using DOTA-FA-ICG. All the fluorescent tissue was removed and proved to be GBM by the H&E examination. CONCLUSION Overall, our study demonstrates that the probes, 64Cu-DOTA-FA-ICG and DOTA-FA-ICG, hold promise for preoperative PET examination and intraoperative NIR-II fluorescence image-guided surgery of GBM, respectively.
Collapse
|
24
|
Pal R, Hom M, van den Berg NS, Lwin TM, Lee YJ, Prilutskiy A, Faquin W, Yang E, Saladi SV, Varvares MA, Rosenthal EL, Kumar ATN. First Clinical Results of Fluorescence Lifetime-enhanced Tumor Imaging Using Receptor-targeted Fluorescent Probes. Clin Cancer Res 2022; 28:2373-2384. [PMID: 35302604 PMCID: PMC9167767 DOI: 10.1158/1078-0432.ccr-21-3429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor tumor fluorescence contrast, precluding widespread clinical adoption of novel imaging agents. Here we present the first clinical evidence that fluorescence lifetime (FLT) imaging can provide tumor specificity at the cellular level in patients systemically injected with panitumumab-IRDye800CW, an EGFR-targeted NIR fluorescent probe. EXPERIMENTAL DESIGN We performed wide-field and microscopic FLT imaging of resection specimens from patients injected with panitumumab-IRDye800CW under an FDA directed clinical trial. RESULTS We show that the FLT within EGFR-overexpressing cancer cells is significantly longer than the FLT of normal tissue, providing high sensitivity (>98%) and specificity (>98%) for tumor versus normal tissue classification, despite the presence of significant nonspecific probe accumulation. We further show microscopic evidence that the mean tissue FLT is spatially correlated (r > 0.85) with tumor-specific EGFR expression in tissue and is consistent across multiple patients. These tumor cell-specific FLT changes can be detected through thick biological tissue, allowing highly specific tumor detection and noninvasive monitoring of tumor EFGR expression in vivo. CONCLUSIONS Our data indicate that FLT imaging is a promising approach for enhancing tumor contrast using an antibody-targeted NIR probe with a proven safety profile in humans, suggesting a strong potential for clinical applications in image guided surgery, cancer diagnostics, and staging.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13 Street, Building 149, Charlestown MA 02129
| | - Marisa Hom
- Department of Otolaryngology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
| | | | - Thinzar M Lwin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Yu-Jin Lee
- Department of Otolaryngology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
| | - Andrey Prilutskiy
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - William Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Eric Yang
- Department of Pathology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
| | - Srinivas V. Saladi
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Mark A. Varvares
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Eben L. Rosenthal
- Department of Otolaryngology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
| | - Anand T. N. Kumar
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13 Street, Building 149, Charlestown MA 02129
| |
Collapse
|
25
|
Boussedra S, Benoit L, Koual M, Bentivegna E, Nguyen-Xuan HT, Bats AS, Azaïs H. Fluorescence guided surgery to improve peritoneal cytoreduction in epithelial ovarian cancer: A systematic review of available data. Eur J Surg Oncol 2022; 48:1217-1223. [PMID: 35227555 DOI: 10.1016/j.ejso.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
During surgery for advanced epithelial ovarian cancer (EOC), the most important prognostic factor is the absence of residual tumor. Invisible microscopic peritoneal metastasis (mPM) are not removed during surgery and can be responsible of peritoneal recurrences. The aim of this current systematic review is to assess the role of fluorescence in evaluating mPM in EOC. We performed a systematic review using bibliographic citations from PubMed, Clinical Trials.gov, Embase, Cochrane Library, and Web of Science databases. MeSH terms for fluorescence, EOC and peritoneal carcinomatosis were combined and not restricted to the English language. The final search was performed on September 1rst, 2021. The primary outcome was to determine the diagnostic accuracy of fluorescence. We also reviewed the different techniques used. Eighty-seven studies were identified. Of these, 10 were included for analysis. The sensitivity and specificity of fluorescence ranged between 66.7-100% and 54.2-100%, respectively. Most importantly, the negative predictive value (NPV) ranged from 90 to 100% Due to the heterogeneity of the studies, no consensus was reached concerning the optimal use of fluorescence in terms of type of dye, type and timing of injection and imager to use. No adverse event was reported. Fluorescence can safely be used in EOC to evaluate mPM with a high NPV. However, a randomized controlled trial is needed to homogenize current practice.
Collapse
Affiliation(s)
- Safia Boussedra
- Department of Medical and Surgical Sciences (DIMEC), IRCCS Sant'Orsola-Malpighi, Obstetric and Gynecologic Unit, University of Bologna, Bologna, Italy; Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France
| | - Louise Benoit
- Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France; INSERM UMR-S 1124, Université de Paris, Centre Universitaire des Saint-Père, Paris, France.
| | - Meriem Koual
- Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France; INSERM UMR-S 1124, Université de Paris, Centre Universitaire des Saint-Père, Paris, France
| | - Enrica Bentivegna
- Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France
| | - Huyen-Thu Nguyen-Xuan
- Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France
| | - Anne-Sophie Bats
- Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France; INSERM UMR-S 1147, Université de Paris, Centre de Recherche des Cordeliers, Paris, France
| | - Henri Azaïs
- Gynecologic and Breast Oncologic Surgery Department, Georges Pompidou European Hospital, APHP. Centre, Université de Paris, Paris, France; INSERM UMR-S 1147, Université de Paris, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
26
|
Intraoperative Margin Trials in Breast Cancer. CURRENT BREAST CANCER REPORTS 2022. [DOI: 10.1007/s12609-022-00450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Obtaining negative margins in breast conservation surgery continues to be a challenge. Re-excisions are difficult for patients and expensive for the health systems. This paper reviews the literature on current strategies and intraoperative clinical trials to reduce positive margin rates.
Recent Findings
The best available data demonstrate that intraoperative imaging with ultrasound, intraoperative pathologic assessment such as frozen section, and cavity margins have been the most successful intraoperative strategies to reduce positive margins. Emerging technologies such as optical coherence tomography and fluorescent imaging need further study but may be important adjuncts.
Summary
There are several proven strategies to reduce positive margin rates to < 10%. Surgeons should utilize best available resources within their institutions to produce the best outcomes for their patients.
Collapse
|
27
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
28
|
Goto M, Ryoo I, Naffouje S, Mander S, Christov K, Wang J, Green A, Shilkaitis A, Das Gupta TK, Yamada T. Image-guided surgery with a new tumour-targeting probe improves the identification of positive margins. EBioMedicine 2022; 76:103850. [PMID: 35108666 PMCID: PMC8814381 DOI: 10.1016/j.ebiom.2022.103850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Given the lack of visual discrepancy between malignant and surrounding normal tissue, current breast conserving surgery (BCS) is associated with a high re-excision rate. Due to the increasing cases of BCS, a novel method of complete tumour removal at the initial surgical resection is critically needed in the operating room to help optimize the surgical procedure and to confirm tumour-free edges. METHODS We developed a unique near-infrared (NIR) fluorescence imaging probe, ICG-p28, composed of the clinically nontoxic tumour-targeting peptide p28 and the FDA-approved NIR dye indocyanine green (ICG). ICG-p28 was characterized in vitro and evaluated in multiple breast cancer animal models with appropriate control probes. Our experimental approach with multiple-validations and -blinded procedures was designed to determine whether ICG-p28 can accurately identify tumour margins in mimicked intraoperative settings. FINDINGS The in vivo kinetics were analysed to optimize settings for potential clinical use. Xenograft tumours stably expressing iRFP as a tumour marker showed significant colocalization with ICG-p28, but not ICG alone. Image-guided surgery with ICG-p28 showed an over 6.6 × 103-fold reduction in residual normalized tumour DNA at the margin site relative to control approaches (i.e., surgery with ICG or palpation/visible inspection alone), resulting in an improved tumour recurrence rate (92% specificity) in multiple breast cancer animal models independent of the receptor expression status. ICG-p28 allowed accurate identification of tumour cells in the margin to increase the complete resection rate. INTERPRETATION Our simple and cost-effective approach has translational potential and offers a new surgical procedure that enables surgeons to intraoperatively identify tumour margins in a real-time, 3D fashion and that notably improves overall outcomes by reducing re-excision rates. FUNDING This work was supported by NIH/ National Institute of Biomedical Imaging and Bioengineering, R01EB023924.
Collapse
Affiliation(s)
- Masahide Goto
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ingeun Ryoo
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Samer Naffouje
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Surgical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sunam Mander
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Konstantin Christov
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jing Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois College of Liberal Arts and Sciences, IL 60607, USA
| | - Albert Green
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Anne Shilkaitis
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Tapas K Das Gupta
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois College of Engineering, Chicago, IL 60607, USA.
| |
Collapse
|
29
|
van Leeuwen FW, van Willigen DM, Buckle T. Clinical application of fluorescent probes. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
30
|
Li W, Li X. Development of intraoperative assessment of margins in breast conserving surgery: a narrative review. Gland Surg 2022; 11:258-269. [PMID: 35242687 PMCID: PMC8825505 DOI: 10.21037/gs-21-652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 07/28/2023]
Abstract
OBJECTIVE We intend to provide an informative and up-to-date summary on the topic of intraoperative assessment of margins in breast conserving surgery (BCS). Conventional methods as well as cutting-edge technologies are analyzed for their advantages and limitations in the hope that clinicians can turn to this for reference. This review can also offer guidance for technicians in the future design of intraoperative margin assessment tools. BACKGROUND Achieving negative margins during BCS is one of the vital factors for preventing local recurrence. Conducting intraoperative margin assessment can ensure negative margins to a large extent and possibly relieve patients of the anguish of re-interventions. In recent years, innovative methods for margin assessment during BCS are advancing rapidly. And there is a lack of summary regarding the development of intraoperative margin assessment in BCS. METHODS A PubMed search with keywords "intraoperative margin assessment" and "breast conserving surgery" was conducted. Relevant publications were screened manually for its title, abstract and even full text to determine its true relevance. Publications on neo-adjuvant therapy and intraoperative radiotherapy were excluded. References from the searched articles and other supplementary articles were also looked into. CONCLUSIONS Conventional methods for margin assessment yields stable outcome but its use is limited because of the demand on pathology staff and the trade-off between time and precision. Conventional imaging techniques pass the workload to radiologists at the cost of a significantly low duration of time. Involving artificial intelligence for image-based assessment is a further improvement. However, conventional imaging is inherently flawed in that occult lesions can't show on the image and the showing ones are ambiguous and open to interpretation. Unconventional techniques which base their judgment on cellular composition are more reassuring. Nonetheless, unconventional techniques should be subjected to clinical trials before putting into practice. And studies regarding comparison between conventional methods and unconventional methods are also needed to evaluate their relative efficacy.
Collapse
Affiliation(s)
- Wanheng Li
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|
32
|
Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics 2021; 14:14. [PMID: 35056911 PMCID: PMC8781617 DOI: 10.3390/pharmaceutics14010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
In normal tissues, the expression of folate receptors is low and limited to cells that are important for embryonic development or for folate reabsorption. However, in several pathological conditions some cells, such as cancer cells and activated macrophages, overexpress folate receptors (FRs). This overexpression makes them a potential therapeutic target in the treatment of cancer and inflammatory diseases to obtain a selective delivery of drugs at altered cells level, and thus to improve the therapeutic efficacy and decrease the systemic toxicity of the pharmacological treatments. Two strategies have been used to achieve this folate receptor targeting: (i) the use of ligands with high affinity to FRs (e.g., folic acid or anti-FRs monoclonal antibodies) linked to the therapeutic agents or (ii) the use of nanocarriers whose surface is decorated with these ligands and in which the drug is encapsulated. This manuscript analyzes the use of FRs as a target to develop new therapeutic tools in the treatment of cancer and inflammatory diseases with an emphasis on the nanoformulations that have been developed for both therapeutic and imaging purposes.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
33
|
Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2021; 168:106052. [PMID: 34740786 DOI: 10.1016/j.ejps.2021.106052] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Various diseases remain untreated due to lack of suitable therapeutic moiety or a suitable drug delivery device, especially where toxicities and side effects are the primary reason for concern. Cancer and fungal infections are diseases where treatment schedules are not completed due to severe side effects or lengthy treatment protocols. Advanced treatment approaches such as active targeting and inhibition of angiogenesis may be preferred method for the treatment for malignancy over the conventional method. Niosomes may be a better alternative drug delivery carrier for various therapeutic moieties (either hydrophilic or hydrophobic) and also due to ease of surface modification, non-immunogenicity and economical. Active targeting approach may be done by targeting the receptors through coupling of suitable ligand on niosomal surface. Moreover, various receptors (CD44, folate, epidermal growth factor receptor (EGFR) & Vascular growth factor receptor (VGFR)) expressed by malignant cells have also been reviewed. The preparation of suitable niosomal formulation also requires considerable attention, and its formulation depends upon various factors such as selection of non-ionic surfactant, method of fabrication, and fabrication parameters. A combination therapy (dual drug and immunotherapy) has been proposed for the treatment of fungal infection with special consideration for surface modification with suitable ligand on niosomal surface to sensitize the receptors (C-type lectin receptors, Toll-like receptors & Nucleotide-binding oligomerization domain-like receptors) present on immune cells involved in fungal immunity. Certain gene silencing concept has also been discussed as an advanced alternative treatment for cancer by silencing the mRNA at molecular level using short interfering RNA (si-RNA).
Collapse
|
34
|
Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nat Commun 2021; 12:5410. [PMID: 34518530 PMCID: PMC8438038 DOI: 10.1038/s41467-021-25452-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Photoacoustic (PA) imaging is a functional and molecular imaging technique capable of high sensitivity and spatiotemporal resolution at depth. Widespread use of PA imaging, however, is limited by currently available contrast agents, which either lack PA-signal-generation ability for deep imaging or their absorbance spectra overlap with hemoglobin, reducing sensitivity. Here we report on a PA contrast agent based on targeted liposomes loaded with J-aggregated indocyanine green (ICG) dye (i.e., PAtrace) that we synthesized, bioconjugated, and characterized to addresses these limitations. We then validated PAtrace in phantom, in vitro, and in vivo PA imaging environments for both spectral unmixing accuracy and targeting efficacy in a folate receptor alpha-positive ovarian cancer model. These study results show that PAtrace concurrently provides significantly improved contrast-agent quantification/sensitivity and SO2 estimation accuracy compared to monomeric ICG. PAtrace's performance attributes and composition of FDA-approved components make it a promising agent for future clinical molecular PA imaging.
Collapse
|
35
|
Patil RA, Srinivasarao M, Amiji MM, Low PS, Niedre M. Fluorescence Labeling of Circulating Tumor Cells with a Folate Receptor-Targeted Molecular Probe for Diffuse In Vivo Flow Cytometry. Mol Imaging Biol 2021; 22:1280-1289. [PMID: 32519245 DOI: 10.1007/s11307-020-01505-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.
Collapse
Affiliation(s)
- Roshani A Patil
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Buckle T, Hensbergen AW, van Willigen DM, Bosse F, Bauwens K, Pelger RCM, van Leeuwen FWB. Intraoperative visualization of nerves using a myelin protein-zero specific fluorescent tracer. EJNMMI Res 2021; 11:50. [PMID: 34052912 PMCID: PMC8164657 DOI: 10.1186/s13550-021-00792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Surgically induced nerve damage is a common but debilitating side effect in oncological surgery. With the aim to use fluorescence guidance to enable nerve-sparing interventions in future surgery, a fluorescent tracer was developed that specifically targets myelin protein zero (P0). RESULTS Truncated homotypic P0 protein-based peptide sequences were C-terminally functionalized with the far-red cyanine dye Cy5. The lead compound Cy5-P0101-125 was selected after initial solubility, (photo)physical and in vitro evaluation (including P0-blocking experiments). Cy5-P0101-125 (KD = 105 ± 17 nM) allowed in vitro and ex vivo P0-related staining. Furthermore, Cy5-P0101-125 enabled in vivo fluorescence imaging of the Sciatic nerve in mice after local intravenous (i.v.) administration and showed compatibility with a clinical fluorescence laparoscope during evaluation in a porcine model undergoing robot-assisted surgery. Biodistribution data revealed that i.v. administered [111In]In-DTPA-P0101-125 does not enter the central nervous system (CNS). CONCLUSION P0101-125 has proven to be a potent nerve-specific agent that is able to target P0/myelin under in vitro, ex vivo, and in vivo conditions without posing a threat for CNS-related toxicity.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Albertus W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Frank Bosse
- Neurologische Klinik, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | | | - Rob C M Pelger
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
- ORSI Academy, Melle, Belgium.
| |
Collapse
|
37
|
de Jong JM, Hoogendam JP, Braat AJAT, Zweemer RP, Gerestein CG. The feasibility of folate receptor alpha- and HER2-targeted intraoperative fluorescence-guided cytoreductive surgery in women with epithelial ovarian cancer: A systematic review. Gynecol Oncol 2021; 162:517-525. [PMID: 34053747 DOI: 10.1016/j.ygyno.2021.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is often diagnosed late, with a 5-year relative survival of 30.2% for patients with metastatic disease. Residual disease following cytoreductive surgery is an important predictor for poor survival. EOC is characterized by diffuse peritoneal metastases and depositions of small size, challenging a complete resection. Targeted fluorescence imaging is a technique to enhance tumor visualization and can be performed intraoperatively. Folate receptor alpha (FRα) and human epidermal growth factor receptor 2 (HER2) are overexpressed in EOC in 80% and 20% of the cases, respectively, and have been previously studied as a target for intraoperative imaging. OBJECTIVE To systematically review the literature on the feasibility of FRα and HER2 targeted fluorescence-guided cytoreductive surgery (FGCS) in women with EOC. METHODS PubMed and Embase were searched for human and animal studies on FGCS targeting either HER2 or FRα in either women with EOC or animal models of EOC. Risk of bias and methodological quality were assessed with the SYRCLE and MINORS tool, respectively. RESULTS All animal studies targeting either FRα or HER2 were able to detect tumor deposits using intraoperative fluorescence imaging. One animal study targeting HER2 compared conventional cytoreductive surgery (CCS) to FGCS and concluded that FGCS, either without or following CCS, resulted in statistically significant less residual disease compared to CCS alone. Human studies on FGCS showed an increased detection rate of tumor deposits. True positives ranged between 75%-77% and false positives between 10%-25%. Lymph nodes were the main source of false positive results. Sensitivity was 85.9%, though only reported by one human study. CONCLUSION FGCS targeting either HER2 or FRα appears to be feasible in both EOC animal models and patients with EOC. FGCS is a promising technique, but further research is warranted to validate these results and particularly study the survival benefit.
Collapse
Affiliation(s)
- J M de Jong
- Department of Gynaecological Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J P Hoogendam
- Department of Gynaecological Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A J A T Braat
- Department of Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R P Zweemer
- Department of Gynaecological Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C G Gerestein
- Department of Gynaecological Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
38
|
Lauwerends LJ, van Driel PBAA, Baatenburg de Jong RJ, Hardillo JAU, Koljenovic S, Puppels G, Mezzanotte L, Löwik CWGM, Rosenthal EL, Vahrmeijer AL, Keereweer S. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol 2021; 22:e186-e195. [PMID: 33765422 DOI: 10.1016/s1470-2045(20)30600-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence-guided surgery is an intraoperative optical imaging method that provides surgeons with real-time guidance for the delineation of tumours. Currently, in phase 1 and 2 clinical trials, evaluation of fluorescence-guided surgery is primarily focused on its diagnostic performance, although the corresponding outcome variables do not inform about the added clinical benefit of fluorescence-guided surgery and are challenging to assess objectively. Nonetheless, the effect of fluorescence-guided surgery on intraoperative decision making is the most objective outcome measurement to assess the clinical value of this imaging method. In this Review, we explore the study designs of existing trials of fluorescence-guided surgery that allow us to extract information on potential changes in intraoperative decision making, such as additional or more conservative resections. On the basis of this analysis, we offer recommendations on how to report changes in intraoperative decision making that result from fluorescence imaging, which is of utmost importance for the widespread clinical implementation of fluorescence-guided surgery.
Collapse
Affiliation(s)
- Lorraine J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - José A U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Senada Koljenovic
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gerwin Puppels
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Clemens W G M Löwik
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, Netherlands; Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
39
|
Not so innocent: Impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 2021; 63:38-45. [PMID: 33684856 DOI: 10.1016/j.cbpa.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
The combination of targeting ligands and fluorescent dyes is a powerful strategy to observe cell types and tissues of interest. Conjugates of peptides, proteins, and, in particular, monoclonal antibodies (mAbs) exhibit excellent tumor targeting in various contexts. This approach has been translated to a clinical setting to provide real-time molecular insights during the surgical resection of solid tumors. A critical element of this approach is the generation of highly fluorescent bioconjugates that maintain the properties of the parent targeting ligand. A number of studies have found that fluorophores can dramatically impact the pharmacokinetic and tumor-targeting properties of the bioconjugates they are meant to only innocently observe. In this review, we summarize several examples of these effects and highlight strategies that have been used to mitigate them. These include the application of site-specific labeling chemistries, modulating label density, and altering the structure of the fluorescent probe itself. In particular, we point out the significant potential of fluorophores with hydrophilic but net-neutral structures. Overall, this review highlights recent progress in refining the in vivo properties of fluorescent bioconjugates, and we hope, will inform future efforts in this area.
Collapse
|
40
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
41
|
Balasundaram G, Krafft C, Zhang R, Dev K, Bi R, Moothanchery M, Popp J, Olivo M. Biophotonic technologies for assessment of breast tumor surgical margins-A review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000280. [PMID: 32951321 DOI: 10.1002/jbio.202000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ruochong Zhang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kapil Dev
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renzhe Bi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mohesh Moothanchery
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, Jena, Germany
| | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
42
|
Azaïs H, Vignion-Dewalle AS, Carrier M, Augustin J, Da Maïa E, Penel A, Belghiti J, Nikpayam M, Gonthier C, Ziane L, Mordon S, Collinet P, Canlorbe G, Uzan C. Microscopic Peritoneal Residual Disease after Complete Macroscopic Cytoreductive Surgery for Advanced High Grade Serous Ovarian Cancer. J Clin Med 2020; 10:E41. [PMID: 33375564 PMCID: PMC7795826 DOI: 10.3390/jcm10010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancers (EOC) are usually diagnosed at an advanced stage and managed by complete macroscopic cytoreductive surgery (CRS) and systemic chemotherapy. Peritoneal recurrence occurs in 60% of patients and may be due to microscopic peritoneal metastases (mPM) which are neither eradicated by surgery nor controlled by systemic chemotherapy. The aim of this study was to assess and quantify the prevalence of residual mPM after complete macroscopic CRS in patients with advanced high-grade serous ovarian cancer (HGSOC). METHODS A prospective study conducted between 1 June 2018 and 10 July 2019 in a single referent center accredited by the European Society of Gynecological Oncology for advanced EOC management. Consecutive patients presenting with advanced HGSOC and eligible for complete macroscopic CRS were included. Up to 13 peritoneal biopsies were taken from macroscopically healthy peritoneum at the end of CRS and examined for the presence of mPM. A mathematical model was designed to determine the probability of presenting at least one mPM after CRS. RESULTS 26 patients were included and 26.9% presented mPM. There were no differences in characteristics between patients with or without identified mPM. After mathematical analysis, the probability that mPM remained after complete macroscopic CRS in patients with EOC was 98.14%. CONCLUSION Microscopic PM is systematically present after complete macroscopic CRS for EOC and could be a relevant therapeutic target. Adjuvant locoregional strategies to conventional surgery may improve survival by achieving microscopic CRS.
Collapse
Affiliation(s)
- Henri Azaïs
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
- U1189-ONCO-THAI-Laser Assisted Therapy and Immunotherapies for On-cology, CHU Lille, Université de Lille, INSERM, F-59000 Lille, France; (A.-S.V.-D.); (L.Z.); (S.M.); (P.C.)
| | - Anne-Sophie Vignion-Dewalle
- U1189-ONCO-THAI-Laser Assisted Therapy and Immunotherapies for On-cology, CHU Lille, Université de Lille, INSERM, F-59000 Lille, France; (A.-S.V.-D.); (L.Z.); (S.M.); (P.C.)
| | - Marine Carrier
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
| | - Jeremy Augustin
- AP-HP, Pitié-Salpêtrière Hospital, Department of Pathology, 75013 Paris, France; (J.A.); (E.D.M.)
| | - Elisabeth Da Maïa
- AP-HP, Pitié-Salpêtrière Hospital, Department of Pathology, 75013 Paris, France; (J.A.); (E.D.M.)
| | - Alix Penel
- AP-HP, Pitié-Salpêtrière Hospital, Centre de Pharmaco-épidémiologie de l’APHP (CEPHEPI), 75013 Paris, France;
| | - Jérémie Belghiti
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
| | - Marianne Nikpayam
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
| | - Clémentine Gonthier
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
| | - Laurine Ziane
- U1189-ONCO-THAI-Laser Assisted Therapy and Immunotherapies for On-cology, CHU Lille, Université de Lille, INSERM, F-59000 Lille, France; (A.-S.V.-D.); (L.Z.); (S.M.); (P.C.)
| | - Serge Mordon
- U1189-ONCO-THAI-Laser Assisted Therapy and Immunotherapies for On-cology, CHU Lille, Université de Lille, INSERM, F-59000 Lille, France; (A.-S.V.-D.); (L.Z.); (S.M.); (P.C.)
| | - Pierre Collinet
- U1189-ONCO-THAI-Laser Assisted Therapy and Immunotherapies for On-cology, CHU Lille, Université de Lille, INSERM, F-59000 Lille, France; (A.-S.V.-D.); (L.Z.); (S.M.); (P.C.)
- CHRU Lille, Jeanne de Flandre Hospital, Department of Gynecology, 59000 Lille, France
| | - Geoffroy Canlorbe
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne University, 75013 Paris, France
| | - Catherine Uzan
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France; (M.C.); (J.B.); (M.N.); (C.G.); (G.C.); (C.U.)
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
- Institut Universitaire de Cancérologie (IUC), Sorbonne University, 75013 Paris, France
| |
Collapse
|
43
|
Fujita K, Kamiya M, Yoshioka T, Ogasawara A, Hino R, Kojima R, Ueo H, Urano Y. Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting α-Mannosidase 2C1. ACS CENTRAL SCIENCE 2020; 6:2217-2227. [PMID: 33376783 PMCID: PMC7760471 DOI: 10.1021/acscentsci.0c01189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Accurate detection of breast tumors and discrimination of tumor from normal tissues during breast-conserving surgery are essential to reduce the risk of misdiagnosis or recurrence. However, existing probes show substantial background signals in normal breast tissues. In this study, we focus on glycosidase activities in breast tumors. We synthesized a series of 12 fluorescent probes and performed imaging-based evaluation on surgically resected human breast specimens. Among them, the α-mannosidase-reactive fluorescent probe HMRef-αMan detected breast cancer with 90% sensitivity and 100% specificity. We identified α-mannosidase 2C1 as the target enzyme and confirmed its overexpression in various breast tumors. We found that fibroadenoma, the most common benign breast lesion in young woman, tends to have higher α-mannosidase 2C1 activity than malignant cancer. Combined application of green-emitting HMRef-αMan and a red-emitting γ-glutamyltranspeptidase probe enabled efficient dual-color, dual-target optical discrimination of malignant and benign tumors.
Collapse
Affiliation(s)
- Kyohhei Fujita
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takafusa Yoshioka
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Akira Ogasawara
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Rumi Hino
- Daito
Bunka University, Department of Sports and
Health Science, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Ueo
- Ueo
Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Yasuteru Urano
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- CREST,
Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda,
Tokyo 100-0004, Japan
- E-mail
| |
Collapse
|
44
|
The Emerging Role of CD24 in Cancer Theranostics-A Novel Target for Fluorescence Image-Guided Surgery in Ovarian Cancer and Beyond. J Pers Med 2020; 10:jpm10040255. [PMID: 33260974 PMCID: PMC7712410 DOI: 10.3390/jpm10040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Complete cytoreductive surgery is the cornerstone of the treatment of epithelial ovarian cancer (EOC). The application of fluorescence image-guided surgery (FIGS) allows for the increased intraoperative visualization and delineation of malignant lesions by using fluorescently labeled targeting biomarkers, thereby improving intraoperative guidance. CD24, a small glycophosphatidylinositol-anchored cell surface receptor, is overexpressed in approximately 70% of solid cancers, and has been proposed as a prognostic and therapeutic tumor-specific biomarker for EOC. Recently, preclinical studies have demonstrated the benefit of CD24-targeted contrast agents for non-invasive fluorescence imaging, as well as improved tumor resection by employing CD24-targeted FIGS in orthotopic patient-derived xenograft models of EOC. The successful detection of miniscule metastases denotes CD24 as a promising biomarker for the application of fluorescence-guided surgery in EOC patients. The aim of this review is to present the clinical and preclinically evaluated biomarkers for ovarian cancer FIGS, highlight the strengths of CD24, and propose a future bimodal approach combining CD24-targeted fluorescence imaging with radionuclide detection and targeted therapy.
Collapse
|
45
|
Das D, Koirala N, Li X, Khan N, Dong F, Zhang W, Mulay P, Shrikhande G, Puskas J, Drazba J, McLennan G. Screening of Polymer-Based Drug Delivery Vehicles Targeting Folate Receptors in Triple-Negative Breast Cancer. J Vasc Interv Radiol 2020; 31:1866-1873.e2. [PMID: 33129432 DOI: 10.1016/j.jvir.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/21/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To compare cellular uptake and cytotoxicity of fluorescein (FL)-labeled polyethylene glycols (PEGs) carrying 2 folate groups (targeted delivery vehicles [TDVs]) to non-PEGylated molecules with 1 or 2 folate groups. MATERIALS AND METHODS Three PEGylated TDVs and 2 non-PEGylated folic acid (FA)-fluorescein (FL) conjugates (FA-FL and FA-FL-FA) were synthesized. Two triple-negative breast cancer cell lines (MDA-MB-231and MDA-MB-468) were cultured to 70% confluency and incubated for 2 h in a folate-depleted medium. Folate receptor (FR) expression was confirmed by immunocytochemistry. Cellular uptake and cytotoxicity of compounds were measured by flow cytometry. Intracellular localization was confirmed using confocal microscopy. RESULTS MDA-MB-231 demonstrated 40% more FR staining than MD-MB-468. Intracellular localization of the 2 non-PEGylated molecules (FA-FL and FA-FL-FA) and the 3 PEGylated TDVs was confirmed with confocal microscopy. Cellular uptake was independent of concentration for FA-FL, but there was 26.8% more cytotoxicity at 30 μg/mL compared with no treatment (P ≤ .05). Uptake was > 90% for FA-FL-FA at 10 μg/mL and 30 μg/mL without significant cytotoxicity (P ≤ .005). Cellular uptake was > 80% for all TDVs. The molecule containing monodispersed PEG with Mn = 1,000 g/mol had the highest uptake in both cell lines without cytotoxicity. Maximum toxicity was demonstrated by the molecule containing PEG2,000 only at the highest dose of 30 μg/mL (8.66% ± 3.94% cytotoxicity; cut-off was 20%). CONCLUSIONS The molecule containing monodispersed PEG with Mn = 1,000 g/mol and 2 FA targeting groups demonstrated better targetability and cellular uptake as a TDV.
Collapse
Affiliation(s)
- Dola Das
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195
| | - Nischal Koirala
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195; Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Xin Li
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Nadia Khan
- Division of Vascular and Interventional Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Franklin Dong
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195
| | - William Zhang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195
| | - Prajakatta Mulay
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| | - Gayatri Shrikhande
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| | - Judit Puskas
- Department of Food, Agricultural and Biological Engineering, Ohio State University, Wooster, Ohio
| | - Judy Drazba
- Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gordon McLennan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195; Division of Vascular and Interventional Radiology, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
46
|
Salim L, Desaulniers JP. To Conjugate or to Package? A Look at Targeted siRNA Delivery Through Folate Receptors. Nucleic Acid Ther 2020; 31:21-38. [PMID: 33121373 DOI: 10.1089/nat.2020.0893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) applications have evolved from experimental tools to study gene function to the development of a novel class of gene-silencing therapeutics. Despite decades of research, it was not until August 2018 that the US FDA approved the first-ever RNAi drug, marking a new era for RNAi therapeutics. Although there are many limitations associated with the inherent structure of RNA, delivery to target cells and tissues remains the most challenging. RNAs are unable to diffuse across cellular membranes due to their large size and polyanionic backbone and, therefore, require a delivery vector. RNAi molecules can be conjugated to a targeting ligand or packaged into a delivery vehicle. Alnylam has used both strategies in their FDA-approved formulations to achieve efficient delivery to the liver. To harness the full potential of RNAi therapeutics, however, we must be able to target additional cells and tissues. One promising target is the folate receptor α, which is overexpressed in a variety of tumors despite having limited expression and distribution in normal tissues. Folate can be conjugated directly to the RNAi molecule or used to functionalize delivery vehicles. In this review, we compare both delivery strategies and discuss the current state of research in the area of folate-mediated delivery of RNAi molecules.
Collapse
Affiliation(s)
- Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Canada
| | | |
Collapse
|
47
|
Marotta CB, Haber T, Berlin JM, Grubbs RH. Surgery-Guided Removal of Ovarian Cancer Using Up-Converting Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48371-48379. [PMID: 33078608 PMCID: PMC8557954 DOI: 10.1021/acsami.0c14983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ovarian cancer survival and the recurrence rate are drastically affected by the amount of tumor that can be surgically removed prior to chemotherapy. Surgeons are currently limited to visual inspection, making smaller tumors difficult to be removed surgically. Enhancing the surgeon's ability to selectively remove cancerous tissue would have a positive effect on a patient's prognosis. One approach to aid in surgical tumor removal involves using targeted fluorescent probes to selectively label cancerous tissue. To date, there has been a trade-off in balancing two requirements for the surgeon: the ability to see maximal tumors and the ability to identify these tumors by eye while performing the surgery. The ability to see maximal tumors has been prioritized and this has led to the use of fluorophores activated by near-infrared (NIR) light as NIR penetrates most deeply in this surgical setting, but the light emitted by traditional NIR fluorophores is invisible to the naked eye. This has necessitated the use of specialty detectors and monitors that the surgeon must consult while performing the surgery. In this study, we develop nanoparticles that selectively label ovarian tumors and are activated by NIR light but emit visible light. This potentially allows for maximal tumor observation and real-time detection by eye during surgery. We designed two generations of up-converting nanoparticles that emit green light when illuminated with NIR light. These particles specifically label ovarian tumors most likely via tumor-associated macrophages, which are prominent in the tumor microenvironment. Our results demonstrate that this approach is a viable means of visualizing tumors during surgery without the need for complicated, expensive, and bulky detection equipment. Continued improvement and experimentation could expand our approach into a much needed surgical technique to aid ovarian tumor removal.
Collapse
Affiliation(s)
- Christopher B. Marotta
- Department of Chemistry and Chemical Engineering at California Institute of Technology, 1200 E. California Blvd, Pasadena, California, 91125, United States
- Corresponding Author: Christopher B Marotta -Department of Chemistry and Chemical Engineering at California Institute of Technology, 1200 E. California Blvd, Pasadena, California, 91125, United States, ()
| | - Tom Haber
- Department of Molecular Medicine at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Jacob M. Berlin
- Department of Molecular Medicine at City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Robert H. Grubbs
- Department of Chemistry and Chemical Engineering at California Institute of Technology, 1200 E. California Blvd, Pasadena, California, 91125, United States
| |
Collapse
|
48
|
Pop FC, Veys I, Vankerckhove S, Barbieux R, Chintinne M, Moreau M, Donckier V, Larsimont D, Bourgeois P, Liberale G. Absence of residual fluorescence in the surgical bed at near-infrared fluorescence imaging predicts negative margins at final pathology in patients treated with breast-conserving surgery for breast cancer. Eur J Surg Oncol 2020; 47:269-275. [PMID: 33183928 DOI: 10.1016/j.ejso.2020.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Positive margins after breast-conserving surgery (BCS) for breast cancer (BC) remain a major concern. In this study we investigate the feasibility and accuracy of indocyanine green (ICG) fluorescence imaging (FI) for the in vivo assessment of surgical margins during BCS. MATERIALS AND METHODS Patients with BC admitted for BCS from October 2015 to April 2016 were proposed to be included in the present study (NCT02027818). ICG (0.25 mg/kg) was intravenously injected at induction anesthesia and ICG-FI of the surgical beds was correlated with final pathology results. RESULTS Fifty patients consented to participate and thirty-five patients were retained for final analysis, 15 patients having been excluded for, respectively, incomplete video records data for signal to background ratio (SBR) calculation (11) and in situ tumors (4). The final pathological assessment of 35 breast specimens identified 5 (14.7%) positive margins. Intraoperative ICG-FI revealed hyperfluorescent signals in 15 (42.9%) patients and an absence of fluorescent signals in 20 (57.1%). Median SBR in patients with involved margins was 1.8 (SD 0.7) and was 1.25 (SD 0.6) in patients with clear margins (p = 0.05). The accuracy, specificity, positive and negative predictive value of ICG-FI for breast surgical margin assessment were 71%, 60%, 29% and 100%, respectively. CONCLUSION ICG-FI of BC surgical beds has a high negative predictive value for surgical margin assessment during BCS. The absence of residual fluorescence in the surgical bed of patients with fluorescent tumors predicts negative margins at final pathology and allows the surgeon to avoid further intraoperative analysis.
Collapse
Affiliation(s)
- Florin-Catalin Pop
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle Veys
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Vankerckhove
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium; Clinical Trials Unit, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Romain Barbieux
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Chintinne
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Michel Moreau
- Data Centre (statistics), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Donckier
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Bourgeois
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gabriel Liberale
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
49
|
Chen R, Jing J, Siwko S, Huang Y, Zhou Y. Intelligent cell-based therapies for cancer and autoimmune disorders. Curr Opin Biotechnol 2020; 66:207-216. [PMID: 32956902 DOI: 10.1016/j.copbio.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Synthetic biology, when combined with immunoengineering (designated synthetic immunology), has enabled the invention of an arsenal of genetically encoded synthetic devices and systems to reprogram cells for therapeutic purposes. The engineered intelligent cells can serve as 'living' drugs to treat a wide range of human diseases including cancer, disorders of the immune system, and infectious diseases. As the most successful example, cells of the immune system engineered with chimeric antigen receptors (CARs) have shown curative potentials for the treatment of hematological malignancies. We present herein emerging approaches of designing smart CARs to improve their safety, specificity and efficacy in cellular immunotherapy, and describe latest advances in applying CAR-engineered immune cells to target cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Xu S, Bulin AL, Hurbin A, Elleaume H, Coll JL, Broekgaarden M. Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis: Emerging Perspectives. Cancers (Basel) 2020; 12:cancers12092491. [PMID: 32899137 PMCID: PMC7563129 DOI: 10.3390/cancers12092491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Peritoneal carcinomatosis, the formation of wide-spread metastases throughout the abdominal cavity, remains challenging to diagnose and treat. Photodynamic diagnosis and photodynamic therapy are promising approaches for the diagnosis and treatment of peritoneal carcinomatosis, which use photosensitizers for fluorescence detection or photochemical treatment of (micro) metastases. With the aim of highlighting the potential of this theranostic approach, this review outlines the clinical state of the art in the use of photodynamic diagnosis and therapy for peritoneal carcinomatosis, identifies the major challenges, and provides emerging perspectives from preclinical studies to address these challenges. We conclude that the development of novel illumination strategies and targeted photonanomedicines may aid in achieving more efficient cytoreductive surgery. In addition to combination treatments with chemo-, and radiotherapy, such approaches hold significant promise to improve the outlook of patients with peritoneal carcinomatosis. Abstract Peritoneal carcinomatosis occurs frequently in patients with advanced stage gastrointestinal and gynecological cancers. The wide-spread peritoneal micrometastases indicate a poor outlook, as the tumors are difficult to diagnose and challenging to completely eradicate with cytoreductive surgery and chemotherapeutics. Photodynamic diagnosis (PDD) and therapy (PDT), modalities that use photosensitizers for fluorescence detection or photochemical treatment of cancer, are promising theranostic approaches for peritoneal carcinomatosis. This review discusses the leading clinical trials, identifies the major challenges, and presents potential solutions to advance the use of PDD and PDT for the treatment of peritoneal carcinomatosis. While PDD for fluorescence-guided surgery is practically feasible and has achieved clinical success, large randomized trials are required to better evaluate the survival benefits. Although PDT is feasible and combines well with clinically used chemotherapeutics, poor tumor specificity has been associated with severe morbidity. The major challenges for both modalities are to increase the tumor specificity of the photosensitizers, to efficiently treat peritoneal microtumors regardless of their phenotypes, and to improve the ability of the excitation light to reach the cancer tissues. Substantial progress has been achieved in (1) the development of targeted photosensitizers and nanocarriers to improve tumor selectivity, (2) the design of biomodulation strategies to reduce treatment heterogeneity, and (3) the development of novel light application strategies. The use of X-ray-activated PDT during whole abdomen radiotherapy may also be considered to overcome the limited tissue penetration of light. Integrated approaches that take advantage of PDD, cytoreductive surgery, chemotherapies, PDT, and potentially radiotherapy, are likely to achieve the most effective improvement in the management of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Si Xu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Anne-Laure Bulin
- Synchrotron Radiation for Biomedicine, UA07 INSERM, Université Grenoble-Alpes, European Synchrotron Radiation Facility, Biomedical Beamline, 38043 Grenoble CEDEX 9, France; (A.-L.B.); (H.E.)
| | - Amandine Hurbin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
| | - Hélène Elleaume
- Synchrotron Radiation for Biomedicine, UA07 INSERM, Université Grenoble-Alpes, European Synchrotron Radiation Facility, Biomedical Beamline, 38043 Grenoble CEDEX 9, France; (A.-L.B.); (H.E.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
- Correspondence:
| | - Mans Broekgaarden
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, 38700 La Tronche, France; (S.X.); (A.H.); (M.B.)
- Synchrotron Radiation for Biomedicine, UA07 INSERM, Université Grenoble-Alpes, European Synchrotron Radiation Facility, Biomedical Beamline, 38043 Grenoble CEDEX 9, France; (A.-L.B.); (H.E.)
| |
Collapse
|