1
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures predict the thermal limits of malaria transmission better than hourly rate summation. Nat Commun 2025; 16:3441. [PMID: 40216754 PMCID: PMC11992237 DOI: 10.1038/s41467-025-58612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Temperature shapes the geographic distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Models predicting transmission often use mosquito and pathogen thermal responses measured at constant temperatures. However, mosquitoes live in fluctuating temperatures. Rate summation--non-linear averaging of trait values measured at constant temperatures-is commonly used to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three traits that impact transmission-bite rate, survival, fecundity-in a malaria mosquito (Anopheles stephensi) across three diurnal temperature ranges (0, 9, and 12 °C). We compared transmission thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation trait values substantially differ from both constant temperature experiments and rate summation; 2) rate summation partially captured decreases in performance near thermal optima, yet incorrectly predicted increases near thermal limits; and 3) while thermal suitability across constant temperatures did not perfectly capture fluctuating environments, it was better than rate summation for estimating and mapping thermal limits. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S Shocket
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joey R Bernhardt
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Kerri L Miazgowicz
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alyzeh Orakzai
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Van M Savage
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Richard J Hall
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Sadie J Ryan
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Courtney C Murdock
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Cornell University, Ithaca, NY, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Heidecke J, Wallin J, Fransson P, Singh P, Sjödin H, Stiles PC, Treskova M, Rocklöv J. Uncovering temperature sensitivity of West Nile virus transmission: Novel computational approaches to mosquito-pathogen trait responses. PLoS Comput Biol 2025; 21:e1012866. [PMID: 40163523 PMCID: PMC11981226 DOI: 10.1371/journal.pcbi.1012866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/09/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Temperature influences the transmission of mosquito-borne pathogens with significant implications for disease risk under climate change. Mathematical models of mosquito-borne infections rely on functions that capture mosquito-pathogen interactions in response to temperature to accurately estimate transmission dynamics. For deriving these functions, experimental studies provide valuable data on the temperature sensitivity of mosquito life-history traits and pathogen transmission. However, the scarcity of experimental data and inconsistencies in methodologies for analysing temperature responses across mosquito species, pathogens, and experiments present major challenges. Here, we introduce a new approach to address these challenges. We apply this framework to study the thermal biology of West Nile virus (WNV). We reviewed existing experimental studies, obtaining temperature responses for eight mosquito-pathogen traits across 15 mosquito species. Using these data, we employed Bayesian hierarchical models to estimate temperature response functions for each trait and their variation between species and experiments. We incorporated the resulting functions into mathematical models to estimate the temperature sensitivity of WNV transmission, focusing on six mosquito species of the genus Culex. Our study finds a general optimal transmission temperature around 24°C among Culex species with only small species-specific deviations. We demonstrate that differing mechanistic assumptions underlying published mosquito population models result in temperature optima estimates that differ by up to 3°C. Additionally, we find substantial variability between trait temperature responses across experiments on the same species, possibly indicating significant intra-species variation in trait performance. We identify mosquito biting rate, lifespan, and egg viability as priorities for future experiments, as they strongly influence estimates of temperature limits, optima, and overall uncertainty in transmission suitability. Experimental studies on vector competence traits are also essential, because limited data on these currently require model simplifications. These data would enhance the accuracy of our estimates, critical for anticipating future shifts in WNV risk under climate change.
Collapse
Affiliation(s)
- Julian Heidecke
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany,
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Jonas Wallin
- Department of statistics, Lund university, Lund, Sweden
| | - Peter Fransson
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany,
| | - Pratik Singh
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany,
| | - Henrik Sjödin
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
- Department of public health and clinical medicine, Section of sustainable health, Umeå university, Umeå, Sweden
| | | | - Marina Treskova
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany,
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Joacim Rocklöv
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany,
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
- Department of public health and clinical medicine, Section of sustainable health, Umeå university, Umeå, Sweden
| |
Collapse
|
3
|
Pathak AK, Quek S, Sharma R, Shiau JC, Thomas MB, Hughes GL, Murdock CC. Thermal variation influences the transcriptome of the major malaria vector Anopheles stephensi. Commun Biol 2025; 8:112. [PMID: 39843499 PMCID: PMC11754467 DOI: 10.1038/s42003-025-07477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
The distribution and abundance of ectothermic mosquitoes are strongly affected by temperature, but mechanisms remain unexplored. We describe the effect of temperature on the transcriptome of Anopheles stephensi, an invasive vector of human malaria. Adult females were maintained across a range of mean temperatures (20 °C, 24 °C and 28 °C), with daily fluctuations of +5 °C and -4 °C at each mean temperature. Transcriptomes were described up to 19 days post-blood meal. Of the >3100 differentially expressed genes, we observed shared temporal expression profiles across all temperatures, suggesting their indispensability to mosquito life history. Tolerance to 20 and 28 ( + 5°C/-4°C) was associated with larger and more diverse transcriptomes compared to 24 ( + 5 °C/-4 °C). Finally, we identified two distinct trends in gene expression in response to blood meal ingestion, oxidative stress, and reproduction. Our work has implications for mosquitoes' response to thermal variation, mosquito immune-physiology, mosquito-malaria interactions and the development of vector control tools.
Collapse
Affiliation(s)
- Ashutosh K Pathak
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Justine C Shiau
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Matthew B Thomas
- Department of Entomology & Nematology, Invasion Science Research Institute, University of Florida, Gainesville, FL, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Courtney C Murdock
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Mokhtar S, Pittman Ratterree DC, Britt AF, Fisher R, Ndeffo-Mbah ML. Global risk of dengue outbreaks and the impact of El Niño events. ENVIRONMENTAL RESEARCH 2024; 262:119830. [PMID: 39181299 DOI: 10.1016/j.envres.2024.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Dengue fever is an arboviral disease caused by the dengue virus (DENV). Its geographical distribution and health burden have been steadily increasing through tropical and subtropical climates in recent decades. METHODS We developed a temperature- and precipitation-dependent mechanistic model for the global risk of dengue fever outbreaks using the basic reproduction number (R0) as the metric of disease transmission risk. We used our model to evaluate the global risk of dengue outbreaks from 1950 to 2020 and to investigate the impact of annual seasons and El Niño events. RESULTS We showed that the global annual risk of dengue outbreaks has steadily increased during the last four decades. Highest R0 values were observed in South America, Southeast Asia, and the Equatorial region of Africa year-round with large seasonal variations occurring in other regions. El Niño was shown to be positively correlated with the global risk of dengue outbreaks with a correlation of 0.52. However, the impact of El Niño on dengue R0 was shown to vary across geographical regions and between El Niño events. CONCLUSIONS Strong El Niño events may increase the risk of dengue outbreaks across the globe. The onset of these events may trigger a surge of control efforts to minimize risk of dengue outbreaks.
Collapse
Affiliation(s)
- Sina Mokhtar
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Mathematics & Statistics, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Dana C Pittman Ratterree
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Amber F Britt
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Rebecca Fisher
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Martial L Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures can predict the thermal limits of malaria transmission better than rate summation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614098. [PMID: 39386442 PMCID: PMC11463682 DOI: 10.1101/2024.09.20.614098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temperature shapes the distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Mechanistic models predicting transmission often use mosquito and pathogen thermal responses from constant temperature experiments. However, mosquitoes live in fluctuating environments. Rate summation (nonlinear averaging) is a common approach to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three mosquito traits that impact transmission (bite rate, survival, fecundity) in a malaria mosquito (Anopheles stephensi) across temperature gradients with three diurnal temperature ranges (0, 9 and 12°C). We compared thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation significantly altered trait thermal responses; 2) rate summation partially captured decreases in performance near thermal optima, but also incorrectly predicted increases near thermal limits; and 3) while thermal suitability characterized across constant temperatures did not perfectly capture suitability in fluctuating environments, it was more accurate for estimating and mapping thermal limits than predictions from rate summation. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S. Shocket
- Lancaster Environment Centre, Lancaster University, UK
- Department of Geography, University of Florida, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | | | | | | | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | - Richard J. Hall
- Department of Infectious Diseases, University of Georgia, USA
- Odum School of Ecology, University of Georgia, USA
| | | | | |
Collapse
|
6
|
Villena OC, Arab A, Lippi CA, Ryan SJ, Johnson LR. Influence of environmental, geographic, socio-demographic, and epidemiological factors on presence of malaria at the community level in two continents. Sci Rep 2024; 14:16734. [PMID: 39030306 PMCID: PMC11271557 DOI: 10.1038/s41598-024-67452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
The interactions of environmental, geographic, socio-demographic, and epidemiological factors in shaping mosquito-borne disease transmission dynamics are complex and changeable, influencing the abundance and distribution of vectors and the pathogens they transmit. In this study, 27 years of cross-sectional malaria survey data (1990-2017) were used to examine the effects of these factors on Plasmodium falciparum and Plasmodium vivax malaria presence at the community level in Africa and Asia. Monthly long-term, open-source data for each factor were compiled and analyzed using generalized linear models and classification and regression trees. Both temperature and precipitation exhibited unimodal relationships with malaria, with a positive effect up to a point after which a negative effect was observed as temperature and precipitation increased. Overall decline in malaria from 2000 to 2012 was well captured by the models, as was the resurgence after that. The models also indicated higher malaria in regions with lower economic and development indicators. Malaria is driven by a combination of environmental, geographic, socioeconomic, and epidemiological factors, and in this study, we demonstrated two approaches to capturing this complexity of drivers within models. Identifying these key drivers, and describing their associations with malaria, provides key information to inform planning and prevention strategies and interventions to reduce malaria burden.
Collapse
Affiliation(s)
- Oswaldo C Villena
- The Earth Commons Institute, Georgetown University, Washington, DC, 20057, USA.
| | - Ali Arab
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA
| | - Catherine A Lippi
- Department of Geography, University of Florida, Gainesville, FL, 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, FL, 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA
- Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biology, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
7
|
Rodríguez-Escolar I, Hernández-Lambraño RE, Sánchez-Agudo JÁ, Collado-Cuadrado M, Sioutas G, Papadopoulos E, Morchón R. Ecological niche modeling analysis (Cx. pipiens), potential risk and projection of Dirofilaria spp. infection in Greece. Vet Parasitol 2024; 328:110172. [PMID: 38547829 DOI: 10.1016/j.vetpar.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/18/2024]
Abstract
Vector-borne diseases continue to increase worldwide. Dirofilariosis is one of the most common vector-borne zoonotic diseases, mainly caused by Dirofilaria spp. (D. immitis and D. repens) and spread by culicid mosquitoes of different species. Greece is one of the countries in southern Europe where it is traditionally endemic, and its distribution is not homogeneous. The aim of this study was to develop an environmental model for Greece that reflects the suitability of the ecological niche for Dirofilaria spp. infection risk and its projection until 2080. For this purpose, we used the potential distribution of suitable habitats for Culex pipiens calculated using an ecological niche model (ENM) and the potential number of generations of Dirofilaria spp. The ecological niche model of Cx. pipiens in Greece showed good predictive power (AUC=0.897) with the parasite at a resolution of 1 km2. The variables that contributed most to the model were mean annual temperature, rivers and human footprint. The highest risk of infection was found in coastal areas and in riverside areas of the main river basins, as well as in irrigated areas of the mainland and peninsular regions and in the whole territory of island areas, and the lowest risk was found in areas of higher altitude. A positive relationship was found between the risk of dirofilariosis and the location of infected dogs, with 86.65% located in very high and high risk areas. In 2080, the percentage of territory gained by Cx. pipiens will increase by 261.52%. This model provides a high predictive value, predicted presence, and risk of Dirofilaria spp. infection and can serve as a tool for the management and control of this disease.
Collapse
Affiliation(s)
- Iván Rodríguez-Escolar
- Zoonotic Diseases and One Health group, Faculty of Pharmacy, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Ricardo E Hernández-Lambraño
- Biodiversity, Human Diversity and Conservation Biology Research Group, Campus Miguel Unamuno, Salamanca, University of Salamanca, Spain
| | - José Ángel Sánchez-Agudo
- Biodiversity, Human Diversity and Conservation Biology Research Group, Campus Miguel Unamuno, Salamanca, University of Salamanca, Spain; Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, Salamanca, Spain
| | - Manuel Collado-Cuadrado
- Zoonotic Diseases and One Health group, Faculty of Pharmacy, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Georgios Sioutas
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health group, Faculty of Pharmacy, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, Salamanca, Spain.
| |
Collapse
|
8
|
Hofmeister E, Clark E, Lund M, Grear D. Serologic Survey of Selected Arthropod-Borne Pathogens in Free-Ranging Snowshoe Hares (Lepus americanus) Captured in Northern Michigan, USA. J Wildl Dis 2024; 60:375-387. [PMID: 38345469 DOI: 10.7589/jwd-d-23-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/14/2023] [Indexed: 04/06/2024]
Abstract
Snowshoe hares (Lepus americanus) in the Upper Peninsula (UP) of Michigan, USA, occupy the southern periphery of the species' range and are vulnerable to climate change. In the eastern UP, hares are isolated by the Great Lakes, potentially exacerbating exposure to climate-change-induced habitat alterations. Climate change is also measurably affecting distribution and prevalence of vector-borne pathogens in North America, and increases in disease occurrence and prevalence can be one signal of climate-stressed wildlife populations. We conducted a serosurvey for vector-borne pathogens in snowshoe hares that were captured in the Hiawatha National Forest in the eastern UP of Michigan, USA, 2016-2017. The most commonly detected antibody response was to the mosquito-borne California serogroup snowshoe hare virus (SSHV). Overall, 24 (51%) hares screened positive for SSHV antibodies and of these, 23 (96%) were confirmed positive by plaque reduction neutralization test. We found a positive association between seroprevalence of SSHV and live weight of snowshoe hares. Additionally, we detected a significant effect of ecological land type group on seroprevalence of SSHV, with strong positive support for a group representing areas that tend to support high numbers of hares (i.e., acidic mineral containing soils with cedar, mixed swamp conifers, tamarack and balsam fir as common overstory vegetation). We also detected and confirmed antibodies for Jamestown Canyon virus and Silverwater virus in a single hare each. We did not detect antibodies to other zoonotic vector-borne pathogens, including Lacrosse encephalitis virus, West Nile virus, Borrelia burgdorferi, Powassan virus, and Francisella tularensis. These results provide a baseline for future serological studies of vector-transmitted diseases that may increase climate vulnerability of snowshoe hares in the UP of Michigan, as well as pose a climate-related zoonotic risk.
Collapse
Affiliation(s)
- Erik Hofmeister
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
- These authors contributed equally to the study
| | - Eric Clark
- The Wildlife Program of the Sault Ste. Marie Tribe of Chippewa Indians, 2428 Shunk Road, Sault Ste. Marie, MI 49783, USA
- Center for Cooperative Ecological Resilience, 480 Wilson Road, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally to the study
| | - Melissa Lund
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| | - Daniel Grear
- US Geological Survey National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| |
Collapse
|
9
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. Proc Biol Sci 2024; 291:20232457. [PMID: 38264779 PMCID: PMC10806440 DOI: 10.1098/rspb.2023.2457] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Johannah E. Farner
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Alexandra S. Lee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Skinner EB, Childs ML, Thomas MB, Cook J, Sternberg ED, Koffi AA, N'Guessan R, Wolie RZ, Oumbouke WA, Ahoua Alou LP, Brice S, Mordecai EA. Global malaria predictors at a localized scale. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.20.23298800. [PMID: 38045403 PMCID: PMC10690354 DOI: 10.1101/2023.11.20.23298800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Malaria is a life-threatening disease caused by Plasmodium parasites transmitted by Anopheles mosquitoes. In 2021, more than 247 million cases of malaria were reported worldwide, with an estimated 619,000 deaths. While malaria incidence has decreased globally in recent decades, some public health gains have plateaued, and many endemic hotspots still face high transmission rates. Understanding local drivers of malaria transmission is crucial but challenging due to the complex interactions between climate, entomological and human variables, and land use. This study focuses on highly climatically suitable and endemic areas in Côte d'Ivoire to assess the explanatory power of coarse climatic predictors of malaria transmission at a fine scale. Using data from 40 villages participating in a randomized controlled trial of a household malaria intervention, the study examines the effects of climate variation over time on malaria transmission. Through panel regressions and statistical modeling, the study investigates which variable (temperature, precipitation, or entomological inoculation rate) and its form (linear or unimodal) best explains seasonal malaria transmission and the factors predicting spatial variation in transmission. The results highlight the importance of temperature and rainfall, with quadratic temperature and all precipitation models performing well, but the causal influence of each driver remains unclear due to their strong correlation. Further, an independent, mechanistic temperature-dependent R 0 model based on laboratory data aligns well with observed malaria incidence rates, emphasizing the significance and predictability of temperature suitability across scales. By contrast, entomological variables, such as entomological inoculation rate, were not strong predictors of human incidence in this context. Finally, the study explores the predictors of spatial variation in malaria, considering land use, intervention, and entomological variables. The findings contribute to a better understanding of malaria transmission dynamics at local scales, aiding in the development of effective control strategies in endemic regions.
Collapse
|
11
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530886. [PMID: 37961581 PMCID: PMC10634975 DOI: 10.1101/2023.03.02.530886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity, and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1,200 km, we found remarkably limited variation in upper thermal tolerance between populations, with the upper thermal limits of fitness varying by <1°C across the species range. For one life history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found environmental temperatures already regularly exceed our highest estimated upper thermal limits throughout most of the species range, suggesting limited potential for mosquito thermal tolerance to evolve on pace with warming. Strategies for avoiding high temperatures such as diapause, phenological shifts, and behavioral thermoregulation are likely important for mosquito persistence.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Johannah E. Farner
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Alexandra S. Lee
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| | - Erin A. Mordecai
- Department of Biology, Stanford University. 327 Campus Drive, Stanford CA 94305
| |
Collapse
|
12
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
13
|
Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, Bartlow AW, Romero-Severson E, Manore CA. Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasit Vectors 2023; 16:200. [PMID: 37316915 PMCID: PMC10265793 DOI: 10.1186/s13071-023-05792-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Mosquitoes in the genus Culex are primary vectors in the US for West Nile virus (WNV) and other arboviruses. Climatic drivers such as temperature have differential effects on species-specific changes in mosquito range, distribution, and abundance, posing challenges for population modeling, disease forecasting, and subsequent public health decisions. Understanding these differences in underlying biological dynamics is crucial in the face of climate change. METHODS We collected empirical data on thermal response for immature development rate, egg viability, oviposition, survival to adulthood, and adult lifespan for Culex pipiens, Cx. quinquefasciatus, Cx. tarsalis, and Cx. restuans from existing literature according to the PRISMA scoping review guidelines. RESULTS We observed linear relationships with temperature for development rate and lifespan, and nonlinear relationships for survival and egg viability, with underlying variation between species. Optimal ranges and critical minima and maxima also appeared varied. To illustrate how model output can change with experimental input data from individual Culex species, we applied a modified equation for temperature-dependent mosquito type reproduction number for endemic spread of WNV among mosquitoes and observed different effects. CONCLUSIONS Current models often input theoretical parameters estimated from a single vector species; we show the need to implement the real-world heterogeneity in thermal response between species and present a useful data resource for researchers working toward that goal.
Collapse
Affiliation(s)
- S. Kane Moser
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM USA
| | - Martha Barnard
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM USA
- Department of Biostatistics, School of Public Health, University of Minnesota Twin Cities, Minneapolis, MN USA
| | - Rachel M. Frantz
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM USA
- Department of Mathematics and Statistics, Utah State University, Logan, UT USA
| | - Julie A. Spencer
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM USA
| | - Katie A. Rodarte
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM USA
| | - Isabel K. Crooker
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM USA
- Department of Biology, Cornell University, Ithaca, NY USA
| | - Andrew W. Bartlow
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM USA
| | - Ethan Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM USA
| | - Carrie A. Manore
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM USA
| |
Collapse
|
14
|
Ullah W, Yen TY, Niaz S, Nasreen N, Tsai YF, Rodriguez-Vivas RI, Khan A, Tsai KH. Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan. Trop Med Infect Dis 2023; 8:tropicalmed8020128. [PMID: 36828544 PMCID: PMC9962270 DOI: 10.3390/tropicalmed8020128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a zoonotic infection caused by obligate intracellular protozoa of the genus Leishmania. This study aimed to investigate CL in Khyber Pakhtunkhwa, Pakistan and to estimate the risk of epidemics. Clinico-epidemiological data of 3188 CL patients were collected from health facilities in 2021. Risk factors were analyzed using the chi-square test. ArcGIS V.10.7.1 was applied for spatial analysis. The association between CL occurrence and climatic variables was examined by Bayesian geostatistical analysis. The clinical data revealed males or individuals younger than 20 years old were more affected. Most patients presented with a single lesion, and the face was the most attacked body part. CL was prevalent in the southern region in winter. A proportional symbol map, a choropleth map, and a digital elevation model map were built to show the distribution of CL. Focal transmission was predicted by inverse distance weighting interpolation. Cluster and outlier analysis identified clusters in Bannu, Dir Lower, and Mardan, and hotspot analysis suggested Bannu as a high-risk foci. Bayesian geostatistical analysis indicated that increasing precipitation and temperature as well as low altitudes were associated with CL infection. The study has provided important information for public health sectors to develop intervention strategies for future CL epidemics.
Collapse
Affiliation(s)
- Wasia Ullah
- Department of Zoology, Abdul Wali Khan University, Mardan 23300, Khyber Pakhtunkhwa, Pakistan
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University, Mardan 23300, Khyber Pakhtunkhwa, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University, Mardan 23300, Khyber Pakhtunkhwa, Pakistan
| | - Yu-Feng Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| | - Roger Ivan Rodriguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatán, Km 15.5 Carretera Mérida–Xmatkuil, Merida 97100, Yucatan, Mexico
| | - Adil Khan
- Department of Botany/Zoology, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (A.K.); (K.-H.T.)
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
- Correspondence: (A.K.); (K.-H.T.)
| |
Collapse
|
15
|
Bhattarai S, Blackburn JK, Ryan SJ. Malaria transmission in Nepal under climate change: anticipated shifts in extent and season, and comparison with risk definitions for intervention. Malar J 2022; 21:390. [PMID: 36544194 PMCID: PMC9773623 DOI: 10.1186/s12936-022-04417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Climate and climate change affect the spatial pattern and seasonality of malaria risk. Season lengths and spatial extents of mapped current and future malaria transmission suitability predictions for Nepal were assessed for a combination of malaria vector and parasites: Anopheles stephensi and Plasmodium falciparum (ASPF) and An. stephensi and Plasmodium vivax (ASPV) and compared with observed estimates of malaria risk in Nepal. METHODS Thermal bounds of malaria transmission suitability for baseline (1960-1990) and future climate projections (RCP 4.5 and RCP 8.5 in 2030 and 2050) were extracted from global climate models and mapped for Nepal. Season length and spatial extent of suitability between baseline and future climate scenarios for ASPF and ASPV were compared using the Warren's I metric. Official 2010 DoHS risk districts (DRDs) and 2021 DoHS risk wards (DRWs), and spatiotemporal incidence trend clusters (ITCs) were overlaid on suitability season length and extent maps to assess agreement, and potential mismatches. RESULTS Shifts in season length and extent of malaria transmission suitability in Nepal are anticipated under both RCP 4.5 and RCP 8.5 scenarios in 2030 and 2050, compared to baseline climate. The changes are broadly consistent across both future climate scenarios for ASPF and ASPV. There will be emergence of suitability and increasing length of season for both ASPF and ASPV and decreasing length of season for ASPV by 2050. The emergence of suitability will occur in low and no-risk DRDs and outside of high and moderate-risk DRWs, season length increase will occur across all DRD categories, and outside of high and moderate-risk DRWs. The high and moderate risk DRWs of 2021 fall into ITCs with decreasing trend. CONCLUSIONS The study identified areas of Nepal where malaria transmission suitability will emerge, disappear, increase, and decrease in the future. However, most of these areas are anticipated outside of the government's current and previously designated high and moderate-risk areas, and thus outside the focus of vector control interventions. Public health officials could use these anticipated changing areas of malaria risk to inform vector control interventions for eliminating malaria from the country, and to prevent malaria resurgence.
Collapse
Affiliation(s)
- Shreejana Bhattarai
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Jason K Blackburn
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Spatial Epidemiology and Ecology Research (SEER) Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Bagni T, Siaussat D, Maria A, Couzi P, Maïbèche M, Massot M. The impact of temperature on insecticide sensitivity depends on transgenerational effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158140. [PMID: 35987238 DOI: 10.1016/j.scitotenv.2022.158140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of insecticides and temperature are increasingly being studied because species are expected to change their responses to insecticides with climate warming. As recently highlighted, the impact of temperature on insecticide sensitivity might be influenced by the environment experienced by the previous generation. However, a pioneering study that showed this transgenerational effect in the mosquito Culex pipiens needs to be confirmed because two other studies did not show similar results. Here, we performed an experiment on the moth Spodoptera littoralis to test this hypothesis. We analysed reaction norms among experimental families to test transgenerational effects, i.e., the variation in the response of families to the combined effects of the insecticide chlorpyrifos and developmental temperature. Reaction norm analyses revealed that the responses of the families to chlorpyrifos and temperature differed for developmental time and larval survival, two key parameters in S. littoralis. Crucially, for larval survival, a family effect influenced the impact of temperature on chlorpyrifos sensitivity. This finding confirms the pioneering study on C. pipiens that showed transgenerational effects on the combined effects of insecticides and temperature. This result also highlights that transgenerational plasticity can be important to consider in ecotoxicology.
Collapse
Affiliation(s)
- Thibaut Bagni
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Martine Maïbèche
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Manuel Massot
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France.
| |
Collapse
|
17
|
Li C, Managi S. Global malaria infection risk from climate change. ENVIRONMENTAL RESEARCH 2022; 214:114028. [PMID: 35940231 DOI: 10.1016/j.envres.2022.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
As a long-standing public health issue, malaria still severely affects many parts of the world, especially Africa. With greenhouse gas emissions, temperatures continue to rise. Based on diverse shared socioeconomic pathways (SSPs), future temperatures can be estimated. However, the impacts of climate change on malaria infection rates in all epidemic regions are unknown. Here, we estimate the differences in global malaria infection rates predicted under different SSPs during several periods as well as malaria infection case changes (MICCs) resulting from those differences. Our results indicate that the global MICCs resulting from the conversion from SSP1-2.6 to SSP2-4.5, to SSP3-7.0, and to SSP5-8.5 are 6.506 (with a 95% uncertainty interval [UI] of 6.150-6.861) million, 3.655 (3.416-3.894) million, and 2.823 (2.635-3.012) million, respectively, from 2021 to 2040; these values represent increases of 2.699%, 1.517%, and 1.171%, respectively, compared to the 241 million infection cases reported in 2020. Temperatures increases will adversely affect malaria the most in Africa during the 2021-2040 period. From 2081 to 2100, the MICCs obtained for the three scenario shifts listed above are -79.109 (-83.626 to -74.591) million, -238.337 (-251.920 to -0.141) million, and -162.692 (-174.628 to -150.757) million, corresponding to increases of -32.825%, -98.895%, and -67.507%, respectively. Climate change will increase the danger and risks associated with malaria in the most vulnerable regions in the near term, thus aggravating the difficulty of eliminating malaria. Reducing GHG emissions is a potential pathway to protecting people from malaria.
Collapse
Affiliation(s)
- Chao Li
- Urban Institute, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shunsuke Managi
- Urban Institute, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
18
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus with a global distribution that is maintained in an enzootic cycle between Culex species mosquitoes and avian hosts. Human infection, which occurs as a result of spillover from this cycle, is generally subclinical or results in a self-limiting febrile illness. Central nervous system infection occurs in a minority of infections and can lead to long-term neurological complications and, rarely, death. WNV is the most prevalent arthropod-borne virus in the United States. Climate change can influence several aspects of WNV transmission including the vector, amplifying host, and virus. Climate change is broadly predicted to increase WNV distribution and risk across the globe, yet there will likely be significant regional variability and limitations to this effect. Increases in temperature can accelerate mosquito and pathogen development, drive increases in vector competence for WNV, and also alter mosquito life history traits including longevity, blood feeding behavior and fecundity. Precipitation, humidity and drought also impact WNV transmissibility. Alteration in avian distribution, diversity and phenology resulting from climate variation add additional complexity to these relationships. Here, we review WNV epidemiology, transmission, disease and genetics in the context of laboratory studies, field investigations, and infectious disease models under climate change. We summarize how mosquito genetics, microbial interactions, host dynamics, viral strain, population size, land use and climate account for distinct relationships that drive WNV activity and discuss how these dynamic and evolving interactions could shape WNV transmission and disease under climate change.
Collapse
Affiliation(s)
- Rachel L Fay
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States
| | - Alexander C Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, NY, United States
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
19
|
Christofferson RC, Wearing HJ, Turner EA, Walsh CS, Salje H, Tran-Kiem C, Cauchemez S. How do i bite thee? let me count the ways: Exploring the implications of individual biting habits of Aedes aegypti for dengue transmission. PLoS Negl Trop Dis 2022; 16:e0010818. [PMID: 36194617 PMCID: PMC9565401 DOI: 10.1371/journal.pntd.0010818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
In models of mosquito-borne transmission, the mosquito biting rate is an influential parameter, and understanding the heterogeneity of the process of biting is important, as biting is usually assumed to be relatively homogeneous across individuals, with time-between-bites described by an exponentially distributed process. However, these assumptions have not been addressed through laboratory experimentation. We experimentally investigated the daily biting habits of Ae. aegypti at three temperatures (24°C, 28°C, and 32°C) and determined that there was individual heterogeneity in biting habits (number of bites, timing of bites, etc.). We further explored the consequences of biting heterogeneity using an individual-based model designed to examine whether a particular biting profile determines whether a mosquito is more or less likely to 1) become exposed given a single index case of dengue (DENV) and 2) transmit to a susceptible human individual. Our experimental results indicate that there is heterogeneity among individuals and among temperature treatments. We further show that this results in altered probabilities of transmission of DENV to and from individual mosquitoes based on biting profiles. While current model representation of biting may work under some conditions, it might not uniformly be the best fit for this process. Our data also confirm that biting is a non-monotonic process with temperatures around 28°C being optimum.
Collapse
Affiliation(s)
- Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Helen J. Wearing
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Erik A. Turner
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christine S. Walsh
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| | - Cécile Tran-Kiem
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| |
Collapse
|
20
|
Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology 2022; 103:e3685. [PMID: 35315521 PMCID: PMC9357211 DOI: 10.1002/ecy.3685] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022]
Abstract
Extrinsic environmental factors influence the spatiotemporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector-borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of ectothermic insects. A mechanistic understanding of how temperature impacts traits of ectotherms, and thus the distribution of ectotherms and vector-borne infections, is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically nonlinear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites, Plasmodium falciparum and Plasmodium vivax, by two malaria vector species, Anopheles gambiae and Anopheles stephensi. We model the nonlinear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, proportion of eggs surviving to adulthood, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito-parasite combinations assessed in this study, but may differ at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (A. stephensi) and between mosquitoes carrying P. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g., A. stephensi and A. gambiae both with P. falciparum). Using prevalence data, we show that the transmission suitability metric S T $$ S(T) $$ calculated from our mechanistic model is consistent with observed P. falciparum prevalence in Africa and Asia but is equivocal for P. vivax prevalence in Asia, and inconsistent with P. vivax prevalence in Africa. We mapped risk to illustrate the number of months various areas in Africa and Asia predicted to be suitable for malaria transmission based on this suitability metric. This mapping provides spatially explicit predictions for suitability and transmission risk.
Collapse
Affiliation(s)
| | - Sadie J. Ryan
- Department of GeographyUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Courtney C. Murdock
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Center for Vaccines and ImmunologyCollege of Veterinary Medicine, University of GeorgiaAthensGeorgiaUSA
- Riverbasin CenterUniversity of GeorgiaAthensGeorgiaUSA
- Department of EntomologyCollege of Agriculture and Life Sciences, Cornell UniversityIthacaNew YorkUSA
| | - Leah R. Johnson
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
- Computational Modeling and Data AnalyticsVirginia TechBlacksburgVirginiaUSA
- Department of BiologyVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
21
|
Hopkins SR, Jones IJ, Buck JC, LeBoa C, Kwong LH, Jacobsen K, Rickards C, Lund AJ, Nova N, MacDonald AJ, Lambert-Peck M, De Leo GA, Sokolow SH. Environmental Persistence of the World's Most Burdensome Infectious and Parasitic Diseases. Front Public Health 2022; 10:892366. [PMID: 35875032 PMCID: PMC9305703 DOI: 10.3389/fpubh.2022.892366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were “environmentally mediated” to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing.
Collapse
Affiliation(s)
- Skylar R. Hopkins
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Skylar R. Hopkins
| | - Isabel J. Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
| | - Julia C. Buck
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Christopher LeBoa
- Department of Epidemiology, Stanford University, Stanford, CA, United States
| | - Laura H. Kwong
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, United States
| | - Kim Jacobsen
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Chloe Rickards
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andrea J. Lund
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, United States
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Andrew J. MacDonald
- Department of Biology, Stanford University, Stanford, CA, United States
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Miles Lambert-Peck
- United Nations University for the Advanced Study of Sustainability, Tokyo, Japan
| | - Giulio A. De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
| | - Susanne H. Sokolow
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
22
|
Endo A, Amarasekare P. Predicting the Spread of Vector-Borne Diseases in a Warming World. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.758277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predicting how climate warming affects vector borne diseases is a key research priority. The prevailing approach uses the basic reproductive number (R0) to predict warming effects. However, R0 is derived under assumptions of stationary thermal environments; using it to predict disease spread in non-stationary environments could lead to erroneous predictions. Here, we develop a trait-based mathematical model that can predict disease spread and prevalence for any vector borne disease under any type of non-stationary environment. We parameterize the model with trait response data for the Malaria vector and pathogen to test the latest IPCC predictions on warmer-than-average winters and hotter-than-average summers. We report three key findings. First, the R0 formulation commonly used to investigate warming effects on disease spread violates the assumptions underlying its derivation as the dominant eigenvalue of a linearized host-vector model. As a result, it overestimates disease spread in cooler environments and underestimates it in warmer environments, proving its predictions to be unreliable even in a constant thermal environment. Second, hotter-than-average summers both narrow the thermal limits for disease prevalence, and reduce prevalence within those limits, to a much greater degree than warmer-than-average winters, highlighting the importance of hot extremes in driving disease burden. Third, while warming reduces infected vector populations through the compounding effects of adult mortality, and infected host populations through the interactive effects of mortality and transmission, uninfected vector populations prove surprisingly robust to warming. This suggests that ecological predictions of warming-induced reductions in disease burden should be tempered by the evolutionary possibility of vector adaptation to both cooler and warmer climates.
Collapse
|
23
|
Whittaker C, Winskill P, Sinka M, Pironon S, Massey C, Weiss DJ, Nguyen M, Gething PW, Kumar A, Ghani A, Bhatt S. A novel statistical framework for exploring the population dynamics and seasonality of mosquito populations. Proc Biol Sci 2022; 289:20220089. [PMID: 35414241 PMCID: PMC9006040 DOI: 10.1098/rspb.2022.0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding the temporal dynamics of mosquito populations underlying vector-borne disease transmission is key to optimizing control strategies. Many questions remain surrounding the drivers of these dynamics and how they vary between species-questions rarely answerable from individual entomological studies (that typically focus on a single location or species). We develop a novel statistical framework enabling identification and classification of time series with similar temporal properties, and use this framework to systematically explore variation in population dynamics and seasonality in anopheline mosquito time series catch data spanning seven species, 40 years and 117 locations across mainland India. Our analyses reveal pronounced variation in dynamics across locations and between species in the extent of seasonality and timing of seasonal peaks. However, we show that these diverse dynamics can be clustered into four 'dynamical archetypes', each characterized by distinct temporal properties and associated with a largely unique set of environmental factors. Our results highlight that a range of environmental factors including rainfall, temperature, proximity to static water bodies and patterns of land use (particularly urbanicity) shape the dynamics and seasonality of mosquito populations, and provide a generically applicable framework to better identify and understand patterns of seasonal variation in vectors relevant to public health.
Collapse
Affiliation(s)
- Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| | | | | | - Claire Massey
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK
| | - Daniel J. Weiss
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Michele Nguyen
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Peter W. Gething
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Ashwani Kumar
- Vector Control Research Centre, Indira Nagar, Puducherry, India
| | - Azra Ghani
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Gregory N, Ewers RM, Chung AYC, Cator LJ. Oil palm expansion increases the vectorial capacity of dengue vectors in Malaysian Borneo. PLoS Negl Trop Dis 2022; 16:e0009525. [PMID: 35294445 PMCID: PMC8959159 DOI: 10.1371/journal.pntd.0009525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 03/28/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Changes in land-use and the associated shifts in environmental conditions can have large effects on the transmission and emergence of mosquito-borne disease. Mosquito-borne disease are particularly sensitive to these changes because mosquito growth, reproduction, survival and susceptibility to infection are all thermally sensitive traits, and land use change dramatically alters local microclimate. Predicting disease transmission under environmental change is increasingly critical for targeting mosquito-borne disease control and for identifying hotspots of disease emergence. Mechanistic models offer a powerful tool for improving these predictions. However, these approaches are limited by the quality and scale of temperature data and the thermal response curves that underlie predictions. Here, we used fine-scale temperature monitoring and a combination of empirical, laboratory and temperature-dependent estimates to estimate the vectorial capacity of Aedes albopictus mosquitoes across a tropical forest-oil palm plantation conversion gradient in Malaysian Borneo. We found that fine-scale differences in temperature between logged forest and oil palm plantation sites were not sufficient to produce differences in temperature-dependent demographic trait estimates using published thermal performance curves. However, when measured under field conditions a key parameter, adult abundance, differed significantly between land-use types, resulting in estimates of vectorial capacity that were 1.5 times higher in plantations than in forests. The prediction that oil palm plantations would support mosquito populations with higher vectorial capacity was robust to uncertainties in our adult survival estimates. These results provide a mechanistic basis for understanding the effects of forest conversion to agriculture on mosquito-borne disease risk, and a framework for interpreting emergent relationships between land-use and disease transmission. As the burden of Ae. albopictus-vectored diseases, such as dengue virus, increases globally and rising demand for palm oil products drives continued expansion of plantations, these findings have important implications for conservation, land management and public health policy at the global scale.
Collapse
Affiliation(s)
- Nichar Gregory
- Department of Life Sciences, Imperial College London, Silwood Park, Berkshire, United Kingdom
| | - Robert M. Ewers
- Department of Life Sciences, Imperial College London, Silwood Park, Berkshire, United Kingdom
| | | | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Berkshire, United Kingdom
| |
Collapse
|
25
|
Massot M, Bagni T, Maria A, Couzi P, Drozdz T, Malbert-Colas A, Maïbèche M, Siaussat D. Combined influences of transgenerational effects, temperature and insecticide on the moth Spodoptera littoralis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117889. [PMID: 34358866 DOI: 10.1016/j.envpol.2021.117889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Climate warming is expected to impact the response of species to insecticides. Recent studies show that this interaction between insecticides and temperature can depend on other factors. Here, we tested for the influence of transgenerational effects on the Insecticide × Temperature interaction in the crop pest moth Spodoptera littoralis. Specifically, we analysed reaction norms among experimental clutches based on a split-plot design crossing the factors temperature, insecticide and clutch. The study was performed on 2280 larvae reared at four temperatures (23, 25, 27 and 29 °C), and their response to the insecticide deltamethrin (three concentrations and a control group) was tested. Temperature had a global influence with effects on larval survival, duration of development, pupal body mass, and significant reaction norms of the clutches for temperature variations of only 2 °C. In addition to the expected effect of deltamethrin on mortality, the insecticide slightly delayed the development of S. littoralis, and the effects on mortality and development differed among the clutches. Projection models integrating all the observed responses illustrated the additive effects of deltamethrin and temperature on the population multiplication rate. Variation in the response of the clutches showed that transgenerational effects influenced the impact of insecticide and temperature. Although no evidence indicated that the Insecticide × Temperature interaction depended on transgenerational effects, the studies on the dependence of the Insecticide × Temperature interaction on other factors continue to be crucial to confidently predict the combined effects of insecticides and climate warming.
Collapse
Affiliation(s)
- Manuel Massot
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - Thibaut Bagni
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - Thomas Drozdz
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - Aude Malbert-Colas
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - Martine Maïbèche
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005, Paris, France.
| |
Collapse
|
26
|
Erraguntla M, Dave D, Zapletal J, Myles K, Adelman ZN, Pohlenz TD, Lawley M. Predictive model for microclimatic temperature and its use in mosquito population modeling. Sci Rep 2021; 11:18909. [PMID: 34556747 PMCID: PMC8460783 DOI: 10.1038/s41598-021-98316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Mosquitoes transmit several infectious diseases that pose significant threat to human health. Temperature along with other environmental factors at breeding and resting locations play a role in the organismal development and abundance of mosquitoes. Accurate analysis of mosquito population dynamics requires information on microclimatic conditions at breeding and resting locations. In this study, we develop a regression model to characterize microclimatic temperature based on ambient environmental conditions. Data were collected by placing sensor loggers at resting and breeding locations such as storm drains across Houston, TX. Corresponding weather data was obtained from National Oceanic and Atmospheric Administration website. Features extracted from these data sources along with contextual information on location were used to develop a Generalized Linear Model for predicting microclimate temperatures. We also analyzed mosquito population dynamics for Aedes albopictus under ambient and microclimatic conditions using system dynamic (SD) modelling to demonstrate the need for accurate microclimatic temperatures in population models. The microclimate prediction model had an R2 value of ~ 95% and average prediction error of ~ 1.5 °C indicating that microclimate temperatures can be reliably estimated from the ambient environmental conditions. SD model analysis indicates that some microclimates in Texas could result in larger populations of juvenile and adult Aedes albopictus mosquitoes surviving the winter without requiring dormancy.
Collapse
Affiliation(s)
- Madhav Erraguntla
- grid.264756.40000 0004 4687 2082Department of Industrial Engineering, Texas A&M University, College Station, USA
| | - Darpit Dave
- grid.264756.40000 0004 4687 2082Department of Industrial Engineering, Texas A&M University, College Station, USA
| | - Josef Zapletal
- grid.264756.40000 0004 4687 2082Department of Industrial Engineering, Texas A&M University, College Station, USA
| | - Kevin Myles
- grid.264756.40000 0004 4687 2082Department of Entomology, Texas A&M University, College Station, USA
| | - Zach N. Adelman
- grid.264756.40000 0004 4687 2082Department of Entomology, Texas A&M University, College Station, USA
| | - Tyler D. Pohlenz
- grid.264756.40000 0004 4687 2082Department of Entomology, Texas A&M University, College Station, USA
| | - Mark Lawley
- grid.264756.40000 0004 4687 2082Department of Industrial Engineering, Texas A&M University, College Station, USA
| |
Collapse
|
27
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
28
|
Damos PT, Dorrestijn J, Thomidis T, Tuells J, Caballero P. A Temperature Conditioned Markov Chain Model for Predicting the Dynamics of Mosquito Vectors of Disease. INSECTS 2021; 12:insects12080725. [PMID: 34442291 PMCID: PMC8396828 DOI: 10.3390/insects12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
Understanding and predicting mosquito population dynamics is crucial for gaining insight into the abundance of arthropod disease vectors and for the design of effective vector control strategies. In this work, a climate-conditioned Markov chain (CMC) model was developed and applied for the first time to predict the dynamics of vectors of important medical diseases. Temporal changes in mosquito population profiles were generated to simulate the probabilities of a high population impact. The simulated transition probabilities of the mosquito populations achieved from the trained model are very near to the observed data transitions that have been used to parameterize and validate the model. Thus, the CMC model satisfactorily describes the temporal evolution of the mosquito population process. In general, our numerical results, when temperature is considered as the driver of change, indicate that it is more likely for the population system to move into a state of high population level when the former is a state of a lower population level than the opposite. Field data on frequencies of successive mosquito population levels, which were not used for the data inferred MC modeling, were assembled to obtain an empirical intensity transition matrix and the frequencies observed. Our findings match to a certain degree the empirical results in which the probabilities follow analogous patterns while no significant differences were observed between the transition matrices of the CMC model and the validation data (ChiSq = 14.58013, df = 24, p = 0.9324451). The proposed modeling approach is a valuable eco-epidemiological study. Moreover, compared to traditional Markov chains, the benefit of the current CMC model is that it takes into account the stochastic conditional properties of ecological-related climate variables. The current modeling approach could save costs and time in establishing vector eradication programs and mosquito surveillance programs.
Collapse
Affiliation(s)
- Petros T. Damos
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
- Pharmacy Department, University General Infectious Disease Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54136 Thessaloniki, Greece
- Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece;
- Correspondence: or
| | - Jesse Dorrestijn
- Faculty of Civil Engineering and Geoscience, Delft University of Technology, 2628 CN Delft, The Netherlands;
| | - Thomas Thomidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece;
| | - José Tuells
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
| | - Pablo Caballero
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
| |
Collapse
|
29
|
El Moustaid F, Thornton Z, Slamani H, Ryan SJ, Johnson LR. Predicting temperature-dependent transmission suitability of bluetongue virus in livestock. Parasit Vectors 2021; 14:382. [PMID: 34330315 PMCID: PMC8323090 DOI: 10.1186/s13071-021-04826-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector–host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into S(T), a transmission suitability metric derived from the disease’s basic reproductive number, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_0.$$\end{document}R0. This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{\circ }$$\end{document}∘ C and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$34^{\circ }\hbox { C}$$\end{document}34∘C, with predicted peak transmission risk at 26 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ$$\end{document}∘ C. The greatest uncertainty in S(T) is associated with the following: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges’ probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of disease establishment.
Collapse
Affiliation(s)
- Fadoua El Moustaid
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Global Change Center, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zorian Thornton
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA.,Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hani Slamani
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA.,Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.,School of Life Sciences, University of KwaZulu, Natal, South Africa
| | - Leah R Johnson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA. .,Global Change Center, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
30
|
Ngonghala CN, Ryan SJ, Tesla B, Demakovsky LR, Mordecai EA, Murdock CC, Bonds MH. Effects of changes in temperature on Zika dynamics and control. J R Soc Interface 2021; 18:20210165. [PMID: 33947225 PMCID: PMC8097513 DOI: 10.1098/rsif.2021.0165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
When a rare pathogen emerges to cause a pandemic, it is critical to understand its dynamics and the impact of mitigation measures. We use experimental data to parametrize a temperature-dependent model of Zika virus (ZIKV) transmission dynamics and analyse the effects of temperature variability and control-related parameters on the basic reproduction number (R0) and the final epidemic size of ZIKV. Sensitivity analyses show that these two metrics are largely driven by different parameters, with the exception of temperature, which is the dominant driver of epidemic dynamics in the models. Our R0 estimate has a single optimum temperature (≈30°C), comparable to other published results (≈29°C). However, the final epidemic size is maximized across a wider temperature range, from 24 to 36°C. The models indicate that ZIKV is highly sensitive to seasonal temperature variation. For example, although the model predicts that ZIKV transmission cannot occur at a constant temperature below 23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model predicts substantial epidemics for areas with a mean temperature of 20°C if there is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida). This suggests that the geographical range of ZIKV is wider than indicated from static R0 models, underscoring the importance of climate dynamics and variation in the context of broader climate change on emerging infectious diseases.
Collapse
Affiliation(s)
- Calistus N Ngonghala
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA
| | - Sadie J Ryan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA
- Quantitative Disease Ecology and Conservation Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Leah R Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Erin A Mordecai
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- River Basin Center, University of Georgia, Athens, GA 30602, USA
- Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA
- Northeast Regional Center of Excellence for Vector-borne Disease Research and the Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14850, USA
| | - Matthew H Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Ryan SJ, Carlson CJ, Tesla B, Bonds MH, Ngonghala CN, Mordecai EA, Johnson LR, Murdock CC. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. GLOBAL CHANGE BIOLOGY 2021; 27:84-93. [PMID: 33037740 PMCID: PMC7756632 DOI: 10.1111/gcb.15384] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 06/04/2023]
Abstract
In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Department of GeographyUniversity of FloridaGainesvilleFLUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | | | - Blanka Tesla
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGAUSA
| | - Matthew H. Bonds
- Department of Global Health and Social MedicineHarvard Medical SchoolBostonMAUSA
| | - Calistus N. Ngonghala
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- Department of MathematicsUniversity of FloridaGainesvilleFLUSA
| | | | - Leah R. Johnson
- Department of StatisticsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
- Computational Modeling and Data AnalyticsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Courtney C. Murdock
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGAUSA
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
- Center for Vaccines and ImmunologyCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
- Riverbasin CenterUniversity of GeorgiaAthensGAUSA
- Department of EntomologyCollege of Agriculture and Life SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
32
|
Ryan SJ. Mapping Thermal Physiology of Vector-Borne Diseases in a Changing Climate: Shifts in Geographic and Demographic Risk of Suitability. Curr Environ Health Rep 2020; 7:415-423. [PMID: 32902817 PMCID: PMC7748992 DOI: 10.1007/s40572-020-00290-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW To describe a collection of recent work published on thermal suitability for vector-borne diseases, in which mapping approaches illustrated the geographic shifts, and spatial approaches describe the demographic impact anticipated with a changing climate. RECENT FINDINGS While climate change predictions of warming indicate an expansion in VBD suitability risk in some parts of the globe, while in others, optimal temperatures for transmission may be exceeded, as seen for malaria in Western Africa, resulting in declining risk. The thermal suitability of specific vector-pathogen pairs can have large impacts on geographic range of risk, and changes in human demography itself will intersect with this risk to create different vulnerability profiles over the coming century. Using a physiological approach to describe the thermal suitability of transmission for vector-borne diseases allows us to illustrate the future risk as mapped information. This in turn can be coupled with demographic projections to anticipate changing risk, and even changing vulnerability within that population change.
Collapse
Affiliation(s)
- Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
- School of Life Sciences, University of KwaZulu Natal, Durban, 4041, South Africa.
| |
Collapse
|
33
|
Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM, El Moustaid F, Rohr J, Johnson LR, Mordecai EA. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. eLife 2020; 9:e58511. [PMID: 32930091 PMCID: PMC7492091 DOI: 10.7554/elife.58511] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector-pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23-26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24-25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.
Collapse
Affiliation(s)
- Marta S Shocket
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Ecology and Evolutionary Biology, University of California Los AngelesLos AngelesUnited States
| | | | - Mailo G Numazu
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Hani Slamani
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jeremy M Cohen
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Forest and Wildlife Ecology, University of WisconsinMadisonUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jason Rohr
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Biological Sciences, Eck Institute of Global Health, Environmental Change Initiative, University of Notre DameSouth BendUnited States
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
34
|
Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 2020; 4:e416-e423. [PMID: 32918887 PMCID: PMC7490804 DOI: 10.1016/s2542-5196(20)30178-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
Malaria is a long-standing public health problem in sub-Saharan Africa, whereas arthropod-borne viruses (arboviruses) such as dengue and chikungunya cause an under-recognised burden of disease. Many human and environmental drivers affect the dynamics of vector-borne diseases. In this Personal View, we argue that the direct effects of warming temperatures are likely to promote greater environmental suitability for dengue and other arbovirus transmission by Aedes aegypti and reduce suitability for malaria transmission by Anopheles gambiae. Environmentally driven changes in disease dynamics will be complex and multifaceted, but given that current public efforts are targeted to malaria control, we highlight Ae aegypti and dengue, chikungunya, and other arboviruses as potential emerging public health threats in sub-Saharan Africa.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Jamie M. Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Melisa M. Shah
- Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
35
|
Miazgowicz KL, Shocket MS, Ryan SJ, Villena OC, Hall RJ, Owen J, Adanlawo T, Balaji K, Johnson LR, Mordecai EA, Murdock CC. Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi. Proc Biol Sci 2020; 287:20201093. [PMID: 32693720 PMCID: PMC7423674 DOI: 10.1098/rspb.2020.1093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Models predicting disease transmission are vital tools for long-term planning of malaria reduction efforts, particularly for mitigating impacts of climate change. We compared temperature-dependent malaria transmission models when mosquito life-history traits were estimated from a truncated portion of the lifespan (a common practice) versus traits measured across the full lifespan. We conducted an experiment on adult female Anopheles stephensi, the Asian urban malaria mosquito, to generate daily per capita values for mortality, egg production and biting rate at six constant temperatures. Both temperature and age significantly affected trait values. Further, we found quantitative and qualitative differences between temperature-trait relationships estimated from truncated data versus observed lifetime values. Incorporating these temperature-trait relationships into an expression governing the thermal suitability of transmission, relative R0(T), resulted in minor differences in the breadth of suitable temperatures for Plasmodium falciparum transmission between the two models constructed from only An. stephensi trait data. However, we found a substantial increase in thermal niche breadth compared with a previously published model consisting of trait data from multiple Anopheles mosquito species. Overall, this work highlights the importance of considering how mosquito trait values vary with mosquito age and mosquito species when generating temperature-based suitability predictions of transmission.
Collapse
Affiliation(s)
- K L Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M S Shocket
- Biology Department, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - S J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O C Villena
- Computational Modeling and Data Analytics, Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | - R J Hall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - J Owen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - T Adanlawo
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - K Balaji
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L R Johnson
- Computational Modeling and Data Analytics, Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | - E A Mordecai
- Biology Department, Stanford University, Stanford, CA, USA
| | - C C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,River Basin Center, University of Georgia, Athens, GA, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
36
|
Cator LJ, Johnson LR, Mordecai EA, Moustaid FE, Smallwood TRC, LaDeau SL, Johansson MA, Hudson PJ, Boots M, Thomas MB, Power AG, Pawar S. The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Front Ecol Evol 2020; 8:189. [PMID: 32775339 PMCID: PMC7409824 DOI: 10.3389/fevo.2020.00189] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many important endemic and emerging diseases are transmitted by vectors that are biting arthropods. The functional traits of vectors can affect pathogen transmission rates directly and also through their effect on vector population dynamics. Increasing empirical evidence shows that vector traits vary significantly across individuals, populations, and environmental conditions, and at time scales relevant to disease transmission dynamics. Here, we review empirical evidence for variation in vector traits and how this trait variation is currently incorporated into mathematical models of vector-borne disease transmission. We argue that mechanistically incorporating trait variation into these models, by explicitly capturing its effects on vector fitness and abundance, can improve the reliability of their predictions in a changing world. We provide a conceptual framework for incorporating trait variation into vector-borne disease transmission models, and highlight key empirical and theoretical challenges. This framework provides a means to conceptualize how traits can be incorporated in vector borne disease systems, and identifies key areas in which trait variation can be explored. Determining when and to what extent it is important to incorporate trait variation into vector borne disease models remains an important, outstanding question.
Collapse
Affiliation(s)
- Lauren J. Cator
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- BresMed America Inc, Las Vegas, NV, United States
| | | | - Shannon L. LaDeau
- The Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | | | - Peter J. Hudson
- Center for Infectious Disease Dynamics and Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew B. Thomas
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Alison G. Power
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
37
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
38
|
Nguyen KH, Gemmell BJ, Rohr JR. Effects of temperature and viscosity on miracidial and cercarial movement of Schistosoma mansoni: ramifications for disease transmission. Int J Parasitol 2020; 50:153-159. [PMID: 31991147 DOI: 10.1016/j.ijpara.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Parasites with complex life cycles can be susceptible to temperature shifts associated with seasonal changes, especially as free-living larvae that depend on a fixed energy reserve to survive outside the host. The life cycle of Schistosoma, a trematode genus containing some species that cause human schistosomiasis, has free-living, aquatic miracidial and cercarial larval stages that swim using cilia or a forked tail, respectively. The small size of these swimmers (150-350 µm) dictates that their propulsion is dominated by viscous forces. Given that viscosity inhibits the swimming ability of small organisms and is inversely correlated with temperature, changes in temperature should affect the ability of free-living larval stages to swim and locate a host. By recording miracidial and cercarial movement of Schistosoma mansoni using a high-speed camera and manipulating temperature and viscosity independently, we assessed the role each factor plays in the swimming mechanics of the parasite. We found a positive effect of temperature and a negative effect of viscosity on miracidial and cercarial speed. Reynolds numbers, which describe the ratio of inertial to viscous forces exerted on an aquatic organism, were <1 across treatments. Q10 values were <2 when comparing viscosity treatments at 20 °C and 30 °C, further supporting the influence of viscosity on miracidial and cercarial speed. Given that both larval stages have limited energy reserves and infection takes considerable energy, successful transmission depends on both speed and lifespan. We coupled our speed data with mortality measurements across temperatures and discovered that the theoretical maximum distance travelled increased with temperature and decreased with viscosity for both larval stages. Thus, our results suggest that S. mansoni transmission is high during warm times of the year, partly due to improved swimming performance of the free-living larval stages, and that increases in temperature variation associated with climate change might further increase transmission.
Collapse
Affiliation(s)
- K H Nguyen
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, United States.
| | - B J Gemmell
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, United States
| | - J R Rohr
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, United States; Department of Biological Sciences, Eck Institute for Global Health, and Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
39
|
Kamiya T, Greischar MA, Wadhawan K, Gilbert B, Paaijmans K, Mideo N. Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence. Epidemics 2019; 30:100382. [PMID: 32004794 DOI: 10.1016/j.epidem.2019.100382] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
Identifying ecological drivers of disease transmission is central to understanding disease risks. For vector-borne diseases, temperature is a major determinant of transmission because vital parameters determining the fitness of parasites and vectors are highly temperature-sensitive, including the extrinsic incubation period required for parasites to develop within the vector. Temperature also underlies dramatic differences in the individual-level variation in the extrinsic incubation period, yet the influence of this variation in disease transmission is largely unexplored. We incorporate empirical estimates of dengue virus extrinsic incubation period and its variation across a range of temperatures into a stochastic model to examine the consequences for disease emergence. We find that such variation impacts the probability of disease emergence because exceptionally rapid, but empirically observed incubation - typically ignored by modelling only the average - increases the chance of disease emergence even at the limits of the temperature range for dengue transmission. We show that variation in the extrinsic incubation period causes the greatest proportional increase in the risk of disease emergence at cooler temperatures where the mean incubation period is long, and associated variation is large. Thus, ignoring EIP variation will likely lead to underestimation of the risk of vector-borne disease emergence in temperate climates.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kiran Wadhawan
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Benjamin Gilbert
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Krijn Paaijmans
- Center for Evolution & Medicine, Biodesign Center for Immunotherapy, Vaccines and Virotherapy, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
40
|
Pathak AK, Shiau JC, Thomas MB, Murdock CC. Field Relevant Variation in Ambient Temperature Modifies Density-Dependent Establishment of Plasmodium falciparum Gametocytes in Mosquitoes. Front Microbiol 2019; 10:2651. [PMID: 31803169 PMCID: PMC6873802 DOI: 10.3389/fmicb.2019.02651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
The relationship between Plasmodium falciparum gametocyte density and infections in mosquitoes is central to understanding the rates of transmission with important implications for control. Here, we determined whether field relevant variation in environmental temperature could also modulate this relationship. Anopheles stephensi were challenged with three densities of P. falciparum gametocytes spanning a ~10-fold gradient, and housed under diurnal/daily temperature range ("DTR") of 9°C (+5°C and -4°C) around means of 20, 24, and 28°C. Vector competence was quantified as the proportion of mosquitoes infected with oocysts in the midguts (oocyst rates) or infectious with sporozoites in the salivary glands (sporozoite rates) at peak periods of infection for each temperature to account for the differences in development rates. In addition, oocyst intensities were also recorded from infected midguts and the overall study replicated across three separate parasite cultures and mosquito cohorts. While vector competence was similar at 20 DTR 9°C and 24 DTR 9°C, oocyst and sporozoite rates were also comparable, with evidence, surprisingly, for higher vector competence in mosquitoes challenged with intermediate gametocyte densities. For the same gametocyte densities however, severe reductions in the sporozoite rates was accompanied by a significant decline in overall vector competence at 28 DTR 9°C, with gametocyte density per se showing a positive and linear effect at this temperature. Unlike vector competence, oocyst intensities decreased with increasing temperatures with a predominantly positive and linear association with gametocyte density, especially at 28 DTR 9°C. Oocyst intensities across individual infected midguts suggested temperature-specific differences in mosquito susceptibility/resistance: at 20 DTR 9°C and 24 DTR 9°C, dispersion (aggregation) increased in a density-dependent manner but not at 28 DTR 9°C where the distributions were consistently random. Limitations notwithstanding, our results suggest that variation in temperature could modify seasonal dynamics of infectious reservoirs with implications for the design and deployment of transmission-blocking vaccines/drugs.
Collapse
Affiliation(s)
- Ashutosh K. Pathak
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Justine C. Shiau
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Matthew B. Thomas
- The Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| | - Courtney C. Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Riverbasin Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
41
|
El Moustaid F, Johnson LR. Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegypti. INSECTS 2019; 10:E393. [PMID: 31703421 PMCID: PMC6920917 DOI: 10.3390/insects10110393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
Mosquito density plays an important role in the spread of mosquito-borne diseases such as dengue and Zika. While it remains very challenging to estimate the density of mosquitoes, modelers have tried different methods to represent it in mathematical models. The goal of this paper is to investigate the various ways mosquito density has been quantified, as well as to propose a dynamical system model that includes the details of mosquito life stages leading to the adult population. We first discuss the mosquito traits involved in determining mosquito density, focusing on those that are temperature dependent. We evaluate different forms of models for mosquito densities based on these traits and explore their dynamics as temperature varies. Finally, we compare the predictions of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil. Our results indicate that the four models exhibit qualitatively and quantitatively different behaviors when forced by temperature, but that all seem reasonably consistent with observed abundance data.
Collapse
Affiliation(s)
- Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Leah R. Johnson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
42
|
Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, Rohr JR, Ryan SJ, Savage V, Shocket MS, Sippy R, Stewart Ibarra AM, Thomas MB, Villena O. Thermal biology of mosquito-borne disease. Ecol Lett 2019; 22:1690-1708. [PMID: 31286630 PMCID: PMC6744319 DOI: 10.1111/ele.13335] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Mosquito-borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait-based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species - including globally important diseases like malaria, dengue, and Zika - synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23-29ºC and declining to zero below 9-23ºC and above 32-38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25-26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Department of BiologyStanford University371 Serra MallStanfordCAUSA
| | | | - Marissa K. Grossman
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA16802USA
| | - Catherine A. Lippi
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Leah R. Johnson
- Department of StatisticsVirginia Polytechnic and State University250 Drillfield DriveBlacksburgVAUSA
| | - Marco Neira
- Center for Research on Health in Latin America (CISeAL)Pontificia Universidad Católica del EcuadorQuitoEcuador
| | - Jason R. Rohr
- Department of Biological SciencesEck Institute of Global HealthEnvironmental Change InitiativeUniversity of Notre Dame, Notre DameINUSA
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Van Savage
- Department of Ecology and Evolutionary Biology and Department of BiomathematicsUniversity of California Los AngelesLos AngelesCA90095USA
- Santa Fe Institute1399 Hyde Park RdSanta FeNM87501USA
| | - Marta S. Shocket
- Department of BiologyStanford University371 Serra MallStanfordCAUSA
| | - Rachel Sippy
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- Institute for Global Health and Translational SciencesSUNY Upstate Medical UniversitySyracuseNY13210USA
| | - Anna M. Stewart Ibarra
- Institute for Global Health and Translational SciencesSUNY Upstate Medical UniversitySyracuseNY13210USA
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA16802USA
| | - Oswaldo Villena
- Department of StatisticsVirginia Polytechnic and State University250 Drillfield DriveBlacksburgVAUSA
| |
Collapse
|
43
|
Taylor RA, Ryan SJ, Lippi CA, Hall DG, Narouei-Khandan HA, Rohr JR, Johnson LR. Predicting the fundamental thermal niche of crop pests and diseases in a changing world: A case study on citrus greening. J Appl Ecol 2019; 56:2057-2068. [PMID: 32684639 PMCID: PMC7367095 DOI: 10.1111/1365-2664.13455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/10/2019] [Indexed: 12/01/2022]
Abstract
Predicting where crop pests and diseases can occur, both now and in the future under different climate change scenarios, is a major challenge for crop management. One solution is to estimate the fundamental thermal niche of the pest/disease to indicate where establishment is possible. Here, we develop methods for estimating and displaying the fundamental thermal niche of pests and pathogens and apply these methods to Huanglongbing (HLB), a vector-borne disease that is currently threatening the citrus industry worldwide.We derive a suitability metric based on a mathematical model of HLB transmission between tree hosts and its vector Diaphorina citri, and incorporate the effect of temperature on vectortraits using data from laboratory experiments performed at different temperatures. We validate the model using data on the historical range of HLB.Our model predicts that transmission of HLB is possible between 16 and 33°C with peak transmission at ~25°C. The greatest uncertainty in our suitability metric is associated with the mortality of the vectors at peak transmission, and fecundity at the edges of the thermal range, indicating that these parameters need further experimental work.We produce global thermal niche maps by plotting how many months each location is suitable for establishment of the pest/disease. This analysis reveals that the highest suitability for HLB occurs near the equator in large citrus-producing regions, such as Brazil and South-East Asia. Within the Northern Hemisphere, the Iberian peninsula and California are HLB suitable for up to 7 months of the year and are free of HLB currently.Policy implications. We create a thermal niche map which indicates the places at greatest risk of establishment should a crop disease or pest enter these regions. This indicates where surveillance should be focused to prevent establishment. Our mechanistic method can be used to predict new areas for Huanglongbing transmission under different climate change scenarios and is easily adapted to other vector-borne diseases and crop pests.
Collapse
Affiliation(s)
- Rachel A. Taylor
- Department of Integrative Biology, University of South Florida, Tampa, Florida
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, UK
| | - Sadie J. Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- School of Life Sciences, University of KwaZulu, Natal, South Africa
| | - Catherine A. Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | | | - Hossein A. Narouei-Khandan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Plant Pathology, University of Florida, Gainesville, Florida
| | - Jason R. Rohr
- Department of Integrative Biology, University of South Florida, Tampa, Florida
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia
| |
Collapse
|
44
|
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 2019; 13:e0007213. [PMID: 30921321 PMCID: PMC6438455 DOI: 10.1371/journal.pntd.0007213] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, United States of America
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
45
|
Kao YH, Eisenberg MC. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment. Epidemics 2018; 25:89-100. [PMID: 29903539 PMCID: PMC6264791 DOI: 10.1016/j.epidem.2018.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Mathematical modeling has an extensive history in vector-borne disease epidemiology, and is increasingly used for prediction, intervention design, and understanding mechanisms. Many studies rely on parameter estimation to link models and data, and to tailor predictions and counterfactuals to specific settings. However, few studies have formally evaluated whether vector-borne disease models can properly estimate the parameters of interest given the constraints of a particular dataset. Identifiability analysis allows us to examine whether model parameters can be estimated uniquely-a lack of consideration of such issues can result in misleading or incorrect parameter estimates and model predictions. Here, we evaluate both structural (theoretical) and practical identifiability of a commonly used compartmental model of mosquito-borne disease, using the 2010 dengue epidemic in Taiwan as a case study. We show that while the model is structurally identifiable, it is practically unidentifiable under a range of human and mosquito time series measurement scenarios. In particular, the transmission parameters form a practically identifiable combination and thus cannot be estimated separately, potentially leading to incorrect predictions of the effects of interventions. However, in spite of the unidentifiability of the individual parameters, the basic reproduction number was successfully estimated across the unidentifiable parameter ranges. These identifiability issues can be resolved by directly measuring several additional human and mosquito life-cycle parameters both experimentally and in the field. While we only consider the simplest case for the model, we show that a commonly used model of vector-borne disease is unidentifiable from human and mosquito incidence data, making it difficult or impossible to estimate parameters or assess intervention strategies. This work illustrates the importance of examining identifiability when linking models with data to make predictions and inferences, and particularly highlights the importance of combining laboratory, field, and case data if we are to successfully estimate epidemiological and ecological parameters using models.
Collapse
Affiliation(s)
- Yu-Han Kao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Marisa C Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States; Department of Mathematics, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
46
|
Roberts KE, Hadfield JD, Sharma MD, Longdon B. Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathog 2018; 14:e1007185. [PMID: 30339695 PMCID: PMC6209381 DOI: 10.1371/journal.ppat.1007185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Host shifts-where a pathogen jumps between different host species-are an important source of emerging infectious disease. With on-going climate change there is an increasing need to understand the effect changes in temperature may have on emerging infectious disease. We investigated whether species' susceptibilities change with temperature and ask if susceptibility is greatest at different temperatures in different species. We infected 45 species of Drosophilidae with an RNA virus and measured how viral load changes with temperature. We found the host phylogeny explained a large proportion of the variation in viral load at each temperature, with strong phylogenetic correlations between viral loads across temperature. The variance in viral load increased with temperature, while the mean viral load did not. This suggests that as temperature increases the most susceptible species become more susceptible, and the least susceptible less so. We found no significant relationship between a species' susceptibility across temperatures, and proxies for thermal optima (critical thermal maximum and minimum or basal metabolic rate). These results suggest that whilst the rank order of species susceptibilities may remain the same with changes in temperature, some species may become more susceptible to a novel pathogen, and others less so.
Collapse
Affiliation(s)
- Katherine E. Roberts
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Manmohan D. Sharma
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Ben Longdon
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
47
|
Shocket MS, Ryan SJ, Mordecai EA. Temperature explains broad patterns of Ross River virus transmission. eLife 2018; 7:37762. [PMID: 30152328 PMCID: PMC6112853 DOI: 10.7554/elife.37762] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/12/2018] [Indexed: 01/31/2023] Open
Abstract
Thermal biology predicts that vector-borne disease transmission peaks at intermediate temperatures and declines at high and low temperatures. However, thermal optima and limits remain unknown for most vector-borne pathogens. We built a mechanistic model for the thermal response of Ross River virus, an important mosquito-borne pathogen in Australia, Pacific Islands, and potentially at risk of emerging worldwide. Transmission peaks at moderate temperatures (26.4°C) and declines to zero at thermal limits (17.0 and 31.5°C). The model accurately predicts that transmission is year-round endemic in the tropics but seasonal in temperate areas, resulting in the nationwide seasonal peak in human cases. Climate warming will likely increase transmission in temperate areas (where most Australians live) but decrease transmission in tropical areas where mean temperatures are already near the thermal optimum. These results illustrate the importance of nonlinear models for inferring the role of temperature in disease dynamics and predicting responses to climate change. Mosquitoes cannot control their body temperature, so their survival and performance depend on the temperature where they live. As a result, outside temperatures can also affect the spread of diseases transmitted by mosquitoes. This has left scientists wondering how climate change may affect the spread of mosquito-borne diseases. Predicting the effects of climate change on such diseases is tricky, because many interacting factors, including temperatures and rainfall, affect mosquito populations. Also, rising temperatures do not always have a positive effect on mosquitoes – they may help mosquitoes initially, but it can get too warm even for these animals. Climate change could affect the Ross River virus, the most common mosquito-borne disease in Australia. The virus infects 2,000 to 9,000 people each year and can cause long-term joint pain and disability. Currently, the virus spreads year-round in tropical, northern Australia and seasonally in temperate, southern Australia. Large outbreaks have occurred outside of Australia, and scientists are worried it could spread worldwide. Now, Shocket et al. have built a model that predicts how the spread of Ross River virus changes with temperature. Shocket et al. used data from laboratory experiments that measured mosquito and virus performance across a broad range of temperatures. The experiments showed that ~26°C (80°F) is the optimal temperature for mosquitoes to spread the Ross River virus. Temperatures below 17°C (63°F) and above 32°C (89°F) hamper the spread of the virus. These temperature ranges match the current disease patterns in Australia where human cases peak in March. This is two months after the country’s average temperature reaches the optimal level and about how long it takes mosquito populations to grow, infect people, and for symptoms to develop. Because northern Australia is already near the optimal temperature for mosquitos to spread the Ross River virus, any climate warming should decrease transmission there. But warming temperatures could increase the disease’s transmission in the southern part of the country, where most people live. The model Shocket et al. created may help the Australian government and mosquito control agencies better plan for the future.
Collapse
Affiliation(s)
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, United States.,School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
48
|
Tesla B, Demakovsky LR, Mordecai EA, Ryan SJ, Bonds MH, Ngonghala CN, Brindley MA, Murdock CC. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc Biol Sci 2018; 285:20180795. [PMID: 30111605 PMCID: PMC6111177 DOI: 10.1098/rspb.2018.0795] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C-34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.
Collapse
Affiliation(s)
- Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Leah R Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- College of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Matthew H Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- River Basin Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
49
|
Schrama M, Gorsich EE, Hunting ER, Barmentlo SH, Beechler B, van Bodegom PM. Eutrophication and predator presence overrule the effects of temperature on mosquito survival and development. PLoS Negl Trop Dis 2018; 12:e0006354. [PMID: 29579051 PMCID: PMC5898759 DOI: 10.1371/journal.pntd.0006354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/13/2018] [Accepted: 02/28/2018] [Indexed: 11/26/2022] Open
Abstract
Adequate predictions of mosquito-borne disease risk require an understanding of the relevant drivers governing mosquito populations. Since previous studies have focused mainly on the role of temperature, here we assessed the effects of other important ecological variables (predation, nutrient availability, presence of conspecifics) in conjunction with the role of temperature on mosquito life history parameters. We carried out two mesocosm experiments with the common brown house mosquito, Culex pipiens, a confirmed vector for West Nile Virus, Usutu and Sindbis, and a controphic species; the harlequin fly, Chironomus riparius. The first experiment quantified interactions between predation by Notonecta glauca L. (Hemiptera: Notonectidae) and temperature on adult emergence. The second experiment quantified interactions between nutrient additions and temperature on larval mortality and adult emergence. Results indicate that 1) irrespective of temperature, predator presence decreased mosquito larval survival and adult emergence by 20–50%, 2) nutrient additions led to a 3-4-fold increase in mosquito adult emergence and a 2-day decrease in development time across all temperature treatments, 3) neither predation, nutrient additions nor temperature had strong effects on the emergence and development rate of controphic Ch. riparius. Our study suggests that, in addition to of effects of temperature, ecological bottom-up (eutrophication) and top-down (predation) drivers can have strong effects on mosquito life history parameters. Current approaches to predicting mosquito-borne disease risk rely on large-scale proxies of mosquito population dynamics, such as temperature, vegetation characteristics and precipitation. Local scale management actions, however, will require understanding of the relevant top-down and bottom-up drivers of mosquito populations. Human actions have strongly altered ecosystems worldwide, through climate change, eutrophication, and biodiversity loss. The consequences of these global changes for mosquito populations could have important implications for mosquito-borne infections. Previous studies have focused on the effects of temperature from climate change, but we lack a comprehensive understanding of how ecological factors related to global change influence mosquito populations. To this end, we carried out two mesocosm experiments with the common brown house mosquito, a vector for West Nile Virus, Usutu and Sindbis. The first experiment tested how the interaction between predation and temperature affected mosquito emergence from larvae to adults; the second experiment tested how the interaction between nutrient addition and temperature affected mortality and emergence. Our results show that predator presence decreased mosquito survival and emergence, whereas nutrient additions led to an increase in emergence and a decrease in development time. Temperature and competition had no major impact. Our study suggests that, in addition to effects of climate, ecological drivers can have strong effects on mosquito populations known to transmit disease.
Collapse
Affiliation(s)
- Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.,Naturalis Biodiversity Centre, Leiden, The Netherlands
| | - Erin E Gorsich
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.,Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America.,Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Ellard R Hunting
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - S Henrik Barmentlo
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Brianna Beechler
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
50
|
Carlson CJ, Dougherty E, Boots M, Getz W, Ryan SJ. Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Sci Rep 2018; 8:4921. [PMID: 29563545 PMCID: PMC5862882 DOI: 10.1038/s41598-018-22989-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Ecologists are increasingly involved in the pandemic prediction process. In the course of the Zika outbreak in the Americas, several ecological models were developed to forecast the potential global distribution of the disease. Conflicting results produced by alternative methods are unresolved, hindering the development of appropriate public health forecasts. We compare ecological niche models and experimentally-driven mechanistic forecasts for Zika transmission in the continental United States. We use generic and uninformed stochastic county-level simulations to demonstrate the downstream epidemiological consequences of conflict among ecological models, and show how assumptions and parameterization in the ecological and epidemiological models propagate uncertainty and produce downstream model conflict. We conclude by proposing a basic consensus method that could resolve conflicting models of potential outbreak geography and seasonality. Our results illustrate the usually-undocumented margin of uncertainty that could emerge from using any one of these predictions without reservation or qualification. In the short term, ecologists face the task of developing better post hoc consensus that accurately forecasts spatial patterns of Zika virus outbreaks. Ultimately, methods are needed that bridge the gap between ecological and epidemiological approaches to predicting transmission and realistically capture both outbreak size and geography.
Collapse
Affiliation(s)
- Colin J Carlson
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, 21401, USA.
- Department of Biology, Georgetown University, Washington, DC, 20057, USA.
| | - Eric Dougherty
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720-3112, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720-3112, USA
| | - Wayne Getz
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720-3112, USA
- Schools of Mathematical Sciences, University of KwaZulu, Natal, South Africa
| | - Sadie J Ryan
- Schools of Life Sciences, University of KwaZulu, Natal, South Africa
- Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|