1
|
Horgan S, Kotwal H, Malan A, Sekhri N, Lopes LR. Reassessment and reclassification of variants of unknown significance in patients with cardiomyopathy in a specialist department. J Med Genet 2024:jmg-2024-110208. [PMID: 39694818 DOI: 10.1136/jmg-2024-110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The utility of diagnostic genetic testing in cardiomyopathy has grown significantly, due to the discovery of novel genes and greater awareness among healthcare professionals. However, a substantial proportion of cases (around 50%) yield no causative genetic variants or have variants of unknown significance (VUS), limiting their use in clinical management and familial screening. The increase in data quantity and quality in reference databases, coupled with variant interpretation guidelines, allows for periodic reanalysis of VUS, potentially reducing diagnostic gaps. METHODS This study presents a review of VUS results identified in hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) probands over a 5-year period, using American College of Medical Genetics and Genomics criteria. A total of 248 VUS from 233 reports were reviewed, with the majority of patients with a diagnosis of HCM (n=112), followed by DCM (n=99) and ACM (n=22). RESULTS Four (1.6%) VUS showed sufficient evidence to upgrade to likely pathogenic/pathogenic status, while 8 (3.2%) were downgraded to benign. The majority 236 (95.2%) remained VUS after reanalysis, of which 12 (4.7%) had potential to reclassification to benign or likely pathogenic/pathogenic depending on further data. CONCLUSION The study emphasises the importance of periodic re-evaluation of VUS results for clinical management of probands as well as cascade testing. We show feasibility of conducting reclassification analysis in a referral centre, but highlight the need for ongoing collaboration between clinical and laboratory experts. Our work supports the current recommendation of reclassification every 3-5 years to keep pace with evolving evidence.
Collapse
Affiliation(s)
| | | | | | - Neha Sekhri
- ICVD, St Bartholomew's Hospital, London, UK
- Queen Mary University of London, London, UK
| | - Luis R Lopes
- ICVD, St Bartholomew's Hospital, London, UK
- University College London Institute of Cardiovascular Science, London, UK
| |
Collapse
|
2
|
Anvekar P, Stephens P, Calderon-Anyosa RJC, Kauffman HL, Burstein DS, Ritter AL, Ahrens-Nicklas RC, Vetter VL, Banerjee A. Electrocardiographic Findings in Genotype-Positive and Non-sarcomeric Children with Definite Hypertrophic Cardiomyopathy and Subclinical Variant Carriers. Pediatr Cardiol 2024; 45:1784-1797. [PMID: 37725123 DOI: 10.1007/s00246-023-03281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023]
Abstract
In children with hypertrophic cardiomyopathy (HCM), the genotype-phenotype association of abnormal electrocardiographic (ECG) features in the backdrop of gene positivity has not been well described. This study aimed to describe the abnormal ECG findings in children with HCM harboring who have genetic variants and determine the association with major adverse cardiac events (MACE). We retrospectively analyzed 81 variants-positive, phenotype-positive (V+P+), 66 variant-positive, phenotype-negative (V+P-), and 85 non-sarcomeric subjects. We analyzed ECG findings and clinical outcomes in the three groups of subjects. Repolarization abnormalities (ST and T wave changes) and pathologic Q waves were the most common abnormalities in variant and non-sarcomeric subjects. The V+P+ group showed higher occurrence of ST segment changes and T wave abnormalities compared to V+P- group. Independent predictors of MACE included ST segment changes (OR 3.54, CI 1.20-10.47, p = 0.022). T wave changes alone did not predict outcome (OR 2.13, CI 0.75-6.07, p = 0.157), but combined repolarization abnormalities (ST+T changes) were strong predictors of MACE (OR 5.84, CI 1.43-23.7, p = 0.014) than ST segment changes alone. Maximal wall z score by echocardiography was a predictor of MACE (OR 1.21, CI 1.07-1.37, p = 0.002). Despite the presence of significant myocardial hypertrophy (z score > 4.7), voltage criteria for LVH were much less predictive. In the non-sarcomeric group, RVH was significantly associated with MACE (OR 3.85, CI 1.08-13.73, p = 0.038). These abnormal ECG findings described on the platform of known genetic status and known myocardial hypertrophy may add incremental value to the diagnosis and surveillance of disease progression in children with HCM. Select ECG findings, particularly repolarization abnormalities, may serve as predictors of MACE in children.
Collapse
Affiliation(s)
- Priyanka Anvekar
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Paul Stephens
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Hunter L Kauffman
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Danielle S Burstein
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa L Ritter
- Division of Human Genetics and Metabolism, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics and Metabolism, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria L Vetter
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anirban Banerjee
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Desai D, Song T, Singh RR, Baby A, McNamara J, Green LC, Nabavizadeh P, Ericksen M, Bazrafshan S, Natesan S, Sadayappan S. MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids. Cells 2024; 13:1913. [PMID: 39594661 PMCID: PMC11592734 DOI: 10.3390/cells13221913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
MYBPC3, encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using isogenic human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, functional, and energetic changes caused by the MYBPC3D389V variant, which is associated with increased fractional shortening and highly prevalent in South Asian descendants. Recombinant C0-C2, N' region of cMyBP-C (wild-type and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro. Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after the treatment of the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3D389V hCOs. Lastly, various vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3D389V with myosin S2 region as a likely mechanism for hypercontraction. Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3D389V hypercontractile phenotype, which was rescued by the administration of a myosin inhibitor.
Collapse
Affiliation(s)
- Darshini Desai
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Rohit R. Singh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - James McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Lisa C. Green
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Pooneh Nabavizadeh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Mark Ericksen
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Sholeh Bazrafshan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| |
Collapse
|
4
|
Yan P, Li X, He Y, Zhang Y, Wang Y, Liu J, Ren S, Wu D, Zhao Y, Ding L, Jia W, Lyu Y, Xiao D, Lin S, Lin Y. The synergistic protective effects of paeoniflorin and β-ecdysterone against cardiac hypertrophy through suppressing oxidative stress and ferroptosis. Cell Signal 2024; 125:111509. [PMID: 39549820 DOI: 10.1016/j.cellsig.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Exploring feasible drugs for the treatment of pathological cardiac hypertrophy has always been a focus of cardiovascular disease research. Paeoniflorin (PF) and β-Ecdysterone (β-Ecd) are the main active components of Paeonia lactiflora and Achyranthes bidentata, which can be used for the treatment of cardiovascular diseases, but their mechanism of action remains unclear. This study focused on oxidative stress and ferroptosis to investigate the protective effects of PF and β-Ecd on cardiac hypertrophy in primary cardiomyocytes and C57BL/6 mice, utilizing the integration of CCK8 assays, ROS detection, molecular docking, real-time quantitative PCR, western blot, immunofluorescence, etc. The result of combination indices demonstrated a significant synergistic protective effect of PF and β-Ecd on cardiac hypertrophy. Furthermore, in vitro and in vivo studies further showed that the combination of PF and β-Ecd could improve the abnormalities of cell surface area, ANP, β-MHC, MDA, SOD, calcium ion, mitochondrial membrane potential and so on induced by cardiac hypertrophy through the inhibition effects of oxidative stress and iron metabolism, which might be closely related to the impact on the Nrf2/HO-1 and SLC7A11/GPX4 pathways. Altogether, this work revealed the mechanism of the combination of PF and β-Ecd in the treatment of cardiac hypertrophy from the aspects of suppressing oxidative stress and ferroptosis, aiming to promote effective treatment of the disease and the clinical application of PF and β-Ecd.
Collapse
Affiliation(s)
- Peimei Yan
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Xue Li
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuhui He
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yanyan Zhang
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingwanqi Wang
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jianing Liu
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Shan Ren
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Dingxiao Wu
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Zhao
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar 161006, China
| | - Weiwei Jia
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Ying Lyu
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150000, China
| | - Song Lin
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China; Heilongjiang Key Laboratory of Medicine and Food Resources and Metabolic Disease Prevention, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yan Lin
- School of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, China; Heilongjiang Key Laboratory of Medicine and Food Resources and Metabolic Disease Prevention, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
5
|
Pavić J, Živanović M, Tanasković I, Pavić O, Stanković V, Virijević K, Mladenović T, Košarić J, Milićević B, Qamar SUR, Velicki L, Novaković I, Preveden A, Popović D, Tesić M, Seman S, Filipović N. A Machine Learning Approach to Gene Expression in Hypertrophic Cardiomyopathy. Pharmaceuticals (Basel) 2024; 17:1364. [PMID: 39459004 PMCID: PMC11510441 DOI: 10.3390/ph17101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Hypertrophic cardiomyopathy (HCM) is a common heart disorder characterized by the thickening of the heart muscle, particularly in the left ventricle, which increases the risk of cardiac complications. This study aims to analyze the expression of apoptosis-regulating genes (CASP8, CASP9, CASP3, BAX, and BCL2) in blood samples from HCM patients, to better understand their potential as biomarkers for disease progression. METHODS Quantitative real-time PCR (qPCR) was used to evaluate gene expression in blood samples from 93 HCM patients. The correlation between apoptosis-regulating genes was conducted and clinical parameters were integrated for feature importance and clustering analysis. RESULTS Most patients exhibited significant downregulation of CASP8, CASP9, and CASP3. In contrast, BAX expression was elevated in 71 out of 93 patients, while BCL2 was increased in 55 out of 93 patients. Correlation analysis revealed weak negative correlations between the BAX/BCL2 ratio and CASP gene expression. CONCLUSIONS These findings suggest that reduced expression of apoptotic genes may indicate a protective cellular mechanism, which could serve as a biomarker for disease progression. Further studies are needed to investigate the potential for therapeutic modulation of these pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Jelena Pavić
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia (N.F.)
| | - Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
| | - Irena Tanasković
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Ognjen Pavić
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
| | - Vesna Stanković
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Katarina Virijević
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia (N.F.)
| | - Tamara Mladenović
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia (N.F.)
| | - Jelena Košarić
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
| | - Bogdan Milićević
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (O.P.); (K.V.); (T.M.); (J.K.); (B.M.)
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia
| | - Safi Ur Rehman Qamar
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia (N.F.)
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (L.V.); (A.P.)
- Institute of Cardiovascular Diseases Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Ivana Novaković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.N.); (M.T.)
| | - Andrej Preveden
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (L.V.); (A.P.)
- Institute of Cardiovascular Diseases Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Dejana Popović
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA;
| | - Milorad Tesić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.N.); (M.T.)
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Stefan Seman
- Faculty of Sports and Physical Education, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia (N.F.)
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Farboud SP, Fathi E, Valipour B, Farahzadi R. Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges. J Transl Med 2024; 22:783. [PMID: 39175068 PMCID: PMC11342568 DOI: 10.1186/s12967-024-05499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.
Collapse
Affiliation(s)
- Seyedeh Parya Farboud
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Federici L, Masulli M, De Laurenzi V, Allocati N. The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View. Nutrients 2024; 16:2753. [PMID: 39203889 PMCID: PMC11357436 DOI: 10.3390/nu16162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Protein glutathionylation is a reversible post-translational modification that involves the attachment of glutathione to cysteine residues. It plays a role in the regulation of several cellular processes and protection against oxidative damage. Glutathionylation (GS-ylation) modulates protein function, inhibits or enhances enzymatic activity, maintains redox homeostasis, and shields several proteins from irreversible oxidative stress. Aberrant GS-ylation patterns are thus implicated in various diseases, particularly those associated with oxidative stress and inflammation, such as cardiovascular diseases, neurodegenerative disorders, cancer, and many others. Research in the recent years has highlighted the potential to manipulate protein GS-ylation for therapeutic purposes with strategies that imply both its enhancement and inhibition according to different cases. Moreover, it has become increasingly evident that monitoring the GS-ylation status of selected proteins offers diagnostic potential in different diseases. In this review, we try to summarize recent research in the field with a focus on our current understanding of the molecular mechanisms related to aberrant protein GS-ylation.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| |
Collapse
|
8
|
Dungu JN, Hardy-Wallace A, Dimarco AD, Savage HO. Hypertrophic Cardiomyopathy. Curr Heart Fail Rep 2024; 21:428-438. [PMID: 38488965 DOI: 10.1007/s11897-024-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac condition with potential for severe complications including sudden cardiac death. Early diagnosis allows appropriate risk stratification and prompt intervention to minimise the potential for adverse outcomes. The implications of poorly coordinated screening are significant, either missing relatives at high-risk or burdening low-risk individuals with a diagnosis associated with reduced life expectancy. We aim to guide clinicians through the diagnostic pathway through to novel treatment options. Several conditions mimic the condition, and we discuss the phenocopies and how to differentiate from HCM. RECENT FINDINGS We summarise the latest developments informing clinical decision making in the modern era of myosin inhibitors and future gene editing therapies. Early identification will enable prompt referral to specialist centres. A diagnostic flowchart is included, to guide the general cardiology and heart failure clinician in important decision making regarding the care of the HCM patient and importantly their relatives at risk. We have highlighted the importance of screening because genotype-positive/phenotype-negative patients are likely to have the most to gain from novel therapies.
Collapse
Affiliation(s)
- Jason N Dungu
- Essex Cardiothoracic Centre, Nethermayne, Basildon, Essex SS16 5NL, UK.
- Anglia Ruskin University, Chelmsford, UK.
| | - Amy Hardy-Wallace
- Essex Cardiothoracic Centre, Nethermayne, Basildon, Essex SS16 5NL, UK
| | - Anthony D Dimarco
- Essex Cardiothoracic Centre, Nethermayne, Basildon, Essex SS16 5NL, UK
| | - Henry O Savage
- Essex Cardiothoracic Centre, Nethermayne, Basildon, Essex SS16 5NL, UK
- Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
9
|
Khalilimeybodi A, Saucerman JJ, Rangamani P. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy. Comput Biol Med 2024; 175:108499. [PMID: 38677172 PMCID: PMC11175993 DOI: 10.1016/j.compbiomed.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.
Collapse
Affiliation(s)
- A Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America.
| |
Collapse
|
10
|
Desai D, Song T, Singh RR, Baby A, McNamara J, Green L, Nabavizadeh P, Ericksen M, Bazrafshan S, Natesan S, Sadayappan S. MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596463. [PMID: 38853909 PMCID: PMC11160759 DOI: 10.1101/2024.05.29.596463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND MYBPC3 , encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). METHODS The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, and functional changes caused by the MYBPC3 D389V variant. This variant is associated with increased fractional shortening and is highly prevalent in South Asian descendants. Recombinant C0-C2, N'-region of cMyBP-C (wildtype and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro . RESULTS Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3 D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility with increased contraction velocity, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3 D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3 D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after treatment with the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3 D389V hCOs. Lastly, various in vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3 D389V with myosin S2 region as a likely mechanism for hypercontraction. CONCLUSIONS Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3 D389V hypercontractile phenotype, which was rescued by administration of a myosin inhibitor. Novelty and Significance: What Is Known?: MYBPC3 mutations have been implicated in hypertrophic cardiomyopathy. D389V is a polymorphic variant of MYBPC3 predicted to be present in 53000 US South Asians owing to the founder effect. D389V carriers have shown evidence of hyperdynamic heart, and human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes with D389V show cellular hypertrophy and irregular calcium transients. The molecular mechanism by which the D389V variant develops pathological cardiac dysfunction remains to be conclusively determined.What New Information Does This Article Contribute ?: The authors leveraged a highly translational cardiac organoid model to explore the role of altered cardiac calcium handling and cardiac contractility as a common pathway leading to pathophysiological phenotypes in patients with early HCM. The MYBPC3 D389V -mediated pathological pathway is first studied here by comparing functional properties using three-dimensional cardiac organoids differentiated from hiPSC and determining the presence of hypercontraction. Our data demonstrate that faster sarcomere kinetics resulting from lower binding affinity between D389V-mutated cMyBP-C protein and myosin S2, as evidenced by in vitro studies, could cause hypercontractility which was rescued by administration of mavacamten (CAMZYOS®), a myosin inhibitor. In addition, hypercontractility causes secondary mitochondrial defects such as higher oxidative stress and lower mitochondrial membrane potential (ΔΨm), highlighting a possible early adaptive response to primary sarcomeric changes. Early treatment of MYBPC3 D389V carriers with mavacamten may prevent or reduce early HCM-related pathology. GRAPHICAL ABSTRACT: A graphical abstract is available for this article.
Collapse
|
11
|
Menezes Junior ADS, de França-e-Silva ALG, de Oliveira HL, de Lima KBA, Porto IDOP, Pedroso TMA, Silva DDME, Freitas AF. Genetic Mutations and Mitochondrial Redox Signaling as Modulating Factors in Hypertrophic Cardiomyopathy: A Scoping Review. Int J Mol Sci 2024; 25:5855. [PMID: 38892064 PMCID: PMC11173352 DOI: 10.3390/ijms25115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heart condition characterized by cellular and metabolic dysfunction, with mitochondrial dysfunction playing a crucial role. Although the direct relationship between genetic mutations and mitochondrial dysfunction remains unclear, targeting mitochondrial dysfunction presents promising opportunities for treatment, as there are currently no effective treatments available for HCM. This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. Searches were conducted in databases such as PubMed, Embase, and Scopus up to September 2023 using "MESH terms". Bibliographic references from pertinent articles were also included. Hypertrophic cardiomyopathy (HCM) is influenced by ionic homeostasis, cardiac tissue remodeling, metabolic balance, genetic mutations, reactive oxygen species regulation, and mitochondrial dysfunction. The latter is a common factor regardless of the cause and is linked to intracellular calcium handling, energetic and oxidative stress, and HCM-induced hypertrophy. Hypertrophic cardiomyopathy treatments focus on symptom management and complication prevention. Targeted therapeutic approaches, such as improving mitochondrial bioenergetics, are being explored. This includes coenzyme Q and elamipretide therapies and metabolic strategies like therapeutic ketosis. Understanding the biomolecular, genetic, and mitochondrial mechanisms underlying HCM is crucial for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Ana Luísa Guedes de França-e-Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Henrique Lima de Oliveira
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Khissya Beatryz Alves de Lima
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Iane de Oliveira Pires Porto
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Thays Millena Alves Pedroso
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Daniela de Melo e Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Aguinaldo F. Freitas
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| |
Collapse
|
12
|
Dababneh S, Hamledari H, Maaref Y, Jayousi F, Hosseini DB, Khan A, Jannati S, Jabbari K, Arslanova A, Butt M, Roston TM, Sanatani S, Tibbits GF. Advances in Hypertrophic Cardiomyopathy Disease Modelling Using hiPSC-Derived Cardiomyocytes. Can J Cardiol 2024; 40:766-776. [PMID: 37952715 DOI: 10.1016/j.cjca.2023.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of human induced pluripotent stem cells (hiPSCs) and their capacity to be differentiated into beating human cardiomyocytes (CMs) in vitro has revolutionized human disease modelling, genotype-phenotype predictions, and therapeutic testing. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiomyopathy and the leading known cause of sudden cardiac arrest in young adults and athletes. On a molecular level, HCM is often driven by single pathogenic genetic variants, usually in sarcomeric proteins, that can alter the mechanical, electrical, signalling, and transcriptional properties of the cell. A deeper knowledge of these alterations is critical to better understanding HCM manifestation, progression, and treatment. Leveraging hiPSC-CMs to investigate the molecular mechanisms driving HCM presents a unique opportunity to dissect the consequences of genetic variants in a sophisticated and controlled manner. In this review, we summarize the molecular underpinnings of HCM and the role of hiPSC-CM studies in advancing our understanding, and we highlight the advances in hiPSC-CM-based modelling of HCM, including maturation, contractility, multiomics, and genome editing, with the notable exception of electrophysiology, which has been previously covered.
Collapse
Affiliation(s)
- Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dina B Hosseini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aasim Khan
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shayan Jannati
- Faculty of Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kosar Jabbari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
13
|
Österberg AW, Östman-Smith I, Green H, Gunnarsson C, Fredrikson M, Liuba P, Fernlund E. Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young-FGF-21 Highly Associated with Overt Disease. J Cardiovasc Dev Dis 2024; 11:105. [PMID: 38667723 PMCID: PMC11050055 DOI: 10.3390/jcdd11040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Any difference in biomarkers between genotype-positive individuals with overt hypertrophic cardiomyopathy (HCM), and genotype-positive but phenotype-negative individuals (G+P-) in HCM-associated pathways might shed light on pathophysiological mechanisms. We studied this in young HCM patients. Methods: 29 HCM patients, 17 G+P--individuals, and age- and sex-matched controls were prospectively included. We analyzed 184 cardiovascular disease-associated proteins by two proximity extension assays, categorized into biological pathways, and analyzed with multivariate logistic regression analysis. Significant proteins were dichotomized into groups above/below median concentration in control group. Results: Dichotomized values of significant proteins showed high odds ratio (OR) in overt HCMphenotype for Fibroblast growth factor-21 (FGF-21) 10 (p = 0.001), P-selectin glycoprotein ligand-1 (PSGL-1) OR 8.6 (p = 0.005), and Galectin-9 (Gal-9) OR 5.91 (p = 0.004). For G+P-, however, angiopoietin-1 receptor (TIE2) was notably raised, OR 65.5 (p = 0.004), whereas metalloproteinase inhibitor 4 (TIMP4) involved in proteolysis, in contrast, had reduced OR 0.06 (p = 0.013). Conclusions: This study is one of the first in young HCM patients and G+P- individuals. We found significantly increased OR for HCM in FGF-21 involved in RAS-MAPK pathway, associated with cardiomyocyte hypertrophy. Upregulation of FGF-21 indicates involvement of the RAS-MAPK pathway in HCM regardless of genetic background, which is a novel finding.
Collapse
Affiliation(s)
- Anna Wålinder Österberg
- Crown Princess Victoria Children’s Hospital, Linköping University Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, SE-58183 Linköping, Sweden;
| | - Ingegerd Östman-Smith
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-41680 Göteborg, Sweden;
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, SE-58185 Linköping, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, Department of Biomedical and Clinical Sciences, Centre for Rare Diseases in Southeast Region of Sweden, Linköping University, SE-58183 Linköping, Sweden;
| | - Mats Fredrikson
- Department of Clinical and Experimental Medicine, Linköping University, SE-58183 Linköping, Sweden
| | - Petru Liuba
- Paediatric Heart Centre, Skåne University Hospital and Department of Clinical Sciences, Lund University, SE-22185 Lund, Sweden;
| | - Eva Fernlund
- Crown Princess Victoria Children’s Hospital, Linköping University Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, SE-58183 Linköping, Sweden;
- Paediatric Heart Centre, Skåne University Hospital and Department of Clinical Sciences, Lund University, SE-22185 Lund, Sweden;
| |
Collapse
|
14
|
Kelly CM, Martin JL, Previs MJ. Myosin folding boosts solubility in cardiac muscle sarcomeres. JCI Insight 2024; 9:e178131. [PMID: 38483507 PMCID: PMC11141871 DOI: 10.1172/jci.insight.178131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.
Collapse
Affiliation(s)
- Colleen M Kelly
- Molecular Physiology and Biophysics Department, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jody L Martin
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Michael J Previs
- Molecular Physiology and Biophysics Department, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
15
|
Reddy S, Varma A, Taksande A. Fever Unveiling a Hidden Cardiac Condition: A Case of Pediatric Hypertrophic Obstructive Cardiomyopathy. Cureus 2024; 16:e55823. [PMID: 38590469 PMCID: PMC10999888 DOI: 10.7759/cureus.55823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
This case report presents the clinical management of a 18-month-old female child who presented with fever, cough, and cold symptoms for eight days. Despite initial treatment with antipyretic syrup, the persistence of symptoms prompted further evaluation, revealing signs of hypertrophic obstructive cardiomyopathy (HOCM) on echocardiography. The patient was subsequently initiated on beta-blocker therapy and supportive care, leading to clinical improvement and eventual discharge. This case underscores the importance of considering cardiac etiologies in pediatric patients presenting with nonspecific symptoms. It highlights the role of timely diagnosis and multidisciplinary management in optimizing outcomes for affected individuals. Further research and awareness efforts are warranted to enhance diagnostic capabilities and refine treatment strategies for pediatric cardiac conditions like HOCM.
Collapse
Affiliation(s)
- Sneha Reddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Varma
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Momoh R, Kollamparambil S. A Case Report of a Clinically Suspected Diagnosis of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes (MELAS) Syndrome With Cardiac Impairment. Cureus 2024; 16:e56980. [PMID: 38665734 PMCID: PMC11045175 DOI: 10.7759/cureus.56980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
This case report presents a description of a hypertrophic left ventricle with reduced ejection fraction in a man in his mid-twenties with clinical, radiologic, and biochemical features of a rare syndrome called mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). A literature review of this uncommon syndrome and MELAS cardiomyopathy has been conducted.
Collapse
Affiliation(s)
- Rabiu Momoh
- Critical Care, William Harvey Hospital, Ashford, GBR
| | | |
Collapse
|
17
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
18
|
Oktay V, Tüfekçioğlu O, Çicek Yılmaz D, Onrat E, Karabulut D, Çelik M, Serhat Balcıoğlu A, Murat Sucu M, Özdemir G, Kaya H, Kış M, Güven B, Bağdatoğlu O, Nihan Turhan Çağlar F, Çağdaş Yüksel U, Veysel Düzen İ, Barutçu A, Semih Şimşir Ö, Başarıcı İ, Parspur A, Dalgıç O, Özlem Arıcan Özlük F, Evlice M, Sağ S, Furkan Deniz M, Öcal A, Gazi E, Şen T, Özdabakoğlu O, Bayar Çakıcı N, Ozan Bakır E, Ülgen Kunak A, Çaylı G, Gül Taşdelen A, Akşit E, Uslu Çil Ş, Onay H. The Definition of Sarcomeric and Non-Sarcomeric Gene Mutations in Hypertrophic Cardiomyopathy Patients: A Multicenter Diagnostic Study Across Türkiye. Anatol J Cardiol 2023; 27:628-638. [PMID: 37466024 PMCID: PMC10621609 DOI: 10.14744/anatoljcardiol.2023.2805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/29/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy is a common genetic heart disease and up to 40%-60% of patients have mutations in cardiac sarcomere protein genes. This genetic diagnosis study aimed to detect pathogenic or likely pathogenic sarcomeric and non-sarcomeric gene mutations and to confirm a final molecular diagnosis in patients diagnosed with hypertrophic cardiomyopathy. METHODS A total of 392 patients with hypertrophic cardiomyopathy were included in this nationwide multicenter study conducted at 23 centers across Türkiye. All samples were analyzed with a 17-gene hypertrophic cardiomyopathy panel using next-generation sequencing technology. The gene panel includes ACTC1, DES, FLNC, GLA, LAMP2, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, PTPN11, TNNC1, TNNI3, TNNT2, TPM1, and TTR genes. RESULTS The next-generation sequencing panel identified positive genetic variants (variants of unknown significance, likely pathogenic or pathogenic) in 12 genes for 121 of 392 samples, including sarcomeric gene mutations in 30.4% (119/392) of samples tested, galactosidase alpha variants in 0.5% (2/392) of samples and TTR variant in 0.025% (1/392). The likely pathogenic or pathogenic variants identified in 69 (57.0%) of 121 positive samples yielded a confirmed molecular diagnosis. The diagnostic yield was 17.1% (15.8% for hypertrophic cardiomyopathy variants) for hypertrophic cardiomyopathy and hypertrophic cardiomyopathy phenocopies and 0.5% for Fabry disease. CONCLUSIONS Our study showed that the distribution of genetic mutations, the prevalence of Fabry disease, and TTR amyloidosis in the Turkish population diagnosed with hypertrophic cardiomyopathy were similar to the other populations, but the percentage of sarcomeric gene mutations was slightly lower.
Collapse
Affiliation(s)
- Veysel Oktay
- Department of Cardiology, İstanbul University-Cerrahpaşa, Institute of Cardiology, İstanbul, Türkiye
| | | | - Dilek Çicek Yılmaz
- Department of Cardiology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ersel Onrat
- Department of Cardiology, Faculty of Medicine, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Türkiye
| | - Dilay Karabulut
- Clinic of Cardiology, Dr. Sadi Konuk Training and Research Hospital, İstanbul, Türkiye
| | - Murat Çelik
- Department of Cardiology, University of Health Sciences, Gülhane Faculty of Medicine, Ankara, Türkiye
| | - Akif Serhat Balcıoğlu
- Department of Cardiology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Türkiye
| | - Mehmet Murat Sucu
- Department of Cardiology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Güllü Özdemir
- Clinic of Cardiology, Private Çekirge Heart and Arrhythmia Hospital, Bursa, Türkiye
| | - Hakkı Kaya
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Mehmet Kış
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Barış Güven
- Department of Cardiology, İstanbul University-Cerrahpaşa, Institute of Cardiology, İstanbul, Türkiye
| | | | | | - Uygar Çağdaş Yüksel
- Department of Cardiology, University of Health Sciences, Gülhane Faculty of Medicine, Ankara, Türkiye
| | - İrfan Veysel Düzen
- Department of Cardiology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Ahmet Barutçu
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | | | - İbrahim Başarıcı
- Department of Cardiology, Faculty of Medicine, Akdeniz University, Antalya, Türkiye
| | - Afşin Parspur
- Clinic of Cardiology, Kütahya University of Health Sciences, Evliya Çelebi Training and Research Hospital, Kütahya, Türkiye
| | - Onur Dalgıç
- Clinic of Cardiology, Private Kardiya Cardiology Center, İzmir, Türkiye
| | | | - Mert Evlice
- Clinics of Cardiology, Adana City Hospital, Adana, Türkiye
| | - Saim Sağ
- Clinic of Cardiology, Acıbadem Bursa Hospital, Bursa, Türkiye
| | - Muhammed Furkan Deniz
- Department of Cardiology, İstanbul University-Cerrahpaşa, Institute of Cardiology, İstanbul, Türkiye
| | - Arslan Öcal
- Department of Cardiology, University of Health Sciences, Gülhane Faculty of Medicine, Ankara, Türkiye
| | - Emine Gazi
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Taner Şen
- Clinic of Cardiology, Kütahya University of Health Sciences, Evliya Çelebi Training and Research Hospital, Kütahya, Türkiye
| | | | - Nermin Bayar Çakıcı
- Department of Cardiology, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Eren Ozan Bakır
- Department of Cardiology, Faculty of Medicine, Celal Bayar University, Manisa, Türkiye
| | | | - Gizem Çaylı
- Medical Affairs Rare Diseases, Sanofi, İstanbul, Türkiye
| | - Aybike Gül Taşdelen
- Department of Cardiology, İstanbul University-Cerrahpaşa, Institute of Cardiology, İstanbul, Türkiye
| | - Ercan Akşit
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | | | - Hüseyin Onay
- Gene2Info Health Informatics, İstanbul, Türkiye
- Multigen Genetic Diseases Diagnosis Center, İzmir, Türkiye
| |
Collapse
|
19
|
Schlittler M, Pramstaller PP, Rossini A, De Bortoli M. Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Perspective from Fibroblasts. Int J Mol Sci 2023; 24:14845. [PMID: 37834293 PMCID: PMC10573356 DOI: 10.3390/ijms241914845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and the leading cause of sudden cardiac death in young people. Mutations in genes that encode structural proteins of the cardiac sarcomere are the more frequent genetic cause of HCM. The disease is characterized by cardiomyocyte hypertrophy and myocardial fibrosis, which is defined as the excessive deposition of extracellular matrix proteins, mainly collagen I and III, in the myocardium. The development of fibrotic tissue in the heart adversely affects cardiac function. In this review, we discuss the latest evidence on how cardiac fibrosis is promoted, the role of cardiac fibroblasts, their interaction with cardiomyocytes, and their activation via the TGF-β pathway, the primary intracellular signalling pathway regulating extracellular matrix turnover. Finally, we summarize new findings on profibrotic genes as well as genetic and non-genetic factors involved in the pathophysiology of HCM.
Collapse
Affiliation(s)
| | | | | | - Marzia De Bortoli
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy
| |
Collapse
|
20
|
Zhu M, Reyes KRL, Bilgili G, Siegel RJ, Lee Claggett B, Wong TC, Masri A, Naidu SS, Willeford A, Rader F. Medical Therapies to Improve Left Ventricular Outflow Obstruction and Diastolic Function in Hypertrophic Cardiomyopathy. JACC. ADVANCES 2023; 2:100622. [PMID: 38938334 PMCID: PMC11198509 DOI: 10.1016/j.jacadv.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 06/29/2024]
Abstract
Hypertrophic cardiomyopathy-both obstructive hypertrophic cardiomyopathy (oHCM) and nonobstructive hypertrophic cardiomyopathy (nHCM) subtypes-is the most common monogenic cardiomyopathy. Its structural hallmarks are abnormal thickening of the myocardium and hyperdynamic contractility, while its hemodynamic consequences are left ventricular outflow tract or intracavitary obstruction (in oHCM) and diastolic dysfunction (in both oHCM and nHCM). Several medical therapies are routinely used to improve these abnormalities with the goal to decrease symptom burden in patients with HCM. Current guidelines recommend nonvasodilating beta blockers as first-line and nondihydropyridine calcium channel blockers followed by disopyramide as second- and third-line medical therapies for symptomatic oHCM and give weaker recommendations for beta blockers and calcium channel blockers in nHCM. These recommendations are based on small studies-mostly nonrandomized-and expert opinion. Our review will summarize the available data on the effectiveness of commonly prescribed medications used in oHCM and nHCM to uncover knowledge gaps, but also new data on cardiac myosin inhibitors.
Collapse
Affiliation(s)
- Mason Zhu
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Gizem Bilgili
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J. Siegel
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brian Lee Claggett
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Timothy C. Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Ahmad Masri
- Knight Cardiovascular Institute, Oregon Health Sciences University Medical Center, Portland, Oregon, USA
| | - Srihari S. Naidu
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, USA
| | - Andrew Willeford
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego Health, San Diego, California, USA
| | - Florian Rader
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
21
|
Reddy S, Teja D, R R, Vishal L, Gattu H, Nagilla MR. Cardiac Remodeling and Functional Changes in Patients With Hypertrophic Cardiomyopathy: A Longitudinal Observational Study. Cureus 2023; 15:e46610. [PMID: 37936986 PMCID: PMC10626149 DOI: 10.7759/cureus.46610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a hereditary cardiac disorder characterized by abnormal thickening of the left ventricular myocardium. This can lead to various clinical manifestations, including sudden death. AIM To investigate the cardiac remodeling and functional changes in patients with HCM over a specific time period and explore the impact of different treatment regimens on disease progression. METHODS We conducted a prospective longitudinal observational study involving 100 patients diagnosed with HCM. Baseline clinical data, including demographics, medical history, and echocardiographic measurements, were collected. Follow-up assessments were performed at regular intervals over 24 months to track changes in cardiac structure, function, and clinical status. Statistical analysis, including paired t-tests and subgroup analysis, was conducted to identify significant associations and differences between treatment groups. RESULTS A total of 100 patients (mean age = 55 years, 50% male) were enrolled in the study. At baseline, echocardiography revealed increased left ventricular wall thickness (mean = 18.5 mm), left atrial dimensions (mean = 39 mm), and ventricular mass (mean = 230 g). During the follow-up period, there was a progressive increase in left ventricular wall thickness (mean change = 1.0 mm/year, p < 0.001), left atrial dimensions (mean change = 3.0 mm/year, p < 0.001), and ventricular mass (mean change = 8 g/year, p = 0.003). Additionally, alterations in diastolic and systolic function parameters were noted, with a decline in E/A ratio (mean change = -0.1 units/year, p = 0.008) and a reduction in ejection fraction (mean change = -2.0% per year, p = 0.001). CONCLUSION Our longitudinal observational study provides important insights into the cardiac remodeling and functional changes in patients with HCM over time. The progressive increase in cardiac parameters indicates ongoing disease progression. Additionally, beta-blocker therapy was associated with a slower rate of left ventricular wall thickening. These findings contribute to a better understanding of HCM's natural history and may guide targeted therapeutic approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Shabarnadh Reddy
- Department of General Medicine, Narayana Medical College, Nellore, IND
| | - Dharma Teja
- Department of General Medicine, Mamata Medical College, Khammam, IND
| | - Rithvika R
- Department of General Medicine, Osmania Medical College and Hospital, Hyderabad, IND
| | - Loney Vishal
- Department of General Medicine, Osmania Medical College and Hospital, Hyderabad, IND
| | - Harshadeep Gattu
- Department of General Medicine, Osmania Medical College and Hospital, Hyderabad, IND
| | | |
Collapse
|
22
|
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1424. [PMID: 37629714 PMCID: PMC10456451 DOI: 10.3390/medicina59081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent heritable cardiomyopathy. HCM is considered to be caused by mutations in cardiac sarcomeric protein genes. Recent research suggests that the genetic foundation of HCM is much more complex than originally postulated. The clinical presentations of HCM are very variable. Some mutation carriers remain asymptomatic, while others develop severe HCM, terminal heart failure, or sudden cardiac death. Heterogeneity regarding both genetic mutations and the clinical course of HCM hinders the establishment of universal genotype-phenotype correlations. However, some trends have been identified. The presence of a mutation in some genes encoding sarcomeric proteins is associated with earlier HCM onset, more severe left ventricular hypertrophy, and worse clinical outcomes. There is a diversity in the mechanisms implicated in the pathogenesis of HCM. They may be classified into groups, but they are interrelated. The lack of known supplementary elements that control the progression of HCM indicates that molecular mechanisms that exist between genotype and clinical presentations may be crucial. Secondary molecular changes in pathways implicated in HCM pathogenesis, post-translational protein modifications, and epigenetic factors affect HCM phenotypes. Cardiac loading conditions, exercise, hypertension, diet, alcohol consumption, microbial infection, obstructive sleep apnea, obesity, and environmental factors are non-molecular aspects that change the HCM phenotype. Many mechanisms are implicated in the course of HCM. They are mostly interconnected and contribute to some extent to final outcomes.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| |
Collapse
|
23
|
Koshy L, Ganapathi S, Jeemon P, Madhuma M, Vysakh Y, Lakshmikanth L, Harikrishnan S. Sarcomeric gene variants among Indians with hypertrophic cardiomyopathy: A scoping review. Indian J Med Res 2023; 158:119-135. [PMID: 37787257 PMCID: PMC10645028 DOI: 10.4103/ijmr.ijmr_3567_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 10/04/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease that frequently causes sudden cardiac death (SCD) among young adults. Several pathogenic mutations in genes encoding the cardiac sarcomere have been identified as diagnostic factors for HCM and proposed as prognostic markers for SCD. The objective of this review was to determine the scope of available literature on the variants encoding sarcomere proteins associated with SCD reported among Indian patients with HCM. The eligibility criteria for the scoping review included full text articles that reported the results of genetic screening for sarcomeric gene mutations in HCM patients of Indian south Asian ancestry. We systematically reviewed studies from the databases of Medline, Scopus, Web of Science core collection and Google Scholar. The electronic search strategy included a combination of generic terms related to genetics, disease and population. The protocol of the study was registered with Open Science Framework (https://osf.io/53gde/). A total of 19 articles were identified that reported pathogenic or likely pathogenic (P/LP) variants within MYH7, MYBPC3, TNNT2, TNNI3 and TPM1 genes, that included 16 singletons, one de novo and one digenic mutation (MYH7/ TPM1) associated with SCD among Indian patients. Evidence from functional studies and familial segregation implied a plausible mechanistic role of these P/LP variants in HCM pathology. This scoping review has compiled all the P/LP variants reported to-date among Indian patients and summarized their association with SCD. Single homozygous, de novo and digenic mutations were observed to be associated with severe phenotypes compared to single heterozygous mutations. The abstracted genetic information was updated with reference sequence ID (rsIDs) and compiled into freely accessible HCMvar database, available at https://hcmvar.heartfailure.org.in/. This can be used as a population specific genetic database for reference by clinicians and researchers involved in the identification of diagnostic and prognostic markers for HCM.
Collapse
Affiliation(s)
- Linda Koshy
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Sanjay Ganapathi
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Panniyammakal Jeemon
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - M. Madhuma
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Y. Vysakh
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - L.R. Lakshmikanth
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Sivadasanpillai Harikrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
24
|
Abstract
Pre-symptomatic gene editing in preclinical models of hypertrophic cardiomyopathy show therapeutic promise; clinical studies are now needed to assess safety and efficacy in humans.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Liu X, Yin K, Chen L, Chen W, Li W, Zhang T, Sun Y, Yuan M, Wang H, Song Y, Wang S, Hu S, Zhou Z. Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics. Cell Discov 2023; 9:6. [PMID: 36646705 PMCID: PMC9842679 DOI: 10.1038/s41421-022-00490-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/29/2022] [Indexed: 01/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder characterized by cardiomyocyte hypertrophy and cardiac fibrosis. Pathological cardiac remodeling in the myocardium of HCM patients may progress to heart failure. An in-depth elucidation of the lineage-specific changes in pathological cardiac remodeling of HCM is pivotal for the development of therapies to mitigate the progression. Here, we performed single-nucleus RNA-seq of the cardiac tissues from HCM patients or healthy donors and conducted spatial transcriptomic assays on tissue sections from patients. Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and 28 clusters. Lineage-specific changes in gene expression, subpopulation composition, and intercellular communication in HCM were discovered through comparative analyses. According to the results of pseudotime ordering, differential expression analysis, and differential regulatory network analysis, potential key genes during the transition towards a failing state of cardiomyocytes such as FGF12, IL31RA, and CREB5 were identified. Transcriptomic dynamics underlying cardiac fibroblast activation were also uncovered, and potential key genes involved in cardiac fibrosis were obtained such as AEBP1, RUNX1, MEOX1, LEF1, and NRXN3. Using the spatial transcriptomic data, spatial activity patterns of the candidate genes, pathways, and subpopulations were confirmed on patient tissue sections. Moreover, we showed experimental evidence that in vitro knockdown of AEBP1 could promote the activation of human cardiac fibroblasts, and overexpression of AEBP1 could attenuate the TGFβ-induced activation. Our study provided a comprehensive analysis of the lineage-specific regulatory changes in HCM, which laid the foundation for targeted drug development in HCM.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Taojun Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Yang Sun
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
- Department of Pathology, Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
- Department of Pathology, Fuwai Hospital, Beijing, China
| | - Yunhu Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China
| | - Shuiyun Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
26
|
Zhang S, Liu Z, Liu H, Zhang C. Assisted Da Vinci robotic surgery combined with 3D printing technology applied in septal myectomy. Eur J Med Res 2023; 28:18. [PMID: 36627718 PMCID: PMC9830901 DOI: 10.1186/s40001-023-00985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Generally, the standard surgical route of Morrow begins with the incision of median sternal, which leads to more trauma, pains and discomforts to patients with hypertrophic obstructive cardiomyopathy (HOCM). It is more difficult and rough to perform the competed resection of hypertrophic myocardium due to complicated anatomical morphology of left ventricular outflow tract and limited visual field of left ventricle during surgery. As the novel surgical strategy, firstly, under the guiding of 3D printing technology, the platform of effective preoperative evaluation focusing on how to resect the hypertrophic myocardium is established. Then, combined with assisted Da Vinci robotic surgery system, the outcome of patient with HOCM is positive and promised.
Collapse
Affiliation(s)
- Shuaipeng Zhang
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Zhuang Liu
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Haiyuan Liu
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Chengxin Zhang
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
27
|
Caiati C, Stanca A, Lepera ME. Case report: Diagnosis of apical hypertrophic cardiomyopathy that escaped clinical and echocardiographic investigations for twenty years: Reasons and clinical implications. Front Cardiovasc Med 2023; 10:1157599. [PMID: 37168654 PMCID: PMC10165117 DOI: 10.3389/fcvm.2023.1157599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Background Apical hypertrophic cardiomyopathy (ApHCM) is a rare form of hypertrophic cardiomyopathy which predominantly affects the apex of the left ventricle. The diagnosis can be challenging due to several factors, ranging from no typical clinical and electrocardiogram (EKG) findings to potential difficulties in executing and interpreting the echocardiographic examination. Case presentation We report the case of an 84-year-old woman who came to our echo-lab to undergo a routine echocardiogram. She had a history of permanent atrial fibrillation, paced rhythm and previous episodes of heart failure (HF), allegedly explained by a diagnosis of hypertensive heart disease that had been confirmed many times over the previous 20 years. The clinical examination and the EKG were unremarkable. The echocardiographic images were poor quality. But a senior cardiologist, expert in imaging and echocardiography, noted the lack of delineation of the endocardial border of the left ventricular (LV) apex region. Contrast echocardiography was performed and severe apical hypertrophy discovered. Conclusion ApHCM can be a challenging diagnosis. Contrast echocardiography must always be applied in cases of poor delineation of the LV apical endocardial border at baseline echocardiography. Timely detection and appropriate lifestyle intervention might slow the development of LV hypertrophy, and possibly minimize and delay heart failure (HF) related symptoms and arrhythmias. The prognosis remains relatively benign during long term follow-up.
Collapse
|
28
|
Raj V, Gowda S, Kothari R. Myocardial tissue characterization by cardiac magnetic resonance: A primer for the clinician. JOURNAL OF THE INDIAN ACADEMY OF ECHOCARDIOGRAPHY & CARDIOVASCULAR IMAGING 2023. [DOI: 10.4103/jiae.jiae_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Muacevic A, Adler JR, Abdulwahab RA, Alzahrani A, Sindi G. A Case Report on the Atypical Presentation of Hypertrophic Cardiomyopathy (HOCM) in a 19-Year-Old Female. Cureus 2022; 14:e33136. [PMID: 36601155 PMCID: PMC9802538 DOI: 10.7759/cureus.33136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 12/31/2022] Open
Abstract
Atypical hypertrophic cardiomyopathy (HOCM) is a relatively rare genetic disorder that can affect the left ventricular system. HOCM can lead to various cardiac issues such as sudden cardiac death (SCD). We report a case of a 19-year-old female who was referred to a cardiology clinic after presenting with bi-ventricular hypertrophy on an echocardiogram (ECHO). Results from screening tests for infiltrative diseases and an iron panel came negative. The patient was asymptomatic, with no functional limitations and no family history of any cardiac disease or sudden death. In conclusion, HOCM can present with an atypical pattern, such as biventricular hypertrophy, and has been linked to SCD; therefore, it is important to be aware of this condition and take the necessary precautions to prevent it.
Collapse
|
30
|
Reyes KRL, Bilgili G, Rader F. Mavacamten: A First-in-class Oral Modulator of Cardiac Myosin for the Treatment of Symptomatic Hypertrophic Obstructive Cardiomyopathy. Heart Int 2022; 16:91-98. [PMID: 36741099 PMCID: PMC9872784 DOI: 10.17925/hi.2022.16.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertrophic cardiomyopathy is the most common monogenic cardiovascular disease that is caused by sarcomeric protein gene mutations. A hallmark of the most common form of the disease is outflow obstruction secondary to systolic narrowing of the left ventricular outflow tract from septal hypertrophy, mitral valve abnormalities and, most importantly, hyperdynamic contractility. Recent mechanistic studies have identified excessive myosin adenosine triphosphatase activation and actin-myosin cross-bridging as major underlying causes. These studies have led to the development of mavacamten, a first-in-class myosin adenosine triphosphatase inhibitor and the first specific therapy for hypertrophic obstructive cardiomyopathy. Preclinical and subsequent pivotal clinical studies have demonstrated the efficacy and safety of mavacamten. A remarkable improvement among treated patients in peak oxygen consumption, functional capacity, symptom relief and post-exercise left ventricular outflow tract gradient, along with dramatic reductions in heart failure biomarkers, suggests that this new medication will be transformative for the symptom management of hypertrophic obstructive cardiomyopathy. There is also hope and early evidence that mavacamten may delay or obviate the need for invasive septal reduction therapies. In this article, we review the current evidence for the efficacy and safety of mavacamten and highlight important considerations for its clinical use.
Collapse
Affiliation(s)
| | - Gizem Bilgili
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Florian Rader
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Left ventricular remodeling following septal myectomy in hypertrophic obstructive cardiomyopathy. JTCVS OPEN 2022; 11:105-115. [PMID: 36172435 PMCID: PMC9510883 DOI: 10.1016/j.xjon.2022.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Objectives The purpose of this study is to determine whether or not left ventricular remodeling can be induced after septal myectomy in patients with obstructive hypertrophic cardiomyopathy, and if so, how it occurs, using gated cardiac computed tomography. Methods Fifty patients with hypertrophic obstructive cardiomyopathy who underwent septal myectomy along the septal band between March 2016 and July 2020 were retrospectively reviewed. Recent consecutive 19 patients underwent postoperative cardiac computed tomography. In these patients, volumes of the septal band and thickness of 17 left ventricular myocardial segments were measured to determine the changes after surgery. Results The resection volume predicted by preoperative computed tomography and the actual resection volume were 6.7 ± 3.3 mL and 6.4 ± 2.7 mL. In-hospital mortality was 0%. Moderate or greater mitral valve regurgitation and systolic anterior motion decreased from 56% to 6% and 86% to 6%, respectively. Median preoperative ventricular septal thickness and left ventricular outflow tract pressure gradient at rest decreased from 20.0 mm (interquartile range, 17.0-24.0 mm) and 74.0 mm Hg (interquartile range, 42.5-92.5 mm Hg) to 14.0 mm (interquartile range, 11.5-16.0 mm) and 15.5 mm Hg (interquartile range, 12.1-21.5 mm Hg), respectively. Postoperative computed tomography confirmed a reduction in septal band volume of 5.7 ± 2.8 mL. Total left ventricular myocardial volume was reduced by 12.9 ± 8.8 mL, which exceeded the volume reduction of the resected septal band. All segments except the basal inferior and basal inferolateral regions showed a significant decrease in wall thickness by a median of 6.4%. Conclusions Properly performed septal myectomy may induce remodeling of the entire left ventricle, not just the resected area.
Collapse
|
32
|
Barbosa P, Ribeiro M, Carmo-Fonseca M, Fonseca A. Clinical significance of genetic variation in hypertrophic cardiomyopathy: comparison of computational tools to prioritize missense variants. Front Cardiovasc Med 2022; 9:975478. [PMID: 36061567 PMCID: PMC9433717 DOI: 10.3389/fcvm.2022.975478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heart disease associated with sudden cardiac death. Early diagnosis is critical to identify patients who may benefit from implantable cardioverter defibrillator therapy. Although genetic testing is an integral part of the clinical evaluation and management of patients with HCM and their families, in many cases the genetic analysis fails to identify a disease-causing mutation. This is in part due to difficulties in classifying newly detected rare genetic variants as well as variants-of-unknown-significance (VUS). Multiple computational algorithms have been developed to predict the potential pathogenicity of genetic variants, but their relative performance in HCM has not been comprehensively assessed. Here, we compared the performance of 39 currently available prediction tools in distinguishing between high-confidence HCM-causing missense variants and benign variants, and we developed an easy-to-use-tool to perform variant prediction benchmarks based on annotated VCF files (VETA). Our results show that tool performance increases after HCM-specific calibration of thresholds. After excluding potential biases due to circularity type I issues, we identified ClinPred, MISTIC, FATHMM, MPC and MetaLR as the five best performer tools in discriminating HCM-associated variants. We propose combining these tools in order to prioritize unknown HCM missense variants that should be closely followed-up in the clinic.
Collapse
Affiliation(s)
- Pedro Barbosa
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Marta Ribeiro
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Alcides Fonseca
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- GenoMed - Diagnósticos de Medicina Molecular, Lisboa, Portugal
| |
Collapse
|
33
|
Shen H, Dong SY, Ren MS, Wang R. Ventricular arrhythmia and sudden cardiac death in hypertrophic cardiomyopathy: From bench to bedside. Front Cardiovasc Med 2022; 9:949294. [PMID: 36061538 PMCID: PMC9433716 DOI: 10.3389/fcvm.2022.949294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with hypertrophic cardiomyopathy (HCM) mostly experience minimal symptoms throughout their lifetime, and some individuals have an increased risk of ventricular arrhythmias and sudden cardiac death (SCD). How to identify patients with a higher risk of ventricular arrythmias and SCD is the priority in HCM research. The American College of Cardiology/American Heart Association (ACC/AHA) and the European Society of Cardiology (ESC) both recommend the use of risk algorithms to identify patients at high risk of ventricular arrhythmias, to be selected for implantation of implantable cardioverters/defibrillators (ICDs) for primary prevention of SCD, although major discrepancies exist. The present SCD risk scoring systems cannot accurately identify early-stage HCM patients with modest structural remodeling and mild disease manifestations. Unfortunately, SCD events could occur in young asymptomatic HCM patients and even as initial symptoms, prompting the determination of new risk factors for SCD. This review summarizes the studies based on patients' surgical specimens, transgenic animals, and patient-derived induced pluripotent stem cells (hiPSCs) to explore the possible molecular mechanism of ventricular arrhythmia and SCD. Ion channel remodeling, Ca2+ homeostasis abnormalities, and increased myofilament Ca2+ sensitivity may contribute to changes in action potential duration (APD), reentry circuit formation, and trigger activities, such as early aferdepolarization (EAD) or delayed afterdepolarization (DAD), leading to ventricular arrhythmia in HCM. Besides the ICD implantation, novel drugs represented by the late sodium current channel inhibitor and myosin inhibitor also shed light on the prevention of HCM-related arrhythmias. The ideal prevention strategy of SCD in early-stage HCM patients needs to be combined with gene screening, hiPSC-CM testing, machine learning, and advanced ECG studies, thus achieving individualized SCD prevention.
Collapse
Affiliation(s)
- Hua Shen
- Division of Adult Cardiac Surgery, Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Yong Dong
- Department of Cardiovascular Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ming-Shi Ren
- Division of Adult Cardiac Surgery, Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Rong Wang
- Division of Adult Cardiac Surgery, Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiovascular Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
34
|
Field E, Norrish G, Acquaah V, Dady K, Cicerchia MN, Ochoa JP, Syrris P, McLeod K, McGowan R, Fell H, Lopes LR, Cervi E, Kaski JPP. Cardiac myosin binding protein-C variants in paediatric-onset hypertrophic cardiomyopathy: natural history and clinical outcomes. J Med Genet 2022; 59:768-775. [PMID: 34400558 PMCID: PMC7613139 DOI: 10.1136/jmedgenet-2021-107774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Variants in the cardiac myosin-binding protein C gene (MYBPC3) are a common cause of hypertrophic cardiomyopathy (HCM) in adults and have been associated with late-onset disease, but there are limited data on their role in paediatric-onset HCM. The objective of this study was to describe natural history and clinical outcomes in a large cohort of children with HCM and pathogenic/likely pathogenic (P/LP) MYBPC3 variants. METHODS AND RESULTS Longitudinal data from 62 consecutive patients diagnosed with HCM under 18 years of age and carrying at least one P/LP MYBPC3 variant were collected from a single specialist referral centre. The primary patient outcome was a major adverse cardiac event (MACE). Median age at diagnosis was 10 (IQR: 2-14) years, with 12 patients (19.4%) diagnosed in infancy. Forty-seven (75%) were boy and 31 (50%) were probands. Median length of follow-up was 3.1 (IQR: 1.6-6.9) years. Nine patients (14.5%) experienced an MACE during follow-up and five (8%) died. Twenty patients (32.3%) had evidence of ventricular arrhythmia, including 6 patients (9.7%) presenting with out-of-hospital cardiac arrest. Five-year freedom from MACE for those with a single or two MYBPC3 variants was 95.2% (95% CI: 78.6% to 98.5%) and 68.4% (95% CI: 40.6% to 88.9%), respectively (HR 4.65, 95% CI: 1.16 to 18.66, p=0.03). CONCLUSIONS MYBPC3 variants can cause childhood-onset disease, which is frequently associated with life-threatening ventricular arrhythmia. Clinical outcomes in this cohort vary substantially from aetiologically and genetically mixed paediatric HCM cohorts described previously, highlighting the importance of identifying specific genetic subtypes for clinical management of childhood HCM.
Collapse
Affiliation(s)
- Ella Field
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kathleen Dady
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karen McLeod
- Department of Paediatric Cardiology, Royal Hospital for Children, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Glasgow, UK
| | - Hannah Fell
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luis R Lopes
- Institute of Cardiovascular Science, University College London, London, UK
- Inherited Cardiovascular Disease Unit, Saint Bartholomew's Hospital Barts Heart Centre, London, UK
| | - Elena Cervi
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Juan Pablo Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
35
|
Gao A, Zou J, Mao Z, Zhou H, Zeng G. SUMO2-mediated SUMOylation of SH3GLB1 promotes ionizing radiation-induced hypertrophic cardiomyopathy through mitophagy activation. Eur J Pharmacol 2022; 924:174980. [PMID: 35487252 DOI: 10.1016/j.ejphar.2022.174980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HC) is characterized by the enlargement of individual cardiomyocytes, which is a typical pathophysiological process that occurs in various cardiovascular diseases. Ionizing radiation (IR) is an important independent risk factor for hypertrophic cardiomyopathy, but the underlying molecular mechanism is still unclear. In the present study, we aimed to clarify the role of IR in promoting cardiac hypertrophy and investigate the mechanism by which the SUMO2-mediated SUMOylation of SH3GLB1 affects mitophagy in IR-induced cardiac hypertrophy. In vivo, IR promoted cardiac hypertrophy by activating mitophagy. In vitro, IR upregulated PINK1 and Parkin protein expression and damaged mitochondrial morphological structure. We further demonstrated that SH3GLB1 deficiency inhibited mitophagy activation and restored mitochondrial cristae, revealing a regulatory role of SH3GLB1 in cardiac hypertrophy. IR promoted interactions between SH3GLB1 and mitochondrial membrane proteins, such as MFN1/2, TOM20 and Drp1, further indicating that the mechanism by which SH3GLB1 functions in cardiac hypertrophy might involve mitophagy. A bioinformatics prediction found that SUMO2 could SUMOylate SH3GLB1 at position K82. Consistent with this finding, both co-IP assays and laser confocal microscopy showed that IR promoted the interaction and colocalization of SUMO2 and SH3GLB1. In summary, our study identifies IR as an important factor that promotes hypertrophic cardiomyopathy by accelerating the activation of mitophagy through the SUMO2-mediated SUMOylation of SH3GLB1; thus, IR exerts dual therapeutic effects in the treatment of thoracic tumours with long-term radiotherapy. Additionally, this study provides novel treatment strategies and targets for preventing the hypertrophic cardiomyopathy caused by thoracic tumour radiotherapy. Furthermore, SH3GLB1 may be a promising experimental target for the development of strategies for treating cardiovascular diseases caused by IR.
Collapse
Affiliation(s)
- Anbo Gao
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421002, Hunan, China
| | - Jin Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Zhenjiang Mao
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421002, Hunan, China.
| |
Collapse
|
36
|
Ravi R, Fernandes Silva L, Vangipurapu J, Maria M, Raivo J, Helisalmi S, Laakso M. Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study. Metabolites 2022; 12:437. [PMID: 35629941 PMCID: PMC9143630 DOI: 10.3390/metabo12050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are among the leading causes of sudden cardiac death. We identified 38 pathogenic or likely pathogenic variant carriers for HCM in three sarcomere genes (MYH7, MYBPC3, TPMI) among 9.928 participants of the METSIM Study having whole exome sequencing data available. Eight of them had a clinical diagnosis of HCM. We also identified 20 pathogenic or likely pathogenic variant carriers for DCM in the TTN gene, and six of them had a clinical diagnosis of DCM. The aim of our study was to investigate the metabolite signature in the carriers of the pathogenic or likely pathogenic genetic variants for HCM and DCM, compared to age- and body-mass-index-matched controls. Our novel findings were that the carriers of pathogenic or likely pathogenic variants for HCM had significantly increased concentrations of bradykinin (des-arg 9), vanillactate, and dimethylglycine and decreased concentrations of polysaturated fatty acids (PUFAs) and lysophosphatidylcholines compared with the controls without HCM. Additionally, our novel findings were that the carriers of pathogenic or likely pathogenic variants for DCM had significantly decreased concentrations of 1,5-anhydrogluticol, histidine betaine, N-acetyltryptophan, and methylsuccinate and increased concentrations of trans-4-hydroxyproline compared to the controls without DCM. Our population-based study shows that the metabolite signature of the genetic variants for HCM and DCM includes several novel metabolic pathways not previously described.
Collapse
Affiliation(s)
- Rowmika Ravi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (R.R.); (L.F.S.); (J.V.); (J.R.); (S.H.)
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (R.R.); (L.F.S.); (J.V.); (J.R.); (S.H.)
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (R.R.); (L.F.S.); (J.V.); (J.R.); (S.H.)
| | - Maleeha Maria
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Joose Raivo
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (R.R.); (L.F.S.); (J.V.); (J.R.); (S.H.)
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (R.R.); (L.F.S.); (J.V.); (J.R.); (S.H.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (R.R.); (L.F.S.); (J.V.); (J.R.); (S.H.)
- Department of Medicine, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
37
|
Andreeva S, Chumakova O, Karelkina E, Lebedeva V, Lubimtseva T, Semenov A, Nikitin A, Speshilov G, Kozyreva A, Sokolnikova P, Zhuk S, Fomicheva Y, Moiseeva O, Kostareva A. Case Report: Two New Cases of Autosomal-Recessive Hypertrophic Cardiomyopathy Associated With TRIM63-Compound Heterozygous Variant. Front Genet 2022; 13:743472. [PMID: 35273634 PMCID: PMC8901572 DOI: 10.3389/fgene.2022.743472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary diseases, and it is associated with fatal complications. The clinical heterogeneity of HCM requires risk prediction models to identify patients at a high risk of adverse events. Most HCM cases are caused by mutations in genes encoding sarcomere proteins. However, HCM is associated with rare genetic variants with limited data about its clinical course and prognosis, and existing risk prediction models are not validated for such patients' cohorts. TRIM63 is one of the rare genes recently described as a cause of HCM with autosomal-recessive inheritance. Herein, we present two cases of HCM associated with TRIM63-compound heterozygous variants in young male sportsmen. They demonstrated progressively marked hypertrophy, advanced diastolic dysfunction, a significant degree of fibrosis detected by magnetic resonance imaging, and clear indications for implantable cardioverter-defibrillator. One of the cases includes the first description of TRIM63-HCM with extreme hypertrophy. The presented cases are discussed in light of molecular consequences that might underlie cardiac and muscle phenotype in patients with mutations of TRIM63, the master regulator of striated muscle mass.
Collapse
Affiliation(s)
- Sofiya Andreeva
- Institute of Molecular Biology and Genetics and World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Chumakova
- Central State Medical Academy of Department of Presidential Affairs, City Clinical Hospital #17, Moscow, Russia
| | - Elena Karelkina
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Viktoriya Lebedeva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tamara Lubimtseva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Andrey Semenov
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexey Nikitin
- Pulmonology Research Institute, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Gleb Speshilov
- Laboratory of Genotyping, N. F. Gamaleya National Research Center, Moscow, Russia
| | - Alexandra Kozyreva
- Institute of Molecular Biology and Genetics and World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Polina Sokolnikova
- Institute of Molecular Biology and Genetics and World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Sergey Zhuk
- Institute of Molecular Biology and Genetics and World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yuliya Fomicheva
- Institute of Molecular Biology and Genetics and World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Moiseeva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Institute of Molecular Biology and Genetics and World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
| |
Collapse
|
38
|
Ma W, Gong H, Jani V, Lee KH, Landim-Vieira M, Papadaki M, Pinto JR, Aslam MI, Cammarato A, Irving T. Myofibril orientation as a metric for characterizing heart disease. Biophys J 2022; 121:565-574. [PMID: 35032456 PMCID: PMC8874025 DOI: 10.1016/j.bpj.2022.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois.
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Vivek Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - M Imran Aslam
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
39
|
Bogatyreva FM, Kaplunova VY, Kozhevnikova MV, Shakaryants GA, Privalova EV, Belenkov YN. Correlation between markers of fibrosis and myocardial remodeling in patients with various course of hypertrophic cardiomyopathy. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To assess the relationship between fibrosis markers and structural and functional parameters in patients with various types of hypertrophic cardiomyopathy (HCM).Material and methods. This prospective comparative non-randomized study included 49 patients with HCM. Patients were divided into 3 groups according to the disease course: group 1 — stable course (n=12; men, 8 (67%), mean age ‒ 41±12 years); group 2 — progressive course (n=26; men, men, 16 (61%). mean age — 57±11 years); group 3 — patients with atrial fibrillation (AF) (n=11; men, 4 (36%), mean age — 63±6 years). Patients underwent standard clinical and paraclinical investigations. The levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1) were determined in all patients using enzyme-linked immunosorbent assay in blood serum.Results. In all patients with HCM, elevated levels of MMP-9 and TIMP-1 are noted compared to the reference values. In group 1, the MMP-9 level [Me (Q1; Q3)] was 226 (201;271) ng/ml; TIMP-1 — 410 (267;488) ng/ml; in group 2, the MMP-9 level was 236 (187;285) ng/ml; TIMP-1 — 421 (321;499) ng/ml. In the course with AF, the MMP-9 level was 260 (228;296) ng/ml, while TIMP-1 — 381,5 (305;466) ng/ml; no significant difference was revealed (p=0,59; p=0,90, respectively). A correlation was found between age and MMP-9 levels, as well as between MMP-9 levels and left atrial volume (p=0,034; p=0,035, respectively).Conclusion. The high activity of matrix metalloproteinases and their tissue inhibitors reflects enhanced fibrosis and myocardial remodeling in HCM, which is especially characteristic of patients with AF.
Collapse
|
40
|
Del Rio-Pertuz G, Sethi P, Swaminath D, Argueta-Sosa E. Hypertrophic Cardiomyopathy in the Elderly: A Case Identified With Genetic Screening. J Investig Med High Impact Case Rep 2022; 10:23247096221109204. [PMID: 35778879 PMCID: PMC9251991 DOI: 10.1177/23247096221109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a hereditary disease with an autosomal dominant pattern of inheritance, that is caused by a mutation in one of several sarcomere genes that encodes components of the contractile system of the heart. Hypertrophic cardiomyopathy has been described as a disease that is more heavily diagnosed in the second decade of life, that may present with abnormal syncopal episodes or sudden cardiac death. However, with a better understanding of the genetic changes that occur in HCM and with improved imaging techniques, there has now been an increased recognition of a late-onset disease that can occur in the elderly population. We report a case of a 73-year-old woman who was found to have HCM after various clinical events took place.
Collapse
Affiliation(s)
- Gaspar Del Rio-Pertuz
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Pooja Sethi
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Deephak Swaminath
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Erwin Argueta-Sosa
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
41
|
García-Padilla C, Domínguez JN, Lodde V, Munk R, Abdelmohsen K, Gorospe M, Jiménez-Sábado V, Ginel A, Hove-Madsen L, Aránega AE, Franco D. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB J 2022; 36:e22051. [PMID: 34861058 PMCID: PMC8684585 DOI: 10.1096/fj.202100844rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N. Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Valeria Lodde
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Antonino Ginel
- Department Cardiac Surgery, Hospital de Sant Pau, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- CIBERCV, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain,Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Amelia E. Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
42
|
Zheng X, Yang Y, Huang Fu C, Huang R. Identification and verification of promising diagnostic biomarkers in patients with hypertrophic cardiomyopathy associate with immune cell infiltration characteristics. Life Sci 2021; 285:119956. [PMID: 34520765 DOI: 10.1016/j.lfs.2021.119956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
AIMS To explore immune cell infiltration characteristics of, and hub genes associated with, hypertrophic cardiomyopathy (HCM). MATERIALS AND METHODS The GSE130036 dataset was downloaded and the differentially expressed genes (DEGs) were identified. The DEGs were analyzed via the CIBERSORT algorithm to understand the composition of 22 immune cell types between the HCM and normal myocardial tissue specimens. Weighted gene co-expression network analysis (WGCNA) was performed to segregate the DEGs into several modules and explore correlation between the key modules and specific immune cells enriched in the myocardial tissues of HCM patients. The biofunctional and disease enrichment of the genes among the modules was explored, and hub genes serving as potential biomarkers of HCM were identified. These genes were validated by GSE36961 dataset, and the discrimination ability was assessed by receiver operating characteristic curve analysis. KEY FINDINGS CIBERSORT analysis showed that neutrophils and B-cells (naive and memory B-cells) were highly abundant in HCM samples, while macrophages (M0, M1, M2) were highly abundant in normal samples. WGCNA analysis of the DEGs yielded seven modules, and the gray and yellow modules were strongly associated with neutrophils and B-cells, and with macrophages, respectively. Yellow module genes were mainly functional in immune and inflammation processes. Gray module genes were mainly functional in the transportation of intercellular substances. SLITRK4 and CD163 showed a notably high area under the curve values in both datasets and may serve as potential biomarkers for HCM. SIGNIFICANCE SLITRK4 and CD163 may be promising Diagnostic Biomarkers of Hypertrophic Cardiomyopathy.
Collapse
Affiliation(s)
- Xifeng Zheng
- Department of Geriatrics in Affiliated Hospital of Guangdong Medical University, People's Republic of China
| | - Yu Yang
- Department of Geriatrics in Affiliated Hospital of Guangdong Medical University, People's Republic of China
| | - Changmei Huang Fu
- Department of Geriatrics in Affiliated Hospital of Guangdong Medical University, People's Republic of China
| | - Ruina Huang
- Department of Cardiology in Affiliated Hospital of Guangdong Medical University, People's Republic of China.
| |
Collapse
|
43
|
Zheng X, Liu G, Huang R. Identification and Verification of Feature Immune-Related Genes in Patients With Hypertrophic Cardiomyopathy Based on Bioinformatics Analyses. Front Cardiovasc Med 2021; 8:752559. [PMID: 34765659 PMCID: PMC8577723 DOI: 10.3389/fcvm.2021.752559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: To identify feature immune-related genes (IRGs) in patients with hypertrophic cardiomyopathy (HCM) and verify their ability to diagnose HCM. Methods: The GSE160997 dataset on cardiac tissue from 18 HCM patients and 5 controls was downloaded from the Gene Expression Omnibus database. A false discovery rate <0.05 and |log2 fold change| >1 were the filters applied to identify the differentially expressed genes (DEGs). The differentially expressed IRGs were the intersection results between the DEGs and an IRG dataset from the IMMPORT database. The protein-protein interaction network of differentially expressed IRGs was constructed, and the top 20 hub genes with the most adjacent nodes in the network were selected. The least absolute shrinkage and selection operator regression algorithm and a random forest algorithm were used to identify the feature IRGs as biomarkers that were then verified against GSE36961. Results: A total of 1079 DEGs were identified in GSE160997. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that immune-related mechanisms play an important role in the pathogenesis of HCM. A total of 121 differentially expressed IRGs were identified, and 5 feature IRGs were selected, 4 of which were confirmed as potential biomarkers of HCM by external verification with excellent discrimination ability. A diagnosis model of HCM based on the four feature IRGs was developed and visualized as a nomogram with a C-index of 0.925 (95% confidence interval 0.869–0.981). Conclusion: Our study identified four feature IRGs as biomarkers for the diagnosis of HCM, offering an innovative perspective of the underlying immune-related pathological molecular mechanisms.
Collapse
Affiliation(s)
- Xifeng Zheng
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangyan Liu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ruina Huang
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
44
|
Pollmann K, Kaltenecker E, Schleihauf J, Ewert P, Görlach A, Wolf CM. Compound Mutation in Cardiac Sarcomere Proteins Is Associated with Increased Risk for Major Arrhythmic Events in Pediatric Onset Hypertrophic Cardiomyopathy. J Clin Med 2021; 10:jcm10225256. [PMID: 34830538 PMCID: PMC8617951 DOI: 10.3390/jcm10225256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is associated with adverse left ventricular (LV) remodeling causing dysfunction and malignant arrhythmias. Severely affected patients present with disease onset during childhood and sudden cardiac death risk (SCD) stratification is of the highest importance in this cohort. This study aimed to investigate genotype–phenotype association regarding clinical outcome and disease progression in pediatric onset HCM. Medical charts from forty-nine patients with pediatric HCM who had undergone genetic testing were reviewed for retrospective analysis. Demographic, clinical, transthoracic echocardiographic, electrocardiographic, long-term electrocardiogram, cardiopulmonary exercise test, cardiac magnetic resonance, and medication data were recorded. Childhood onset HCM was diagnosed in 29 males and 20 females. Median age at last follow-up was 18.7 years (range 2.6–51.7 years) with a median follow-up time since diagnosis of 8.5 years (range 0.2–38.0 years). Comparison of patients carrying mutations in distinct genes and comparison of genotype-negative with genotype-positive individuals, revealed no differences in functional classification, LV morphology, hypertrophy, systolic and diastolic function, fibrosis and cardiac medication. Patients with compound mutations had a significantly higher risk for major arrhythmic events than a single-mutation carrier. No association between affected genes and disease severity or progression was identified in this cohort.
Collapse
Affiliation(s)
- Kathrin Pollmann
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
| | - Emanuel Kaltenecker
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
| | - Julia Schleihauf
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
| | - Peter Ewert
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Agnes Görlach
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Experimental and Molecular Pediatric Cardiology, Technical University of Munich, 80636 Munich, Germany
| | - Cordula M. Wolf
- German Heart Center Munich, Department of Congenital Heart Disease and Pediatric Cardiology, School of Medicine & Health, Technical University of Munich, 80636 Munich, Germany; (K.P.); (E.K.); (J.S.); (P.E.); (A.G.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Correspondence:
| |
Collapse
|
45
|
Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front Cardiovasc Med 2021; 8:722340. [PMID: 34760939 PMCID: PMC8572854 DOI: 10.3389/fcvm.2021.722340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a very common inherited cardiovascular disease (CAD) and the incidence is about 1/500 of the common population. It is caused by more than 1,400 mutations in 11 or more genes encoding the proteins of the cardiac sarcomere. HCM presents a heterogeneous clinical profile and complex pathophysiology and HCM is the most important cause of sudden cardiac death (SCD) in young people. HCM also contributes to functional disability from heart failure and stroke (caused by atrial fibrillation). Current treatments for HCM (medication, myectomy, and alcohol septal ablation) are geared toward slowing down the disease progression and symptom relief and implanted cardiac defibrillator (ICD) to prevent SCD. HCM is, however, entering a period of tight translational research that holds promise for the major advances in disease-specific therapy. Main insights into the genetic landscape of HCM have improved our understanding of molecular pathogenesis and pointed the potential targets for the development of therapeutic agents. We reviewed the critical discoveries about the treatments, mechanism of HCM, and their implications for future research.
Collapse
Affiliation(s)
- Zeyi Cheng
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Fang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglei Huang
- School of Medicine, Lanzhou University, Lanzhou, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mahboob Alam
- Division of Cardiovascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Temporal Trend, Prevalence, Predictors and Outcomes of Gastrointestinal Bleed in Hypertrophic Cardiomyopathy in the United States (from the National Inpatient Sample). Am J Cardiol 2021; 157:115-124. [PMID: 34373078 DOI: 10.1016/j.amjcard.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
Gastrointestinal bleed (GIB) is an important complication in patients with hypertrophic cardiomyopathy (HC) although its prevalence, predictors and outcomes are unknown. The national inpatient sample 2011 to 2018 was analyzed to find hospitalizations with the diagnosis of HC. HC patients were divided into 2 groups: with and without GIB. Baseline characteristics between the 2 groups were compared (Table 2). Variables with p value of 0.2 or less from univariate logistic regression were included in the multivariate logistic regression to find an independent predictor of GIB in HC patients. Stata IC was used for all statistical analysis. Our study reported 242,172 HC hospitalizations between 2011 and 2018, out of which 13,231 (5.4%) also has a concurrent diagnosis of GIB. The GIB group was older (mean age ± SD: 70 ± 28 vs 65 ± 10, p <0.001), more likely to be female (62.5 vs 57%, p <0.001) and had higher burden of comorbidities . HC patients with GIB had higher in-hospital mortality rate (5.3 vs 3.1%, p <0.001), mean length of stay (7.8 vs 5.6 days, p <0.001) and mean total hospital cost ($100,294 vs 77,966, p <0.001). Age group >75, female, chronic kidney disease (CKD 3/4), end-stage renal disease, cirrhosis, coagulopathy and malnutrition were an independent predictor of GIB in HC patients. In conclusion, the prevalence of GIB during HC hospitalizations is increasing. Older, white, females with higher burden of comorbidities are at an increased risk of GIB in HC patients. Sex-based disparities in the prevalence of GIB in HC patients is an area of further research.
Collapse
|
47
|
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021; 13:e17548. [PMID: 34646605 PMCID: PMC8481153 DOI: 10.7759/cureus.17548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically acquired disease of cardiac myocytes. Studies show that 70% of this disease is a result of different mutations in various sarcomere genes. This review aims to discuss several genetic mutations, epigenetic factors, and signal transduction pathways leading to the development of HCM. In addition, this article elaborates on recent advances in gene therapies and their implications for managing this condition. We start by discussing the founding mutations in HCM and their effect on power stroke generation. The less explored field of epigenetics including methylation, acetylation, and the role of different micro RNAs in the development of cardiac muscle hypertrophy has been highlighted in this article. The signal transduction pathways that lead to gene transcription, which in turn lead to increased protein synthesis of cardiac muscle fibers are elaborated. Finally, the microscopic events leading to the pathophysiologic macro events of cardiac failure, and the current experimental trials of gene therapy models, and the clustered regularly interspaced short palindromic repeats (CRISPR) type 2 system proteins, are discussed. We have concluded our discussion by emphasizing the need for more studies on epigenomics and experimental designs for gene therapy in HCM patients. This review focuses on the process of HCM from initial mutation to the development of phenotypic expression and various points of intervention in cardiac myocardial hypertrophy development.
Collapse
Affiliation(s)
- Roshini Pradeep
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Matthew C Proute
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nageshwar R Kothur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Petros Georgiou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tatsiana Serhiyenia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wangpan Shi
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mina E Kerolos
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
48
|
Glavaški M, Velicki L. Humans and machines in biomedical knowledge curation: hypertrophic cardiomyopathy molecular mechanisms' representation. BioData Min 2021; 14:45. [PMID: 34600580 PMCID: PMC8487578 DOI: 10.1186/s13040-021-00279-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Biomedical knowledge is dispersed in scientific literature and is growing constantly. Curation is the extraction of knowledge from unstructured data into a computable form and could be done manually or automatically. Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease, with genotype–phenotype associations still incompletely understood. We compared human- and machine-curated HCM molecular mechanisms’ models and examined the performance of different machine approaches for that task. Results We created six models representing HCM molecular mechanisms using different approaches and made them publicly available, analyzed them as networks, and tried to explain the models’ differences by the analysis of factors that affect the quality of machine-curated models (query constraints and reading systems’ performance). A result of this work is also the Interactive HCM map, the only publicly available knowledge resource dedicated to HCM. Sizes and topological parameters of the networks differed notably, and a low consensus was found in terms of centrality measures between networks. Consensus about the most important nodes was achieved only with respect to one element (calcium). Models with a reduced level of noise were generated and cooperatively working elements were detected. REACH and TRIPS reading systems showed much higher accuracy than Sparser, but at the cost of extraction performance. TRIPS proved to be the best single reading system for text segments about HCM, in terms of the compromise between accuracy and extraction performance. Conclusions Different approaches in curation can produce models of the same disease with diverse characteristics, and they give rise to utterly different conclusions in subsequent analysis. The final purpose of the model should direct the choice of curation techniques. Manual curation represents the gold standard for information extraction in biomedical research and is most suitable when only high-quality elements for models are required. Automated curation provides more substance, but high level of noise is expected. Different curation strategies can reduce the level of human input needed. Biomedical knowledge would benefit overwhelmingly, especially as to its rapid growth, if computers were to be able to assist in analysis on a larger scale. Supplementary Information The online version contains supplementary material available at 10.1186/s13040-021-00279-2.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Institute of Cardiovascular Diseases Vojvodina, Sremska Kamenica, Serbia
| |
Collapse
|
49
|
Viggiano E, Politano L. X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22147663. [PMID: 34299283 PMCID: PMC8304911 DOI: 10.3390/ijms22147663] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Anderson-Fabry disease is an X-linked inborn error of glycosphingolipid catabolism caused by a deficiency of α-galactosidase A. The incidence ranges between 1: 40,000 and 1:117,000 of live male births. In Italy, an estimate of incidence is available only for the north-western Italy, where it is of approximately 1:4000. Clinical symptoms include angiokeratomas, corneal dystrophy, and neurological, cardiac and kidney involvement. The prevalence of symptomatic female carriers is about 70%, and in some cases, they can exhibit a severe phenotype. Previous studies suggest a correlation between skewed X chromosome inactivation and symptoms in carriers of X-linked disease, including Fabry disease. In this review, we briefly summarize the disease, focusing on the clinical symptoms of carriers and analysis of the studies so far published in regards to X chromosome inactivation pattern, and manifesting Fabry carriers. Out of 151 records identified, only five reported the correlation between the analysis of XCI in leukocytes and the related phenotype in Fabry carriers, in particular evaluating the Mainz Severity Score Index or cardiac involvement. The meta-analysis did not show any correlation between MSSI or cardiac involvement and skewed XCI, likely because the analysis of XCI in leukocytes is not useful for predicting the phenotype in Fabry carriers.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, UOC Hygiene Service and Public Health, ASL Roma 2, 00142 Rome, Italy
- Correspondence: (E.V.); (L.P.)
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Luigi Vanvitelli University, 80138 Naples, Italy
- Correspondence: (E.V.); (L.P.)
| |
Collapse
|
50
|
Liu W, Wei Z, Zhang Y, Liu Y, Bai R, Ma C, Yang J, Sun D. Identification of three novel pathogenic mutations in sarcomere genes associated with familial hypertrophic cardiomyopathy based on multi-omics study. Clin Chim Acta 2021; 520:43-52. [PMID: 34087240 DOI: 10.1016/j.cca.2021.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Familial hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death, but exhibits heterogeneous clinical features. A major research focus is to identify specific ultrasonic phenotypes, and causal gene mutations, as well as to elucidate the possible metabolic pathogenic effects in familial HCM through multi-omics study. METHODS Nine members of two familial HCM pedigrees were enrolled in this study. Their clinical data were collected, and the data of multiparameter ultrasound, whole-exome sequencing, and untargeted metabolomics were analyzed. RESULTS We identified three novel pathogenic sarcomere gene mutations, TNNT2-rs397516484, MYH6-rs372446459 and MYBPC3-rs786204339 in two familial HCM pedigrees. The proband of Family 1 and his father carried TNNT2-rs397516484 and MYH6-rs372446459 missense mutations, while the proband of Family 2 and her brother carried MYBPC3-rs786204339 frameshift mutation. They presented with heart failure and abnormal electrocardiogram, accompanied by diastolic and systolic dysfunction and impaired myocardial work. They also showed disturbances of carbohydrate metabolism, including the citrate cycle (TCA cycle), glycolysis/gluconeogenesis, fructose and mannose metabolism, pentose and glucuronate interconversions and amino sugar and nucleotide sugar metabolism. CONCLUSIONS Novel TNNT2-rs397516484, MYH6-rs372446459, and MYBPC3-rs786204339 are pathogenic sarcomere gene mutations in familial HCM, leading to decreased cardiac function and metabolic disturbances of carbohydrate metabolism, which have important implications for biologically defined diagnoses and precision medicine.
Collapse
Affiliation(s)
- Wen Liu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zongkai Wei
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanfen Zhang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yan Liu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ruocen Bai
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Dandan Sun
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|