1
|
Kouzai Y, Sagehashi Y, Watanabe R, Kajiwara H, Suzuki N, Ono H, Naito K, Akimoto-Tomiyama C. BglaTNB6, a tailocin produced by a plant-associated nonpathogenic bacterium, prevents rice seed-borne bacterial diseases. PLoS Pathog 2024; 20:e1012645. [PMID: 39423232 DOI: 10.1371/journal.ppat.1012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Rice seed-borne diseases caused by the bacterial pathogens Burkholderia glumae and B. plantarii pose a major threat to rice production worldwide. To manage these diseases in a sustainable manner, a biocontrol strategy is crucial. In this study, we showed that B. gladioli NB6 (NB6), a nonpathogenic bacterium, strongly protects rice from infection caused by the above-mentioned pathogens. NB6 was isolated from the indica rice cultivar Nona Bokra seedlings, which possesses genetic resistance to B. glumae. We discovered that cell suspensions of NB6 and its culture filtrate suppressed the disease symptoms caused by B. glumae and B. plantarii in rice seedlings, which indicated that NB6 secretes a plant-protective substance extracellularly. Through purification and mass spectrometry analysis of the culture filtrate, combined with transmission electron microscopy and mutant analysis, the substance was identified as a tailocin and named BglaTNB6. Tailocins are bacteriotoxic multiprotein structures morphologically similar to headless phage tails. BglaTNB6 exhibited antibacterial activity against several Burkholderia species, including B. glumae, B. plantarii, and B. gladioli, suggesting it can prevent pathogen infection. Interestingly, BglaTNB6 greatly contributed only to the biocontrol activity of NB6 cell suspensions against B. plantarii, and not against B. glumae. BglaTNB6 was shown to be encoded by a prophage locus lacking genes for phage head proteins, and a B. gladioli strain with the coded BglaTNB6-like locus equipped with phage head proteins failed to prevent rice seedlings from being infected with B. plantarii. These results suggested that BglaTNB6 may enhance the competitiveness of NB6 against a specific range of bacteria. Our study also highlights the potential of tailocin-producing endophytes for managing crop bacterial diseases.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sagehashi
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Riku Watanabe
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hideyuki Kajiwara
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Suzuki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ono
- Bioactive Chemical Analysis Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Plant Resources Unit, Research Center of Genetic Resources, NARO, Tsukuba, Ibaraki, Japan
| | - Chiharu Akimoto-Tomiyama
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Haq IU, Rahim K, Paker NP. Exploring the historical roots, advantages and efficacy of phage therapy in plant diseases management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112164. [PMID: 38908799 DOI: 10.1016/j.plantsci.2024.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In the drug-resistance era, phage therapy has received considerable attention from worldwide researchers. Phage therapy has been given much attention in public health but is rarely applied to control plant diseases. Herein, we discuss phage therapy as a biocontrol approach against several plant diseases. The emergence of antibiotic resistance in agriculturally important pathogenic bacteria and the toxic nature of different synthetic compounds used to control microbes has driven researchers to rethink the century-old strategy of phage therapy''. Compared to other treatment strategies, phage therapy offers remarkable advantages such as high specificity, less chances of drug resistance, non-harmful nature, and benefit to soil microbial flora. The optimizations and protective formulations of phages are significant accomplishments; however, steps towards a better understanding of the physiologic characteristics of phages need to be preceded to commercialize their use. The future of phage therapy in the context of plant disease management is promising and could play a significant role in sustainable agriculture. Ongoing research will likely affirm the safety of phage therapy, ensuring that it does not harm non-target organisms, including beneficial soil microbes. Phage therapy could become vital in addressing global food security challenges, particularly in regions heavily impacted by plant bacterial diseases. Efforts to create formulations that enhance the stability and shelf-life of phages will be crucial, especially for their use in varied environmental conditions.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland; Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais, Belo Horizonte, Brazil.
| | - Kashif Rahim
- School of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
3
|
Ul Haq I, Khan M, Khan I. Phytopathological management through bacteriophages: enhancing food security amidst climate change. J Ind Microbiol Biotechnol 2024; 51:kuae031. [PMID: 39210514 PMCID: PMC11388930 DOI: 10.1093/jimb/kuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY The burden of plant diseases and phage-based phytopathological treatment.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral school, Silesian University of Technology , 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901 MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| |
Collapse
|
4
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
5
|
Tarannum T, Ahmed S. Recent development in antiviral surfaces: Impact of topography and environmental conditions. Heliyon 2023; 9:e16698. [PMID: 37260884 PMCID: PMC10227326 DOI: 10.1016/j.heliyon.2023.e16698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.
Collapse
Affiliation(s)
- Tanjina Tarannum
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| |
Collapse
|
6
|
Zhiteneva V, Mosher J, Gerba CP, Rauch-Williams T, Drewes JE. A new workflow for assigning removal credits to assess overall performance of managed aquifer recharge (MAR). WATER RESEARCH 2023; 235:119836. [PMID: 36931188 DOI: 10.1016/j.watres.2023.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Pathogen removal in managed aquifer recharge (MAR) systems is dependent upon numerous operational, physicochemical water quality, and biological parameters. Due to the site-specific conditions affecting these parameters, guidelines for specifying pathogen removal have historically taken rather precautionary and conservative approaches in order to protect groundwater quality and public health. A literature review of regulated pathogens in MAR applications was conducted and compared to up-and-coming indicators and surrogates for pathogen assessment, all of which can be gathered into a toolbox from which regulators and operators alike can select appropriate pathogens for monitoring and optimization of MAR practices. Combined with improved knowledge of pathogen fate and transport obtained through lab- and pilot-scale studies and supported by modeling, this foundation can be used to select appropriate, site-specific pathogens for regarding a more efficient pathogen retention, ultimately protecting public health and reducing costs. This paper outlines a new 10 step-wise workflow for moving towards determining robust removal credits for pathogens based on risk management principles. This approach is tailored to local conditions while reducing overly conservative regulatory restrictions or insufficient safety contingencies. The workflow is intended to help enable the full potential of MAR as more planned water reuse systems are implemented in the coming years.
Collapse
Affiliation(s)
- Veronika Zhiteneva
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany; Kompetenzzentrum Wasser Berlin gGmbH, Cicerostrasse 24, Berlin 10709, Germany.
| | - Jeff Mosher
- Santa Ana Watershed Project Authority, 11615 Sterling Ave, Riverside, CA 92503, USA
| | - Charles P Gerba
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Tanja Rauch-Williams
- Carollo Engineers, Inc., 390 Interlocken Crescent, Suite 800, Broomfield, CO 80021, USA
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| |
Collapse
|
7
|
Nizet S, Rieger J, Sarabi A, Lajtai G, Zatloukal K, Tschegg C. Binding and inactivation of human coronaviruses, including SARS-CoV-2, onto purified clinoptilolite-tuff. Sci Rep 2023; 13:4673. [PMID: 36949092 PMCID: PMC10031168 DOI: 10.1038/s41598-023-31744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
The current COVID19 pandemic is caused by a positive-sense single-stranded RNA virus, which presents high mutational rates. The development of effective therapeutics and mitigation strategies using vaccination or therapeutic antibodies faces serious challenges because of the regular emergence of immune escape variants of the virus. An efficient approach would involve the use of an agent to non-specifically limit or block viruses contacting the mucosae and therefore entering the body. Here, we investigated the ability of a micronized purified clinoptilolite-tuff to bind and neutralize different viruses from the Coronaviridae family. Using plaque assay, RT-qPCR and immunostaining, the adsorption and inactivation of the seasonal human coronavirus HCoV-229E and of 2 SARS-CoV-2 variants were demonstrated. The resulting data suggest that purified clinoptilolite-tuff could be used as an ingredient in new medical devices and/or pharmaceuticals to prevent or mitigate SARS-CoV-2 dissemination.
Collapse
Affiliation(s)
- S Nizet
- Glock Health, Science and Research GmbH, Hausfeldstrasse 17, 2232, Deutsch-Wagram, Austria.
| | - J Rieger
- Diagnostic and Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - A Sarabi
- Glock Health, Science and Research GmbH, Hausfeldstrasse 17, 2232, Deutsch-Wagram, Austria
| | | | - K Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - C Tschegg
- Glock Health, Science and Research GmbH, Hausfeldstrasse 17, 2232, Deutsch-Wagram, Austria
| |
Collapse
|
8
|
Zhang X, Chen F, Yang L, Qin F, Zhuang J. Quantifying bacterial concentration in water and sand media during flow-through experiments using a non-invasive, real-time, and efficient method. Front Microbiol 2022; 13:1016489. [PMID: 36620047 PMCID: PMC9816126 DOI: 10.3389/fmicb.2022.1016489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Monitoring the dynamics of bacteria in porous media is of great significance to understand the bacterial transport and the interplay between bacteria and environmental factors. In this study, we reported a non-invasive, real-time, and efficient method to quantify bioluminescent bacterial concentration in water and sand media during flow-through experiments. First, 27 column experiments were conducted, and the bacterial transport was monitored using a real-time bioluminescent imaging system. Next, we quantified the bacterial concentration in water and sand media using two methods-viable count and bioluminescent count. The principle of the bioluminescent count in sand media was, for a given bioluminescence image, the total number of bacteria was proportionally allocated to each segment according to its bioluminescence intensity. We then compared the bacterial concentration for the two methods and found a good linear correlation between the bioluminescent count and viable count. Finally, the effects of porous media surface coating, pore water velocity, and ionic strength on the bioluminescent count in sand media were investigated, and the results showed that the bioluminescence counting accuracy was most affected by surface coating, followed by ionic strength, and was hardly affected by pore water velocity. Overall, the study proved that the bioluminescent count was a reliable method to quantify bacterial concentration in water (106 to 2 × 108 cell mL-1) or sand media (5 × 106-5 × 108 cell cm-3). This approach also offers a new way of thinking for in situ bacterial enumeration in two-dimensional devices such as 2D flow cells, microfluidic devices, and rhizoboxes.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengxian Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Fucang Qin
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Fucang Qin ✉
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, United States,Jie Zhuang ✉
| |
Collapse
|
9
|
Identification of Novel Viruses and Their Microbial Hosts from Soils with Long-Term Nitrogen Fertilization and Cover Cropping Management. mSystems 2022; 7:e0057122. [PMID: 36445691 PMCID: PMC9765229 DOI: 10.1128/msystems.00571-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Soils are the largest organic carbon reservoir and are key to global biogeochemical cycling, and microbes are the major drivers of carbon and nitrogen transformations in the soil systems. Thus, virus infection-induced microbial mortality could impact soil microbial structure and functions. In this study, we recovered 260 viral operational taxonomic units (vOTUs) in samples collected from soil taken from four nitrogen fertilization (N-fertilization) and cover-cropping practices at an experimental site under continuous cotton production evaluating conservation agricultural management systems for more than 40 years. Only ~6% of the vOTUs identified were clustered with known viruses in the RefSeq database using a gene-sharing network. We found that 14% of 260 vOTUs could be linked to microbial hosts that cover key carbon and nitrogen cycling taxa, including Acidobacteriota, Proteobacteria, Verrucomicrobiota, Firmicutes, and ammonia-oxidizing archaea, i.e., Nitrososphaeria (phylum Thermoproteota). Viral diversity, community structure, and the positive correlation between abundance of a virus and its host indicate that viruses and microbes are more sensitive to N-fertilization than cover-cropping treatment. Viruses may influence key carbon and nitrogen cycling through control of microbial function and host populations (e.g., Chthoniobacterales and Nitrososphaerales). These findings provide an initial view of soil viral ecology and how it is influenced by long-term conservation agricultural management. IMPORTANCE Bacterial viruses are extremely small and abundant particles that can control the microbial abundance and community composition through infection, which gradually showed their vital roles in the ecological process to influence the nutrient flow. Compared to the substrate control, less is known about the influence of soil viruses on microbial community function, and even less is known about microbial and viral diversity in the soil system. To obtain a more complete knowledge of microbial function dynamics, the interaction between microbes and viruses cannot be ignored. To fully understand this process, it is fundamental to get insight into the correlation between the diversity of viral communities and bacteria which could induce these changes.
Collapse
|
10
|
Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? GEOSCIENCE FRONTIERS 2022; 13. [PMID: 37521131 PMCID: PMC8730742 DOI: 10.1016/j.gsf.2021.101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.
Collapse
|
11
|
Armanious A, Mezzenga R. A Roadmap for Building Waterborne Virus Traps. JACS AU 2022; 2:2205-2221. [PMID: 36311831 PMCID: PMC9597599 DOI: 10.1021/jacsau.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Outbreaks of waterborne viruses pose a massive threat to human health, claiming the lives of hundreds of thousands of people every year. Adsorption-based filtration offers a promising facile and environmentally friendly approach to help provide safe drinking water to a world population of almost 8 billion people, particularly in communities that lack the infrastructure for large-scale facilities. The search for a material that can effectively trap viruses has been mainly driven by a top-down approach, in which old and new materials have been tested for this purpose. Despite substantial advances, finding a material that achieves this crucial goal and meets all associated challenges remains elusive. We suggest that the road forward should strongly rely on a complementary bottom-up approach based on our fundamental understanding of virus interactions at interfaces. We review the state-of-the-art physicochemical knowledge of the forces that drive the adsorption of viruses at solid-water interfaces. Compared to other nanometric colloids, viruses have heterogeneous surface chemistry and diverse morphologies. We advocate that advancing our understanding of virus interactions would require describing their physicochemical properties using novel descriptors that reflect their heterogeneity and diversity. Several other related topics are also addressed, including the effect of coadsorbates on virus adsorption, virus inactivation at interfaces, and experimental considerations to ensure well-grounded research results. We finally conclude with selected examples of materials that made notable advances in the field.
Collapse
Affiliation(s)
- Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
- Department
of Materials, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
12
|
Tiwari AK, Gupta MK, Pandey G, Pandey S, Pandey PC. Amine-Functionalized Silver Nanoparticles: A Potential Antiviral-Coating Material with Trap and Kill Efficiency to Combat Viral Dissemination (COVID-19). BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022:1-15. [PMID: 37363135 PMCID: PMC9581455 DOI: 10.1007/s44174-022-00044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of COVID-19 has drastically affected the daily lifestyles of people globally where specific Coronavirus-2 transmits primarily by respiratory droplets. Structurally, the SARS-CoV-2 virus is made up of four types of proteins in which S-protein is indispensable among them, as it causes rapid replication in the host body. Therefore, the glycine and alanine composed of HR1 of S-protein is the ideal target for antiviral action. Different forms of surface-active PPEs can efficiently prevent this transmission in this circumstance. However, the virus can survive on the conventional PPEs for a long time. Hence, the nanotechnological approaches based on engineered nanomaterials coating on medical equipments can potentially prevent the dissemination of infections in public. Silver nanoparticles with tuneable physicochemical properties and versatile chemical functionalization provide an excellent platform to combat the disease. The coating of amine-functionalized silver nanoparticle (especially amine linked to aliphatic chain and trialkoxysilane) in its nanostructured form enables cloths trap and kill efficient. PPEs are a primary and reliable preventive measure, although they are not 100% effective against viral infections. So, developing and commercializing surface-active PPEs with trap and kill efficacy is highly needed to cope with current and future viral infections. This review article discusses the COVID-19 morphology, antiviral mechanism of Ag-NPs against SARS-CoV-2 virus, surface factors that influence viral persistence on fomites, the necessity of antiviral PPEs, and the potential application of amine-functionalized silver nanoparticles as a coating material for the development of trap and kill-efficient face masks and PPE kits.
Collapse
Affiliation(s)
- Atul Kumar Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Munesh Kumar Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Govind Pandey
- Department of Paediatrics, King George Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Shivangi Pandey
- Motilal Nehru Medical Collage, Allahabad, Uttar Pradesh 211001 India
| | - Prem C. Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
13
|
Lu J, Yu Z, Ngiam L, Guo J. Microplastics as potential carriers of viruses could prolong virus survival and infectivity. WATER RESEARCH 2022; 225:119115. [PMID: 36137436 DOI: 10.1016/j.watres.2022.119115] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are emerging contaminants in various aquatic environments, leading to human and environmental health concerns. Viruses have also been ubiquitously detected in aquatic environments, and there is an unknown risk of microplastics-mediated virus migration through adsorption. This study applied polystyrene microplastics as the carrier and the T4 bacteriophage (or phage) as the virus model, and a violet side scatter/green fluorescence double-gated flow cytometry approach to investigate the adsorption capacity of viruses on microplastics. Our results show that up to 98.6±0.2% of the dosed viruses can be adsorbed by microplastics, and such adsorptions are dependent on size and surface functional groups. Both Fourier-transform infrared spectroscopy and fluorescence-labelled confocal microscopy confirmed that the virus can successfully adsorb onto microplastics. Zeta potential characterisation revealed that the electrostatic interaction is the primary adsorption mechanism associated with the adsorption of viruses. UV-aging was found to enhance the adsorption capacities of viruses on microplastics. Both pristine and UV-aged microplastics were found to significantly prolong the infectivity of the adsorbed viruses, even under elevated temperatures. Collectively, our findings highlight that microplastics are associated with the biological risks of water-borne viral transmission through virus adsorption.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lyman Ngiam
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
14
|
Wang K, Ma Y, Sun B, Yang Y, Zhang Y, Zhu L. Transport of silver nanoparticles coated with polyvinylpyrrolidone of various molecular sizes in porous media: Interplay of polymeric coatings and chemically heterogeneous surfaces. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128247. [PMID: 35065312 DOI: 10.1016/j.jhazmat.2022.128247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are usually capped with stabilizing agents to protect their activities and improve stability. Polyvinylpyrrolidone (PVP) is one of the most used capping agents of AgNPs, and may affect the transport of AgNPs in porous media. The transport and retention of AgNPs capped with PVPs of different molecular weights (PVP10-AgNP, PVP40-AgNP and PVP360-AgNP) in uncoated, and humic acid (HA)-, kaolinite (KL)- and ferrihydrite (FH)-coated sand porous media were investigated. Among the three AgNPs, PVP360-AgNP exhibited the highest mobility and eluted from all types of porous media. This is because PVPs of higher molecular weight provided stronger steric effect and electrostatic repulsive forces among PVP-AgNPs, inducing stronger blocking and shadow effects. The transport of the PVP-AgNPs increased in the HA-Sand columns, while decreased in the KL- and FH-Sand columns, especially for PVP10-AgNP and PVP40-AgNP. The simulation results using one-site kinetic model indicated that HA-Sand reduced the maximum retention capacity (Smax), while KL- and FH-Sand increased the Smax as well as the first-order attachment rate coefficients (katt), particularly at high ionic strength. The results shed light on the interplay of the capping agents of AgNPs and the surface heterogeneity on the transport of AgNPs in porous media.
Collapse
Affiliation(s)
- Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yi Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
15
|
You X, Kallies R, Hild K, Hildebrandt A, Harms H, Chatzinotas A, Wick LY. Transport of marine tracer phage particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152704. [PMID: 34973315 DOI: 10.1016/j.scitotenv.2021.152704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Marine phages have been applied to trace ground- and surface water flows. Yet, information on their transport in soil and related particle intactness is limited. Here we compared the breakthrough of two lytic marine tracer phages (Pseudoalteromonas phages PSA-HM1 and PSA-HS2) with the commonly used Escherichia virus T4 in soil- and sand-filled laboratory percolation columns. All three phages showed high mass recoveries in the effluents and a higher transport velocity than non-reactive tracer Br-. Comparison of effluent gene copy numbers (CN) to physically-determined phage particle counts or infectious phage counts showed that PSA-HM1 and PSA-HS2 retained high phage particle intactness (Ip > 81%), in contrast to T4 (Ip < 36%). Our data suggest that marine phages may be applied in soil to mimic the transport of (bio-) colloids or anthropogenic nanoparticles of similar traits. Quantitative PCR (qPCR) thereby allows for highly sensitive quantification and thus for the detection of even highly diluted marine tracer phages in environmental samples.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Konstanze Hild
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Anke Hildebrandt
- Helmholtz Centre for Environmental Research - UFZ, Department of Computational Hydrosystems, Permoserstraße 15, 04318 Leipzig, Germany; Friedrich Schiller University Jena, Institute of Geoscience, Burgweg 11, 07749 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; Leipzig University, Institute of Biology, Talstr.33, Leipzig 04103, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
16
|
Nwokolo NL, Enebe MC. Shotgun metagenomics evaluation of soil fertilization effect on the rhizosphere viral community of maize plants. Antonie van Leeuwenhoek 2021; 115:69-78. [PMID: 34762236 DOI: 10.1007/s10482-021-01679-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
The need for sustainability in food supply has led to progressive increase in soil nutrient enrichment. Fertilizer application effects both biological and abiotic processes in the soil, of which the bacterial community that support viral multiplication are equally influenced. Nevertheless, little is known on the effect of soil fertilization on the Soil viral community composition and dynamics. In this study, we evaluated the influence of soil fertilization on the maize rhizosphere viral community growing in Luvisolic soil. The highest abundance of bacteriophages were detected in soil treated with 8 tons/ha compost manure (Cp8), 60 kg/ha inorganic fertilizer (N1), 4 tons/ha compost manure (Cp4) and the unfertilized control (Cn0). Our result showed higher relative abundance of Myoviridae, Podoviridae and Siphoviridae in 8 tons/ha organic manure (Cp8) fertilized compared to others. While Inoviridae and Microviridae were the most relative abundant phage families in 4 tons/ha organic manure (Cp4) fertilized soil. This demonstrate that soil fertilization with organic manure increases the abundance and diversity of viruses in the soil due to its soil conditioning effects.
Collapse
Affiliation(s)
| | - Matthew Chekwube Enebe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
17
|
Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC). WATER 2021. [DOI: 10.3390/w13192627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research has used fluorescence spectroscopy and parallel factor analysis (PARAFAC) in order to characterize dissolved organic matter in septic tank effluent, as it passes through the biomat/biozone, infiltrating into the unsaturated zone beneath domestic wastewater treatment systems (DWWTSs). Septic tank effluent and soil moisture samples from the percolation areas of two DWWTSs have been analyzed using fluorescence excitation–emission spectroscopy. Using PARAFAC analysis, a six-component model was obtained whereby individual model components could be assigned to humified organic matter, fluorescent whitening compounds (FWCs), and protein-like compounds. This has shown that fluorescent dissolved organic matter (FDOM) in domestic wastewater was dominated by protein-like compounds and FWCs and that, with treatment in the percolation area, protein-like compounds and FWCs are removed and contributions from terrestrially derived (soil) organic decomposition compounds increase, leading to a higher degree of humification and aromaticity. The results also suggest that the biomat is the most important element determining FDOM removal and consequently affecting DOM composition. Furthermore, no significant difference was found in the FDOM composition of samples from the percolation area irrespective of whether they received primary or secondary effluent. Overall, the tested fluorometric methods were shown to provide information about structural and functional properties of organic matter which can be useful for further studies concerning bacterial and/or virus transport from DWWTSs.
Collapse
|
18
|
Abstract
Microbial pathogens present in stormwater, which originate from human sewage and animal faecal matters, are one of the major impediments in stormwater reuse. The transport of microbes in stormwater is more than just a physical process. The mobility of microbes in stormwater is governed by many factors, such as dissolved organic matter, cations, pH, temperature and water flow. This paper examined the roles of three environmental variables, namely: dissolved organic matter, positive cations and stormwater flow on the transport of two faecal indicator bacteria (FIB), Enterococcus spp. and Escherichia coli. Stormwater runoff samples were collected during twelve wet weather events and one dry weather event from a medium density residential urban catchment in Brisbane. Enterococcus spp. numbers as high as 3 × 104 cfu/100 mL were detected in the stormwater runoff, while Escherichia coli numbers up to 3.6 × 103 cfu/100 mL were observed. The dissolved organic carbon (DOC) in the stormwater samples was in the range of 2.2–5.9 mg/L with an average concentration of 4.5 mg/L in which the hydrophilic carbon constituted the highest mass fraction of 60–80%. The results also showed that the transport of FIB in stormwater was reduced with an increasing concentration of the hydrophilic organic fraction, especially the humic fraction. On the contrary, the concentration of trivalent cations and stormwater flow rate showed a positive correlation with the FIB numbers. These findings indicated the potentiality to make a good use and measurement of simple environmental variables to reflect the degree of microbe transport in stormwater from residential/suburban catchments.
Collapse
|
19
|
Petala M, Dafou D, Kostoglou M, Karapantsios T, Kanata E, Chatziefstathiou A, Sakaveli F, Kotoulas K, Arsenakis M, Roilides E, Sklaviadis T, Metallidis S, Papa A, Stylianidis E, Papadopoulos A, Papaioannou N. A physicochemical model for rationalizing SARS-CoV-2 concentration in sewage. Case study: The city of Thessaloniki in Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142855. [PMID: 33199018 PMCID: PMC7550162 DOI: 10.1016/j.scitotenv.2020.142855] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/17/2023]
Abstract
Detection of SARS-CoV-2 in sewage has been employed by several researchers as an alternative early warning indicator of virus spreading in communities, covering both symptomatic and asymptomatic cases. A factor that can seriously mislead the quantitative measurement of viral copies in sewage is the adsorption of virus fragments onto the highly porous solids suspended in wastewater, making them inaccessible. This depends not only on the available amount of suspended solids, but also on the amount of other dissolved chemicals which may influence the capacity of adsorption. On this account, the present work develops a mathematical framework, at various degrees of spatial complexity, of a physicochemical model that rationalizes the quantitative measurements of total virus fragments in sewage as regards the adsorption of virus onto suspended solids and the effect of dissolved chemicals on it. The city of Thessaloniki in Greece is employed as a convenient case study to determine the values of model variables. The present data indicate the ratio of the specific absorption (UV254/DOC) over the dissolved oxygen (DO) as the parameter with the highest correlation with viral copies. This implies a strong effect on viral inaccessibility in sewage caused (i) by the presence of humic-like substances and (ii) by virus decay due to oxidation and metabolic activity of bacteria. The present results suggest days where many fold corrections in the measurement of viral copies should be applied. As a result, although the detected RNA load in June 2020 is similar to that in April 2020, virus shedding in the city is about 5 times lower in June than in April, in line with the very low SARS-CoV-2 incidence and hospital admissions for COVID-19 in Thessaloniki in June.
Collapse
Affiliation(s)
- M Petala
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
| | - D Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M Kostoglou
- Laboratory of Chemical and Environmental Technology, Dept. of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Th Karapantsios
- Laboratory of Chemical and Environmental Technology, Dept. of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - E Kanata
- Prion Diseases Research Group, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Chatziefstathiou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - F Sakaveli
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
| | - K Kotoulas
- EYATH S.A., Thessaloniki Water Supply and Sewerage Company S.A., Thessaloniki, 54636, Greece
| | - M Arsenakis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - T Sklaviadis
- Prion Diseases Research Group, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - S Metallidis
- Department of Haematology, First Department of Internal Medicine, Faculty of Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - A Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - E Stylianidis
- School of Spatial Planning and Development, Faculty of Engineering, Aristotle University of Thessaloniki, 54124, Greece
| | - A Papadopoulos
- EYATH S.A., Thessaloniki Water Supply and Sewerage Company S.A., Thessaloniki, 54636, Greece
| | - N Papaioannou
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
20
|
Morrison CM, Betancourt WQ, Quintanar DR, Lopez GU, Pepper IL, Gerba CP. Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. WATER RESEARCH 2020; 177:115812. [PMID: 32311575 DOI: 10.1016/j.watres.2020.115812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Increased water demands have led to a notable interest in the use of treated wastewater for reuse. Typically, this results from the implementation of advanced treatment of final effluent from wastewater treatment plants prior to reuse for potable or non-potable purposes. Soil aquifer treatment (SAT) is a natural treatment process in which water from sources of varying quality is infiltrated into the soil to further improve its quality. The goal of this study was to determine the log10 reduction values (LRVs) of viruses naturally present in treated effluent and evaluate two potential indicators of virus removal and transport, pepper mild mottle virus (PMMoV) and crAssphage, during SAT of treated effluent. Groundwater was sampled at three wells with different attributes within the Sweetwater Recharge Facility (SWRF) in Tucson, AZ. These sites vary greatly in operational parameters such as effluent infiltration rates and wetting/drying cycles, which may influence virus removal efficiency. Detection of adenovirus, enterovirus, PMMoV, and crAssphage were determined by qPCR/RT-qPCR and log10 reduction values (LRVs) were determined. PMMoV and crAssphage were detected in groundwater associated with a set of recharge basins that exhibited shorter wetting/drying cycles and faster infiltration rates. LRVs for crAssphage and PMMoV at this site ranged from 3.9 to 5.8, respectively. Moreover, PMMoV was detected downflow of the SAT sites, indicating the potential degradation of microbial groundwater quality in the region surrounding managed aquifer recharge facilities. Overall, PMMoV and crAssphage showed potential as conservative process indicators of virus removal during SAT, particularly for attribution of LRV credits. Moreover, the detection of these viruses indicated the potential influence of wetting/drying cycles on virus removal by SAT, a parameter that has not yet been studied with respect to biological contaminants.
Collapse
Affiliation(s)
- Christina M Morrison
- Department of Environmental Science, Water and Energy Sustainable Technology (WEST) Center University of Arizona, Tucson, AZ, USA.
| | - Walter Q Betancourt
- Department of Environmental Science, Water and Energy Sustainable Technology (WEST) Center University of Arizona, Tucson, AZ, USA
| | | | - Gerardo U Lopez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ian L Pepper
- Department of Environmental Science, Water and Energy Sustainable Technology (WEST) Center University of Arizona, Tucson, AZ, USA
| | - Charles P Gerba
- Department of Environmental Science, Water and Energy Sustainable Technology (WEST) Center University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Xing Y, Chen X, Wagner RE, Zhuang J, Chen X. Coupled effect of colloids and surface chemical heterogeneity on the transport of antibiotics in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136644. [PMID: 31955105 DOI: 10.1016/j.scitotenv.2020.136644] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Release of antibiotics into the environment has caused ecological and human health concerns in recent years. However, little is known about their transport behaviors in chemically heterogeneous porous media. In this study, we investigated the coupled effects of surface chemistry and soil colloids on the transport of ciprofloxacin and tetracycline through sand under steady state saturated flow conditions. Both antibiotics had a much higher capacity of adsorption on soil colloids (17,500 mg/kg for ciprofloxacin and 8600 mg/kg for tetracycline) than on sand (5.11 mg/kg for ciprofloxacin and 2.80 mg/kg for tetracycline). However, ciprofloxacin adsorption increased to 8.91 mg/kg after the sand was coated with iron oxide and to 8.73 mg/kg after the sand was coated with humic acid. Tetracycline, adsorption increased to 7.99 mg/kg after sand was coated with iron oxide coated sand and to 8.35 mg/kg after the sand was coated with humic acid coated The high adsorption capacity of ciprofloxacin led to a recovery rate of <4% in the effluents of the columns containing 0%, 20% and 50% of iron oxide/humic acid coated sand. The surface coating decreased the recovery rates of tetracycline from 35.4% (in uncoated sand) to 12.0% (in column containing 50% iron oxide coated sand) and 0.010% (in column containing 50% humic acid coated sand), respectively. Once adsorbed to soil colloids, the recovery rate of ciprofloxacin increased by 26.7% in uncoated sand column, 21.1% in iron oxide coated sand column, and 32.7% in humic acid coated sand column. Similarly, the presence of the colloids increased the recovery rate of tetracycline from 13.8% to 33.2% after the sand was coated with humic acid. Colloids did not significantly influence the transport and recovery of tetracycline in the uncoated sand and iron oxide coated sand due likely to its lower adsorption affinity.
Collapse
Affiliation(s)
- Yingna Xing
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Regan E Wagner
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
22
|
Clemens H, Pang L, Morgan LK, Weaver L. Attenuation of rotavirus, MS2 bacteriophage and biomolecule-modified silica nanoparticles in undisturbed silt loam over gravels dosed with onsite wastewater. WATER RESEARCH 2020; 169:115272. [PMID: 31726397 DOI: 10.1016/j.watres.2019.115272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 05/24/2023]
Abstract
Contamination of potable groundwater by pathogenic viruses from on-site wastewater treatment systems (OWTS) poses a serious health risk. This study investigated the attenuation and transport of rotavirus, bacteriophage MS2 and DNA-labelled-glycoprotein-coated silica nanoparticles (DGSnp) in 2 intact cores of silt loam over gravels dosed with wastewater from an OWTS at 3.53 L/day. To simulate a worst-case scenario, experiments were conducted under saturated conditions. The results from 6 experiments demonstrated that the rotavirus and DGSnp reductions were very similar and markedly greater than the MS2 reduction. This was reflected in the peak concentrations, relative mass recoveries, and temporal and spatial reduction rates. For a given log10 reduction, the estimated soil depth required for MS2 was over twice that required for rotavirus and DGSnp. This is the first study in which DGSnp was used as a rotavirus surrogate in soil under wastewater applications. Consistent with previous studies, DGSnp showed promise at mimicking rotavirus attenuation and transport in porous media. The results suggest DGSnp could be used to assess the attenuation capacity of subsurface media to rotavirus. However, DGSnp is not conservative and will underestimate the setback distances required for rotavirus reductions by 3%. On the other hand, separation distances determined using the rotavirus parameters and criteria but based on MS2 attenuation, can be too conservative in some subsurface media. To determine safe and realistic separation distances, it would be beneficial and complementary to apply both conservative virus surrogate using MS2 bacteriophage and representative but non-conservative new virus surrogates using biomolecule-modified silica nanoparticles.
Collapse
Affiliation(s)
- Hazel Clemens
- Institute of Environmental Science and Research, PO Box 29181, Christchurch, 8540, New Zealand; Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Liping Pang
- Institute of Environmental Science and Research, PO Box 29181, Christchurch, 8540, New Zealand.
| | - Leanne K Morgan
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, PO Box 29181, Christchurch, 8540, New Zealand
| |
Collapse
|
23
|
Zhuang J, Liu W, Yang L, Kang J, Zhang X. Bioluminescent Imaging and Tracking of Bacterial Transport in Soils. Methods Mol Biol 2020; 2081:53-65. [PMID: 31721118 DOI: 10.1007/978-1-4939-9940-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioimaging instrumentation can be used to observe environmental phenomena such as the transport, retention, and distribution of bacteria in soils in situ in a real-time, nondestructive manner. Bacteria designed to emit bioluminescence light signals are injected into a transparent column packed with soils, and then the column is placed into a bioimaging instrument, such as a PerkinElmer IVIS Spectrum, while it is connected through thin teflon tubes to other parts of the column system located outside of the imaging chamber, including a fraction collector for collecting effluent solution and a pump for introducing bacterial suspension or experimental solution. After self-correction of soil autofluorescence and bioluminescence and setup of required imaging parameters, the transport experiment is initiated by introducing the bacterial suspension to the soil column while the spatiotemporal distribution of bioluminescent bacteria in the entire soil column is imaged. Finally, the images are processed to analyze bacterial migration in the soil under various environmental conditions in comparison with the breakthrough and elution curves of the bacteria obtained by analyzing the effluent samples.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA. .,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Weipeng Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Jia Kang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- College of Desert Control Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
24
|
Perez-Mercado LF, Lalander C, Joel A, Ottoson J, Dalahmeh S, Vinnerås B. Biochar filters as an on-farm treatment to reduce pathogens when irrigating with wastewater-polluted sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109295. [PMID: 31376612 DOI: 10.1016/j.jenvman.2019.109295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Microbial contamination of vegetables due to irrigation with wastewater-polluted streams is a common problem around most cities in developing countries because wastewater is an available source of water and nutrients but wastewater treatment is often inadequate. On-farm treatment of polluted water is a feasible option to manage microbial risks in a multi-barrier approach. Current evidence indicates good suitability of biochar filters for microbe removal from wastewater using the hydraulic loading rate (HLR) designed for sand filters, but their suitability has not been tested under on-farm conditions. This study evaluated the combined effect of several variables on removal of microbial indicators from diluted wastewater by biochar filtration on-farm and the correlations between removal efficiency and HLR. Columns of biochar with three different effective particle diameters (d10) were fed with diluted wastewater at 1x, 6x, and 12x the design HLR and two levels of water salinity (electrical conductivity, EC). Influent and effluent samples were collected from the columns and analyzed for bacteriophages (ɸX174 and MS2), Escherichia coli, Enterococcus spp., and Saccharomyces cerevisiae. Microbe removal decreased with increasing HLR, from 2 to 4 to 1 log10 for bacteria and from 2 to 0.8 log10 for viruses, while S. cerevisiae removal was unaffected. Effective particle diameter (d10) was the main variable explaining microbe removal at 6x and 12x, while EC had no effect. Correlation analysis showed removal of 2 log10 bacteria and 1 log10 virus at 3x HLR. Thus biochar filters on-farm would not remove significant amounts of bacteria and viruses. However, the design HLR was found to be conservative. These results, and some technical and management considerations identified, can assist in the development of a scientific method for designing biochar filters for on-farm and conventional wastewater treatment.
Collapse
Affiliation(s)
- Luis Fernando Perez-Mercado
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden; Center for Water and Environmental Sanitation (Centro de Aguas y Saneamiento Ambiental, CASA), Universidad Mayor de San Simon, Calle Sucre y Parque Latorre, Cochabamba, Bolivia.
| | - Cecilia Lalander
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - Abraham Joel
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Jakob Ottoson
- Department of Risk Benefit Assessment, National Food Agency, 75126 Uppsala, Sweden
| | - Sahar Dalahmeh
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| |
Collapse
|
25
|
Xu S, Chen X, Zhuang J. Opposite influences of mineral-associated and dissolved organic matter on the transport of hydroxyapatite nanoparticles through soil and aggregates. ENVIRONMENTAL RESEARCH 2019; 171:153-160. [PMID: 30665117 DOI: 10.1016/j.envres.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The mechanism by which soil organic matter (SOM) controls nanoparticle transport through natural soils is unclear. In this study, we distinguished the specific effects of two primary SOM fractions, mineral-associated organic matter (MOM) and dissolved organic matter (DOM), on the transport of hydroxyapatite nanoparticles (nHAP) through a loamy soil under the conditions of saturated steady flow and environmentally relevant solution chemistry (1 mM NaCl at pH 7). The results showed that MOM could inhibit the transport of nHAP by decreasing electrostatic repulsion and increasing mechanical straining and hydrophobic interactions. Specifically, the presence of MOM reduced the mobility of nHAP in the bulk soil and its macroaggregates by ~4 fold and ~6 fold, respectively, and this hindered effect became further conspicuous in microaggregates (~36 fold decrease). An analysis of extended Derjaguin-Landau-Vervey-Overbeek (abbreviated as XDLVO) interactions indicated that MOM could decrease the primary energy barrier (Φmax1), primary minimum (Φmin1), and secondary minimum (Φmin2) to promote nHAP attachment. Conversely, DOM (10-50 mg L-1) favored nHAP mobility due to an increase in electrostatic repulsion among nHAP particles and between nHAP and soil surfaces. Pre-flushing soil with DOM (causing DOM sorption on soil) increased nHAP mobility by ~2 fold in the bulk soil and its macroaggregates, and this facilitated effect was furthered in microaggregates (~11 fold increase). The results of XDLVO interactions showed that DOM increased Φmax1, Φmin1, and Φmin2, producing an unfavorable effect on nHAP attachment. Mass recovery data revealed that the MOM-hindered effect was stronger than the DOM-facilitated effect on nHAP transport. This study suggested that changing SOM fractions could control the mobility of nanoparticles in the subsurface considerably.
Collapse
Affiliation(s)
- Shuang Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
26
|
Tondera K, Ruppelt JP, Pinnekamp J, Kistemann T, Schreiber C. Reduction of micropollutants and bacteria in a constructed wetland for combined sewer overflow treatment after 7 and 10 years of operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:917-927. [PMID: 30257231 DOI: 10.1016/j.scitotenv.2018.09.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Repeated investigations on constructed wetlands for the treatment of combined sewer overflows, also named bioretention filters or retention soil filters, are necessary to provide information on their long-term performance. In this study, a sampling campaign was conducted on micropollutants, indicator microorganisms and standard parameters ten years after such filters were in operation and three years after the first investigation; it revealed that the filters lost capacity to remove chemical substances with no or only slow biological degradability. This was the case e.g. for phosphate (decrease from 29 to 11%), diclofenac (67 to 34%) and TCPP (34% to negative reduction). They continued to remove easily degradable parameters such as COD (stable around 75%) stably. The indicator microorganisms Escherichia coli (1.1/0.8 log10), intestinal enterococci (1.3/0.8 log10) and somatic coliphages (0.6/1.0 log10) showed comparably low process variations given the difficulties in sampling and analysing microbial parameters representatively as well as given natural variations in microbial behaviour and growth. Additionally, for bisphenol A, we found a temperature-related difference of removal efficiencies: while in the cold months (winter), the removal was only 53% on average, it increased to 90% in the warm months (summer). As for the long-term prospective of retention soil filters, decision-makers need to identify the most important pollutants in a specific catchment area and adapt the filter design accordingly. If pollutants are targeted that lead to an exhausted filtration capacity, post treatment or the exchange of charged filter material is necessary. However, for easily biologically degradable substances, so far, there is no limit in their use.
Collapse
Affiliation(s)
- Katharina Tondera
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany; IMT Atlantique, GEPEA, UBL, F-44307 Nantes, France.
| | - Jan P Ruppelt
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany.
| | - Johannes Pinnekamp
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany.
| | - Thomas Kistemann
- GeoHealth Centre, Institute for Hygiene & Public Health, University Hospital, University of Bonn, Bonn, Germany.
| | - Christiane Schreiber
- GeoHealth Centre, Institute for Hygiene & Public Health, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
27
|
Zhang W, Li S, Wang S, Lei L, Yu X, Ma T. Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6497-6513. [PMID: 29255976 DOI: 10.1007/s11356-017-0876-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na+ or Ca2+, will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than monovalent Na+. As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- College of Environment and Resources, Jilin University, Changchun, 130021, China.
| | - Shuo Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Shuang Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xipeng Yu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Tianyi Ma
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| |
Collapse
|
28
|
Wong K, Molina M. Applying Quantitative Molecular Tools for Virus Transport Studies: Opportunities and Challenges. GROUND WATER 2017; 55:778-783. [PMID: 28542984 PMCID: PMC6146963 DOI: 10.1111/gwat.12531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 05/31/2023]
Abstract
Bacteriophages have been used in soil column studies for the last several decades as surrogates to study the fate and transport behavior of enteric viruses in groundwater. However, recent studies have shown that the transport behavior of bacteriophages and enteric viruses in porous media can be very different. The next generation of virus transport science must therefore provide more data on mobility of enteric viruses and the relationship between transport behaviors of enteric viruses and bacteriophages. To achieve this new paradigm, labor intensity devoted to enteric virus quantification method must be reduced. Recent studies applied quantitative polymerase chain reaction (qPCR) to column filtration experiments to study the transport behavior of human adenovirus (HAdV) in porous media under a variety of conditions. A similar approach can be used to study the transport of other enteric viruses such as norovirus. Analyzing the column samples with both qPCR and culture assays and applying multiplex qPCR to study cotransport behavior of more than one virus will provide information to under-explored areas in virus transport science. Both nucleic acid extraction kits and one-step lysis protocols have been used in these column studies to extract viral nucleic acid for qPCR quantification. The pros and cons of both methods are compared herein and solutions for overcoming problems are suggested. As better understanding of the transport behavior of enteric viruses is clearly needed, we strongly advocate for application of rapid molecular tools in future studies as well as optimization of protocols to overcome their current limitations.
Collapse
Affiliation(s)
- Kelvin Wong
- Ecosystem Research Division, USEPA Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens, GA, 30605
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN, 37831
| | - Marirosa Molina
- Ecosystem Research Division, USEPA Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens, GA, 30605
| |
Collapse
|
29
|
Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A. Bacteriophages and Bacterial Plant Diseases. Front Microbiol 2017; 8:34. [PMID: 28163700 PMCID: PMC5247434 DOI: 10.3389/fmicb.2017.00034] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of TechnologyCork, Ireland
| | | | - R. P. Ross
- Alimentary Pharmabiotic Centre, University CollegeCork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University CollegeCork, Ireland
| | - Jim O’Mahony
- Department of Biological Sciences, Cork Institute of TechnologyCork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of TechnologyCork, Ireland
| |
Collapse
|
30
|
Dalahmeh S, Lalander C, Pell M, Vinnerås B, Jönsson H. Quality of greywater treated in biochar filter and risk assessment of gastroenteritis due to household exposure during maintenance and irrigation. J Appl Microbiol 2016; 121:1427-1443. [DOI: 10.1111/jam.13273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 11/28/2022]
Affiliation(s)
- S.S. Dalahmeh
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - C. Lalander
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - M. Pell
- Department of Microbiology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - B. Vinnerås
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - H. Jönsson
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| |
Collapse
|
31
|
Armanious A, Münch M, Kohn T, Sander M. Competitive Coadsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3597-606. [PMID: 26901121 DOI: 10.1021/acs.est.5b05726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adsorption onto solid-water interfaces is a key process governing the fate and transport of waterborne viruses. Although negatively charged viruses are known to extensively adsorb onto positively charged adsorbent surfaces, virus adsorption in such systems in the presence of negatively charged dissolved organic matter (DOM) as coadsorbate remains poorly studied and understood. This work provides a systematic assessment of the adsorption dynamics of negatively charged viruses (i.e., bacteriophages MS2, fr, GA, and Qβ) and polystyrene nanospheres onto a positively charged model sorbent surface in the presence of varying DOM concentrations. In all systems studied, DOM competitively suppressed the adsorption of the viruses and nanospheres onto the model surface. Electrostatic repulsion of the highly negatively charged MS2, fr, and the nanospheres impaired their adsorption onto DOM adlayers that formed during the coadsorption process. In contrast, the effect of competition on overall adsorption was attenuated for less-negatively charged GA and Qβ because these viruses also adsorbed onto DOM adlayer surfaces. Competition in MS2-DOM coadsorbate systems were accurately described by a random sequential adsorption model that explicitly accounts for the unfolding of adsorbed DOM. Consistent findings for viruses and nanospheres suggest that the coadsorbate effects described herein generally apply to systems containing negatively charged nanoparticles and DOM.
Collapse
Affiliation(s)
- Antonius Armanious
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
- Laboratory of Environmental Chemistry, School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) , CH 1015 Lausanne, Switzerland
| | - Melanie Münch
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) , CH 1015 Lausanne, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
32
|
Seetha N, Mohan Kumar MS, Majid Hassanizadeh S. Modeling the co-transport of viruses and colloids in unsaturated porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2015; 181:82-101. [PMID: 25681069 DOI: 10.1016/j.jconhyd.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction with mobile and immobile colloids, virus attachment to solid-water interface (SWI), and colloid interaction with SWI and AWI. The virus BTC is relatively insensitive to parameters describing the maximum adsorption capacity of the AWI for colloids, inlet colloid concentration, virus detachment rate coefficient from the SWI, maximum adsorption capacity of the AWI for viruses and inlet virus concentration.
Collapse
Affiliation(s)
- N Seetha
- Department of Civil Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - M S Mohan Kumar
- Department of Civil Engineering, Indian Institute of Science, Bangalore, 560012, India; Indo-French Cell for Water Sciences, Indian Institute of Science, Bangalore, 560012, India.
| | - S Majid Hassanizadeh
- Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
33
|
Kokkinos P, Syngouna VI, Tselepi MA, Bellou M, Chrysikopoulos CV, Vantarakis A. Transport of Human Adenoviruses in Water Saturated Laboratory Columns. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:122-131. [PMID: 25578176 DOI: 10.1007/s12560-014-9179-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public health protection.
Collapse
Affiliation(s)
- P Kokkinos
- Environmental Microbiology Unit, Department of Public Health, School of Medicine, University of Patras, 26500, Patras, Greece,
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Wei X, Shao M, Du L, Horton R. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration. J Environ Sci (China) 2014; 26:2554-2561. [PMID: 25499504 DOI: 10.1016/j.jes.2014.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 06/04/2023]
Abstract
Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media.
Collapse
Affiliation(s)
- Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lina Du
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Robert Horton
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
36
|
Relative transport of human adenovirus and MS2 in porous media. Colloids Surf B Biointerfaces 2014; 122:778-784. [DOI: 10.1016/j.colsurfb.2014.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/17/2014] [Accepted: 08/13/2014] [Indexed: 11/22/2022]
|
37
|
Seetha N, Mohan Kumar MS, Majid Hassanizadeh S, Raoof A. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 164:163-180. [PMID: 24992707 DOI: 10.1016/j.jconhyd.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 05/13/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe=0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if the conditions are favorable for adsorption. The results agree qualitatively with the column-scale experimental observations available in the literature. The current model forms the building block in upscaling colloid transport from pore scale to Darcy scale using Pore-Network Modeling.
Collapse
Affiliation(s)
- N Seetha
- Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
| | - M S Mohan Kumar
- Department of Civil Engineering, IFCWS, Indian Institute of Science, Bangalore 560012, India.
| | - S Majid Hassanizadeh
- Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
| | - Amir Raoof
- Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
38
|
Gutierrez L, Nguyen TH. Interactions between rotavirus and natural organic matter isolates with different physicochemical characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14460-8. [PMID: 24152034 DOI: 10.1021/la402893b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Interaction forces between rotavirus and Suwanee River natural organic matter (SRNOM) or Colorado River NOM (CRNOM) were studied by atomic force microscopy (AFM) in NaCl solutions and at unadjusted pH (5.7-5.9). Compared to CRNOM, SRNOM has more aromatic carbon and phenolic/carboxylic functional groups. CRNOM is characterized with aliphatic structure and considerable presence of polysaccharide moieties rich in hydroxyl functional groups. Strong repulsive forces were observed between rotavirus and silica or mica or SRNOM. The interaction decay length derived from the approaching curves for these systems involving rotavirus in high ionic strength solution was significantly higher than the theoretical Debye length. While no adhesion was observed for rotavirus and SRNOM, attraction was observed between CRNOM and rotavirus during approach and adhesion during retraction. Moreover, these adhesion forces decreased with increasing ionic strength. Interactions due to ionic hydrogen bonding between deprotonated carboxyl groups on rotavirus and hydroxyl functional groups on CRNOM were suggested as the dominant interaction mechanisms between rotavirus and CRNOM.
Collapse
Affiliation(s)
- Leonardo Gutierrez
- Department of Civil and Environmental Engineering, Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
39
|
Zhao B, Zhang J, Jiang Y. Presence of bacteria in aqueous solution influences virus adsorption on nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8245-8254. [PMID: 23695855 DOI: 10.1007/s11356-013-1802-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 06/02/2023]
Abstract
Virus contamination in wastewater is usually accompanied by the existence of various bacteria. Nanoparticles (NPs) have been shown to efficiently remove virus. In this study, bacterial cells, supernatants, and cultures were harvested separately from three strains at the culture ages of 6 and 24 h, corresponding to the log and stationary phases, respectively. The aim is to investigate how their presence affects virus adsorption on the three Fe and Al oxide NPs (α-Fe2O3, γ-Fe2O3-B, and Al2O3) and how these effects change with bacterial growth phase. Bacteriophage phiX174 was used as a virus model. Results showed that bacterial cells, supernatants, and cultures harvested at 6 h generally reduced virus adsorption by an average of 0.75±0.84, 7.7±9.0, and 10.3±8.6%, respectively, while those harvested at 24 h reduced virus adsorption by an average of 2.1±0.93, 21.5±6.6, and 24.6±6.9%, respectively. Among the NPs, α-Fe2O3 showed more sensitivity to bacteria than the other two, probably because of its relatively higher value of point of zero charge. It was found that cell-induced and supernatant-induced reductions were combined to achieve added results, in which the supernatants contributed much more than the cells, implying that the bacterial exudates might be more crucial in the reduced virus adsorption than the bacterial cells. These results strongly demonstrated that the bacteria-induced reduction in virus adsorption became more significant with culture age. It is suggested that studies conducted in the absence of bacteria may not accurately evaluate the potential of virus removal efficiency of the NPs in bacteria-containing environments.
Collapse
Affiliation(s)
- Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, 71 East Beijing Road, Nanjing, 210008, People's Republic of China,
| | | | | |
Collapse
|
40
|
Wong K, Voice TC, Xagoraraki I. Effect of organic carbon on sorption of human adenovirus to soil particles and laboratory containers. WATER RESEARCH 2013; 47:3339-3346. [PMID: 23602036 DOI: 10.1016/j.watres.2013.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 05/27/2023]
Abstract
A key factor controlling the relationship between virus release and human exposure is how virus particles interact with soils, sediments and other solid particles in the environment and in engineered treatment systems. Finding no previous investigations of human adenovirus (HAdV) sorption, we performed a series of experiments to evaluate the role of soil organic carbon (SOC) and solution-phase dissolved organic carbon (DOC) on sorption capacity and reversibility. In preliminary methodological studies, we found that as much as 99% of HAdV was lost from inorganic buffer suspensions in polypropylene (PP) laboratory containers, but little loss occurred when using suspensions with substantial amounts of DOC or with glass containers from either type of suspension. It was confirmed that this loss was due to sorption rather than inactivation by using lysis-based recovery techniques and qPCR measurements that do not depend on virus viability. In isotherm experiments, soils with 2% OC had ≈ four-fold greater sorption capacity for HAdV than 8% OC soils; moreover, the sorption capacity of 2% OC soils was reduced ≈ seven-fold with an aqueous solution containing 150 mg/L of humic acid. After sequential extractions, higher fractions of sorbed HAdV were released from 8% OC soils. The amounts of HAdV and OC released remained relatively constant throughout each extraction step, indicating that desorbed HAdV could be caused primarily by the detachment of SOC from soils. Overall, results from this study suggest that OC plays a critical role in the sorption and desorption of HAdV, and as a result, on its environmental fate and transport.
Collapse
Affiliation(s)
- Kelvin Wong
- Department of Civil and Environmental Engineering, Michigan State University, A124 Engineering Research Complex, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
41
|
Aubry C, Gutierrez L, Croue JP. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties. WATER RESEARCH 2013; 47:3109-3119. [PMID: 23587263 DOI: 10.1016/j.watres.2013.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/02/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry.
Collapse
Affiliation(s)
- Cyril Aubry
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | |
Collapse
|
42
|
Davidson PC, Kuhlenschmidt TB, Bhattarai R, Kalita PK, Kuhlenschmidt MS. Investigation of Rotavirus Survival in Different Soil Fractions and Temperature Conditions. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jep.2013.47a001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Sadeghi G, Behrends T, Schijven JF, Hassanizadeh SM. Effect of dissolved calcium on the removal of bacteriophage PRD1 during soil passage: the role of double-layer interactions. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 144:78-87. [PMID: 23159762 DOI: 10.1016/j.jconhyd.2012.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/19/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
The objective of this work was to investigate and obtain quantitative relations for the effects of Ca(2+) concentration on virus removal in saturated soil and to compare the experimental findings with predictions of the DLVO theory. In order to do so, a systematic study was performed with a range of calcium concentrations corresponding to natural field conditions. Experiments were conducted in a 50-cm column with clean quartz sand under saturated conditions. Inflow solutions were prepared by adding CaCl(2,) NaCl and NaHCO(3) to de-ionized water. Values of pH and ionic strength were fixed at 7 and 10mM, respectively. Bacteriophage PRD1 was used as a conservative model virus for virus removal. The samples were assayed using the plaque forming technique. Attachment, detachment and inactivation rate coefficients were determined from fitting breakthrough curves. Attachment rate coefficients were found to increase with increasing calcium concentration. Results were used to calculate sticking efficiency, for which an empirical formula as a function of Ca(2+) was developed. Numerical solutions of the Poisson-Boltzmann equation were obtained to evaluate the effect of Ca(2+) on the double-layer interactions between quartz and PRD1. Based on these results, the DLVO interaction energies were calculated. It turned out that the experimental findings cannot be explained with the distance profiles of the DLVO interaction. The discrepancy between theory and experiment can be attributed to underestimation of the van der Waals interactions, chemisorption of Ca(2+) onto the surfaces, or by factors affecting the double-layer interactions, which are not included in the Poisson-Boltzmann equation. When abruptly changing from inflow solution containing Ca(2+) to a Ca(2+)-free solution, pronounced mobilization of viruses was observed. This indicates virus removal is not irreversible and that chemical perturbations of the groundwater can cause a burst of released viruses.
Collapse
Affiliation(s)
- Gholamreza Sadeghi
- Department of Environmental Health Engineering, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | |
Collapse
|
44
|
Wong K, Harrigan T, Xagoraraki I. Leaching and ponding of viral contaminants following land application of biosolids on sandy-loam soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 112:79-86. [PMID: 22885066 DOI: 10.1016/j.jenvman.2012.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (<0.1, 0.3 and 0.7 pore volume). The early time to peak breakthrough of anionic and microbial tracers indicated preferential flow paths, presumably from soil cracks, root channels, worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface.
Collapse
Affiliation(s)
- Kelvin Wong
- Department of Civil and Environmental Engineering, A124 Engineering Research Complex, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
45
|
Curtis SB, Dunbar WS, MacGillivray RTA. Bacteriophage-induced aggregation of oil sands tailings. Biotechnol Bioeng 2012; 110:803-11. [PMID: 23055243 DOI: 10.1002/bit.24745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 11/08/2022]
Abstract
Very large quantities of tailings are produced as a result of processing oil sands. After the sand particles settle out, a dense stable mixture of clay, silt, water with residual bitumen, salts, and organics called mature fine tailings (MFT) can remain in suspension for decades. Research into developing methods that would allow consolidation and sedimentation of the suspended particles is ongoing. We have studied the ability of a filamentous bacteriophage (called VP12 bearing the peptide DSQKTNPS at the N-terminus of the major coat protein pVIII) to aggregate MFT. To understand the biophysical basis of the aggregation, phage-induced aggregation of diluted MFT was measured at room temperature under varying conditions of pH, salt, detergent. Phage at concentrations of 5.0 × 10(11)/mL to 10(12)/mL induced rapid settling of the diluted MFT. The addition of sodium chloride (10 mM) lowered the concentration of phage required to induce aggregation. Since the non-ionic detergents Triton-X 100 and Tween-20, and the ionic detergent sodium deoxycholate had little effect, hydrophobic interactions do not appear to be a major contributor to the phage-induced aggregation of MFT. However, aggregation was prevented at pH values higher than 9.0 suggesting that positively charged amino acid residues are required for MFT aggregation by phage. Genetic engineering of the pVIII peptide sequence indicated that hydrogen bonding also contributes to phage-induced aggregation. In addition, replacing the basic residue lysine with an alanine in the recombinant peptide of VP12 completely prevented phage-induced aggregation. Three other phage displaying different amino acid sequences but all containing a lysine in the same position had variable aggregation efficiencies, ranging from no aggregation to rapid aggregation. We conclude that not only are the functional groups of the amino acids important, but the conformation that is adopted by the variable pVIII peptide is also important for phage-induced MFT aggregation.
Collapse
Affiliation(s)
- Susan B Curtis
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
46
|
O'Luanaigh ND, Gill LW, Misstear BDR, Johnston PM. The attenuation of microorganisms in on-site wastewater effluent discharged into highly permeable subsoils. JOURNAL OF CONTAMINANT HYDROLOGY 2012; 142-143:126-139. [PMID: 22300802 DOI: 10.1016/j.jconhyd.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 11/25/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
An extensive field study on percolation areas receiving both septic tank and secondary treated on-site effluents from single houses in Ireland was carried out to investigate the attenuation capacity of highly permeable subsoils with respect to E. coli bacteria and spiked bacteriophages (MS2, ΦX174 and PR772). The development of biomats across the percolation areas receiving the secondary effluent was restricted compared to the percolation area receiving septic tank effluent, promoting a much higher areal hydraulic loading which created significant differences in the potential microbiological loading to groundwater. Greatest E. coli removal in the subsoil occurred within the first 0.35 m of unsaturated subsoil for all effluent types. Analysis showed, however, that more evidence of faecal contamination occurred at depth in the subsoils receiving secondary treated effluents than that receiving septic tank effluent, despite the lower bacterial influent load. All three bacteriophages were reduced to their minimum detection limit (<10 PFU/mL) at a depth of 0.95 m below the percolation trenches receiving septic tank effluent, although isolated incidences of ΦX174 and PR772 were measured below one trench. However again, slightly higher breakthroughs of MS2 and PR772 contamination were detected at the same depth under the trenches receiving secondary treated effluent.
Collapse
Affiliation(s)
- N D O'Luanaigh
- Environmental Engineering Group, Department of Civil, Structural and Environmental Engineering, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
47
|
Wong K, Mukherjee B, Kahler AM, Zepp R, Molina M. Influence of inorganic ions on aggregation and adsorption behaviors of human adenovirus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11145-11153. [PMID: 22950445 DOI: 10.1021/es3028764] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt conditions. The interfacial potential energy was calculated using extended Derjaguin and Landau, Verwey and Overbeek (XDLVO) and steric hindrance theories to interpret the experimental results. Results showed that different compositions of inorganic ions have minimal effect on varying the iso-electric point pH (pH(iep)) of HAdV (ranging from 3.5 to 4.0). Divalent cations neutralized/shielded virus surface charge much more effectively than monovalent cations at pH above pH(iep). Consequently, at neutral pH the presence of divalent cations enhanced the aggregation of HAdV as well as its adsorption to sand. Aggregation and adsorption behaviors generally agreed with XDLVO theory; however, in the case of minimal electrostatic repulsion, steric force by virus' fibers can increase the energy barrier and distance of secondary minimum, resulting in limited aggregation and deposition. Overall, our results indicated that subsurface water with low hardness residing in sandy soils may have a higher potential of being contaminated by HAdV.
Collapse
Affiliation(s)
- Kelvin Wong
- Ecosystems Research Division, United States Environmental Protection Agency, 960 College Station Road, Athens, Georgia 30605, USA.
| | | | | | | | | |
Collapse
|
48
|
Chrysikopoulos CV, Aravantinou AF. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures. JOURNAL OF HAZARDOUS MATERIALS 2012; 233-234:148-57. [PMID: 22819478 DOI: 10.1016/j.jhazmat.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/01/2012] [Accepted: 07/02/2012] [Indexed: 05/24/2023]
Abstract
Virus inactivation is one of the most important factors that controls virus fate and transport in the subsurface. In this study the inactivation of viruses in the presence of quartz sand was examined. The bacteriophages MS2 and ΦX174 were used as model viruses. Experiments were performed at 4°C and 20°C, under constant controlled conditions, to investigate the effect of virus type, temperature, sand size, and initial virus concentration on virus inactivation. The experimental virus inactivation data were satisfactorily represented by a pseudo-first order expression with time-dependent rate coefficients. Furthermore, the results indicated that virus inactivation was substantially affected by the ambient temperature and initial virus concentration. The inactivation rate of MS2 was shown to be greater than that of ΦX174. However, the greatest inactivation was observed for MS2 without the presence of sand, at 20°C. Sand surfaces offered protection against inactivation especially under static conditions. However, no obvious relationship between sand particle size and virus inactivation could be established from the experimental data. Moreover, the inactivation rates were shown to increase with decreasing virus concentration.
Collapse
|
49
|
Gutierrez L, Nguyen TH. Interactions between rotavirus and Suwannee River organic matter: aggregation, deposition, and adhesion force measurement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8705-8713. [PMID: 22834686 DOI: 10.1021/es301336u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl(2) or 70 mM MgCl(2). Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl(2) solution were lower than in CaCl(2) solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl(2) solution compared to those in MgCl(2) or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus.
Collapse
Affiliation(s)
- Leonardo Gutierrez
- Department of Civil and Environmental Engineering, The Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | |
Collapse
|
50
|
Tong M, Shen Y, Yang H, Kim H. Deposition kinetics of MS2 bacteriophages on clay mineral surfaces. Colloids Surf B Biointerfaces 2012; 92:340-7. [DOI: 10.1016/j.colsurfb.2011.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|