1
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2024. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
2
|
Naik M, Patil A. Development of an ultra-sensitive laser stimulated fluorescence system for simultaneous detection of amino acids. RSC Adv 2024; 14:34279-34287. [PMID: 39469014 PMCID: PMC11514131 DOI: 10.1039/d4ra04845h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
An ultra-sensitive, high-performance liquid chromatography-based laser-stimulated fluorescence detection system was developed and validated for the simultaneous detection of 20 derivatized amino acids. Dansyl chloride was used as a derivatizing agent, and key derivatization parameters, such as reaction time and temperature, were optimized to enhance sensitivity and reproducibility. The majority of amino acids showed a relative standard deviation of less than 5%, indicating the reliability of the approach. The method demonstrated excellent sensitivity for all 20 amino acids, with detection limits ranging from 4.32 to 85.34 femtomoles. It also exhibited good linearity, with regression (R 2) values greater than 0.98 for the amino acids. The system's performance was tested on human serum, and the eluted amino acids were identified. This method has great potential for analyzing amino acids in various body fluids and can be used in various clinical applications. It is ultra-sensitive, reliable, user-friendly, and cost-effective, offering a valuable tool for diagnosing and managing amino acid-related disorders.
Collapse
Affiliation(s)
- Megha Naik
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE) Manipal India-576 104
| | - Ajeetkumar Patil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE) Manipal India-576 104
| |
Collapse
|
3
|
Kipura T, Hotze M, Hofer A, Egger AS, Timpen LE, Opitz CA, Townsend PA, Gethings LA, Thedieck K, Kwiatkowski M. Automated Liquid Handling Extraction and Rapid Quantification of Underivatized Amino Acids and Tryptophan Metabolites from Human Serum and Plasma Using Dual-Column U(H)PLC-MRM-MS and Its Application to Prostate Cancer Study. Metabolites 2024; 14:370. [PMID: 39057693 PMCID: PMC11279291 DOI: 10.3390/metabo14070370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Amino acids (AAs) and their metabolites are important building blocks, energy sources, and signaling molecules associated with various pathological phenotypes. The quantification of AA and tryptophan (TRP) metabolites in human serum and plasma is therefore of great diagnostic interest. Therefore, robust, reproducible sample extraction and processing workflows as well as rapid, sensitive absolute quantification are required to identify candidate biomarkers and to improve screening methods. We developed a validated semi-automated robotic liquid extraction and processing workflow and a rapid method for absolute quantification of 20 free, underivatized AAs and six TRP metabolites using dual-column U(H)PLC-MRM-MS. The extraction and sample preparation workflow in a 96-well plate was optimized for robust, reproducible high sample throughput allowing for transfer of samples to the U(H)PLC autosampler directly without additional cleanup steps. The U(H)PLC-MRM-MS method, using a mixed-mode reversed-phase anion exchange column with formic acid and a high-strength silica reversed-phase column with difluoro-acetic acid as mobile phase additive, provided absolute quantification with nanomolar lower limits of quantification within 7.9 min. The semi-automated extraction workflow and dual-column U(H)PLC-MRM-MS method was applied to a human prostate cancer study and was shown to discriminate between treatment regimens and to identify metabolites responsible for discriminating between healthy controls and patients on active surveillance.
Collapse
Affiliation(s)
- Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexa Hofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lea E. Timpen
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Christiane A. Opitz
- German Cancer Research Center (DKFZ), Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Paul A. Townsend
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester M20 4GJ, UK
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lee A. Gethings
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
- Freiburg Materials Research Center (FMF), Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
5
|
Condori LDM, Vivas CV, Barreto YB, Gomes LF, Alencar AM, Bloise AC. Effects of Hypoxia and Reoxygenation on Metabolic Profiles of Cardiomyocytes. Cell Biochem Biophys 2024; 82:969-985. [PMID: 38498099 DOI: 10.1007/s12013-024-01249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
In vitro cellular models provide valuable insights into the adaptive biochemical mechanisms triggered by cells to cope with the stress situation induced by hypoxia and reoxygenation cycles. The first biological data generated in studies based on this micrometric life-scale has the potential to provide us a global overview about the main biochemical phenomena presented in some reported preconditioning therapies in life-scale of higher dimensions. Thus, in this study, a cell incubator was designed and manufactured to produce a cellular model of heart hypoxia followed by reoxygenation (HfR) through consecutive repetitions of hypoxia-normoxia gas exchange. Samples of cellular extracts and culture media were obtained from non-proliferative cardiomyocytes (CMs) cultivated under challenging HfR (stressed CMs) and regular cultivation (unstressed CMs) in rounds of four days for each case. Metabolomic based on proton magnetic resonance spectroscopy (1H-MRS) was used as an analytical approach to identify and quantify the metabolomes of these samples, the endo- and exo-metabolome. Despite the stressed CMs presented over 90% higher cellular death rate compared to the unstressed CMs, the metabolic profiles indicates that the surviving cells up-regulate their amino acid metabolism either by active protein degradation or by the consumption of culture media components to increase coenzyme A-dependent metabolic pathways. This cell auto-regulation mechanism could be well characterized in the first two days when the difference smears off under once the metabolomes become similar. The metabolic adaptations of stressed CMs identified the relevance of the cyclic oxidation/reduction reactions of nicotinamide adenine dinucleotide phosphate molecules, NADP+/NADPH, and the increased tricarboxylic acid cycle activity in an environment overloaded with such a powerful antioxidant agent to survive an extreme HfR challenge. Thus, the combination of cellular models based on CMs, investigative methods, such as metabolomic and 1H-MRS, and the instrumental development of hypoxia incubator shown in this work were able to provide the first biochemical evidences behind therapies of gaseous exchanges paving the way to future assays.
Collapse
Affiliation(s)
| | | | - Yan Borges Barreto
- Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, Sao Paulo, Brazil
| | - Ligia Ferreira Gomes
- Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, Sao Paulo, Brazil.
| | | | - Antonio Carlos Bloise
- Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Li TT, Chen X, Huo D, Arifuzzaman M, Qiao S, Jin WB, Shi H, Li XV, Iliev ID, Artis D, Guo CJ. Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host Microbe 2024; 32:661-675.e10. [PMID: 38657606 DOI: 10.1016/j.chom.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.
Collapse
Affiliation(s)
- Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Xi Chen
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Da Huo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Shanshan Qiao
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Huiqing Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Xin V Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Xiao T, English AM, Wilson ZN, Maschek J, Cox JE, Hughes AL. The phospholipids cardiolipin and phosphatidylethanolamine differentially regulate MDC biogenesis. J Cell Biol 2024; 223:e202302069. [PMID: 38497895 PMCID: PMC10949074 DOI: 10.1083/jcb.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Cells utilize multiple mechanisms to maintain mitochondrial homeostasis. We recently characterized a pathway that remodels mitochondria in response to metabolic alterations and protein overload stress. This remodeling occurs via the formation of large membranous structures from the mitochondrial outer membrane called mitochondrial-derived compartments (MDCs), which are eventually released from mitochondria and degraded. Here, we conducted a microscopy-based screen in budding yeast to identify factors that regulate MDC formation. We found that two phospholipids, cardiolipin (CL) and phosphatidylethanolamine (PE), differentially regulate MDC biogenesis. CL depletion impairs MDC biogenesis, whereas blocking mitochondrial PE production leads to constitutive MDC formation. Additionally, in response to metabolic MDC activators, cellular and mitochondrial PE declines, and overexpressing mitochondrial PE synthesis enzymes suppress MDC biogenesis. Altogether, our data indicate a requirement for CL in MDC biogenesis and suggest that PE depletion may stimulate MDC formation downstream of MDC-inducing metabolic stress.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J.Alan. Maschek
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integration. Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - James E. Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Kanzariya DB, Chaudhary MY, Pal TK. Sensing of hyperprolinemia biomarker and its recognition in biological sample through "turn-on" event by Zn-based metal-organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123882. [PMID: 38241930 DOI: 10.1016/j.saa.2024.123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
A hydrogen bonded ability metal organic framework (MOF, 1Zn) is used for the ultra-sensitive "turn-on" detection of hyperprolinemia biomarker with ultrafast (within 5 s) colorimetric response making the first MOF based hyperprolinemia biomarker sensor. The detection limit (4.46 ppb) is outperformed compared to all contemporary hyperprolinemia biomarker based sensors. Further, the sensor showed the recognition of biomarker in biological sample (human saliva). The detection of biomarker is also realized through colorimetric response (solution based and paper strip method). The mechanism of sensing is established through the electron transfer and the absorption caused emission (ACE). Moreover, the theoretical study is performed to support the sensing mechanism. The control titration of 1Zn suggest that the free -NH2 group of linker in 1Zn is involved in supramolecular interaction (hydrogen bonding) with the carboxylic group present on biomarker results the facile occurrence of electron transfer and ACE. Consequently, the luminescence "turn-on" effect of 1Zn for hyperprolinemia biomarker is observed.
Collapse
Affiliation(s)
| | - Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India; Department of Chemistry, Bajkul Milani Mahavidalaya, Bajkul, West Bengal 721626, India.
| |
Collapse
|
9
|
Bouza M, Foest D, Brandt S, García-Reyes JF, Franzke J. Enhanced Compound Analysis Using Reactive Paper Spray Mass Spectrometry: Leveraging Schiff Base Reaction for Amino Acid Detection. Anal Chem 2024; 96:5289-5297. [PMID: 38507224 PMCID: PMC10993198 DOI: 10.1021/acs.analchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes. These molecules are prone to interacting with substrates like paper, impeding elution and detection. Additionally, highly abundant species in biofluids, such as lipids, often suppress AA ionization. This study employs the Schiff base (SB) reaction utilizing aromatic aldehydes for AA derivatization to optimize reaction conditions time, temperature, and catalyst presence and dramatically increasing the conversion ratio (CR) of formed SB. For instance, using leucine as a model AA, the CR surged from 57% at room temperature to 89% at 70 °C, with added pyridine during and after 7.5 min, displaying a 43% CR compared to the bulk reaction. Evaluation of various aromatic aldehydes as derivatization agents highlighted the importance of specific oxygen substituents for achieving higher conversion rates. Furthermore, diverse derivatization agents unveiled unique fragmentation pathways, aiding in-depth annotation of the target analyte. Successfully applied to quantify AAs in human and rat plasma, this reactive PS-MS approach showcases promising potential in efficiently detecting conventionally challenging compounds in PS-MS analysis.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Daniel Foest
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Sebastian Brandt
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| |
Collapse
|
10
|
Martelli F, Lin J, Mele S, Imlach W, Kanca O, Barlow CK, Paril J, Schittenhelm RB, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Identifying potential dietary treatments for inherited metabolic disorders using Drosophila nutrigenomics. Cell Rep 2024; 43:113861. [PMID: 38416643 PMCID: PMC11037929 DOI: 10.1016/j.celrep.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jefferson Paril
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
11
|
You Y, Wang L, Liu C, Wang X, Zhou L, Zhang Y, Xia H. Early metabolic markers as predictors of respiratory complications in preterm infants with bronchopulmonary dysplasia. Early Hum Dev 2024; 190:105950. [PMID: 38301336 DOI: 10.1016/j.earlhumdev.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), a common complication of premature birth, exerts considerable impact on the respiratory health of infants. This study aimed to identify the role of plasma metabolites in predicting respiratory outcomes in BPD-afflicted infants. METHODS This was a case-control study including 15 BPD premature infants and 15 gestational age and birth weight matched no-BPD preterm infants. Plasma samples, obtained at 36 weeks postmenstrual age (PMA), were subjected to a comprehensive analysis of over 300 metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The respiratory outcomes of the infants were collected with the first 2 years of corrected postnatal age. RESULTS The analysis revealed a significant upregulation of urea and downregulation of nine metabolites in BPD infants, including oxalacetic acid, cis-aconitic acid, itaconic acid, betaine, L-asparagine, L-alanine, picolinic acid, inositol, and purine (p < 0.05). These metabolites primarily pertained to the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and alanine, aspartate, and glutamate metabolism. Furthermore, seven metabolites demonstrated substantial predictive capacity for respiratory readmissions within the first two years of corrected postnatal age, achieving an area under curve (AUC) exceeding or equal to 0.8. These included chenodeoxycholic acid, dehydrolithocholic acid, glucaric acid, D-glucuronic acid, gamma-glutamylvaline, mevalonic acid, and 3-ureidopropionic acid. CONCLUSIONS This study identified ten distinct plasma metabolites at 36 weeks PMA that differentiate BPD infants from their non-BPD counterparts, implicating three major metabolic pathways. Additionally, seven metabolites showed strong predictive value for heightened risk of respiratory readmission within two years, underscoring their potential utility in clinical prognostication and management strategies for BPD.
Collapse
Affiliation(s)
- You You
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Wang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbo Liu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhou
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongping Xia
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Aziz N, Wal P, Sinha R, Shirode PR, Chakraborthy G, Sharma MC, Kumar P. A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. Curr Protein Pept Sci 2024; 25:682-707. [PMID: 38766817 DOI: 10.2174/0113892037287215240424090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Rishika Sinha
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | | | | | | | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University, NH-7, Barnala Road, Bathinda 151001, India
| |
Collapse
|
13
|
Ratautė K, Ratautas D. A Review from a Clinical Perspective: Recent Advances in Biosensors for the Detection of L-Amino Acids. BIOSENSORS 2023; 14:5. [PMID: 38248382 PMCID: PMC10813600 DOI: 10.3390/bios14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The field of biosensors is filled with reports and designs of various sensors, with the vast majority focusing on glucose sensing. However, in addition to glucose, there are many other important analytes that are worth investigating as well. In particular, L-amino acids appear as important diagnostic markers for a number of conditions. However, the progress in L-amino acid detection and the development of biosensors for L-amino acids are still somewhat insufficient. In recent years, the need to determine L-amino acids from clinical samples has risen. More clinical data appear to demonstrate that abnormal concentrations of L-amino acids are related to various clinical conditions such as inherited metabolic disorders, dyslipidemia, type 2 diabetes, muscle damage, etc. However, to this day, the diagnostic potential of L-amino acids is not yet fully established. Most likely, this is because of the difficulties in measuring L-amino acids, especially in human blood. In this review article, we extensively investigate the 'overlooked' L-amino acids. We review typical levels of amino acids present in human blood and broadly survey the importance of L-amino acids in most common conditions which can be monitored or diagnosed from changes in L-amino acids present in human blood. We also provide an overview of recent biosensors for L-amino acid monitoring and their advantages and disadvantages, with some other alternative methods for L-amino acid quantification, and finally we outline future perspectives related to the development of biosensing devices for L-amino acid monitoring.
Collapse
Affiliation(s)
- Kristina Ratautė
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania
| | - Dalius Ratautas
- Life Science Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
15
|
Mohammad SM. The effect of laparoscopic ovarian drilling in patients with anovulatory polycystic ovary syndrome and high serum levels of anti-Müllerian hormone. J Med Life 2023; 16:1047-1049. [PMID: 37900074 PMCID: PMC10600685 DOI: 10.25122/jml-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/04/2023] [Indexed: 10/31/2023] Open
Abstract
Female infertility is often associated with anovulatory polycystic ovary syndrome (PCOS), characterized by high serum levels of anti-Müllerian hormone (AMH). Laparoscopic ovarian drilling (LOD) is commonly used to treat PCOS, especially when drug interventions have failed. This study aimed to evaluate the response to LOD intervention in women with PCOS by assessing AMH serum levels and their ability to restore normal physiological menstrual cycle and achieve conception. Seventy-five infertile women (24-41 years old) with body mass index (BMI) ranging from 19.6-35kg/m2 were included in the study. Among them, 57 had primary infertility, and 18 from secondary infertility, with an average duration of 8.6±4.4 years. Baseline levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and AMH were measured, and post-LOD levels of LH and AMH were evaluated. Menstrual cycle regularity was evaluated before and after LOD. Baseline FSH serum level before LOD was 5.2-1.6IU/L. Following LOD, the serum levels of LH and AMH significantly decreased from 14.3±4.1 to 7.8±2.8 IU/L and from 13.7±5.9 to 7.7±3.9 IU/L, respectively (p<0.05). LOD significantly (p<0.05) decreased the menstrual cycles irregularity, such as oligomenorrhea and amenorrhea, from 55 (73.3%) to 22 (29.3%) women and from 2 (2.7%) to 0 (0%) women respectively. Moreover, regular menstrual cycles significantly (p<0.05) increased from 18 (24%) to 53 (70.7%) women. Importantly, 68% of LOD-treated women showed a significant increase in pregnancy rates, with 52.9%, 35.3%, and 11.8% achieving pregnancy within 3, 6, and 9 months after LOD, respectively (p<0.05). Moreover, spontaneous ovulation was observed in 7/75 (9.3%) women within 90 days after LOD, and 71.4% achieved pregnancy. These findings highlight the success of laparoscopic ovarian drilling as an intervention for PCOS, with AMH serving as a reliable test to assess the response to LOD treatment.
Collapse
Affiliation(s)
- Sheimaa Mohsen Mohammad
- Obstetrics and Gynecology Department, College of Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| |
Collapse
|
16
|
Haraguchi Y, Kato Y, Inabe K, Kondo A, Hasunuma T, Shimizu T. Circular cell culture for sustainable food production using recombinant lactate-assimilating cyanobacteria that supplies pyruvate and amino acids. Arch Microbiol 2023; 205:266. [PMID: 37328623 DOI: 10.1007/s00203-023-03607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Recently, we reported a circular cell culture (CCC) system using microalgae and animal muscle cells for sustainable culture food production. However, lactate accumulation excreted by animal cells in the system characterized by medium reuse was a huge problem. To solve the problem, as an advanced CCC, we used a lactate-assimilating cyanobacterium Synechococcus sp. PCC 7002, using gene-recombination technology that synthesises pyruvate from lactate. We found that the cyanobacteria and animal cells mutually exchanged substances via their waste media: (i) cyanobacteria used lactate and ammonia excreted by animal muscle cells, and (ii) the animal cells used pyruvate and some amino acids excreted by the cyanobacteria. Because of this, animal muscle C2C12 cells were amplified efficiently without animal serum in cyanobacterial culture waste medium in two cycles (first cycle: 3.6-fold; second cycle: 3.9-fold/three days-cultivation) using the same reuse medium. We believe that this advanced CCC system will solve the problem of lactate accumulation in cell culture and lead to efficient cultured food production.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
17
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Polachini GM, de Castro TB, Smarra LFS, Henrique T, de Paula CHD, Severino P, López RVM, Carvalho AL, de Mattos Zeri AC, Silva IDCG, Tajara EH. Plasma metabolomics of oral squamous cell carcinomas based on NMR and MS approaches provides biomarker identification and survival prediction. Sci Rep 2023; 13:8588. [PMID: 37237049 DOI: 10.1038/s41598-023-34808-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolomics has proven to be an important omics approach to understand the molecular pathways underlying the tumour phenotype and to identify new clinically useful markers. The literature on cancer has illustrated the potential of this approach as a diagnostic and prognostic tool. The present study aimed to analyse the plasma metabolic profile of patients with oral squamous cell carcinoma (OSCC) and controls and to compare patients with metastatic and primary tumours at different stages and subsites using nuclear magnetic resonance and mass spectrometry. To our knowledge, this is the only report that compared patients at different stages and subsites and replicates collected in diverse institutions at different times using these methodologies. Our results showed a plasma metabolic OSCC profile suggestive of abnormal ketogenesis, lipogenesis and energy metabolism, which is already present in early phases but is more evident in advanced stages of the disease. Reduced levels of several metabolites were also associated with an unfavorable prognosis. The observed metabolomic alterations may contribute to inflammation, immune response inhibition and tumour growth, and may be explained by four nonexclusive views-differential synthesis, uptake, release, and degradation of metabolites. The interpretation that assimilates these views is the cross talk between neoplastic and normal cells in the tumour microenvironment or in more distant anatomical sites, connected by biofluids, signalling molecules and vesicles. Additional population samples to evaluate the details of these molecular processes may lead to the discovery of new biomarkers and novel strategies for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Luis Fabiano Soares Smarra
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Carlos Henrique Diniz de Paula
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil.
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Thielen E, Oria M, Watanabe-Chailland M, Lampe K, Romick-Rosendale L, Peiro JL. Non-Targeted Metabolic Profiling of Cerebellum in Spina Bifida Fetal Rats. Metabolites 2023; 13:metabo13050670. [PMID: 37233711 DOI: 10.3390/metabo13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Spina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been extensively studied. The objective of this study is to examine the metabolic effects of this disease on the cerebellum in utero through the utilization of a retinoid acid-induced Spina bifida rat model. Analysis of this model at mid-late (day 15) and term (day 20) of gestation in comparison to both non-exposed and retinoic acid-exposed non-myelomeningocele controls, the observed metabolic changes suggest that mechanisms of oxidative stress and energy depletion are at play in this neuro tissue. These notable mechanisms are likely to result in further damage to neural tissue as the fetus grows and the compressed cerebellum develops and herniates more due to myelomeningocele.
Collapse
Affiliation(s)
- Evan Thielen
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Marc Oria
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Lindsey Romick-Rosendale
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
20
|
Nuzaiba PM, Gupta S, Gupta S, Jadhao SB. Synthesis of L-methionine-loaded chitosan nanoparticles for controlled release and their in vitro and in vivo evaluation. Sci Rep 2023; 13:7606. [PMID: 37164991 PMCID: PMC10172396 DOI: 10.1038/s41598-023-34448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
Therapeutically popular controlled release-enabling technology has forayed into the nutrition sector. Polymer coated forms of L-methionine used in soy protein diets, and its intermediate metabolite, S-adenosyl-L-methionine, used in myriad of medical conditions have proved more efficacious over (highly catabolized) free forms. In this premier study, L-methionine-loaded chitosan nanoparticles (M-NPs) were synthesized using ionic gelation method and their efficacy was evaluated. Biophysical characterization of the NPs was done using a Nanopartica SZ 100 analyser, transmission electron microscopy, and Fourier transform infrared spectroscopy. The M-NPs were spherical and smooth and 218.9 ± 7.4 nm in size and in vitro testing confirmed the controlled release of methionine. A 60-days feeding trial in L. rohita fish fingerlings was conducted. A basal diet suboptimal (0.85%) in methionine was provided with one of the supplements as under: none (control), 0.8% chitosan NPs (0.8% NPs), 1.2% L-methionine (1.2% M) (crystalline free form), 0.6% M-NPs and 1.2% M-NPs. While the addition of 0.6% M-NPs to the basal diet complemented towards meeting the established dietary requirement and resulted in significantly highest (P < 0.05) growth and protein efficiency and sero-immunological test scores (serum total protein, serum globulin, serum albumin: globulin ratio, phagocytic respiratory burst/NBT reduction and lysozyme activity), 1.2% supplementation in either form (free or nano), for being 0.85% excess, was counterproductive. Liver transaminases and dehydrogenases corroborated enhanced growth. It was inferred that part of the methionine requirement in nano form (M-NPs) can confer intended performance and health benefits in animals relying on plant proteins-based diets limiting in this essential amino acid. The study also paves the way for exploring chitosan NPs-based sustained delivery of amino acids in human medical conditions.
Collapse
Affiliation(s)
- Pallath Muhammed Nuzaiba
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Subodh Gupta
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Shobha Gupta
- Department of Biotechnology, Annasaheb Vartak College of Arts, Commerce, Science, Vasai West, Mumbai, 401202, India
| | - Sanjay Balkrishna Jadhao
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
21
|
Ozcelik F, Arslan S, Ozguc Caliskan B, Kardas F, Ozkul Y, Dundar M. PPM1K defects cause mild maple syrup urine disease: The second case in the literature. Am J Med Genet A 2023; 191:1360-1365. [PMID: 36706222 DOI: 10.1002/ajmg.a.63129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by the insufficient catabolism of branched-chain amino acids. BCKDHA, BCKDHB, DBT, and DLD encode the subunits of the branched-chain α-ketoacid dehydrogenase complex, which is responsible for the catabolism of these amino acids. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT are characteristic of MSUD. In addition, a patient with a PPM1K defect was previously reported. PPM1K dephosphorylates and activates the enzyme complex. We report a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K. Our study offers further evidence that PPM1K variants cause mild MSUD.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Sezai Arslan
- Division of Nutrition and Metabolism, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | | | - Fatih Kardas
- Division of Nutrition and Metabolism, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
23
|
Tian F, de Carvalho LFDCES, Casey A, Nogueira MS, Byrne HJ. Surface-Enhanced Raman Analysis of Uric Acid and Hypoxanthine Analysis in Fractionated Bodily Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1216. [PMID: 37049309 PMCID: PMC10097234 DOI: 10.3390/nano13071216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the disease burden of hyperuricemia has been increasing, especially in high-income countries and the economically developing world with a Western lifestyle. Abnormal levels of uric acid and hypoxanthine are associated with many diseases, and therefore, to demonstrate improved methods of uric acid and hypoxanthine detection, three different bodily fluids were analysed using surface-enhanced Raman spectroscopy (SERS) and high-performance liquid chromatography (HPLC). Gold nanostar suspensions were mixed with series dilutions of uric acid and hypoxanthine, 3 kDa centrifugally filtered human blood serum, urine and saliva. The results show that gold nanostars enable the quantitative detection of the concentration of uric acid and hypoxanthine in the range 5-50 μg/mL and 50-250 ng/mL, respectively. The peak areas of HPLC and maximum peak intensity of SERS have strongly correlated, notably with the peaks of uric acid and hypoxanthine at 1000 and 640 cm-1, respectively. The r2 is 0.975 and 0.959 for uric acid and hypoxanthine, respectively. Each of the three body fluids has a number of spectral features in common with uric acid and hypoxanthine. The large overlap of the spectral bands of the SERS of uric acid against three body fluids at spectra peaks were at 442, 712, 802, 1000, 1086, 1206, 1343, 1436 and 1560 cm-1. The features at 560, 640, 803, 1206, 1290 and 1620 cm-1 from hypoxanthine were common to serum, saliva and urine. There is no statistical difference between HPLC and SERS for determination of the concentration of uric acid and hypoxanthine (p > 0.05). For clinical applications, 3 kDa centrifugal filtration followed by SERS can be used for uric acid and hypoxanthine screening is, which can be used to reveal the subtle abnormalities enhancing the great potential of vibrational spectroscopy as an analytical tool. Our work supports the hypnosis that it is possible to obtain the specific concentration of uric acid and hypoxanthine by comparing the SER signals of serum, saliva and urine. In the future, the analysis of other biofluids can be employed to detect biomarkers for the diagnosis of systemic pathologies.
Collapse
Affiliation(s)
- Furong Tian
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
| | - Luis Felipe das Chagas e Silva de Carvalho
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
- Centro Universitario Braz Cubas, Mogi das Cruzes 08773-380, Brazil
- Universidade de Taubate, Taubate 12080-000, Brazil
| | - Alan Casey
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
| | - Marcelo Saito Nogueira
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP Cork, Ireland;
- Department of Physics, University College Cork, College Road, T12K8AF Cork, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin Camden Row, D08CKP1 Dublin, Ireland; (A.C.)
| |
Collapse
|
24
|
Han J, Lim HJ, Park J, Han DH, Kim DM, Park JK. On-chip microfluidic dual detection of amino acid metabolism disorders using cell-free protein synthesis. Biosens Bioelectron 2023; 222:114936. [PMID: 36455376 DOI: 10.1016/j.bios.2022.114936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Various metabolic diseases are associated with the accumulation of specific amino acids due to abnormal metabolic pathways, and thus can be diagnosed by measuring the level of amino acids in body fluids. However, present methods for amino acid analysis are not readily accessible because they require a complex experimental setup, expensive equipment, and a long processing time. Here, we present a dual sensing microfluidic device that enables fast, portable, and quantitative analysis of target amino acids, harnessing the biological mechanism of protein synthesis. In this device, the working principle of a finger-actuated pumping unit is applied, and the microchannels are designed to perform cell-free synthesis of a reporter protein in response to the target amino acids in the assay samples. Multiple steps required for the translational assay are controlled by the simple operation of two pushbuttons on the device. It is demonstrated that the developed microfluidic device provides precise quantification of two amino acids (methionine and phenylalanine) within 30 min at room temperature. We expect that the application of the presented device can be readily extended to the point-of-care testing of other metabolic compounds.
Collapse
Affiliation(s)
- Jieun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Hyun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
25
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
26
|
Olejniczak A, Stachowiak W, Rzemieniecki T, Niemczak M. Adjustment of the Structure of the Simplest Amino Acid Present in Nature-Glycine, toward More Environmentally Friendly Ionic Forms of Phenoxypropionate-Based Herbicides. Int J Mol Sci 2023; 24:1360. [PMID: 36674875 PMCID: PMC9863448 DOI: 10.3390/ijms24021360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The use of chemicals for various purposes in agriculture has numerous consequences, such as the contamination of ecosystems. Thus, nowadays it is perceived that their development should adhere to the principles of green chemistry elaborated by Paul Anastas. Consequently, to create more environment-friendly herbicides, we elaborated a 'green' synthesis method of a series of ionic liquids (ILs) containing cations derived from glycine. The appropriately modified cations were combined with an anion from the group of phenoxy acids, commonly known as 2,4-DP. The products were obtained with high yields, and subsequently, their properties, such as density, viscosity and solubility, were thoroughly examined to elucidate existing structure-property relationships. All ILs were liquids at room temperature, which enabled the elimination of some serious issues associated with solid active forms, such as the polymorphism or precipitation of an active ingredient from spray solution. Additionally, the synthesized compounds were tested under greenhouse conditions, which allowed an assessment of their effectiveness in regulating the growth of oilseed rape, selected as a model dicotyledonous plant. The product comprising a dodecyl chain exhibited the greatest reduction in the fresh weight of plants, significantly surpassing not only a commercially used reference herbicide but also the potassium salt of 2,4-DP.
Collapse
Affiliation(s)
| | | | | | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
27
|
Feng X, Wang X, Zhou L, Pang S, Tang H. The impact of glucose on mitochondria and life span is determined by the integrity of proline catabolism in Caenorhabditis elegans. J Biol Chem 2023; 299:102881. [PMID: 36626986 PMCID: PMC9932108 DOI: 10.1016/j.jbc.2023.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes involved in mitochondrial proline catabolism lead to the rare genetic disorder hyperprolinemia in humans. We have previously reported that mutations of proline catabolic genes in Caenorhabditis elegans impair mitochondrial homeostasis and shorten life span, and that these effects surprisingly occur in a diet type-dependent manner. Therefore, we speculated that a specific dietary component may mitigate the adverse effects of defective proline catabolism. Here, we discovered that high dietary glucose, which is generally detrimental to health, actually improves mitochondrial homeostasis and life span in C. elegans with faulty proline catabolism. Mechanistically, defective proline catabolism results in a shift of glucose catabolism toward the pentose phosphate pathway, which is crucial for cellular redox balance. This shift helps to maintain mitochondrial reactive oxygen species homeostasis and to extend life span, as suppression of the pentose phosphate pathway enzyme GSPD-1 prevents the favorable effects of high glucose. In addition, we demonstrate that this crosstalk between proline and glucose catabolism is mediated by the transcription factor DAF-16. Altogether, these findings suggest that a glucose-rich diet may be advantageous in certain situations and might represent a potentially viable treatment strategy for disorders involving impaired proline catabolism.
Collapse
Affiliation(s)
- Xi Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xinyu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
28
|
Li Q, Hoppe T. Role of amino acid metabolism in mitochondrial homeostasis. Front Cell Dev Biol 2023; 11:1127618. [PMID: 36923249 PMCID: PMC10008872 DOI: 10.3389/fcell.2023.1127618] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Mitochondria are central hubs for energy production, metabolism and cellular signal transduction in eukaryotic cells. Maintenance of mitochondrial homeostasis is important for cellular function and survival. In particular, cellular metabolic state is in constant communication with mitochondrial homeostasis. One of the most important metabolic processes that provide energy in the cell is amino acid metabolism. Almost all of the 20 amino acids that serve as the building blocks of proteins are produced or degraded in the mitochondria. The synthesis of the amino acids aspartate and arginine depends on the activity of the respiratory chain, which is essential for cell proliferation. The degradation of branched-chain amino acids mainly occurs in the mitochondrial matrix, contributing to energy metabolism, mitochondrial biogenesis, as well as protein quality control in both mitochondria and cytosol. Dietary supplementation or restriction of amino acids in worms, flies and mice modulates lifespan and health, which has been associated with changes in mitochondrial biogenesis, antioxidant response, as well as the activity of tricarboxylic acid cycle and respiratory chain. Consequently, impaired amino acid metabolism has been associated with both primary mitochondrial diseases and diseases with mitochondrial dysfunction such as cancer. Here, we present recent observations on the crosstalk between amino acid metabolism and mitochondrial homeostasis, summarise the underlying molecular mechanisms to date, and discuss their role in cellular functions and organismal physiology.
Collapse
Affiliation(s)
- Qiaochu Li
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Sadat Fatemi SH, Eshraghi P, Ghanei M, Hamzehloei T. Genetic evaluation of hyperphenylalaninemia patients with tetrahydrobiopterin deficiency in Iranian population: Identification of four novel disease-causing variants. Mol Genet Genomic Med 2022; 10:e2081. [PMID: 36382472 DOI: 10.1002/mgg3.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hyperphenylalaninemia (HPA) is the most common inborn error of amino acid metabolism worldwide. At least 2% of HPA cases are caused by a deficiency in tetrahydrobiopterin (BH4) metabolism. Genes such as QDPR and PTS are essential in the BH4 metabolism. This study aims to identify disease-causing variants in HPA patients, which may be helpful in genetic counseling and prenatal diagnosis. METHODS A total of 10 HPA patients were enrolled in this study. The coding and adjacent intronic regions of PTS and QDPR genes were examined using Sanger sequencing. Protein modeling was also performed for novel identified variants. RESULTS Ten patients and a total of 20 alleles were studied, which led to the identification of 10 different variants. All variants identified in PTS and QDPR were missense, except for the c.383_407del variant in the QDPR. Also, three novel variants were identified in the QDPR, including c.79G>T, c.383_407del and c.488G>A, and a novel variant, c.65C>G, in the PTS. CONCLUSIONS Despite the genetic similarities in the disease-causing variants, differences were observed in the Asian and European populations with our populations; As a result, similar but more extensive studies are needed to investigate the distribution of disease-causing variants in genes involved in non-PKU hyperphenylalaninemia.
Collapse
Affiliation(s)
- Seyedeh Helia Sadat Fatemi
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peyman Eshraghi
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloei
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Vakili H, Talebpour Z, Haghighi F. Development, validation, and uncertainty measurement of HPLC-DAD method for determination of some free amino acids in infant formula and medical food products for inborn errors of metabolism. Food Chem 2022; 390:133204. [PMID: 35609503 DOI: 10.1016/j.foodchem.2022.133204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
This research aims at determining some free amino acids in amino acid-based infant formulas and amino acid-modified medical foods for inborn errors of metabolism to prove their quality. A method based on high-performance liquid chromatography and diode array detection was developed and validated. Then, overall uncertainty was estimated by the bottom-up approach. Applying the weighted least squares regression method suggested good linearity with coefficient of determinations ≥ 0.9960. The limits of detection were calculated between 0.01 and 0.28 μg/mL. The most repetitive recovery values were obtained in the range of 91-108%, with RSDs ≤ 15%. The expanded uncertainties were below 20% for most amino acids. The contributions of linear regression and repeatability are two main factors in estimating overall uncertainty. The results offer this method as a simple and easy procedure for analyzing free amino acids in seven powdered medical foods designed for phenylketonuria, maple syrup urine disease, methylmalonic, and propionic acidemia.
Collapse
Affiliation(s)
- Hadis Vakili
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran.
| | - Farideh Haghighi
- Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
31
|
Lin P, W-M Fan T, Lane AN. NMR-based isotope editing, chemoselection and isotopomer distribution analysis in stable isotope resolved metabolomics. Methods 2022; 206:8-17. [PMID: 35908585 PMCID: PMC9539636 DOI: 10.1016/j.ymeth.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
NMR is a very powerful tool for identifying and quantifying compounds within complex mixtures without the need for individual standards or chromatographic separation. Stable Isotope Resolved Metabolomics (or SIRM) is an approach to following the fate of individual atoms from precursors through metabolic transformation, producing an atom-resolved metabolic fate map. However, extracts of cells or tissue give rise to very complex NMR spectra. While multidimensional NMR experiments may partially overcome the spectral overlap problem, additional tools may be needed to determine site-specific isotopomer distributions. NMR is especially powerful by virtue of its isotope editing capabilities using NMR active nuclei such as 13C, 15N, 19F and 31P to select molecules containing just these atoms in a complex mixture, and provide direct information about which atoms are present in identified compounds and their relative abundances. The isotope-editing capability of NMR can also be employed to select for those compounds that have been selectively derivatized with an NMR-active stable isotope at particular functional groups, leading to considerable spectral simplification. Here we review isotope analysis by NMR, and methods of chemoselection both for spectral simplification, and for enhanced isotopomer analysis.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
32
|
Cao Y, Aquino-Martinez R, Hutchison E, Allayee H, Lusis AJ, Rey FE. Role of gut microbe-derived metabolites in cardiometabolic diseases: Systems based approach. Mol Metab 2022; 64:101557. [PMID: 35870705 PMCID: PMC9399267 DOI: 10.1016/j.molmet.2022.101557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut microbiome influences host physiology and cardiometabolic diseases by interacting directly with intestinal cells or by producing molecules that enter the host circulation. Given the large number of microbial species present in the gut and the numerous factors that influence gut bacterial composition, it has been challenging to understand the underlying biological mechanisms that modulate risk of cardiometabolic disease. SCOPE OF THE REVIEW Here we discuss a systems-based approach that involves simultaneously examining individuals in populations for gut microbiome composition, molecular traits using "omics" technologies, such as circulating metabolites quantified by mass spectrometry, and clinical traits. We summarize findings from landmark studies using this approach and discuss future applications. MAJOR CONCLUSIONS Population-based integrative approaches have identified a large number of microbe-derived or microbe-modified metabolites that are associated with cardiometabolic traits. The knowledge gained from these studies provide new opportunities for understanding the mechanisms involved in gut microbiome-host interactions and may have potentially important implications for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Cao
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Ruben Aquino-Martinez
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Evan Hutchison
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aldons J Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| |
Collapse
|
33
|
Comprehensive metabolomic characterization of the hippocampus in a ketamine mouse model of schizophrenia. Biochem Biophys Res Commun 2022; 632:150-157. [DOI: 10.1016/j.bbrc.2022.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
34
|
Woo S, Rosli N, Choi S, Kwon HJ, Yoon YA, Ahn S, Lee JY, Hong SP, Jeong JS. Development of Certified Reference Material for Amino Acids in Dried Blood Spots and Accuracy Assessment of Disc Sampling. Anal Chem 2022; 94:10127-10134. [PMID: 35802862 PMCID: PMC9310008 DOI: 10.1021/acs.analchem.2c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
To achieve the measurement reliability of amino acids
used as diagnostic
markers in clinical fields, establishing a reference measurement system
is required, in which certified reference materials (CRMs) are an
essential step in the hierarchy of measurement traceability. This
study describes the development of dried blood spot (DBS) CRMs for
amino acid analysis with complete measurement traceability to the
International System of Units (SI). Six essential amino acids—proline,
valine, isoleucine, leucine, phenylalanine, and tyrosine—were
analyzed using isotope-dilution liquid chromatography–mass
spectrometry (ID-MS). For minimizing measurement bias and uncertainty
overestimation, whole spots with 50 μL of whole blood were adopted
in the certification. The between-spot homogeneities by whole spot
sampling were lower than 2.1%. The relative expanded uncertainties
of the six amino acids in the developed DBS CRMs were lower than 5.7%
at 95% confidence. The certified values are traceable to SI through
both gravimetric preparation and the primary method in certification,
ID-MS. Comparison among DBS testing laboratories revealed discrepancies
between the whole spot and disc sampling methods. The actual sampling
volume was accurately estimated by weighing, which revealed the possibility
of underestimation in routine DBS testing. The candidate CRMs can
support the standardization of DBS testing for amino acids through
the qualification and validation of many kinds of measurement procedures
to compensate the measurement bias caused by matrix-specific sampling
error.
Collapse
Affiliation(s)
- Sangji Woo
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Department of Oriental Pharmaceutical Sciences, College of Pharmacy, KyungHee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 16954, Republic of Korea
| | - Nordiana Rosli
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Training Division Ministry of Health Malaysia, Level 6 Menara Prisma, Presint 3, 62675 Putrajaya, Malaysia
| | - Seohyun Choi
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Young Ahn Yoon
- Department of Laboratory Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang Univerisity College of Medicine, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si, Chungcheongnam-do 130-701, Republic of Korea
| | - Sunhyun Ahn
- Seoul Clinical Laboratories, 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 34113, Republic of Korea
| | - Ji Youn Lee
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Sciences, College of Pharmacy, KyungHee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 16954, Republic of Korea
| | - Ji-Seon Jeong
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
35
|
Pashaei S, Yarani R, Mohammadi P, Emami Aleagha MS. The potential roles of amino acids and their major derivatives in the management of multiple sclerosis. Amino Acids 2022; 54:841-858. [PMID: 35471671 DOI: 10.1007/s00726-022-03162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Recently, we reviewed the important role of carbohydrates and lipids metabolism in different clinical aspects of multiple sclerosis (MS) disease. In the current paper, we aimed to review the contribution of amino acids and their major derivatives to different clinical outcomes of the disease, including etiology, pathogenesis, diagnosis, prognosis, and treatment. In this line, Thr (threonine), Phe (phenylalanine), Glu (glutamate), Trp (tryptophan), and Sero (serotonin) are the main examples of biomolecules that have been suggested for MS therapy. It has been concluded that different amino acids and their derivatives might be considered prominent tools for the clinical management of MS disease.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran.
| |
Collapse
|
36
|
Piestansky J, Olesova D, Matuskova M, Cizmarova I, Chalova P, Galba J, Majerova P, Mikus P, Kovac A. Amino acids in inflammatory bowel diseases: Modern diagnostic tools and methodologies. Adv Clin Chem 2022; 107:139-213. [PMID: 35337602 DOI: 10.1016/bs.acc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amino acids are crucial building blocks of living organisms. Together with their derivatives, they participate in many intracellular processes to act as hormones, neuromodulators, and neurotransmitters. For several decades amino acids have been studied for their potential as markers of various diseases, including inflammatory bowel diseases. Subsequent improvements in sample pretreatment, separation, and detection methods have enabled the specific and very sensitive determination of these molecules in multicomponent matrices-biological fluids and tissues. The information obtained from targeted amino acid analysis (biomarker-based analytical strategy) can be further used for early diagnostics, to monitor the course of the disease or compliance of the patients. This review will provide an insight into current knowledge about inflammatory bowel diseases, the role of proteinogenic amino acids in intestinal inflammation and modern analytical techniques used in its diagnosis and disease activity monitoring. Current advances in the analysis of amino acids focused on sample pretreatment, separation strategy, or detection methods are highlighted, and their potential in clinical laboratories is discussed. In addition, the latest clinical data obtained from the metabolomic profiling of patients suffering from inflammatory bowel diseases are summarized with a focus on proteinogenic amino acids.
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
37
|
Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites 2022; 12:metabo12030272. [PMID: 35323715 PMCID: PMC8949038 DOI: 10.3390/metabo12030272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolomic analysis of different body fluids bears high importance in medical sciences. Our aim was to develop and validate a fast UHPLC-UV method for the analysis of 33 amino acids and biogenic amines from complex biological samples. AccQ-Tag derivatization was conducted on target molecules and the derivatized targets were analyzed by UHPLC-UV. The detection of the analytes was carried out with UV analysis and by Selected Reaction Monitoring (SRM)-based targeted mass spectrometry. The method was validated according to the FDA guidelines. Serum and non-stimulated tear samples were collected from five healthy individuals and the samples were analyzed by the method. The method was successfully validated with appropriate accuracy and precision for all 33 biomolecules. A total of 29 analytes were detected in serum samples and 26 of them were quantified. In the tears, 30 amino acids and biogenic amines were identified and 20 of them were quantified. The developed and validated UHPLC-UV method enables the fast and precise analysis of amino acids and biogenic amines from complex biological samples.
Collapse
|
38
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
39
|
Frias-Soler RC, Kelsey NA, Villarín Pildaín L, Wink M, Bairlein F. Transcriptome signature changes in the liver of a migratory passerine. Genomics 2022; 114:110283. [PMID: 35143886 DOI: 10.1016/j.ygeno.2022.110283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
The liver plays a principal role in avian migration. Here, we characterised the liver transcriptome of a long-distance migrant, the Northern Wheatear (Oenanthe oenanthe), sampled at different migratory stages, looking for molecular processes linked with adaptations to migration. The analysis of the differentially expressed genes suggested changes in the periods of the circadian rhythm, variation in the proportion of cells in G1/S cell-cycle stages and the putative polyploidization of this cell population. This may explain the dramatic increment in the liver's metabolic capacities towards migration. Additionally, genes involved in anti-oxidative stress, detoxification and innate immune responses, lipid metabolism, inflammation and angiogenesis were regulated. Lipophagy and lipid catabolism were active at all migratory stages and increased towards the fattening and fat periods, explaining the relevance of lipolysis in controlling steatosis and maintaining liver health. Our study clears the way for future functional studies regarding long-distance avian migration.
Collapse
Affiliation(s)
- Roberto Carlos Frias-Soler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Natalie A Kelsey
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Lilian Villarín Pildaín
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany.
| |
Collapse
|
40
|
Li X, He J, He L, Zeng Y, Huang X, Luo Y, Li Y. Spectrum Analysis of Inherited Metabolic Disorders for Expanded Newborn Screening in a Central Chinese Population. Front Genet 2022; 12:763222. [PMID: 35095998 PMCID: PMC8790479 DOI: 10.3389/fgene.2021.763222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal inherited metabolic disorders (IMDs) are closely associated with early neonatal death and abnormal growth and development. Increasing attention has been paid to IMDs because of their high incidence and diversity. However, there are no reports about the incidence of IMDs in Changsha, China. Therefore, we retrospectively analyzed the screening results of neonates to evaluate the characteristics of IMDs in the area. From January 2016 to December 2020, 300,849 neonates were enrolled for expanded newborn screening by tandem mass spectrometry in the Neonatal Disease Screening Center of the Changsha Hospital for Maternal & Child Health Care. Newborns with mild initial results were recalled for repeated tests; if the second test was still positive, the patient was referred for confirmatory tests. A total of 71 confirmed cases were identified in our study, with an incidence rate of 1:4,237. There were 28 cases of amino acid metabolic disorders, representing 39.44% of the IMDs diagnosed, with an incidence rate of 1:10,745. Twelve newborns were diagnosed with organic acid metabolic disorders, accounting for 16.66% of IMDs, with an incidence rate of 1:25,071. There were 31 cases of fatty acid oxidation disorders, representing 43.05% of IMDs, with an incidence rate of 1:9,705. Overall, 14 types of IMDs were found in Changsha. The most common disorders in the region were primary carnitine deficiency, hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase deficiency. Their incidence rate is respectively 1:13,675, 1:16,714 and 1:42,978. The mutations in PAH, SLC22A5, and ACADS are the leading causes of IMDs in this area. This study demonstrates the importance of utilizing MS/MS in IMD screening for early diagnosis and treatment. This strategy may be used for prenatal genetic counseling to avoid irreversible growth and intellectual development disorders in children.
Collapse
Affiliation(s)
- Xia Li
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Jun He
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Ling He
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Yudong Zeng
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Xuzhen Huang
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Yechao Luo
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Yujiao Li
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| |
Collapse
|
41
|
Öztürk Er E, Erarpat S, Bodur S, Günkara ÖT, Özbek B, Bakırdere S. Accurate Determination of Amino Acids by Quadruple Isotope Dilution-Reverse Phase Liquid Chromatography-Tandem Mass Spectrometry after Derivatization with 2-Naphthoyl Chloride. J Chromatogr A 2022; 1667:462870. [DOI: 10.1016/j.chroma.2022.462870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
42
|
Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, Lorenz K, Moessinger C, Eriksson O, Velikyan I, Pierrou S, Johansson L, Dietert G, Dietz-Baum Y, Kissner T, Nowotny I, Einig C, Jan C, Rharbaoui F, Gassenhuber J, Prochnow HP, Agueusop I, Porksen N, Smith WB, Nitsche A, Konkar A. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab 2022; 34:59-74.e10. [PMID: 34932984 DOI: 10.1016/j.cmet.2021.12.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
Collapse
Affiliation(s)
- Martin Bossart
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany.
| | - Michael Wagner
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Andreas Evers
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | | | - Katrin Lorenz
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden; Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | - Irene Nowotny
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | - Christelle Jan
- Clinical Sciences & Operations, Sanofi, Chilly-Mazarin, France
| | - Faiza Rharbaoui
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | | | | | | | - William B Smith
- NOCCR Alliance for Multispecialty Research (AMR), Knoxville, TN, USA
| | | | | |
Collapse
|
43
|
Chauhan P, Mundekkad D, Mukherjee A, Chaudhary S, Umar A, Baskoutas S. Coconut Carbon Dots: Progressive Large-Scale Synthesis, Detailed Biological Activities and Smart Sensing Aptitudes towards Tyrosine. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:162. [PMID: 35010113 PMCID: PMC8746512 DOI: 10.3390/nano12010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023]
Abstract
In the recent era, carbon dots (C-dots) have been extensively considered as a potential tool in drug delivery analysis. However, there have been fewer reports in the literature on their application in the sensing of amino acids. As part of our ongoing research on coconut-husk-derived C-dots, we synthesized C-dots under different temperature conditions and utilized them in the field of amino acid sensing and found them to be highly selective and sensitive towards tyrosine. The detailed characterization of the prepared C-dots was carried out. The developed C-dots exhibit good values of quantum yield. BSA, HSA and glutamic acid were utilized to explore the binding efficiency of C-dots with biologically active components. Hemolysis, blood clotting index activity and cell viability assays using the prepared C-dots were evaluated and they were found to be biocompatible. Therefore, the C-dots described in this work have high potential to be utilized in the field of amino acid sensing, especially L-tyrosine. The limit of detection and the binding constant for the developed C-dots in the presence of tyrosine were found to be 0.96 nM and 296.38 nM-1, respectively. The efficiency of the developed C-dots was also investigated in the presence of various other amino acids and different water mediums in order to enhance the working scope of the developed sensors.
Collapse
Affiliation(s)
- Pooja Chauhan
- Centre of Advanced Studies in Chemistry, Department of Chemistry, Panjab University, Chandigarh 160014, India;
| | - Deepa Mundekkad
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India; (D.M.); (A.M.)
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India; (D.M.); (A.M.)
| | - Savita Chaudhary
- Centre of Advanced Studies in Chemistry, Department of Chemistry, Panjab University, Chandigarh 160014, India;
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 265 04 Patras, Greece
| |
Collapse
|
44
|
Mukherjee S, Kotnis A, Ray SK, Vaidyanathan K, Singh S, Mittal R. Current Scenario of Clinical Diagnosis to Identify Inborn Errors of Metabolism with Precision Profiling for Expanded Screening in Infancy in a Resource-limited Setting. Curr Pediatr Rev 2022; 19:34-47. [PMID: 35379152 DOI: 10.2174/1573396318666220404113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Inborn errors of metabolism (IEM) are a diverse collection of abnormalities that cause a variety of morbidities and mortality in children and are classified as uncommon genetic diseases. Early and accurate detection of the condition can save a patient's life. By aiding families as they navigate the experience of having a child with an IEM, healthcare practitioners have the chance to reduce the burden of negative emotional consequences. New therapeutic techniques, such as enzyme replacement and small chemical therapies, organ transplantation, and cellular and gene-based therapies using whole-genome sequencing, have become available in addition to traditional medical intake and cofactor treatments. In the realm of metabolic medicine and metabolomics, the twentyfirst century is an exciting time to be alive. The availability of metabolomics and genomic analysis has led to the identification of a slew of novel diseases. Due to the rarity of individual illnesses, obtaining high-quality data for these treatments in clinical trials and real-world settings has proven difficult. Guidelines produced using standardized techniques have helped enhance treatment delivery and clinical outcomes over time. This article gives a comprehensive description of IEM and how to diagnose it in patients who have developed clinical signs early or late. The appropriate use of standard laboratory outcomes in the preliminary patient assessment is also emphasized that can aid in the ordering of specific laboratory tests to confirm a suspected diagnosis, in addition, to begin treatment as soon as possible in a resource limiting setting where genomic analysis or newborn screening facility is not available.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | | | - Kannan Vaidyanathan
- Department of Biochemistry, Amrita Institute of Medical Science & Research Center, Kochi, Kerala-682041, India
| | - Snighdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
45
|
Koshti B, Kshtriya V, Naskar S, Narode H, Gour N. Controlled aggregation properties of single amino acids modified with protecting groups. NEW J CHEM 2022. [DOI: 10.1039/d1nj05172e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-assembling properties of single amino acids modified with protecting groups under controlled conditions of temperature and concentration are illustrated.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Hanuman Narode
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| |
Collapse
|
46
|
Zhou M, Deng L, Huang Y, Xiao Y, Wen J, Liu N, Zeng Y, Zhang H. Application of the Artificial Intelligence Algorithm Model for Screening of Inborn Errors of Metabolism. Front Pediatr 2022; 10:855943. [PMID: 35664874 PMCID: PMC9160361 DOI: 10.3389/fped.2022.855943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are strongly related to abnormal growth and development in newborns and can even result in death. In total, 94,648 newborns were enrolled for expanded newborn screening using tandem mass spectrometry (MS/MS) from 2016 to 2020 at the Neonatal Disease Screening Center of the Maternal and Child Health Hospital in Shaoyang City, China. A total of 23 confirmed cases were detected in our study with an incidence rate of 1:4,115. A total of 10 types of IEM were identified, and the most common IEMs were phenylalanine hydroxylase deficiency (PAHD; 1:15,775) and primary carnitine deficiency (PCD; 1:18,930). Mutations in phenylalanine hydroxylase (PAH) and SLC22A5 were the leading causes of IEMs. To evaluate the application effect of artificial intelligence (AI) in newborn screening, we used AI to retrospectively analyze the screening results and found that the false-positive rate could be decreased by more than 24.9% after using AI. Meanwhile, a missed case with neonatal intrahepatic cholestasis citrin deficiency (NICCD) was found, the infant had a normal citrulline level (31 μmol/L; cutoff value of 6-32 μmol/L), indicating that citrulline may not be the best biomarker of intrahepatic cholestasis citrin deficiency. Our results indicated that the use of AI in newborn screening could improve efficiency significantly. Hence, we propose a novel strategy that combines expanded neonatal IEM screening with AI to reduce the occurrence of false positives and false negatives.
Collapse
Affiliation(s)
- Muping Zhou
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Liyuan Deng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yan Huang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Ying Xiao
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Jun Wen
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Na Liu
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yingchao Zeng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Hua Zhang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| |
Collapse
|
47
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
48
|
Culberson AL, Chilmonczyk MA, Kottke PA, Bowles-Welch AC, Ghoshal D, Fedorov AG. Sample-to-analysis platform for rapid intracellular mass spectrometry from small numbers of cells. LAB ON A CHIP 2021; 21:4696-4706. [PMID: 34751694 PMCID: PMC8721559 DOI: 10.1039/d1lc00884f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Real-time, advanced diagnostics of the biochemical state within cells remains a significant challenge for research and development, production, and application of cell-based therapies. The fundamental biochemical processes and mechanisms of action of such advanced therapies are still largely unknown, including the critical quality attributes that correlate to therapeutic function, performance, and potency and the critical process parameters that impact quality throughout cell therapy manufacturing. An integrated microfluidic platform has been developed for in-line analysis of a small number of cells via direct infusion nano-electrospray ionization mass spectrometry. Central to this platform is a microfabricated cell processing device that prepares cells from limited sample volumes removed directly from cell culture systems. The sample-to-analysis workflow overcomes the labor intensive, time-consuming, and destructive nature of existing mass spectrometry approaches for analysis of cells. By providing rapid, high-throughput analyses of the intracellular state, this platform enables untargeted discovery of critical quality attributes and their real-time, in-process monitoring.
Collapse
Affiliation(s)
- Austin L Culberson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mason A Chilmonczyk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Peter A Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrei G Fedorov
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
49
|
Inherited metabolic diseases: aminoacidopathies, organic acidemia, defects of mitochondrial β-oxidation. A brief overview. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inherited metabolic diseases are a large group of inherited monogenic diseases. Metabolic disorders can cause child disability and mortality. Tandem mass spectrometry is a powerful technology that allows to diagnosis a large number of hereditary metabolic diseases. Clinical manifestations are variable, but more often the damages of nervous system, heart, liver, kidneys, hyperammonemia, hypo/hyperglycemia take place. The disease can make its debut at any age, but the severe forms of the disease manifest at infancy. Early diagnosis and treatment can significantly improve the prognosis; many countries expand the list of diseases included in screening programs. At the beginning of 2021 in most regions of the Russian Federation mass newborn screening is carried out for five hereditary metabolic diseases. The age and the range of clinical manifestation are variable; therefore, knowledge of this pathology is very important both for pediatricians and therapists, and for specialized doctors. The article presents a brief description of next groups of metabolic diseases: aminoacidopathies, organic acidurias and fatty acid oxidation defects.
Collapse
|
50
|
Bodoor K, El-Barghouthi MI, Assaf KI, Al Hourani BJ, Rawashdeh AMM, Abuhasan OM, Alhamad DF, Abdel-Halim HM. A molecular dynamics study of the complexation of tryptophan, phenylalanine and tyrosine amino acids with cucurbit[7]uril. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01113-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|