1
|
Hao R, Li F, Sun-Waterhouse D, Li D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem 2024; 460:140483. [PMID: 39032304 DOI: 10.1016/j.foodchem.2024.140483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Cadmium, a harmful food contaminant, poses severe health risks. There are ongoing efforts to reduce cadmium pollution and alleviate its toxicity, including plant-based dietary intervention. This review hypothesizes that microRNAs (miRNAs), as regulatory eukaryotic transcripts, play crucial roles in modulating cadmium-induced organ damage, and plant food-derived bioactive compounds provide protective effects via miRNA-mediated mechanisms. The review reveals that there are interplays between certain miRNAs and plant food-derived dietary bioactive substances when these bioactives, especially phenolics, counteract cadmium toxicity through regulating physiologic and pathologic events (including oxidative stress, apoptosis, autophagy and inflammation). The review discusses common miRNA-associated physiologic/pathologic events and signal pathways shared by the cadmium toxicity and dietary intervention processes. This paper identifies the existing knowledge gaps and potential future work (e.g. joint actions between miRNAs and other noncoding RNAs in the fights against cadmium). The insights provided by this review can improve food safety strategies and public health outcomes.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
2
|
Zhu S, Wang X, Liu G. The Protective Effects of Ganoderma lucidum Active Peptide GLP4 on Lung Injury Induced by Cadmium Poisoning in Mice. TOXICS 2024; 12:378. [PMID: 38922058 PMCID: PMC11209525 DOI: 10.3390/toxics12060378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced lung injury remains unexplored. This study aims to investigate the protective effects of GLP4 against cadmium-induced lung injury in mice. Mice were exposed to cadmium chloride via nebulization to induce lung injury. The protective effect of GLP4 was assessed by measuring the total cell count in BALF, levels of inflammatory cytokines, and the expression of NLRP3 in lung tissues a through histopathological examination of lung tissue changes. The results showed that GLP4 significantly mitigated histopathological damage in lung tissues, decreased the secretion of inflammatory cytokines, and reduced the expression of NLRP3, which was elevated in cadmium-exposed mice. In vitro studies further revealed that GLP4 inhibited the cadmium-induced activation of the NLRP3 inflammasome. Notably, acute cadmium exposure by the respiratory tract did not affect the liver and kidneys of the mice. The findings suggest that GLP4 reduces cadmium-induced lung injury in mice by inhibiting the activation of the NLRP3 inflammasome, which provides a theoretical foundation for using Ganoderma lucidum as a preventive and therapeutic agent against cadmium poisoning.
Collapse
Affiliation(s)
- Shirong Zhu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; (S.Z.); (G.L.)
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xiaoling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; (S.Z.); (G.L.)
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
| | - Gaoqiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; (S.Z.); (G.L.)
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
3
|
Wang Y, Wang D, Hao H, Cui J, Huang L, Liang Q. The association between cadmium exposure and the risk of chronic obstructive pulmonary disease: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133828. [PMID: 38412643 DOI: 10.1016/j.jhazmat.2024.133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
According to the World Health Organization, chronic obstructive pulmonary disease (COPD) was one of the top ten causes of death worldwide in 2019. The ratio of forced expiratory volume in the first second to forced vital capacity (FEV1/FVC) provides a useful indicator for the diagnosis of COPD. Existing data have demonstrated that cadmium (Cd) exposure is associated with COPD. However, data concerning the incidence and progression of cadmium-induced COPD is inconsistent. To explore the relationship between cadmium exposure and the risk of COPD in humans, through January 12, 2023, we conducted a thorough search of the PubMed, Cochrane, Web of Science, Embase and Scopus databases for relevant material. In this study, a meta-analysis was conducted to evaluate the association between cadmium and COPD. This meta-analysis indicated that exposure to cadmium (per 1 μg/L increase) was associated with reduced FEV1/FVC (% change = -47.54%, 95% CI: -54.99% to -40.09%). Subgroup analysis showed that the combined effect estimates were significantly higher in the COPD patient group (% change = -54.66%, 95% CI: -83.32% to -26.00%) than in the general population (% change = -52.11%, 95%CI: -60.53% to -43.70%). Therefore, we conclude that cadmium exposure is associated with reduced FEV1/FVC, which suggests a risk for COPD.
Collapse
Affiliation(s)
- Yali Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Donglei Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Hongyu Hao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| | - Qingqing Liang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
4
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
5
|
Choi Y, Cha J, Choi S. Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES). BMC Bioinformatics 2024; 25:56. [PMID: 38308205 PMCID: PMC10837879 DOI: 10.1186/s12859-024-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Genome-wide association studies have successfully identified genetic variants associated with human disease. Various statistical approaches based on penalized and machine learning methods have recently been proposed for disease prediction. In this study, we evaluated the performance of several such methods for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome and Epidemiology Study (KoGES). RESULTS First, single-nucleotide polymorphisms were selected via single-variant tests using logistic regression with the adjustment of several epidemiological factors. Next, we evaluated the following methods for disease prediction: ridge, least absolute shrinkage and selection operator, elastic net, smoothly clipped absolute deviation, support vector machine, random forest, boosting, bagging, naïve Bayes, and k-nearest neighbor. Finally, we compared their predictive performance based on the area under the curve of the receiver operating characteristic curves, precision, recall, F1-score, Cohen's Kappa, balanced accuracy, error rate, Matthews correlation coefficient, and area under the precision-recall curve. Additionally, three oversampling algorithms are used to deal with imbalance problems. CONCLUSIONS Our results show that penalized methods exhibit better predictive performance for asthma than that achieved via machine learning methods. On the other hand, in the oversampling study, randomforest and boosting methods overall showed better prediction performance than penalized methods.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
| |
Collapse
|
6
|
Singh P, Li FJ, Dsouza K, Stephens CT, Zheng H, Kumar A, Dransfield MT, Antony VB. Low dose cadmium exposure regulates miR-381-ANO1 interaction in airway epithelial cells. Sci Rep 2024; 14:246. [PMID: 38168913 PMCID: PMC10762153 DOI: 10.1038/s41598-023-50471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Dsouza
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Crystal T Stephens
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaxiu Zheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Kumar
- UAB Superfund Center Advisory Board, Gainesville, FL, United States
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Tao S, Liao C, Wang Y, Xu D, Li Z, Li F. Differential miRNA Profiling Reveals miR-4433a-5p as a Key Regulator of Chronic Obstructive Pulmonary Disease Progression via PIK3R2- mediated Phenotypic Modulation. Comb Chem High Throughput Screen 2024; 27:2323-2334. [PMID: 38178680 PMCID: PMC11348472 DOI: 10.2174/0113862073243966231030093213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE In this study, a high-throughput sequencing technology was used to screen the differentially expressed miRNA in the patients with "fast" and "slow" progression of chronic obstructive pulmonary disease (COPD). Moreover, the possible mechanism affecting the progression of COPD was preliminarily analyzed based on the target genes of candidate miRNAs. METHODS The "fast" progressive COPD group included 6 cases, "slow" and Normal progressive COPD groups included 5 cases each, and COPD group included 3 cases. The peripheral blood samples were taken from the participants, followed by total RNA extraction and high throughput miRNA sequencing. The differentially expressed miRNAs among the progressive COPD groups were identified using bioinformatics analysis. Then, the candidate miRNAs were externally verified. In addition, the target gene of this miRNA was identified, and its effects on cell activity, cell cycle, apoptosis, and other biological phenotypes of COPD were analyzed. RESULTS Compared to the Normal group, a total of 35, 16, and 7 differentially expressed miRNAs were identified in the "fast" progressive COPD, "slow" progressive COPD group, and COPD group, respectively. The results were further confirmed using dual-luciferase reporter assay and transfection tests with phosphoinositide- 3-kinase, regulatory subunit 2 (PIK3R2) as a target gene of miR-4433a-5p; the result showed a negative regulatory correlation between the miRNA and its target gene. The phenotype detection showed that the activation of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway might participate in the progression of COPD by promoting the proliferation of inflammatory A549 cells and inhibiting cellular apoptosis. CONCLUSIONS MiR-4433a-5p can be used as a marker and potential therapeutic target for the progression of COPD. As a target gene of miR-4433a-5p, PIK3R2 can affect the progression of COPD by regulating phenotypes, such as cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Siming Tao
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chunyan Liao
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yide Wang
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Fengsen Li
- Department of Respiratory and Critical Care Medicine, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
Yu S, Wang X, Zhang R, Chen R, Ma L. A review on the potential risks and mechanisms of heavy metal exposure to Chronic Obstructive Pulmonary Disease. Biochem Biophys Res Commun 2023; 684:149124. [PMID: 37897914 DOI: 10.1016/j.bbrc.2023.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease that affects patients as well as the health and economic stability of society as a whole. At the same time, heavy metal pollution is widely recognized as having a possible impact on the environment and human health. Therefore, these diseases have become important global public health issues. In recent years, researchers have shown great interest in the potential association between heavy metal exposure and the development of COPD, and there has been a substantial increase in the number of related studies. However, we still face the challenge of developing a comprehensive and integrated understanding of this complex association. Therefore, this review aimed to evaluate the existing epidemiological studies to clarify the association between heavy metal exposure and COPD. In addition, we will discuss the biological mechanisms between the two to better understand the multiple molecular pathways and possible mechanisms of action involved, and provide additional insights for the subsequent identification of potential strategies to prevent and control the effects of heavy metal exposure on the development of COPD in individuals and populations.
Collapse
Affiliation(s)
- Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rongxuan Zhang
- Department of Respiratory, The Second People's Hospital of Lanzhou City, 730030, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Kopa-Stojak PN, Pawliczak R. Comparison of effects of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression. A systematic review. Toxicol Mech Methods 2023; 33:18-37. [PMID: 35722939 DOI: 10.1080/15376516.2022.2089610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This work attempts to summarize current knowledge on the effects of cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression regulation and on their possible impact on smoking-related respiratory disease development. MATERIALS AND METHODS Literature search by terms combination: 'smoking', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', electronic cigarette' and 'miRNA-mediated gene expression' has been performed from October 2021 to February 2022. In this systematic review all relevant literature, including clinical trials, cellular and animal-based studies were included. RESULTS Cigarette smoke (CS) significantly altered transcriptome, including miRNAs expression profile. MiRNA-mediated gene expression is mentioned as one of the mechanisms associated with smoking-related respiratory disease development. Differential expression of miRNAs was reduced in aerosol from e-cigarettes (EC) and tobacco heating products (THP) when compared to CS. However, there was a significant alteration of some miRNAs expression when compared to air-controls in both EC and THP. DISCUSSION CS negatively affects transcriptome and miRNA-mediated gene expression regulation because of a huge number of hazardous substances which predispose to smoking-related diseases. Despite the reduced effect of ENDS and THP on miRNAs profile compared to CS, differences in expression of miRNAs when compared to air-control were observed, which may be harmful to never-smokers who may perceive such alternative smoking products as non-hazardous. To clearly indicate the role of ENDS and THP in the alteration of miRNA-mediated gene expression and the development of smoking-related respiratory diseases associated with this mechanism, more long-term studies should be performed in the future.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Identification of miRNA-mRNA-TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches. PLoS One 2022; 17:e0271262. [PMID: 36264868 PMCID: PMC9584516 DOI: 10.1371/journal.pone.0271262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Collapse
|
11
|
Shu X, Chen XX, Kang XD, Ran M, Wang YL, Zhao ZK, Li CX. Identification of potential key molecules and signaling pathways for psoriasis based on weighted gene co-expression network analysis. World J Clin Cases 2022; 10:5965-5983. [PMID: 35949853 PMCID: PMC9254198 DOI: 10.12998/wjcc.v10.i18.5965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, the pathogenesis of which is more complicated and often requires long-term treatment. In particular, moderate to severe psoriasis usually requires systemic treatment. Psoriasis is also associated with many diseases, such as cardiometabolic diseases, malignant tumors, infections, and mood disorders. Psoriasis can appear at any age, and lead to a substantial burden for individuals and society. At present, psoriasis is still a treatable, but incurable, disease. Previous studies have found that microRNAs (miRNAs) play an important regulatory role in the progression of various diseases. Currently, miRNAs studies in psoriasis and dermatology are relatively new. Therefore, the identification of key miRNAs in psoriasis is helpful to elucidate the molecular mechanism of psoriasis.
AIM To identify key molecular markers and signaling pathways to provide potential basis for the treatment and management of psoriasis.
METHODS The miRNA and mRNA data were obtained from the Gene Expression Omnibus database. Then, differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) were screened out by limma R package. Subsequently, DEmRNAs were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomics functional enrichment. The “WGCNA” R package was used to analyze the co-expression network of all miRNAs. In addition, we constructed miRNA-mRNA regulatory networks based on identified hub miRNAs. Finally, in vitro validation was performed. All experimental procedures were approved by the ethics committee of Chinese PLA General Hospital (S2021-012-01).
RESULTS A total of 639 DEmRNAs and 84 DEmiRNAs were identified. DEmRNAs screening criteria were adjusted P (adj. P) value < 0.01 and |logFoldChange| (|logFC|) > 1. DEmiRNAs screening criteria were adj. P value < 0.01 and |logFC| > 1.5. KEGG functional analysis demonstrated that DEmRNAs were significantly enriched in immune-related biological functions, for example, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. In weighted gene co-expression network analysis, turquoise module was the hub module. Moreover, 10 hub miRNAs were identified. Among these 10 hub miRNAs, only 8 hub miRNAs predicted the corresponding target mRNAs. 97 negatively regulated miRNA-mRNA pairs were involved in the miRNA-mRNA regulatory network, for example, hsa-miR-21-5p-claudin 8 (CLDN8), hsa-miR-30a-3p-interleukin-1B (IL-1B), and hsa-miR-181a-5p/hsa-miR-30c-2-3p-C-X-C motif chemokine ligand 9 (CXCL9). Real-time polymerase chain reaction results showed that IL-1B and CXCL9 were up-regulated and CLDN8 was down-regulated in psoriasis with statistically significant differences.
CONCLUSION The identification of potential key molecular markers and signaling pathways provides potential research directions for further understanding the molecular mechanisms of psoriasis. This may also provide new research ideas for the prevention and treatment of psoriasis in the future.
Collapse
Affiliation(s)
- Xin Shu
- Department of Dermatology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Xiao-Xia Chen
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xin-Dan Kang
- Department of Comprehensive Surgical, The Second Medical Center of Chinese PLA General Hospital, Beijing 100089, China
| | - Min Ran
- Department of Endocrine, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - You-Lin Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen-Kai Zhao
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng-Xin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Santos-Álvarez JC, Velázquez-Enríquez JM, García-Carrillo R, Rodríguez-Beas C, Ramírez-Hernández AA, Reyes-Jiménez E, González-García K, López-Martínez A, Pérez-Campos Mayoral L, Aguilar-Ruiz SR, Romero-Tlalolini MDLÁ, Torres-Aguilar H, Castro-Sánchez L, Arellanes-Robledo J, Vásquez-Garzón VR, Baltiérrez-Hoyos R. miRNAs Contained in Extracellular Vesicles Cargo Contribute to the Progression of Idiopathic Pulmonary Fibrosis: An In Vitro Aproach. Cells 2022; 11:cells11071112. [PMID: 35406675 PMCID: PMC8997737 DOI: 10.3390/cells11071112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. Lesions in the lung epithelium cause alterations in the microenvironment that promote fibroblast accumulation. Extracellular vesicles (EVs) transport proteins, lipids, and nucleic acids, such as microRNAs (miRNAs). The aim of this study was to characterize the differentially expressed miRNAs in the cargo of EVs obtained from the LL97 and LL29 fibroblast cell lines isolated from IPF lungs versus those derived from the CCD19 fibroblast cell line isolated from a healthy donors. We characterized EVs by ultracentrifugation, Western blotting, and dynamic light scattering. We identified miRNAs by small RNA-seq, a total of 1144 miRNAs, of which 1027 were known miRNAs; interestingly, 117 miRNAs were novel. Differential expression analysis showed that 77 miRNAs were upregulated and 68 were downregulated. In addition, pathway enrichment analyses from the Gene Ontology and Kyoto Encyclopedia of Genomes identified several miRNA target genes in the categories, cell proliferation, regulation of apoptosis, pathways in cancer, and proteoglycans in cancer. Our data reveal that miRNAs contained in EVs cargo could be helpful as biomarkers for fibrogenesis, diagnosis, and therapeutic intervention of IPF.
Collapse
Affiliation(s)
- Jovito Cesar Santos-Álvarez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Juan Manuel Velázquez-Enríquez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Rosendo García-Carrillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico;
| | | | - Alma Aurora Ramírez-Hernández
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Edilburga Reyes-Jiménez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Karina González-García
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Armando López-Martínez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
| | - Sergio Roberto Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | | | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico;
| | | | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (M.d.l.Á.R.-T.); (V.R.V.-G.)
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (M.d.l.Á.R.-T.); (V.R.V.-G.)
- Correspondence:
| |
Collapse
|
13
|
Guo Z, Zhu C, Wang Y, Li Z, Wang L, Fan J, Xu Y, Zou N, Kong Y, Li D, Sui L. miR-30a targets STOX2 to increase cell proliferation and metastasis in hydatidiform moles via ERK, AKT, and P38 signaling pathways. Cancer Cell Int 2022; 22:103. [PMID: 35246136 PMCID: PMC8895545 DOI: 10.1186/s12935-022-02503-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background A hydatidiform mole is a condition caused by abnormal proliferation of trophoblastic cells. MicroRNA miR-30a acts as a tumor suppressor gene in most tumors and participates in the development of various cancers. However, its role in hydatidiform moles is not clear. Methods Quantitative real-time reverse transcription PCR was used to verify the expression level of miR-30a and STOX2 (encoding storkhead box 2). Flow cytometry assays were performed to detect the cell cycle in cell with different expression levels of miR-30a and STOX2. Cell Cycle Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation assays were used to detect cell proliferation and viability. Transwell assays was used to test cell invasion and migration. Dual-luciferase reporter assays and western blotting were used to investigate the potential mechanisms involved. Result Low miR-30a expression promoted the proliferation, migration, and invasion of trophoblastic cells (JAR and HTR-8). Dual luciferase assays confirmed that STOX2 is a target of miR-30a and resisted the effect of upregulated miR-30a in trophoblastic cells. In addition, downregulation of STOX2 by miR-30a could activate ERK, AKT, and P38 signaling pathways. These results revealed a new mechanism by which ERK, AKT, and P38 activation by miR-30a/STOX2 results in excessive proliferation of trophoblast cells in the hydatidiform mole. Conclusions In this study, we found that miR-30a plays an important role in the development of the hydatidiform mole. Our findings indicate that miR-30a might promote the malignant transformation of human trophoblastic cells by regulating STOX2, which strengthens our understanding of the role of miR-30a in regulating trophoblastic cell transformation. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02503-3.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chenyu Zhu
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Youhui Wang
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhen Li
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Lu Wang
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jianhui Fan
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yuefei Xu
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Na Zou
- Department of Pathology, Dalian Municipal Women And Children's Medical Center, Dalian, 116044, Liaoning, People's Republic of China
| | - Ying Kong
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Dong Li
- Department of Pathology, Dalian Municipal Women And Children's Medical Center, Dalian, 116044, Liaoning, People's Republic of China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
14
|
Liang ZZ, Zhang YX, Zhu RM, Li YL, Jiang HM, Li RB, Chen QX, Wang Q, Tang LY, Ren ZF. Identification of epigenetic modifications mediating the antagonistic effect of selenium against cadmium-induced breast carcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22056-22068. [PMID: 34773240 DOI: 10.1007/s11356-021-17355-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The antagonistic effect of selenium (Se) against cadmium (Cd)-induced breast carcinogenesis was reported, but underlying mechanisms were unclear. The aim of this study was to identify the epigenetically regulated genes and biological pathways mediating the antagonistic effect. We exposed MCF-7 cells to Cd and Se alone or simultaneously. Cell proliferation was assessed by MTT assay, and differential epigenome (DNA methylation, microRNA, and long non-coding RNA) was obtained by microarrays. We cross-verified the epigenetic markers with differential transcriptome, and the ones modulated by Cd and Se in opposite directions were regarded to mediate the antagonistic effect. The epigenetically regulated genes were validated by using gene expression data in human breast tissues. We further assessed the biological functions of these validated genes. Our results showed that Se alleviated the proliferative effect of Cd on MCF-7 cell. A total of 10 epigenetically regulated genes were regarded to mediate the antagonistic effect, including APBA2, KIAA0895, DHX35, CPEB3, SVIL, MYLK, ZFYVE28, ABLIM2, GRB10, and PCDH9. Biological function analyses suggested that these epigenetically regulated genes were involved in multiple cancer-related pathways, such as focal adhesion and PI3K/Akt pathway. In conclusion, we provided evidence that Se antagonized the Cd-induced breast carcinogenesis via epigenetic modification and revealed the critical pathways.
Collapse
Affiliation(s)
- Zhuo-Zhi Liang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi-Xin Zhang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui-Mei Zhu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yue-Lin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hong-Mei Jiang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruo-Bi Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qian-Xin Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Dong Z, Yang X, Qiu T, an Y, Zhang G, Li Q, Jiang L, Yang G, Cao J, Sun X, Liu X, Liu D, Yao X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem Biol Interact 2022; 358:109899. [DOI: 10.1016/j.cbi.2022.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
|
16
|
Zhang M, Lu Y, Liu L, Zhang X, Ning J. Role and mechanism of miR-181a-5p in mice with chronic obstructive pulmonary disease by regulating HMGB1 and the NF-κB pathway. Cells Tissues Organs 2022:000522155. [DOI: 10.1159/000522155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease. This study explored the mechanism of miR-181a-5p in the inflammatory response in COPD mice. COPD mouse models were established by cigarette smoke (CS) exposure following pretreatment with recombinant adeno-associated virus (rAAv)-miR-181a-5p, si-HMGB1 (high mobility group box 1), and NF-κB pathway inhibitor PDTC, respectively. Pathological changes of lung tissues were determined by HE staining. BALF was collected to count total cells, neutrophils and lymphocytes using a Countess II automatic cell counter. Expressions of NE and inflammatory factors (TNF-α, IL-6, IL-8 and IFN-γ) were detected by ELISA. Binding relationship between miR-181a-5p and HMGB1 was predicted on Starbase (http://starbase.sysu.edu.cn/index.php) and validated by dual-luciferase assay. miR-181a-5p expression was detected by RT-qPCR, and expressions of HMGB1, IκBα, p-IκBα were detected by Western blot. The expression level of miR-181a-5p was lower in lung tissues. miR-181a-5p overexpression alleviated inflammatory response and pathological changes of lung tissues in COPD mice, with decreased pulmonary inflammation scores, total cells, neutrophils, and lymphocytes and expressions of NE and inflammatory factors. HMGB1 expression level was increased in COPD mice. miR-181a-5p targeted HMGB1. si-HMGB1 relieved inflammatory responses in COPD mice. NF-κB was activated in COPD mice, evidenced by degraded IκBα and increased p-IκBα level. si-HMGB1 significantly restrained the activation of NF-κB pathway. Briefly, miR-181a-5p targets HMGB1 to inhibit the NF-κB pathway, thus alleviating the inflammatory response in COPD mice.
Collapse
|
17
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
18
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
19
|
MicroRNA 181a-2-3p Alleviates the Apoptosis of Renal Tubular Epithelial Cells via Targeting GJB2 in Sepsis-Induced Acute Kidney Injury. Mol Cell Biol 2021; 41:e0001621. [PMID: 33875577 DOI: 10.1128/mcb.00016-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute kidney injury (AKI) is the most common complication of sepsis. MicroRNAs (miRNAs) play important roles in the sepsis-induced AKI. This paper aimed to explore the role of miRNA 181a-2-3p (miR-181a-2-3p) in the sepsis-induced AKI and the underlying mechanism. Our results revealed that miR-181a-2-3p showed low expression levels in patients with sepsis and mouse models undergoing cecal ligation and puncture (CLP). The addition of miR-181a-2-3p antagonists aggravated the sepsis-induced kidney injuries and inflammatory response in CLP mouse models, as suggested by hematoxylin and eosin (H&E) staining and quantitative real-time PCR (qRT-PCR). In addition, miR-181a-2-3p mimic alleviated the lipopolysaccharide (LPS)-induced inflammatory response, along with apoptosis of TCMK-1. Moreover, results from the GSE46955 data set indicated that GJB2 was highly expressed in septic patients but lowly expressed after recovery. Further, the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were carried out, which confirmed that GJB2 was a target of miR-181a-2-3p, and overexpression of GJB2 reversed the anti-inflammatory and antiapoptotic effects of miR-181a-2-3p mimic on the LPS-induced sepsis cell models. In conclusion, miR-181a-2-3p alleviates the inflammatory response and cell apoptosis of septic patients and animal models by upregulating GJB2 expression, which may provide a new therapeutic strategy for sepsis.
Collapse
|
20
|
Yu X, Liu Z, Fang J, Qi H. miR-96-5p: A potential diagnostic marker for gestational diabetes mellitus. Medicine (Baltimore) 2021; 100:e25808. [PMID: 34032694 PMCID: PMC8154478 DOI: 10.1097/md.0000000000025808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/15/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs play important roles in gestational diabetes mellitus (GDM), and this study aimed to elucidate the clinical significance of miR-96-5p in diagnosing GDM.There are 123 pregnant women diagnosed with GDM and 123 healthy pregnant women were enrolled as control participants. Placenta and plasma samples from the patients and control participants were collected, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to determine miR-96-5p expression levels. Moreover, a receiver operating characteristic (ROC) curve was established to evaluate the significance of miR-96-5p in diagnosing GDM. HRT-8/SVneo trophoblasts were cultured under high glucose conditions and treated with miR-96-5p mimics, and cell viability was examined.miR-96-5p levels were significantly decreased in both the placenta and plasma samples of patients with GDM. The ROC curve indicated that miR-96-5p can serve as a diagnostic biomarker for GDM with high sensitivity and specificity. Moreover, miR-96-5p levels were markedly low under high glucose conditions, and the overexpression of miR-96-5p increased the viability, respectively, of trophoblasts in vitro.miR-96-5p may participate in the pathogenesis of GDM by exerting effects on the viability of trophoblasts.
Collapse
|
21
|
Yan R, Chen XL, Xu YM, Lau ATY. Epimutational effects of electronic cigarettes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17044-17067. [PMID: 33655478 DOI: 10.1007/s11356-021-12985-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Electronic cigarettes (e-cigarettes), since they do not require tobacco combustion, have traditionally been considered less harmful than conventional cigarettes (c-cigarettes). In recent years, however, researchers have found many toxic compounds in the aerosols of e-cigarettes, and numerous studies have shown that e-cigarettes can adversely affect the human epigenome. In this review, we provide an update on recent findings regarding epigenetic outcomes of e-cigarette aerosols. Moreover, we discussed the effects of several typical e-cigarette ingredients (nicotine, tobacco-specific nitrosamines, volatile organic compounds, carbonyl compounds, and toxic metals) on DNA methylation, histone modifications, and noncoding RNA expression. These epigenetic effects could explain some of the diseases caused by e-cigarettes. It also reminds the public that like c-cigarettes, inhaling e-cigarette aerosols could also be accompanied with potential epigenotoxicity on the human body.
Collapse
Affiliation(s)
- Rui Yan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Xu-Li Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
22
|
Gga-miR-181a modulates ANP32A expression and inhibits MDCC-MSB-1 cell. In Vitro Cell Dev Biol Anim 2021; 57:272-279. [PMID: 33686586 DOI: 10.1007/s11626-021-00550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Marek's disease (MD), a highly contagious T cell lymphoid neoplasia disease of chickens, causes huge economic losses to the poultry industry. It is the only one tumor disease which can be prevented by vaccine in chickens; therefore, MD is considered to be an excellent model to study the pathogenesis of virus-induced cancer. Recently, abundant evidences have verified that miRNAs are regulators in the process of neoplastic transformation. In our previous study on miRNome analysis of MDV-induced lymphoma in chicken, we found that gga-miR-181a was downregulated drastically in MDV-infected spleens. To further investigate the role of gga-miR-181a in MDV-induced lymphomagenesis, we performed cell migration assay, and the results suggested that gga-miR-181a suppressed the migration of MDV-transformed lymphoid cell (MSB-1). Subsequently, luciferase reporter gene assay revealed that acidic nuclear phosphoprotein 32A (ANP32A) was a functional target gene of gga-miR181a. Real-time PCR and western blot assay showed that the mRNA and protein levels of ANP32A were downregulated in gga-miR-181a mimic group at 48-h and 96-h post-transfection, respectively, indicating that ANP32A was modulated by gga-miR-181a. All the results suggested that gga-miR-181a was an inhibitor in MSB-1 cell migration. ANP32A was a direct target gene of gga-miR-181a and they were implicated in MD lymphoma tumorigenesis.
Collapse
|
23
|
Xia T, Cao Y, Li J, Zhang X, Wang G, Xue X. Etomidate Regulates miR-192-5p Expression to Reduce Hypoxia-Reoxygenation Induced Bronchial Epithelial Cell Damage. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Etomidate is a new type of intravenous anesthetic that can protect bronchial epithelial cells from oxidative stress damage. miR-192-5p is upregulated in 6-hydroxydopamine-induced neurocytes. This study explored the effect of etomidate on bronchial epithelial cell apoptosis and oxidative
stress induced by hypoxia and reoxygenation and its regulatory effect on miR-192-5p. The human bronchial epithelial cells BEAS-2B were cultured in vitro and then subjected to hypoxia and reoxygenation to establish a cell injury model. The cells were then treated with etomidate at different
doses. Moreover, anti-miR-NC and anti-miR-192-5p were transfected into the BEAS-2B cells to treat the hypoxia-reoxygenation. Moreover, miR-NC and miR-192-5p mimics were transfected into BEAS-2B cells, followed by treatment with 90 µmol/L etomidate for 24 h and then treatment with hypoxia
and reoxygenation. The 2,4-dinitrophenylhydrazine method was used to determine the level of LDH in the culture medium of cardiomyocytes. Thiobarbituric acid was used to determine the level of MDA and xanthine oxidase to determine the activity of SOD. Flow cytometry was used to measure the
apoptosis rate and qRT-PCR to evaluate miR-192-5p expression. Western blotting was used to determine the Bax and Bcl-2 protein levels. Compared with the findings in the control group, the levels of LDH and MDA, the apoptosis rate, and the protein level of Bax were increased (P <
0.05) upon treatment with hypoxia and reoxygenation, while SOD activity and Bcl-2 protein level were decreased (P < 0.05). In a manner dependent on the dose, etomidate could significantly reverse the effects of hypoxia and reoxygenation on oxidative stress and apoptosis of BEAS-2B
cells (P < 0.05). Hypoxia and reoxygenation could significantly increase the miR-192-5p level of BEAS-2B cells (P < 0.05), while etomidate could reduce this miR-192-5p expression (P < 0.05) in a dose-dependent manner. Transfection of anti-miR-192-5p dramatically
reduced LDH, MDA, apoptosis rate, and Bax protein level (P < 0.05), but was associated with increases of SOD activity and Bcl-2 protein expression (P < 0.05). High expression of miR-192-5p could significantly reverse the influence of etomidate on apoptosis and oxidative
stress of BEAS-2B cells induced by hypoxia-reoxygenation (P < 0.05). Etomidate restrained the apoptosis of bronchial epithelial cells and oxidative stress induced by hypoxia and reoxygenation by inhibiting miR-192-5p expression, thereby reducing cell damage.
Collapse
Affiliation(s)
- Tian Xia
- Department of Pharmacy, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Yang Cao
- Department of Pharmacy, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Jinxiu Li
- Department of Intensive Care Unit, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Xin Zhang
- Department of Pharmacy, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Guangyuan Wang
- Department of Intensive Care Unit, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Xiuyue Xue
- Department of Intensive Care Unit, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| |
Collapse
|
24
|
De Sanctis P, Filardo G, Abruzzo PM, Astolfi A, Bolotta A, Indio V, Di Martino A, Hofer C, Kern H, Löfler S, Marcacci M, Marini M, Zampieri S, Zucchini C. Non-Coding RNAs in the Transcriptional Network That Differentiates Skeletal Muscles of Sedentary from Long-Term Endurance- and Resistance-Trained Elderly. Int J Mol Sci 2021; 22:1539. [PMID: 33546468 PMCID: PMC7913629 DOI: 10.3390/ijms22041539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared-the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.
Collapse
Affiliation(s)
- Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Valentina Indio
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
| | - Alessandro Di Martino
- Second Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Christian Hofer
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy;
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy;
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| |
Collapse
|
25
|
Mirkov I, Popov Aleksandrov A, Ninkov M, Tucovic D, Kulas J, Zeljkovic M, Popovic D, Kataranovski M. Immunotoxicology of cadmium: Cells of the immune system as targets and effectors of cadmium toxicity. Food Chem Toxicol 2021; 149:112026. [PMID: 33508420 DOI: 10.1016/j.fct.2021.112026] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) has been listed as one of the most toxic substances affecting numerous tissues/organs, including the immune system. Due to variations in studies examining Cd effects on the immune system (exposure regime, experimental systems, immune endpoint measured), data on Cd immunotoxicity in humans and experimental animals are inconsistent. However, it is clear that Cd can affect cells of the immune system and can modulate some immune responses. Due to the complex nature of the immune system and its activities which are determined by multiple interactions, the underlying mechanisms involved in the immunotoxicity of this metal are still vague. Here, the current knowledge regarding the interaction of Cd with cells of the immune system, which may affect immune responses as well as potential mechanisms of consequent biological effects of such activities, is reviewed. Tissue injury caused by Cd-induced effects on innate cell activities depicts components of the immune system as mediators/effectors of Cd tissue toxicity. Cd-induced immune alterations, which may compromise host defense against pathogenic microorganisms and homeostatic reparative activities, stress this metal as an important health hazard.
Collapse
Affiliation(s)
- Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia; Université Côte D'Azur, Institute of Biology Valrose, Nice (iBV), INSERM U1091, 06107, Nice, France
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milica Zeljkovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia.
| |
Collapse
|
26
|
Zeng Q, Zeng J. Inhibition of miR-494-3p alleviates oxidative stress-induced cell senescence and inflammation in the primary epithelial cells of COPD patients. Int Immunopharmacol 2021; 92:107044. [PMID: 33461161 DOI: 10.1016/j.intimp.2020.107044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a disease associated with accelerated aging that threatens the lives of people worldwide and imposes heavy social and economic burdens. Cellular senescence is commonly observed in COPD and contributes to aging-related diseases. PURPOSE To identify the possible molecular pathways modulating cellular senescence in COPD. METHODS MiR-494-3p expression levels in COPD tissues, small airway epithelial cells (SAECs) and BEAS-2B cells were detected by qRT-PCR. After transfection with miR-494-3p mimic or inhibitor in COPD SAECs, miR-494-3p modulation of senescence markers and senescence-associated secretory phenotype (SASP) proteins was detected. A luciferase assay was employed to verify the direct binding of SIRT3 and miR-494-3p. VX745 and c-myc siRNA were used to investigate the regulation of p38MAPK and c-myc by miR-494-3p. RESULTS As a result of oxidative stress, MiR-494-3p was increased via the p38MAPK-c-myc signaling pathway in the lung tissues and cells of patients with COPD, and the increase in miR-494-3p was accompanied by increases in senescence markers (p27, p21 and p16) and SASP proteins (IL-1β, TNF-α, MMP2 and MMP9). MiR-494-3p was directly bound to SIRT3 in SAECs and was involved in cellular senescence. The upregulation of miR-494-3p decreased SIRT3 expression while increasing p27 expression in SAECs. Inhibition of miR-494-3p in SAECs from COPD patients reduced cell cycle arrest and the expression of SASP proteins (IL-1β, TNF-α, MMP2 and MMP9). CONCLUSION MiR-494-3p expression can be induced by oxidative stress via the p38MAPK-c-myc signaling pathway, and miR-494-3p can directly bind to SIRT3 to reduce its expression, leading to increased cellular senescence and thereby contributing to COPD progression.
Collapse
Affiliation(s)
- Qinghua Zeng
- Center of General Practice, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Juan Zeng
- Center of General Practice, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
27
|
Fan S, Ren Y, Zhang W, Zhang H, Wang C. Long non-coding maternally expressed gene 3 regulates cigarette smoke extract-induced apoptosis, inflammation and cytotoxicity by sponging miR-181a-2-3p in 16HBE cells. Oncol Lett 2020; 21:45. [PMID: 33262837 PMCID: PMC7693283 DOI: 10.3892/ol.2020.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has suggested that long non-coding (lnc)RNAs are widely involved in the progression of multiple diseases, including chronic obstructive pulmonary disease (COPD). The aim of the present study was to explore the function and molecule mechanism of maternally expressed gene 3 (MEG3) in cigarette smoke extract (CSE)-treated 16HBE cells. Cell viability and apoptosis were evaluated using Cell Counting Kit-8 analysis and flow cytometry, respectively. Western blot analysis was carried out to determine the protein levels of Bcl-2, Bax and cleaved caspase-3. ELISA assays were utilized to measure the protein levels of IL-1β and IL-6 and TNF-α. Cytotoxicity was assessed using a lactate dehydrogenase release assay. The expression levels of MEG3 and microRNA (miR)-181a-2-3p were detected using reverse transcription-quantitative PCR. The interaction between miR-181a-2-3p and MEG3 was predicted using DIANA tools and verified by a dual-luciferase reporter assay and RNA Immunoprecipitation assay. MEG3 expression was enhanced while miR-181a-2-3p abundance was reduced in the serum of patients with COPD and CSE-treated 16HBE cells. MEG3-knockdown or miR-181a-2-3p-overexpression inhibited CSE-induced apoptosis, inflammation and cytotoxicity in 16HBE cells. Moreover, miR-181a-2-3p directly bind to MEG3 and its knockdown reversed the inhibitory effect of MEG3 interference on apoptosis, inflammation and cytotoxicity in CSE-treated 16HBE cells. Overall, MEG3-knockdown suppressed CSE-induced apoptosis, inflammation and cytotoxicity in 16HBE cells by upregulating miR-181a-2-3p, providing a promising therapeutic target for treatment of CSE-induced COPD.
Collapse
Affiliation(s)
- Shiming Fan
- Department of Respiratory Medicine, Changning County Hospital of Traditional Chinese Medicine, Yibin, Sichuan 644300, P.R. China
| | - Yan Ren
- Department of Pediatrics, Changning County Hospital of Traditional Chinese Medicine, Yibin, Sichuan 644300, P.R. China
| | - Wenli Zhang
- Department of Gastroenterology, Changning County Hospital of Traditional Chinese Medicine, Yibin, Sichuan 644300, P.R. China
| | - Huawei Zhang
- Department of Critical Care Medicine, Changning County Hospital of Traditional Chinese Medicine, Yibin, Sichuan 644300, P.R. China
| | - Cheng Wang
- Department of Nephrology, Changning County Hospital of Traditional Chinese Medicine, Yibin, Sichuan 644300, P.R. China
| |
Collapse
|
28
|
Shen W, Weng Z, Fan M, Wang S, Wang R, Zhang Y, Tian H, Wang X, Wu X, Yang X, Wei W, Yuan K. Mechanisms by Which the MBD2/miR-301a-5p/CXCL12/CXCR4 Pathway Regulates Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2561-2572. [PMID: 33116473 PMCID: PMC7585268 DOI: 10.2147/copd.s261522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by irreversible expiratory airflow obstruction, and its chronic course is worsened by recurrent acute exacerbations. Our previous microarray assay identified microRNA (miR)-301a-5p as being associated with progression of acute exacerbation of COPD (AE-COPD); however, the mechanism underlying COPD pathogenesis remains unknown. Methods Samples of serum and peripheral blood mononuclear cells (PBMCs) were isolated from healthy control subjects and patients with stable COPD (R-COPD) or with an acute exacerbation of COPD (AE-COPD). Human HULEC-5a and human bronchial epithelial (HBE) cells were transfected with methyl-CpG-binding domain protein 2 (MBD2), sh-MBD2, miR-301a-5p mimics or an inhibitor, and then stimulated with cigarette smoke extract (CSE). Conditioned medium co-culture assays were performed by adding the supernatant of medium derived from HULEC-5a cells transfected with miR-301a-5p mimics or inhibitor into wells containing si-c-x-c motif chemokine receptor 4 (CXCR4)-transfected-lung fibroblasts or human leukemic THP-1 cell line macrophages. Transwell assays were performed to analyze cell migration. Results Our analysis of clinical samples showed that decreased miR-301a-5p levels in patients with AE-COPD were positively correlated with levels of MBD2 expression, but negatively correlated with levels of chemokine ligand C-X-C motif chemokine ligand 12 (CXCL12) expression. MBD2 overexpression significantly promoted miR-301a-5p production, but suppressed CXCL12 production in HULEC-5a and HBE cells. CXCL12 was confirmed to be a direct target of miR-301a-5p. CXCR4 knockdown significantly enhanced the suppressive effect of miR-301a-5p mimics and attenuated the promotional effects of the miR-301a-5p inhibitor on the migration of circulating fibroblasts and macrophages, as well as the expression levels of phospho-mitogen-activated protein kinase (p-MEK) and phospho-protein kinase B (p-AKT). Conclusion In summary, the MBD2/miR-301a-5p/CXCL12/CXCR4 pathway was shown to affect the migration of lung fibroblasts and monocyte-derived macrophages, which may play an important role during COPD exacerbations.
Collapse
Affiliation(s)
- Wen Shen
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiyin Weng
- School of Pharmaceutical Science, Kunming Medical University, Kunming, People’s Republic of China
| | - Minjuan Fan
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shukun Wang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ruili Wang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yang Zhang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Hong Tian
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xi Wang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xin Wu
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaolei Yang
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Wei Wei
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Kaifen Yuan
- Respiratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
29
|
Tang H, Gao Y, Li Z, Miao Y, Huang Z, Liu X, Xie L, Li H, Wen W, Zheng Y, Su W. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clin Transl Med 2020; 10:e200. [PMID: 33135345 PMCID: PMC7548099 DOI: 10.1002/ctm2.200] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND COVID-19 is currently a global pandemic, but the response of human immune system to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unclear. Noncoding RNAs serve as immune regulators and thus may play a critical role in disease progression. METHODS We performed multi-transcriptome sequencing of both noncoding RNAs and mRNAs isolated from the red blood cell depleted whole blood of moderate and severe COVID-19 patients. The functions of noncoding RNAs were validated by analyses of the expression of downstream mRNAs. We further utilized the single-cell RNA-seq data of COVID-19 patients from Wilk et al. and Chua et al. to characterize noncoding RNA functions in different cell types. RESULTS We defined four types of microRNAs with different expression tendencies that could serve as biomarkers for COVID-19 progress. We also identified miR-146a-5p, miR-21-5p, miR-142-3p, and miR-15b-5p as potential contributors to the disease pathogenesis, possibly serving as biomarkers of severe COVID-19 and as candidate therapeutic targets. In addition, the transcriptome profiles consistently suggested hyperactivation of the immune response, loss of T-cell function, and immune dysregulation in severe patients. CONCLUSIONS Collectively, these findings provide a comprehensive view of the noncoding and coding transcriptional landscape of peripheral immune cells during COVID-19, furthering our understanding and offering novel insights into COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Hao Tang
- Department of Respiratory and Critical Care Medicine Changzheng HospitalSecond Military Medical UniversityShanghaiChina
- Department of Critical CareWuhan Huo Shen Shan HospitalHubeiChina
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yushan Miao
- Department of Respiratory and Critical Care Medicine Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wen Wen
- National Center for Liver CancerSecond Military Medical UniversityShanghaiChina
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
30
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:7221. [PMID: 33007849 PMCID: PMC7582315 DOI: 10.3390/ijms21197221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has reached a global echo and represents a serious problem for human health. Air pollution encompasses a set of hazardous substances, such as particulate matter and heavy metals (e.g., cadmium, lead, and arsenic), and has a strong impact on the environment by affecting groundwater, soil, and air. An adaptive response to environmental cues is essential for human survival, which is associated with the induction of adaptive phenotypes. The epigenetic mechanisms regulating the expression patterns of several genes are promising candidates to provide mechanistic and prognostic insights into this. Micro-RNAs (miRNAs) fulfil these features given their ability to respond to environmental factors and their critical role in determining phenotypes. These molecules are present in extracellular fluids, and their expression patterns are organ-, tissue-, or cell-specific. Moreover, the experimental settings for their quantitative and qualitative analysis are robust, standardized, and inexpensive. In this review, we provide an update on the role of miRNAs as suitable tools for understanding the mechanisms behind the physiopathological response to toxicants and the prognostic value of their expression pattern associable with specific exposures. We look at the mechanistic evidence associable to the role of miRNAs in the processes leading to environmental-induced pulmonary disease (i.e., chronic obstructive pulmonary disease).
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
31
|
Miguel V, Lamas S, Espinosa-Diez C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol 2020; 37:101580. [PMID: 32723695 PMCID: PMC7767735 DOI: 10.1016/j.redox.2020.101580] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental risk factors, including physicochemical agents, noise and mental stress, have a considerable impact on human health. This environmental exposure may lead to epigenetic reprogramming, including changes in non-coding RNAs (ncRNAs) signatures, which can contribute to the pathophysiology state. Oxidative stress is one of the results of this environmental disturbance by modifying cellular processes such as apoptosis, signal transduction cascades, and DNA repair mechanisms. In this review, we delineate environmental risk factors and their influence on (ncRNAs) in connection to disease. We focus on well-studied miRNAs and analyze the novel roles of long-non-coding-RNAs (lncRNAs). We discuss commonly regulated lncRNAs after exposure to different stressors, such as UV, heavy metals and pesticides among others, and the potential role of these lncRNA as exposure biomarkers, epigenetic regulators and potential therapeutic targets to diminish the deleterious secondary response to environmental agents. Environmental stressors induce epigenetic changes that lead to long-lasting gene expression changes and pathology development. NcRNAs, miRNAs and lncRNAs, are epigenetic modifiers susceptible to changes in expression after environmental insults . LncRNAs influence cell function partnering with other biomolecules such as proteins, DNA, RNA or other ncRNAs. LncRNA dysregulation affects cell development, carcinogenesis, vascular disease and neurodegenerative disorders. ncRNA signatures can be potentially used as biomarkers to identify exposure to specific environmental stressors.
Collapse
Affiliation(s)
- Verónica Miguel
- Programme of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Programme of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Zhang L, Valizadeh H, Alipourfard I, Bidares R, Aghebati-Maleki L, Ahmadi M. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD 2020; 17:333-342. [PMID: 32558592 DOI: 10.1080/15412555.2020.1780576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) that is one of the most prevalent chronic adult diseases and the third leading cause of fatality until 2020. Elastase/anti-elastase hypothesis, chronic inflammation, apoptosis, oxidant-antioxidant balance and infective repair cause pathogenesis of COPD are among the factors at play. Epigenetic changes are post-translational modifications in histone proteins and DNA such as methylation and acetylation as well as dysregulation of miRNAs expression. In this update review, we have examined recent studies on the upregulation or downregulation of methylation in different genes associated with COPD. Dysregulation of HDAC activity which is caused by some factors and miRNAs plays a key role in the suppression and reduction of COPD development. Also, some therapeutic approaches are proposed against COPD by targeting HDAC2 and miRNAs, which have therapeutic effects.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hamed Valizadeh
- Department of Internal Medicine and Pulmonology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Faculty of Life Sciences, Center of pharmaceutical sciences, University of Vienna, Vienna, Austria.,Faculty of Sciences, School of Pharmacy, University of Rome Tor Vergata, Roma, Italy
| | - Ramtin Bidares
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Ong J, Faiz A, Timens W, van den Berge M, Terpstra MM, Kok K, van den Berg A, Kluiver J, Brandsma CA. Marked TGF-β-regulated miRNA expression changes in both COPD and control lung fibroblasts. Sci Rep 2019; 9:18214. [PMID: 31796837 PMCID: PMC6890791 DOI: 10.1038/s41598-019-54728-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
COPD is associated with disturbed tissue repair, possibly due to TGF-β-regulated miRNA changes in fibroblasts. Our aim was to identify TGF-β-regulated miRNAs and their differential regulation and expression in COPD compared to control fibroblasts. Small RNA sequencing was performed on TGF-β-stimulated and unstimulated lung fibroblasts from 15 COPD patients and 15 controls. Linear regression was used to identify TGF-β-regulated and COPD-associated miRNAs. Interaction analysis was performed to compare miRNAs that responded differently to TGF-β in COPD and control. Re-analysis of previously generated Ago2-IP data and Enrichr were used to identify presence and function of potential target genes in the miRNA-targetome of lung fibroblasts. In total, 46 TGF-β-regulated miRNAs were identified in COPD and 86 in control fibroblasts (FDR < 0.05). MiR-27a-5p was the most significantly upregulated miRNA. MiR-148b-3p, miR-589-5p and miR-376b-3p responded differently to TGF-β in COPD compared to control (FDR < 0.25). MiR-660-5p was significantly upregulated in COPD compared to control (FDR < 0.05). Several predicted targets of miR-27a-5p, miR-148b-3p and miR-660-5p were present in the miRNA-targetome, and were mainly involved in the regulation of gene transcription. In conclusion, altered TGF-β-induced miRNA regulation and differential expression of miR-660-5p in COPD fibroblasts, may represent one of the mechanisms underlying aberrant tissue repair and remodelling in COPD.
Collapse
Affiliation(s)
- J Ong
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - A Faiz
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands.,University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW, 2007, Australia
| | - W Timens
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - M van den Berge
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - M M Terpstra
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - K Kok
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - A van den Berg
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - J Kluiver
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - C A Brandsma
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands. .,University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.
| |
Collapse
|
34
|
Xiao L, Zhou Y, Ma J, Cao L, Zhu C, Li W, Wang D, Fan L, Ye Z, Chen W. Roles of C-reactive protein on the association between urinary cadmium and type 2 diabetes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113341. [PMID: 31610512 DOI: 10.1016/j.envpol.2019.113341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that is widely distributed in the environment. However, the mechanisms linking Cd exposure and type 2 diabetes risks are not completely elucidated. In this study, we aim to investigate the roles of C-reactive protein (CRP) on the association between urinary Cd and type 2 diabetes risk. We determined urinary Cd and plasma CRP concentrations among 3,140 adults from Wuhan-Zhuhai cohort. Dose-response relationships between urinary Cd, plasma CRP, and type 2 diabetes were explored using multivariate logistic regression and linear mixed regression models. Mediation analysis was performed to investigate the role of plasma CRP in the associations between urinary Cd and type 2 diabetes risk. With adjustment for potential confounders, the odds ratios (ORs) of type 2 diabetes showed an upward trend when urinary Cd concentration gradually increased (P trend <0.01). Significantly positive dose-response relationships were observed between urinary Cd and plasma CRP, as well as between plasma CRP and type 2 diabetes risk. Compared to those when both Cd and CRP levels were low, the adjusted ORs (95%CI) of type 2 diabetes was the highest [2.053(1.395-3.020)] in individuals with high levels of urinary Cd and plasma CRP. Mediation analysis estimated that plasma CRP mediated 4.01% of the association between urinary Cd and type 2 diabetes risk [mediating effect: OR (95%CI) = 1.019(1.002-1.057)]. Individuals with high levels of urinary Cd and plasma CRP had a much higher risk of type 2 diabetes. Plasma CRP may serve as a mediator in the association between urinary Cd and type 2 diabetes risk, providing clues for further study on the biological pathway for type 2 diabetes related to Cd exposure.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|