1
|
Paneru D, Tellez-Isaias G, Bottje WG, Asiamah E, Abdel-Wareth AAA, Salahuddin M, Lohakare J. Immune modulation and cecal microbiome changes in broilers fed with fenugreek seeds and Bacillus-based probiotics. Poult Sci 2024; 103:104130. [PMID: 39121644 PMCID: PMC11364116 DOI: 10.1016/j.psj.2024.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Intensive broiler production systems face challenges like enteric diseases, impacting global food security. Strategies to enhance broiler immunity and gut health, particularly amidst antibiotic growth promoter restrictions, are crucial. The present study investigated the combined effects of fenugreek seeds (FS) and Bacillus-based direct-fed microbials (DFM) on immune-related gene expression in the ileum and alteration of microbial population in the cecum of broiler. The study involved 160 Ross 308 broiler chicks, which were divided into four groups consisting of 5 replicates, each containing eight birds. The chicks were grown for a period of 42 d, during which they had ad libitum access to feed and water. Dietary treatments were: Control (basal diet), FS5 (basal + 5g/kg fenugreek seeds), FS5DFM (basal + 5g/kg fenugreek seeds + 0.1g/kg Bacillus-based DFM), and DFM (basal + 0.1g/kg Bacillus-based DFM). Ileum tissue and cecal contents were collected on d 42 for gene expression and gut microbiome analysis. Ileal gene expression analysis revealed the downregulation of IL-6, IL-8L2, CASP6, PTGS2, and IRF7 in both FSs and DFMs groups compared to the control, suggesting individual immunomodulatory effects. However, avian β-defensin genes exhibited complex regulation, highlighting the need for further investigation. Cecal microbiome diversity remained stable, with subtle shifts in specific taxa influenced by FSs and DFMs. Interestingly, the combination of the FSs and DFMs uniquely impacted specific taxa, including Clostridiales vadin BB60. These findings suggest that both FSs and DFMs demonstrated potential for improving broiler immunity through inflammation reduction. The combination of FSs and DFMs offers a synergistic effect in immune modulation and specific microbial modulation, warranting further investigation with pathogen challenge models for comprehensive understanding.
Collapse
Affiliation(s)
- Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Guillermo Tellez-Isaias
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walter G Bottje
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Emmanuel Asiamah
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Ahmed A A Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt; Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Md Salahuddin
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
2
|
Marchal L, Bello A, Archer G, Sobotik EB, Dersjant-Li Y. Total replacement of soybean meal with alternative plant-based ingredients and a combination of feed additives in broiler diets from 1 day of age during the whole growing period. Poult Sci 2024; 103:103854. [PMID: 38815497 PMCID: PMC11170138 DOI: 10.1016/j.psj.2024.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
The capacity of combinations of feed enzymes, natural betaine and a probiotic, combined with alternative plant-based ingredients, to totally replace soybean meal (SBM) in a broiler diet was evaluated. Day-old Ross 308 males (2,574) were assigned to 9 treatments (13 pens/treatment, 22 birds/pen) in a completely randomized design. All diets were pelleted and fed ad libitum in 4 phases: starter, grower, finisher 1, finisher 2 (0-10, 10-21, 21-35, and 35-42 d of age, respectively). Treatments included: 1) control diet containing SBM (SBM control), supplemented with phytase (PhyG), at 2,000, 1,500, 1000 and 1,000 FTU/kg in each phase and xylanase (X) at 750 U/kg, [crude protein (CP): 23.5%, 22.0%, 20.2% and 19.3% in each phase]; 2) to 5), alternative (ALT), SBM-free diets, containing the same CP level as the control ("CP high"), supplemented with PhyG as in the control, protease (P, 800 U/kg) and in 2) xylanase (750 U/kg) (ALT+PhyG+P+X), 3) xylanase-β-glucanase (XB, 1,200 U/kg and 152 U/kg) (Alt+PhyG+P+XB), 4) XB plus betaine (800 g/ton) (ALT+PhyG+P+XB+Bet), and 5) XB plus a probiotic [150,000 colony forming units (CFU)/g] (ALT+PhyG+P+XB+Prob); 6) to 9) as treatments 2) to 5) but with CP reduced by -2.0 to -1.5% points vs. control ('CP low'). Final (d 42) BW and overall (d 0-42) feed conversion ratio (FCR) of birds fed the SBM control exceeded breeder objectives (+3.8% and -1.9%, respectively). Overall FCR was reduced and d 42 BW increased in birds fed "low" vs. "high" CP (P < 0.01). Overall FCR and feed intake were not different in ALT+PhyG+XB+P+Bet and ALT+PhyG+XB+P+Prob vs. the control, whereas final BW was reduced (P < 0.05) in all ALT treatments but close to breeder objectives (98.3%) in ALT+PhyG+XB+P+Prob. Feed costs of this treatment were similar to the control. Total replacement of SBM with alternative plant-based ingredients in a CP-low diet supplemented with hydrolytic enzymes and probiotics can achieve growth performance outcomes close to commercial breeder objectives.
Collapse
Affiliation(s)
- L Marchal
- Danisco Animal Nutrition & Health (IFF), BH Oegstgeest 2342, The Netherlands.
| | - A Bello
- Danisco Animal Nutrition & Health (IFF), BH Oegstgeest 2342, The Netherlands
| | - G Archer
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - E B Sobotik
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - Y Dersjant-Li
- Danisco Animal Nutrition & Health (IFF), BH Oegstgeest 2342, The Netherlands
| |
Collapse
|
3
|
Wu D, Liang S, Du X, Xiao J, Feng H, Ren Z, Yang X, Yang X. Effects of fecal microbiota transplantation and fecal virome transplantation on LPS-induced intestinal injury in broilers. Poult Sci 2024; 103:103316. [PMID: 38128454 PMCID: PMC10776634 DOI: 10.1016/j.psj.2023.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
The interesting roles and efficiencies of fecal microbiota transplantation (FMT) have attracted considerable attention and have been gradually evidenced in specific animal models. While the growing evidence that bacteriophages play roles in FMT efficacy has attracted considerable interest. In this study, we aimed to explore the effects of FMT and fecal virome transplantation (FVT) in improving inflammatory damage and ileal microbiota disorder in broilers. A total of 224 Arbor Acres broilers were selected at 1-day-old and randomly divided into the following 4 groups, with 56 broilers in each group: the CON group (the negative control group, sterile physiological saline injection + sterile phosphate-buffered saline (PBS) solution gavage), LPS group (the positive control group, lipopolysaccharide (LPS) injection + sterile PBS solution gavage), LPS + FMT group (LPS injection + FMT solution gavage), LPS + FVT group (LPS injection + FVT solution gavage). The results showed that: LPS injection significantly upregulated the mRNA expression levels of IFN-γ (P < 0.05) and IL-8 (P < 0.001) in ileal mucosa of broilers at 11th day of age (D11), while LPS + FMT and LPS + FVT did not; LPS injection significantly upregulated the mRNA expression of ZO-1 in ileal mucosa at D11 (P < 0.01), while LPS + FMT and LPS + FVT did not; at D11, compare to CON group, LPS injection and LPS + FMT significantly increased the relative abundance of virulence factor Rab2 interacting conserved protein A-related genes in broiler ileum contents (P < 0.05), while LPS + FVT had no significant difference with CON group (P > 0.05); at D11, LPS injection significantly downregulated the biosynthesis of antibiotics pathway (P < 0.05) in the ileal contents, while LPS + FVT did not. In conclusion, both FMT and FVT could promote the recovery of inflammation caused by LPS. Furthermore, FVT had shown less disadvantage stimulation on the broilers and could reduce the risk of transmission of pathogenic genes, compared to FMT.
Collapse
Affiliation(s)
- Dengyu Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoqian Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinhao Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hongyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
4
|
Zhou A, Zhang X, Zhou Y, Xiao L, Li T. Effect of direct-fed microbials on growth performance, blood biochemical indices, and immune status of female goats. Anim Biotechnol 2023; 34:1673-1680. [PMID: 34904515 DOI: 10.1080/10495398.2021.2014856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The effect of direct-feed microbial (DFM) treatment on body weight, serum biochemical indexes, serum immunoglobulins, and serum cytokines was studied. The study was a completely randomized design with 20 growing females Beichuan white goats, weighing 25.11 ± 1.96 kg, divided into two groups of 10 goats per treatment. Goats were offered (1) 10 mL saline solution (Control group) (2) or 10 mL microbials solution (DFM group) on days 0 and 7 for two times. No effect on final body weight and body size was observed between DFM and control group (p > 0.05). DFM treatment had greater serum total protein, globulin, and albumin/globulin ratio than the control treatment (p < 0.05). The concentrations of IgA, IgG, IgM, INF-γ, and IL-2 in DFM group were significantly higher than those in the control group on days 7, 14, and 21 (p < 0.05), and the highest content was detected on day 14 of the experiment. The concentrations of IgA, IgG, IgM, IL-2, INF-γ, INF-α, IL-4, and IL-5 in DFM group on day 14 were higher than those on day 0 (p < 0.05). In conclusion, DFM enhanced serum immunoglobulins and cytokines without affecting body weight, body size, and normal serum metabolism.
Collapse
Affiliation(s)
- Aimin Zhou
- Institute of Livestock Rearch, Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Xiaohui Zhang
- Institute of Livestock Rearch, Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Yugang Zhou
- Institute of Livestock Rearch, Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Long Xiao
- Institute of Livestock Rearch, Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Tingjian Li
- Institute of Livestock Rearch, Mianyang Academy of Agricultural Sciences, Mianyang, China
| |
Collapse
|
5
|
Attia YA, Basiouni S, Abdulsalam NM, Bovera F, Aboshok AA, Shehata AA, Hafez HM. Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers' production. Front Vet Sci 2023; 10:1259426. [PMID: 37771941 PMCID: PMC10523395 DOI: 10.3389/fvets.2023.1259426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Although antibiotics growth promoters (AGPs), including zinc-bacitracin (ZnB), can threaten human health due to developing antimicrobial resistance, as well as drug residue in animal and poultry products, ZnB is still widely used, particularly in developing countries, for the sustainability of poultry farming. The present investigation aims to assess the use of Saccharomyces cerevisiae and Lactobacillus acidophilus, with or without a prebiotic (mannooligosaccharide, MOS), as alternatives to ZnB. For this reason, 150 one-day-old chicks were grouped into six groups, designated negative control, LA, SC, ZnB, SA + MOS, and LA + MOS (5 replicates of 5 chicks for each group). Chicks kept in the control group were fed the basal diet. Chickens kept in LA and SC groups received L. acidophilus, S. cerevisiae at a 1 g/kg diet and 2 g/Kg, respectively. Chickens kept in ZnB received ZnB at 0.5 g/kg. Chicks kept in the SC + MOS and LA + MOS were fed a basal diet containing 2 g S. cerevisiae + 1 g MOS/kg or 1 g L. acidophilus + 1 g MOS /kg, respectively. The efficacy was assessed based on the growth performance, carcass traits, meat quality, nutrient digestibility, and blood biochemistry composition during the entire trial 1-36 days of age. Results showed that chicks kept in the SC group had greater BW than the control (p < 0.05). Chicks kept in the SC, LA, SC + MOS, and LA + MOS consumed less feed than the control and Zn-B groups (p < 0.05). Supplementation with S. cerevisiae resulted in a better (p < 0.05) feed conversion rate (FCR) than the control group. Supplementation with L. acidophilus + MOS significantly increased (p < 0.05) the relative liver weight compared to those supplemented with ZnB, S. cerevisiae, and L. acidophilus. In addition, supplementation with ZnB-induced spleen hypertrophy compared to S. cerevisiae and L. acidophilus-supplemented groups (p < 0.05). Plasma, meat, and liver cholesterol, as well as the cholesterol-to-lipid ratio of meat and liver, were significantly decreased (p < 0.05) in both SC and LA groups compared to the control group. Our research indicates that adding 2 g/kg of S. cerevisiae to broiler feed can effectively replace ZnB and enhance productive performance and economic profits, making it a viable and sustainable option for broiler farming.
Collapse
Affiliation(s)
- Youssef A. Attia
- Sustainable Agriculture Production Research Group, Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Egypt
| | - Nisreen M. Abdulsalam
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fulvia Bovera
- Sustainable Agriculture Production Research Group, Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Afaf A. Aboshok
- Department of Poultry Nutrition, Animal Production Research Institute, ARC, Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Awad A. Shehata
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), Garching, Germany
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
The Modulatory Effects of Lacticaseibacillus paracasei Strain NSMJ56 on Gut Immunity and Microbiome in Early-Age Broiler Chickens. Animals (Basel) 2022; 12:ani12233413. [PMID: 36496934 PMCID: PMC9741015 DOI: 10.3390/ani12233413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Gut health has been attracting attention in the livestock industry as several studies suggest that it is a crucial factor for growth performance and general health status in domestic animals, including broiler chickens. Previously, antibiotics were widely used to improve livestock growth, but their use is now prohibited due to serious problems related to antibiotic resistance. Thus, finding new feed additives to replace antibiotics is drawing attention. Probiotics are representative feed additives and many beneficial effects on broiler chickens have been reported. However, many probiotic studies are focused on productivity only, and there are insufficient studies related to the gut environment, especially gut immunity and gut microbiome. In this study, we conducted an animal experiment using Lacticaseibacillus paracasei NSMJ56 to determine whether it has beneficial effects on gut immunity and microbiome. To evaluate the effects of NSMJ56 supplementation, newly hatched Ross 308 broiler chickens were fed an NSMJ56-containing diet for 10 days, and growth performance, antioxidant indicators, gut morphology, gut immunity-related parameters, and gut microbiome were analyzed. Flow cytometry analysis results revealed that NSMJ56 treatment increased CD4+ T cells and decreased CD8+ T cells in small intestine lamina propria and decreased IL1b and IL10 gene expression in small intestine tissue. In the microbiome analysis, NSMJ56 treatment increased the alpha diversity indices and led to three enriched genera: Massilimicrobiota, Anaerotignum, and Coprococcus. This study suggests that NSMJ56 supplementation has regulatory effects on gut immunity and microbiome in early-age broiler chickens.
Collapse
|
7
|
Gyawali I, Zeng Y, Zhou J, Li J, Wu T, Shu G, Jiang Q, Zhu C. Effect of Novel Lactobacillus paracaesi microcapsule on growth performance, gut health and microbiome community of broiler chickens. Poult Sci 2022; 101:101912. [PMID: 35689995 PMCID: PMC9190013 DOI: 10.1016/j.psj.2022.101912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 01/19/2023] Open
Abstract
The beneficial action of probiotics is questioned time and again due to the loss of their survivability under gastrointestinal conditions, particularly gastric acid. In this experiment, a probiotic species was encapsulated to improve its delivery to the distal parts, and its effects on production performance, gut health, and microbial profile in broilers were investigated. A total of 240 Arbor acres (AA) broilers were randomly allotted into 3 treatments with 8 replicate pens per treatment and 10 broilers in each pen for 42 d. Dietary treatments were 1) basal feed without any additives (CON), 2) CON+15 ppm Virginiamycin (ANT), and 3) CON+500 ppm encapsulated Lactobacillus paracaesi (ELP). The result showed that the addition of ELP to the feed did not affect growth performance and carcass characteristics significantly. However, ELP increased the ratio of villus height to crypt depth (P < 0.05) and mRNA expression of ZO-1 (P < 0.05) relative to the CON or ANT group. Similarly, qPCR showed that dietary supplementation of ELP raised gene expression of the anti-inflammatory cytokine and tended to decrease proinflammatory cytokines resulting improve in immunity. Moreover, chicks fed with ELP had lower malondialdehyde (MDA) (P < 0.05) than CON and lower reactive oxygen species (ROS) (P < 0.05) level than ANT in serum. In contrast, the total antioxidant capacity (TAOC) level was tended to increase. The ammonia level of ileum and cecum chyme was decreased (P < 0.05) in the ELP group than CON while the level of propionic acid of cecal content was increased (P < 0.05). 16S rRNA sequencing revealed the dietary treatment modulated the diversity and composition of cecal microflora. At the phylum level, Bacteroidetes was enriched, and Proteobacteria was depleted in the ELP group. At the genus level, ELP increased Bacteroides (P < 0.05) compared to control. The results indicate that oral delivery of probiotics via microcapsule could impart beneficial effects on birds and be used as an alternative to antibiotics.
Collapse
Affiliation(s)
- Ishwari Gyawali
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Yuxian Zeng
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Jingjing Zhou
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Jincheng Li
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Ting Wu
- Anhui maitebao Bioengineering Co., Ltd, Hefei, China
| | - Gang Shu
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Qingyan Jiang
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Canjun Zhu
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China.
| |
Collapse
|
8
|
Effects of Bacillus amyloliquefaciens LFB112 on Growth Performance, Carcass Traits, Immune, and Serum Biochemical Response in Broiler Chickens. Antibiotics (Basel) 2021; 10:antibiotics10111427. [PMID: 34827365 PMCID: PMC8614806 DOI: 10.3390/antibiotics10111427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effects of Bacillus amyloliquefaciens LFB112 on the growth performance, carcass traits, immune response, and serum biochemical parameters of broiler chickens. A total of 396 1 day old, mixed-sex commercial Ross 308 broilers with similar body weights were allotted into six treatment groups. The assigned groups were the CON group (basal diet with no supplement), AB (antibiotics) group (basal diet + 150 mg of aureomycin/kg), C+M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 powder with vegetative cells + metabolites), C group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 vegetative cell powder with removed metabolites), M group (basal diet + 5 × 108 CFU/kg B. amyloliquefaciens LFB112 metabolite powder with removed vegetative cells), and CICC group (basal diet + 5 × 108 CFU/kg Bacillus subtilis CICC 20179). Results indicated that chickens in the C+M, C, and M groups had higher body weight (BW) and average daily gain (ADG) (p < 0.05) and lower feed conversion ratio (FCR) (p = 0.02) compared to the CON group. The C+M group showed the lowest abdominal fat rate compared to those in the CON, AB, and CICC groups (p < 0.05). Compared to the CON group, serum IgA and IgG levels in the C+M, C, and M groups significantly increased while declining in the AB group (p < 0.05). B. amyloliquefaciens LFB112 supplementation significantly reduced the serum triglyceride, cholesterol, urea, and creatinine levels, while increasing the serum glucose and total protein (p < 0.05). In conclusion, B. amyloliquefaciens LFB112 significantly improved the growth performance, carcass traits, immunity, and blood chemical indices of broiler chickens and may be used as an efficient broiler feed supplement.
Collapse
|
9
|
Khomayezi R, Adewole D. Probiotics, prebiotics, and synbiotics: an overview of their delivery routes and effects on growth and health of broiler chickens. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rojman Khomayezi
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| |
Collapse
|
10
|
Ban Y, Guan LL. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J Anim Sci Biotechnol 2021; 12:109. [PMID: 34635155 PMCID: PMC8507308 DOI: 10.1186/s40104-021-00630-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Direct-fed microbials (DFMs) are feed additives containing live naturally existing microbes that can benefit animals' health and production performance. Due to the banned or strictly limited prophylactic and growth promoting usage of antibiotics, DFMs have been considered as one of antimicrobial alternatives in livestock industry. Microorganisms used as DFMs for ruminants usually consist of bacteria including lactic acid producing bacteria, lactic acid utilizing bacteria and other bacterial groups, and fungi containing Saccharomyces and Aspergillus. To date, the available DFMs for ruminants have been largely based on their effects on improving the feed efficiency and ruminant productivity through enhancing the rumen function such as stabilizing ruminal pH, promoting ruminal fermentation and feed digestion. Recent research has shown emerging evidence that the DFMs may improve performance and health in young ruminants, however, these positive outcomes were not consistent among studies and the modes of action have not been clearly defined. This review summarizes the DFM studies conducted in ruminants in the last decade, aiming to provide the new knowledge on DFM supplementation strategies for various ruminant production stages, and to identify what are the potential barriers and challenges for current ruminant industry to adopt the DFMs. Overall literature research indicates that DFMs have the potential to mitigate ruminal acidosis, improve immune response and gut health, increase productivity (growth and milk production), and reduce methane emissions or fecal shedding of pathogens. More research is needed to explore the mode of action of specific DFMs in the gut of ruminants, and the optimal supplementation strategies to promote the development and efficiency of DFM products for ruminants.
Collapse
Affiliation(s)
- Yajing Ban
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
11
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
12
|
Rivera-Pérez W, Barquero-Calvo E, Chaves AJ. Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poult Sci 2021; 100:101372. [PMID: 34364120 PMCID: PMC8353351 DOI: 10.1016/j.psj.2021.101372] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The global poultry trend toward the more responsible use of antibiotics is becoming recurrent and has demanded the need to generate new natural alternatives. Probiotics have gained importance as an option to use as growth promoters. This study aimed to evaluate Bacillus subtillis QST713 as a substitute for an antibiotic growth promoter (BMD). A total of 150 male broilers were assigned to three dietary treatments: 1) control diet (CO), 2) control diet + 500 g/t of BMD (AGP), and 3) control diet + 100 g/t of B. subtilis QST713 (PB), respectively. Each treatment was monitored for 5 wk for the productive variables: body weight, accumulated feed consumption, food conversion, and European efficiency factor. At the end of each week, fresh fecal samples were cultured and quantified for E. coli, Enterococcus spp., and Lactobacillus spp. At the end of the trial, blood samples were analyzed for hemogram and intestinal samples (anterior portion) for histomorphometry. The data were statistically analyzed with an analysis of variance and subjected to a least significant difference test (Tukey). The zootechnical yields were similar in the AGP and PB groups (P ˃ 0.05); both superior to the control group. In the hematological profiles, no difference was observed between the experimental groups. E. coli and Enterococcus counts were significantly lower (P ˂ 0.05), and Lactobacillus counts were significantly (P ˂ 0.05) higher in the PB group, relative to CO and AGP groups. No differences (P ˃ 0.05) were found in bacterial counts between the CO and AGP groups. The intestinal mucosa and villi in the PB group were significantly (P ˂ 0.05) longer and with less deeper crypts than CO and AGP groups. We conclude that B. subtillis QST713, used at the suggested commercial dose (100 g/ton), is an effective growth-promoting alternative to BMD that modulates the microbiota and intestinal architecture, thus producing zootechnical yields consistent with BMD.
Collapse
Affiliation(s)
- Walter Rivera-Pérez
- Tropical Diseases Research Program, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica; Avian Pathology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica
| | - Elías Barquero-Calvo
- Tropical Diseases Research Program, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica
| | - Aida J Chaves
- Avian Pathology Laboratory, School of Veterinary Medicine, Universidad Nacional, Heredia 40104, Costa Rica.
| |
Collapse
|
13
|
A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals (Basel) 2021; 11:ani11071941. [PMID: 34209794 PMCID: PMC8300232 DOI: 10.3390/ani11071941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Spore-forming probiotics are widely used in the poultry industry for their beneficial impact on host health. The main feature that separates spore-forming probiotics from the more common lactic acid probiotics is their high resistance to external and internal factors, resulting in higher viability in the host and correspondingly, greater efficiency. Their most important effect is the ability to confront pathogens, which makes them a perfect substitute for antibiotics. In this review, we cover and discuss the interactions of spore-forming probiotic bacteria with poultry as the host, their health promotion effects and mechanisms of action, impact on poultry productivity parameters, and ways to manufacture the probiotic formulation. The key focus of this review is the lack of reproducibility in poultry research studies on the evaluation of probiotics’ effects, which should be solved by developing and publishing a set of standard protocols in the professional community for conducting probiotic trials in poultry. Abstract One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.
Collapse
|
14
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. BIOLOGY 2021; 10:322. [PMID: 33924344 PMCID: PMC8070017 DOI: 10.3390/biology10040322] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The use of probiotics for health benefits is becoming popular because of the quest for safer products with protective and therapeutic effects against diseases and infectious agents. The emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be more helpful because of synergy and additive effects among the individual isolates. This article documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions, such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms of synergy among multi-strain probiotics isolates. This forms a basis for future research in the development of multi-strain probiotics for enhanced health benefits.
Collapse
Affiliation(s)
- Iliya D. Kwoji
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Irene 0062, South Africa;
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| |
Collapse
|
15
|
Hadieva G, Lutfullin M, Pudova D, Akosah Y, Shagimardanova E, Gogoleva N, Sharipova M, Mardanova A. Supplementation of Bacillus subtilis GM5 enhances broiler body weight gain and modulates cecal microbiota. 3 Biotech 2021; 11:126. [PMID: 33643761 DOI: 10.1007/s13205-020-02634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/25/2023] Open
Abstract
We investigated the effect of the strain Bacillus subtilis GM5 on growth, feed conversion, and the composition of cecum microbiota in broiler chickens. Half of which received a control diet, while the other half was fed a diet supplemented with GM5 spores. Cecal contents on days 1, 10, and 42 were subjected to metataxonomic analysis. Principal Component Analysis showed that the control and probiotic groups formed three separate clusters, indicating changes, which occurred gradually in microbial communities. On day 1, Firmicutes (53.87-57.61%) and Proteobacteria (43.77-38.93%) were prevalent in both groups, whereas samples of days 10 and 42 were predominantly occupied by Firmicutes (54.55-81.79%) and Bacteroidetes (26.94-30.45%). In the group of chickens treated with probiotic, the average daily gain in body weight was higher, while feed conversion decreased by 1.44%. A surge in the presence of beneficial bacteria of the Ruminococcaceae family was observed. The introduction of the probiotic led to an elevated Firmicutes/Bacteroidetes ratio, which positively correlated with chickens' bodyweight (Spearman ρ = 1.0, P < 0.05). Supplementing broiler feed with B. subtilis GM5 spores leads to improved feed intake and digestibility, which is paramount in reducing the cost of the final product. Thus, the probiotic strain GM5 modulates the cecal microbiota of broiler chickens and increases microbial diversity, which is well exhibited on the 42nd day. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02634-2.
Collapse
|
16
|
|
17
|
Abstract
Food safety remains a significant public health issue for the poultry industry. Foodborne pathogens can be in contact at all phases of poultry production, from initial hatch to processing and ultimately to retail and meal preparation. Salmonella and Campylobacter have been considered the primary foodborne pathogens associated with poultry. Both organisms are major causative agents of human foodborne illness. Limiting these pathogens in poultry production requires identifying their sources and routes of transmission. This involves the ability to isolate and precisely identify them using methodologies capable of discernment at the genome level. Interventions to reduce their occurrence in poultry production employ two basic strategies: prevention of establishment and elimination of already-established pathogens. This review provides an overview of current findings and prospects for further research on poultry food safety issues.
Collapse
Affiliation(s)
- Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
18
|
Guo M, Li M, Zhang C, Zhang X, Wu Y. Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Front Microbiol 2020; 11:1768. [PMID: 32849392 PMCID: PMC7396511 DOI: 10.3389/fmicb.2020.01768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Bacillus subtilis (B. subtilis) has a variety of proposed beneficial effects for chickens, including growth promotion and disease prevention. In this study, chickens were fed a diet containing B. subtilis for 21 days and growth performance, intestinal morphology, intestinal microbiota, immune responses, and disease resistance were investigated. After 21 days of feeding, chickens fed a diet containing B. subtilis had higher body weights. The concentrations of serum immunoglobulins IgA and IgM were significantly increased by B. subtilis in the diet. Moreover, chickens fed with B. subtilis had greater villus height (VH), shallower crypt depth (CD), and a higher VH/CD ratio in the jejunum than chickens fed a standard control diet. Diet with B. subtilis can balance intestinal microbiota, facilitate an increase in beneficial bacteria, and inhibit the pathogenic bacteria after 21 days of feeding. After an Escherichia coli (E. coli) challenge, the survival rate of chickens fed with B. subtilis was 66.67%, which was significantly higher than the controls. The E. coli contents in spleens and lungs from chickens fed a diet with B. subtilis were lower than those in controls. In addition, B. subtilis can trigger the toll-like receptor 4 and cause induction of proinflammatory cytokine (Il1β, Il6, and Il8) production to develop innate immune responses in chickens. In conclusion, diets containing B. subtilis can improve growth performance, serum immunoglobulin levels, the intestinal villus-crypt system, intestinal homeostasis, immune responses, and disease resistance against E. coli in chickens.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mingtao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengcheng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaorong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yantao Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Aljumaah MR, Alkhulaifi MM, Abudabos AM, Aljumaah RS, Alsaleh AN, Stanley D. Bacillus subtilis PB6 based probiotic supplementation plays a role in the recovery after the necrotic enteritis challenge. PLoS One 2020; 15:e0232781. [PMID: 32555739 PMCID: PMC7302482 DOI: 10.1371/journal.pone.0232781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
In poultry production, birds are raised under intensive conditions, which can enable rapid spread of infections, with Clostridium perfringens-caused necrotic enteritis (NE) being one of the most devastating for the industry. The current investigation was conducted to evaluate the effectiveness of Bacillus subtilis PB6 probiotic supplementation on bird’s post NE recovery, based on chicken performance, cecal microbiota composition, ileum histomorphometric measurements, and short-chain fatty acid production in the cecum of the birds that were challenged with NE mid-production. Birds were split into four groups, including a negative control, positive control challenged with C. perfringens, group supplemented with B. subtilis probiotic, and NE challenged birds supplemented with B. subtilis probiotic. Following NE challenge birds were allowed to reach the end of production time at 40 days, and samples were collected to estimate if probiotic supplementation resulted in better post-NE recovery. Intestinal lesion score across the duodenum, jejunum, and ileum indicated that at the end of production timeline NE challenged birds supplemented with B. subtilis probiotic had lower intestinal lesion scores compared to NE challenged birds without probiotic supplementation implying improved recovery. Probiotic supplementation improved performance of NE challenged birds only in the post-NE recovery stage. NE challenged birds had a significant increase in cecal propionic acid, which was not observed in NE challenged birds supplemented with B.subtilus. Both B. subtilis supplemented groups (challenged and unchanged) were characterized by a significant rise in cecal acetic and butyric acid. Our results demonstrate that B. subtilis supplementation can assist the birds in dealing with NE outbreak and long term recovery.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alaeldein M. Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S. Aljumaah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asma N. Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
- * E-mail:
| |
Collapse
|
20
|
Granstad S, Kristoffersen AB, Benestad SL, Sjurseth SK, David B, Sørensen L, Fjermedal A, Edvardsen DH, Sanson G, Løvland A, Kaldhusdal M. Effect of Feed Additives as Alternatives to In-feed Antimicrobials on Production Performance and Intestinal Clostridium perfringens Counts in Broiler Chickens. Animals (Basel) 2020; 10:ani10020240. [PMID: 32028636 PMCID: PMC7070674 DOI: 10.3390/ani10020240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous non-antibiotic feed additives (alternatives to antibiotics, ATAs) have been marketed, but few have been evaluated under uniform testing conditions modelling commercial flocks. We compared 24 ATA treatments and the ionophorous coccidiostat narasin against a diet without any feed additives. Feed conversion ratio and body weight gain were registered from day 0 to 28 in Ross 308 chickens housed on litter floor. The chickens were challenged with Eimeria spp., and cecal Clostridium perfringens (CP) counts were investigated. Active components from all ATA classes had a positive impact on intestinal health or production performance. Whereas narasin had a strong CP-reducing effect in combination with performance-promoting impact, only two ATA treatments achieved significantly beneficial effects on CP counts as well as feed conversion during the time span following Eimeria challenge. Active components present in these two treatments include a Bacillus subtilis probiotic strain, short- and medium-chain fatty acids and Saccharomyces cerevisiae components. Different ATA classes had beneficial impact during distinct rearing phases and on specific performance targets, suggesting that optimizing combinations and use of active components can make ATAs even more useful tools in broiler rearing without the use of in-feed antimicrobials. Further studies of promising ATAs and ATA combinations are required.
Collapse
Affiliation(s)
- Silje Granstad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
- Correspondence:
| | - Anja B. Kristoffersen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| | - Siri K. Sjurseth
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| | - Bruce David
- Nortura SA, P.O. Box 360 Økern, 0513 Oslo, Norway; (B.D.); (A.L.)
| | - Line Sørensen
- Felleskjøpet Fôrutvikling AS, Nedre Ila 20, 7018 Trondheim, Norway; (L.S.); (G.S.)
| | | | | | - Gorm Sanson
- Felleskjøpet Fôrutvikling AS, Nedre Ila 20, 7018 Trondheim, Norway; (L.S.); (G.S.)
| | - Atle Løvland
- Nortura SA, P.O. Box 360 Økern, 0513 Oslo, Norway; (B.D.); (A.L.)
| | - Magne Kaldhusdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| |
Collapse
|
21
|
Huang CB, Xiao L, Xing SC, Chen JY, Yang YW, Zhou Y, Chen W, Liang JB, Mi JD, Wang Y, Wu YB, Liao XD. The microbiota structure in the cecum of laying hens contributes to dissimilar H 2S production. BMC Genomics 2019; 20:770. [PMID: 31646963 PMCID: PMC6813079 DOI: 10.1186/s12864-019-6115-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Host genotype plays a crucial role in microbial composition of laying hens, which may lead to dissimilar odor gas production. The objective of this study was to investigate the relationship among layer breed, microbial structure and odor production. RESULTS Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P < 0.05), which was consistent with the in vitro experiments (P < 0.05). However, ammonia (NH3) production was not different between genotypes (P > 0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens. CONCLUSION The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.
Collapse
Affiliation(s)
- Chun-Bo Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lei Xiao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yi-Wen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Juan-Boo Liang
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia
| | - Jian-Dui Mi
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China
| | - Yin-Bao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China. .,Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
22
|
Bogucka J, Ribeiro DM, Bogusławska-Tryk M, Dankowiakowska A, da Costa RPR, Bednarczyk M. Microstructure of the small intestine in broiler chickens fed a diet with probiotic or synbiotic supplementation. J Anim Physiol Anim Nutr (Berl) 2019; 103:1785-1791. [PMID: 31553085 DOI: 10.1111/jpn.13182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022]
Abstract
The aim of the study was to determine the effect of dietary supplementation of a probiotic and a synbiotic on the morphometric parameters of the small intestine of broiler chickens. The experiment was conducted on three hundred sixty, one-day-old female Ross 308 chicks, which were randomly selected from 20,000 birds and divided into three treatment groups (n = 120) with ten replicates per treatment. The control group (C) was fed a commercial diet, the probiotic group (PRO) was fed the same diet with an added 1% of the probiotic Lavipan® (Lactococcus lactis, Carnobacterium divergens, Lactobacillus casei, Lactobacillus plantarum and Saccharomyces cerevisiae), and the synbiotic group (SYN) was fed the commercial diet with an added synbiotic: 0.8% of the prebiotic RFO (extracted from lupin seeds) and 1% Lavipan®. According to the manufacturer's data, apart from the typical probiotic action,microorganisms contained in the preparation release anti-bacterial substances (hydrogen peroxide and bacteriocins) and, therefore, are antagonistic towards pathogenic bacteria present in the gut of animals. Supplementation took place in the first seven days of rearing, and all birds had ad libitum access to water and feed during the 42 days of the experiment. On the last day, all birds were slaughtered and samples from three segments of the small intestine were taken. Villi area, height, width and crypt depth ratios were read using Multiscan software. Synbiotic supplementation increased the BWG of broilers from first to tenth day of rearing, compared to the control group. The PRO group had improved villi morphometric parameters of the duodenum. In the jejunum and ileum, both bioactive substances improved villus width and villus surface area. Crypts were deeper in the small intestine of birds supplemented with bioactive substances, which allows greater renewal of the villi. As expected, the intestinal morphometric parameters of broiler chickens benefited from bioactive substance supplementation.
Collapse
Affiliation(s)
- Joanna Bogucka
- Department of Animal Physiology, Physiotherapy and Nutrition, UTP University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland
| | - David Miguel Ribeiro
- Polytechnic Institute of Coimbra, Agricultural College of Coimbra, Coimbra, Portugal.,LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Monika Bogusławska-Tryk
- Department of Animal Physiology, Physiotherapy and Nutrition, UTP University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Agata Dankowiakowska
- Department of Animal Physiology, Physiotherapy and Nutrition, UTP University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Rosário Plácido Roberto da Costa
- Polytechnic Institute of Coimbra, Agricultural College of Coimbra, Coimbra, Portugal.,CERNAS - Research Centre for Natural Resources, Environment and Society, Coimbra, Portugal
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetic, UTP University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
23
|
Medina Fernández S, Cretenet M, Bernardeau M. In vitro inhibition of avian pathogenic Enterococcus cecorum isolates by probiotic Bacillus strains. Poult Sci 2019; 98:2338-2346. [PMID: 30668801 PMCID: PMC6527510 DOI: 10.3382/ps/pey593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/20/2018] [Indexed: 12/04/2022] Open
Abstract
Enterococcus cecorum is a commensal bacteria and opportunistic pathogen that can cause outbreaks of Enterococcal spondylitis (“kinky back”) in poultry, with a growing concern worldwide. Numerous Bacillus-based probiotic strains are commercially available with proven effects in supporting gut health and growth performance, but efficacy against pathogenic E. cecorum is unknown. This study compared the in vitro inhibitory potential of cell-free supernatants (CFSs) of 18 Bacillus strains (14 commercial probiotic strains, 1 internal negative control and 3 type strains) on the growth of 9 clinical E. cecorum isolates. Standardized biomass cultures of live Bacillus were harvested and filtered to obtain CFSs. Inhibitory potential against E. cecorum isolates was assessed via a microdilution assay in which the final pathogen concentration was ∼ 104 CFU/mL. Absorbance (OD) was measured every 15 min for 15 h and used to calculate percentage growth inhibition at an OD equivalent to 0.4 in the positive control (PC) (pathogen but no CFS), and growth delay vs. PC. Growth kinetic responses of pathogen isolate-Bacillus strain combinations ranged from total pathogen inhibition to partial inhibition, lag in growth, no effect, or increased growth vs. PC. Percentage inhibition of individual isolates varied markedly among Bacillus strains, from 100% to −100% (growth promotion as recorded for the type strain) (B. amyloliquefaciens DSM7T). Five B. amyloliquefaciens CFSs produced higher average inhibition rates (>75%) than 2 out of 3 Bacillus licheniformis CFSs (−2.5, and −8.39% vs. PC, respectively) and 1 out of 2 Bacillus subtilis CFSs (7.3% vs. PC) (P < 0.05). Commercial strain 3AP4 exhibited the highest average percentage inhibition vs. PC (85.0% ± 7.9) and the most consistent inhibitory effect across pathogen isolates. The findings indicate that some commercially available poultry probiotic Bacillus strains are effective at inhibiting pathogenic E. cecorum in vitro, but effects are highly strain and pathogen isolate-dependent. Further work is required to confirm effects in vivo and isolate the inhibitory substances.
Collapse
Affiliation(s)
| | | | - Marion Bernardeau
- Normandie Université, UNICAEN, ABTE, 14000 Caen, France.,Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough SN8 1XN, UK
| |
Collapse
|
24
|
Musa BB, Duan Y, Khawar H, Sun Q, Ren Z, Elsiddig Mohamed MA, Abbasi IHR, Yang X. Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J Anim Physiol Anim Nutr (Berl) 2019; 103:1039-1049. [PMID: 31016810 DOI: 10.1111/jpn.13082] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
This study investigated the influence of Bacillus-based probiotics on performance and intestinal health in broiler challenged with Clostridium perfringens-induced necrotic enteritis. One-day-old Arbor Acre (n = 480) were randomly assigned to four treatments with 10 cages of 12 birds: (a) basal diet negative control (NC), with no probiotics nor antibiotics formulated to contain 2,930 and 3,060 kcal/kg with 24.07 and 15.98% CP, for starter and finisher diet, respectively, (b) basal diet + enramycin (5 mg/kg), an antibiotic growth promoter (AGP); (c) basal diet + Bacillus subtilis B21 at 2 × 109 CFU per g (BS); (d) basal diet + Bacillus licheniformis B26 at 2 × 109 CFU per g (BL); growth performance, intestinal morphology, intestinal lesion scores, short-chain fatty acids (SCFAs) and mucosal barrier tight junction's (TJ) mRNA expression were assessed. NC- and BL-fed groups showed higher (p = 0.005) average daily feed intake from d1 to d21 than AGP and BS, whereas BS- and AGP-fed groups showed higher average daily weight gain from d22 to d42 and d1 to d42 of age. Higher mortality rate of (12.5%) and lower of (5.5%) were recorded in AGP and NC fed-groups respectively, lesion score was higher in BS and BL than in AGP, while no lesion was observed in NC group, results revealed higher duodenum and jejunum villus height to crypt depth (VH:CD) compared with NC and BS. Probiotics-fed groups showed higher total (SCFAs), acetic and butyric acid concentrations at d21 post-challenge (PC) than other groups. The expression of claudin-1 was upregulated in duodenum (d7) PC and in jejunum (d7) and (d21) PC in BL group, while at d21 PC, the expression of occludens was higher in jejunum and ileum by AGP and BL. The present study indicated both BS and BL have some similarity with AGP in preventing or partially preventing NE effect in broilers.
Collapse
Affiliation(s)
- Bello Bodinga Musa
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Shehu Shagari College of Education Sokoto, Sokoto State, Nigeria
| | - Yongle Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hayat Khawar
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Imtiaz Hussain Raja Abbasi
- Department of Animal Nutrition, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Li J, Wu T, Li N, Wang X, Chen G, Lyu X. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct 2019; 10:333-343. [PMID: 30575836 DOI: 10.1039/c8fo01962b] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study was aimed at understanding potential mechanisms regarding bilberry anthocyanin extract consumption and healthy aging and the effects on intestinal barrier function and digestive enzyme activity, through regulating the gut microbiota in aging rats. Medium-dose bilberry anthocyanin extract consumption (20 mg per kg bw per day) was the optimum amount to regulate the intestinal function of aging rats. After consumption, bacteria beneficial to the intestine (Aspergillus oryzae, Lactobacillus, Bacteroides, Clostridiaceae-1, the Bacteroidales-S24-7-group and the Lachnospiraceae_NK4A136_group) were induced to grow, and harmful bacteria (Verrucomicrobia and Euryarchaeota) were inhibited. However, high-dose bilberry anthocyanin extract consumption altered some intestinally beneficial bacteria in an adverse way. There was a correlation between changes in bacterial composition and changes in short-chain fatty acids and the intestinal mucosal barrier. Bilberry anthocyanin extract consumption also decreased the activity of digestive enzymes. Our results suggest that bilberry anthocyanin extract consumption is a potential approach for assisting healthy aging.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Tianjin 300457, China.
| | | | | | | | | | | |
Collapse
|
26
|
Rhayat L, Maresca M, Nicoletti C, Perrier J, Brinch KS, Christian S, Devillard E, Eckhardt E. Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response. Front Immunol 2019; 10:564. [PMID: 30984172 PMCID: PMC6449611 DOI: 10.3389/fimmu.2019.00564] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Strong tight junctions and curtailed inflammatory responses under stressful conditions are key for optimal digestive health. Bacillus-based probiotics are increasingly being used to maintain broilers' health, but their mode of action is often not well-defined. In the present study we used Caco-2 cells as a model for intestinal epithelia and assessed the effect of three Bacillus-based probiotics on intestinal barrier function and intestinal inflammation. Experimental results showed that one of the three tested strains, Bs 29784, significantly reinforced intestinal barrier integrity under basal conditions through an up-regulation of the expression of tight junction's proteins, whereas the others had no or detrimental effects. When Caco-2 cells were pre-treated with Bacillus subtilis strains, the subsequent IL-8 release to various pro-inflammatory signals (IL-1β, deoxynivalenol, or flagellin) was blunted compared to cells that had not been pretreated, but to a different extent depending on the strain of Bacillus used. Bs 29784, was able to significantly decrease IL-8 production in all stressed conditions tested. Mechanistically, Bs 29784 appeared to limit nuclear translocation of NF-κB during IL-1β exposure by preventing IκB degradation. The effects of Bs 29784 were observed independently with supernatant and cells but in a lesser extent than with the combination, indicating that they can thus likely be attributed to both secreted metabolites and cell-associated compounds. Moreover, under inflammatory conditions, Bs 29784 significantly reduced the upregulation of iNOS protein levels further underlining its intestinal anti-inflammatory potential. Our data show that Bacillus-based probiotics may indeed improve digestive health by strengthening intestinal barrier and limiting inflammatory responses and that these properties are strain-dependent.
Collapse
Affiliation(s)
- Lamya Rhayat
- Centre d'Excellence en Recherche Nutritionelle, Adisseo SAS, Malicorne, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Josette Perrier
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | | | - Estelle Devillard
- Centre d'Excellence en Recherche Nutritionelle, Adisseo SAS, Malicorne, France
| | - Erik Eckhardt
- Centre d'Excellence en Recherche Nutritionelle, Adisseo SAS, Malicorne, France
| |
Collapse
|
27
|
Fu S, Guo S, Wang J, Wang Y, Zhang Z, Shen Z. Microbial community diversity of Jinghong laying hens at peak production based on 16S rRNA sequencing. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1520713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shijun Fu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, People’s Republic of China
| | - Shijin Guo
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, People’s Republic of China
| | - Jianjun Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, People’s Republic of China
| | - Yumao Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, People’s Republic of China
| | - Zhimei Zhang
- Shandong Lvdu Ante Animal Drug Co., Ltd, Biznhou, People’s Republic of China
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, People’s Republic of China
- Shandong Lvdu Ante Animal Drug Co., Ltd, Biznhou, People’s Republic of China
| |
Collapse
|
28
|
Parsa M, Nosrati M, Javandel F, Seidavi A, Khusro A, Salem AZM. The effects of dietary supplementation with different levels of Microzist as newly developed probiotics on growth performance, carcass characteristics, and immunological organs of broiler chicks. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1467835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mohammad Parsa
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mehran Nosrati
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Faramin Javandel
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
29
|
Wealleans A, Li W, Romero L, Mathis G, Lumpkins B. Performance and cost-benefit improvements following supplementation with a combination of direct-fed microbials and enzymes to broiler chickens raised with or without ionophores. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfx036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Salim HMD, Huque KS, Kamaruddin KM, Haque Beg A. Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Sci Prog 2018; 101:52-75. [PMID: 29467062 PMCID: PMC10365203 DOI: 10.3184/003685018x15173975498947] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A growing global concern of antibiotic use in poultry diets due to its potential adverse effects on birds and human health, food safety and the environment has led to a complete ban or restricted use in some countries, and, at the same time, expanding options for the use of alternative feed additives. Multiple, rather than a single additive may replace antibiotic growth promoters (AGPs) in poultry. Blending of feeding additives and hygienic farm management, vaccination and biosecurity may help achieve good intestinal health, stabilise enteric ecosystems and result in sustainable and cost effective production performance of birds. Moreover, controlling unsolicited ingredients at the production level must have the support of different markets responsible for the supply of safe and quality poultry products for consumers. This requires the further increase and diversification of value added poultry products and the expansion of their markets through strategic planning and gradual limitation of live bird markets. More research is warranted in order to explore suitable, reliable and cost effective alternatives to AGPs for commercial use, and strategic poultry value chain development.
Collapse
Affiliation(s)
| | - Khan Shahidul Huque
- Animal nutrition and feeding, and environment and improved livestock manure (ILM)
| | | | | |
Collapse
|
31
|
Pourakbari M, Seidavi A, Asadpour L, Martínez A. Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers. AN ACAD BRAS CIENC 2018; 88:1011-21. [PMID: 27254451 DOI: 10.1590/0001-3765201620150071] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/02/2015] [Indexed: 12/24/2022] Open
Abstract
Probiotic effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers were studied. Two hundred one-day-old male chickens were allocated to one of five treatments (four replicates of 10 birds per treatment): control, and the same control diet supplemented with 0.005%, 0.01%, 0.015% and 0.02% probiotics. Probiotics in feed at 0.01% or higher levels of supplementation improved body weight gain (+12%) and feed conversion rate (-5%) compared with the control. There were no effects on carcass traits, but the relative weights of drumsticks and wings showed increasing and decreasing linear responses, respectively, to probiotic supplementation level. Blood plasma glucose and albumin contents linearly increased (from 167.1 to 200.5 mg dl-1, and from 1.70 to 3.25 g dl-1) with increasing probiotic supplementation. Triglycerides and cholesterol contents were lower in probiotic supplemented treatments (average contents 71.3 and 125.3 mg dl-1 vs. 92.6 and 149.9 mg dl-1 in the control). Probiotics decreased cecal Escherichia coli counts, but had no effects on immunity related organs or immune response. The linear trends, either positive or negative, observed in many of the parameters studied, suggest that more studies are needed to establish the optimal concentration of probiotics in broiler feed.
Collapse
Affiliation(s)
- Mohammadreza Pourakbari
- Department of Animal Science, Rasht Branch, Islamic Azad University, Pole-Taleshan Street, 41335-3516 Rasht, Iran, Islamic Azad University, Islamic Azad University, Rasht , Iran
| | - Alireza Seidavi
- Department of Veterinary Science, Rasht Branch, Islamic Azad University, Pole-Taleshan Street, 41335-3516 Rasht, Iran, Islamic Azad University, Islamic Azad University, Rasht , Iran
| | - Leila Asadpour
- Department of Veterinary Science, Rasht Branch, Islamic Azad University, Pole-Taleshan Street, 41335-3516 Rasht, Iran, Islamic Azad University, Islamic Azad University, Rasht , Iran
| | - Andrés Martínez
- Department of Animal Production, University of Córdoba, Ctra. Madrid-Cádiz, Km 396, 14071 Córdoba, Spain, Universidad de Córdoba, University of Córdoba, Department of Animal Production, Córdoba , Spain
| |
Collapse
|
32
|
Yun W, Lee D, Choi Y, Kim I, Cho J. Effects of supplementation of probiotics and prebiotics on growth performance, nutrient digestibility, organ weight, fecal microbiota, blood profile, and excreta noxious gas emissions in broilers. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Safety assessment of antibiotic and probiotic feed additives for Gallus gallus domesticus. Sci Rep 2017; 7:12767. [PMID: 29038560 PMCID: PMC5643334 DOI: 10.1038/s41598-017-12866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/14/2017] [Indexed: 11/17/2022] Open
Abstract
Antibiotics in feed select for resistant strains and is thus a threat to human health. In this study, the effect of a multi-strain probiotic and antibiotics on the growth and health of broilers was studied. Equal numbers of broilers received on a daily basis either a multi-strain probiotic or a combination of sulphadiazine, colistin and trimethoprim, whereas the control group received standard feed. The villi of immature broilers (19 days old) administered antibiotics had a larger surface area and their lymphocyte and basophil counts were higher compared to broilers from the probiotic and control groups. The cecal microbiomes of mature broilers (29 days old) that received probiotics had higher levels of Enterobacteriaceae, but lower numbers of Clostridiales, Brucellaceae, Synergistaceae, Erysipelotrichaceae and Coriobacteriaceae compared to the antibiotic-treated group. A decline in the bioluminescence of Listeria monocytogenes observed for broilers on probiotics suggested that the probiotic may be used to control bacterial infections. No significant differences in total red blood cell, haemoglobin and haematocrit content, and mean values for corpuscular volume, corpuscular haemoglobin and corpuscular haemoglobin numbers were recorded amongst broilers from the different treatment groups. This study provides valuable information on the health and performance of broilers when administered probiotics and antibiotics as additives.
Collapse
|
34
|
Ort SB, Aragona KM, Chapman CE, Shangraw E, Brito AF, Schauff DJ, Erickson PS. The impact of direct-fed microbials and enzymes on the health and performance of dairy cows with emphasis on colostrum quality and serum immunoglobulin concentrations in calves. J Anim Physiol Anim Nutr (Berl) 2017; 102:e641-e652. [PMID: 29030887 PMCID: PMC7166698 DOI: 10.1111/jpn.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
Thirty‐six cows were blocked by calving date and randomly assigned to one of three treatments. Cows were on treatments 3 weeks prepartum through 8 weeks post‐partum. Treatments were as follows: (i) no direct‐fed microbial (DFM) or cellulase and amylase enzymes (C), (ii) 45.4 g/day of DFM (D) or (iii) 45.4 g/day of DFM and 18.2 g/day of enzyme (DE). Total mixed ration fed and refused were measured daily to determine dry matter intake (DMI). Blood samples were taken three times weekly and analysed for β‐hydroxybutyrate, glucose and non‐esterified fatty acids. Body weight (BW) was measured weekly. Colostrum was weighed and analysed for IgA and IgG concentration. Calves were fed 4 L of colostrum within 2 hr of birth. Calf blood samples were taken at 0 and 24 hr for analysis of IgA and IgG concentrations and apparent efficiency of absorption. Milk yield was measured daily and samples collected weekly. Initial BW was different among treatments with D being lesser than C or DE treatments. Body weight, weight gain, efficiency of gain, DMI and blood parameters were unaffected. Treatment did not affect colostrum yield. Ash percentage of colostrum tended to increase with D and DE, while IgA and total solids yield decreased with D. Colostrum fat yield was decreased in D and DE. Treatments did not impact BW, serum IgA and IgG concentrations or apparent efficiency of absorption of calves. Post‐partum BW, DMI, blood parameters, milk production and composition were unaffected by treatment. However, cows on D gained more BW and tended to have greater efficiency of gain compared to those on DE, but were similar to C. Somatic cell scores were greatest for D. Results indicate that DFM and enzyme supplementation did not improve health and performance of dairy cattle during the pre‐ and post‐partum periods under conditions of this study.
Collapse
Affiliation(s)
- S B Ort
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - K M Aragona
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - C E Chapman
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - E Shangraw
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - A F Brito
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | | | - P S Erickson
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
35
|
Wealleans AL, Sirukhi M, Egorov IA. Performance, gut morphology and microbiology effects of a Bacillus probiotic, avilamycin and their combination in mixed grain broiler diets. Br Poult Sci 2017; 58:523-529. [PMID: 28682111 DOI: 10.1080/00071668.2017.1349298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. This study aimed to determine the effect of avilamycin (AGP) and a multi-strain Bacillus probiotic (DFM) on the performance, gut histology and microbiology of broilers fed on a mixed grain diet. 2. A total of 800 chicks were allocated to four treatments: a control diet, control+AGP, control+DFM, or control+AGP+DFM. Bodyweight, feed intake and FCR were measured at d 0, 21 and 42. Samples were taken at d42 to determine villus height (VH), crypt depth (CD) and ratio (VH:CD). Mucosal E. coli and Lactobacilli counts were measured at d42. 3. At d42, DFM and AGP+DFM significantly increased weight over the control, with AGP returning an intermediate value. FCR followed a similar pattern. DFM and AGP+DFM significantly increased VH and CD in all gut sections compared to the control. 4. DFM and AGP+DFM reduced E. coli counts compared to control, with AGP reducing caecal counts only, while Lactobacilli counts were increased. 5. Divergent histology and microbiology between treatments highlight the different modes of action of AGP and DFM for improving broiler growth and feed efficiency.
Collapse
Affiliation(s)
- A L Wealleans
- a Danisco Animal Nutrition , DuPont Industrial Biosciences , Marlborough , UK
| | - M Sirukhi
- b Danisco Animal Nutrition , DuPont Industrial Biosciences , Moscow , Russia
| | - I A Egorov
- c Poultry Nutrition , All-Russian Research and Technological Poultry Institute , Sergiev Posad , Russia
| |
Collapse
|
36
|
Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 2017; 18:26-45. [DOI: 10.1017/s1466252316000207] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractWith the increase in regulations regarding the use of antibiotic growth promoters and the rise in consumer demand for poultry products from ‘Raised Without Antibiotics’ or ‘No Antibiotics Ever’ flocks, the quest for alternative products or approaches has intensified in recent years. A great deal of research has focused on the development of antibiotic alternatives to maintain or improve poultry health and performance. This review describes the potential for the various alternatives available to increase animal productivity and help poultry perform to their genetic potential under existing commercial conditions. The classes of alternatives described include probiotics, prebiotics, synbiotics, organic acids, enzymes, phytogenics, antimicrobial peptides, hyperimmune egg antibodies, bacteriophages, clay, and metals. A brief description of the mechanism of action, efficacy, and advantages and disadvantages of their uses are also presented. Though the beneficial effects of many of the alternatives developed have been well demonstrated, the general consensus is that these products lack consistency and the results vary greatly from farm to farm. Furthermore, their mode of action needs to be better defined. Optimal combinations of various alternatives coupled with good management and husbandry practices will be the key to maximize performance and maintain animal productivity, while we move forward with the ultimate goal of reducing antibiotic use in the animal industry.
Collapse
|
37
|
Balamuralikrishnan B, Lee SI, Kim IH. Dietary inclusion of different multi-strain complex probiotics; effects on performance in broilers. Br Poult Sci 2017; 58:83-86. [PMID: 27918205 DOI: 10.1080/00071668.2016.1257112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study was designed to evaluate the effects of two different complex probiotic supplementations on the growth performance, meat quality, excreta microflora, nutrient retention, blood metabolic profile and noxious gas emissions in broilers. A total of 612 conventional healthy 1-d-old Ross 308 broilers with body weight of 41 ± 0.3 g were randomly divided into 3 treatments with 12 replicate cages, with 17 broilers in each cage and fed with the following diets: CON-Basal diet, T1-CON + Probiotic A, T2-CON + Probiotic B. Significant results were observed on body weight gain, but not on feed conversation ratio and feed intake, in the whole experimental period. Increased faecal lactobacillus counts were found with probiotics supplementation. However, no significant effects were found for meat quality, nutrient retention, blood metabolic profile or noxious gas emissions. In conclusion, both multi-strain probiotics had beneficial effects on growth performance, drip loss percentage and faecal Lactobacillus counts in broilers.
Collapse
Affiliation(s)
- B Balamuralikrishnan
- a Department of Animal Resource and Science , Dankook University , Cheonan , Choongnam , South Korea
| | - S I Lee
- a Department of Animal Resource and Science , Dankook University , Cheonan , Choongnam , South Korea
| | - I H Kim
- a Department of Animal Resource and Science , Dankook University , Cheonan , Choongnam , South Korea
| |
Collapse
|
38
|
Lee KW, Lillehoj HS. An update on direct-fed microbials in broiler chickens in post-antibiotic era. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a post-antibiotic era, applying dietary alternatives to antibiotics into diets of chickens has become a common practice to improve the productivity and health status of chickens. It is generally accepted that direct-fed microbials (DFMs), defined as a source of viable, naturally occurring microorganisms, as an alternative to antibiotics, have a long history for their safe use and health benefit and are generally regarded for therapeutic, prophylactic and growth-promotion uses in poultry industry. It has been suggested that two primary modes of action by DFMs are balancing gut microbiota and modulating host immunity. Recent findings have suggested that gut microbiota plays an important role in developing immune system and maintaining the homeostasis of mature immune system in mammals and chickens. With the help of molecular and bioinformatics tools, it is now scientifically proven that gut microbiota is diverse, dynamic, and varies according to age, breed, diet composition, environment and feed additives. Broiler chickens are commonly raised on the floor with bedding materials, which facilitates the acquisition of microorganisms present in the bedding materials. Thus, it is expected that environmental factors, including the type of litter, influence host immunity in a positive or negative way. In this regard, adding DFMs into diets of chickens will affect host–microbe interaction, shaping host immunity towards increasing resistance of chickens to enteric diseases.
Collapse
|
39
|
Wang J, Fan H, Han Y, Wei J, Zhao J, Zhou Z. Pyrosequencing of the broiler chicken gastrointestinal tract reveals the regional similarity and dissimilarity of microbial community. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jin Wang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, P.O. Box 300072, Tianjin, People’s Republic of China
| | - Huan Fan
- Tianjin Institute of Animal Husbandry and Veterinary Research, 17 kilometres, Jinjing Road, Xiqing District, P.O. Box 300384, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, 92 Weijin Road, Nankai District, P.O. Box 300072, Tianjin, People’s Republic of China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, P.O. Box 300072, Tianjin, People’s Republic of China
| | - Jiping Wei
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, P.O. Box 300072, Tianjin, People’s Republic of China
| | - Jinzhao Zhao
- Tianjin Kuntai Environment & Energy Science and Technology Development Co., Ltd., 31 Fukang Road, Nankai District, P.O. Box 300191, Tianjin, People’s Republic of China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, P.O. Box 300072, Tianjin, People’s Republic of China
| |
Collapse
|
40
|
The effects of enzymes and direct fed microbial combination on performance and immune response of broilers under a coccidia challenge. JOURNAL OF APPLIED ANIMAL NUTRITION 2016. [DOI: 10.1017/jan.2016.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThis study evaluated the effect of an enzyme blend (xylanase, amylase and protease; XAP) in combination with a direct fed microbial (DFM) containing three strains of Bacillus spp. on intestinal histology, immune response and performance of broilers. Four dietary treatments were tested in a 2 × 2 factorial trial, including two levels of challenge (without or with coccidial infection), two levels of feed additive (with or without XAP and DFM). Diets were fed ad libitum to male Cobb500 broilers in mash feeds from 1–21 days of age, with eight replicate pens per treatment within brooder-batteries with raised wire floors and built up litter, housing six birds per pen. A mild challenge was introduced by oral gavage at day five to the challenged birds, using a six-fold concentration of coccidial vaccine. A high fibre basal diet formulated with rye and wheat middlings was used to further increase the challenge. Body weight and feed intake were measured and feed conversion ratio (FCR) was calculated during starter (1–12 d), grower (12–21 d) and overall 1–21 days. Intestinal morphology and immune response parameters were measured on day 12 and 21. Compared to the unchallenged groups, the coccidial challenge reduced (P < 0.05) body weight gain (BWG), increased FCR, reduced villus height and increased crypt depth. The challenged birds had increased pro-inflammatory cytokines (IL-6, IL-1β; P < 0.05) in the intestine as well as higher levels of acute phase proteins (APP, haemopexin and α−1-acid glycoprotein) in the plasma and circulating heterophils. XAP + DFM supplementation improved BWG, reduced FCR and increased energy efficiency compared to the non-supplemented groups. The combination of XAP and DFM reduced inflammatory responses such as APP compared to the challenged control group and maintained performance to a comparable level seen in the unchallenged control. The data indicate that XAP enzymes in combination with Bacillus-based DFM may reduce the damage and performance losses induced by coccidial challenge.
Collapse
|
41
|
Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 2016; 96:74-82. [PMID: 27486257 DOI: 10.3382/ps/pew246] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the supplemental effects of probiotic Bacillus subtilis fmbJ (BS fmbJ) on growth performance, antioxidant capacity, and meat quality of broiler chickens. A total of 240 day-old male Arbor Acres (AA) broiler chickens were randomly allotted to 4 treatments and raised for 6 wk. Each treatment had 6 replicate pens with ten birds per replicate. Birds in the control group (CON) were fed diets without BS fmbJ and antibiotics. The BS groups were fed the basal diets with BS fmbJ at 2 × 1010 cfu/kg (BS-1 group), BS fmbJ at 3 × 1010 cfu/kg (BS-2 group), BS fmbJ at 4 × 1010 cfu/kg (BS-3 group) without antibiotics for 42 d. In the study, dietary supplementation with BS fmbJ significantly improved (P < 0.05) the average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) of broilers from 21 to 42 d and 1 to 42 d. At 42 d, the final body weight was increased (P < 0.05) in BS-2 group compared with that in CON. Dietary BS fmbJ significantly increased (P < 0.05) serum IgA and IgG concentrations of broilers after 42 days raising. The glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activity of serum and liver were increased (P < 0.05), and methane dicarboxylic aldehyde (MDA) contents in serum and liver were decreased (P < 0.05) by BS fmbJ added into the broiler diets. Dietary supplementation with BS fmbJ significantly decreased (P < 0.05) reactive oxygen species (ROS) contents in liver mitochondria of broilers. Additionally, the expression of antioxidant enzyme gene including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were improved (P < 0.05) by BS fmbJ added into the broiler diets. Among measuring items of chicken breast meat quality, the drip loss, cooking loss, shear force, L*24 h, a*24 h, b*45 min, and b*24 h values were influenced (P < 0.05) by BS fmbJ provided in the diet. Based on these results, Bacillus subtilis fmbJ could be acted as a beneficial feed additive with antioxidant capacity in broiler diets.
Collapse
Affiliation(s)
- Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Qiang Huang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, People's Republic of China
| |
Collapse
|
42
|
Ferrareze PAG, Correa APF, Brandelli A. Purification and characterization of a keratinolytic protease produced by probiotic Bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Bacterial Succession in the Broiler Gastrointestinal Tract. Appl Environ Microbiol 2016; 82:2399-2410. [PMID: 26873323 DOI: 10.1128/aem.02549-15] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/06/2016] [Indexed: 01/13/2023] Open
Abstract
A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed.Lactobacillaceae(belonging mainly to the genus Lactobacillus) represented most of the Firmicutesat all ages and in all segments of the gut except the cecum. The development of a "mature" microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius(17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30.
Collapse
|
44
|
Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, Koci MD. Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Front Vet Sci 2016; 3:2. [PMID: 26835461 PMCID: PMC4718982 DOI: 10.3389/fvets.2016.00002] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
The concept of improving animal health through improved gut health has existed in food animal production for decades; however, only recently have we had the tools to identify microbes in the intestine associated with improved performance. Currently, little is known about how the avian microbiome develops or the factors that affect its composition. To begin to address this knowledge gap, the present study assessed the development of the cecal microbiome in chicks from hatch to 28 days of age with and without a live Salmonella vaccine and/or probiotic supplement; both are products intended to promote gut health. The microbiome of growing chicks develops rapidly from days 1–3, and the microbiome is primarily Enterobacteriaceae, but Firmicutes increase in abundance and taxonomic diversity starting around day 7. As the microbiome continues to develop, the influence of the treatments becomes stronger. Predicted metagenomic content suggests that, functionally, treatment may stimulate more differences at day 14, despite the strong taxonomic differences at day 28. These results demonstrate that these live microbial treatments do impact the development of the bacterial taxa found in the growing chicks; however, additional experiments are needed to understand the biochemical and functional consequences of these alterations.
Collapse
Affiliation(s)
- Anne L Ballou
- Prestage Department of Poultry Science, North Carolina State University , Raleigh, NC , USA
| | - Rizwana A Ali
- Prestage Department of Poultry Science, North Carolina State University , Raleigh, NC , USA
| | - Mary A Mendoza
- Prestage Department of Poultry Science, North Carolina State University , Raleigh, NC , USA
| | - J C Ellis
- In Silico LLC , Fuquay-Varina, NC , USA
| | - Hosni M Hassan
- Prestage Department of Poultry Science, North Carolina State University , Raleigh, NC , USA
| | - W J Croom
- Prestage Department of Poultry Science, North Carolina State University , Raleigh, NC , USA
| | - Matthew D Koci
- Prestage Department of Poultry Science, North Carolina State University , Raleigh, NC , USA
| |
Collapse
|
45
|
Fasina YO, Newman MM, Stough JM, Liles MR. Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poult Sci 2015; 95:247-60. [PMID: 26567176 DOI: 10.3382/ps/pev329] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
The etiological agent of necrotic enteritis (NE) is Clostridium perfringens (CP), which is an economically significant problem for broiler chicken producers worldwide. Traditional use of in-feed antibiotic growth promoters to control NE disease have resulted in the emergence of antibiotic resistance in CP strains. Identification of probiotic bacteria strains as an alternative to antibiotics for the control of intestinal CP colonization is crucial. Two experiments were conducted to determine changes in intestinal bacterial assemblages in response to CP infection and in-feed bacitracin methylene disalicylate (BMD) in broiler chickens. In each experiment conducted in battery-cage or floor-pen housing, chicks were randomly assigned to the following treatment groups: 1) BMD-supplemented diet with no CP challenge (CM), 2) BMD-free control diet with no CP challenge (CX), 3) BMD-supplemented diet with CP challenge (PCM), or 4) BMD-free control diet with CP challenge (PCX). The establishment of CP infection was confirmed, with the treatment groups exposed to CP having a 1.5- to 2-fold higher CP levels (P < 0.05) compared to the non-exposed groups. Next-generation sequencing of PCR amplified 16S rRNA genes, was used to perform intestinal bacterial diversity analyses pre-challenge, and at 1, 7, and 21 d post-challenge. The results indicated that the intestinal bacterial assemblage was dominated by members of the phylum Firmicutes in all treatments before and after CP challenge, especially the Lactobacillaceae and Clostridiales families. In addition, we observed post-challenge emergence of members of the Enterobacteriaceae and Streptococcaceae in the non-medicated PCX treatment, and emergence of the Enterococcaceae in the medicated PCM treatment. This study highlights the bacterial interactions that could be important in suppressing or eliminating CP infection within the chicken intestine. Future studies should explore the potential to use commensal strains of unknown Clostridiales, Lactobacillaceae, Enterobacteriaceae, Streptococcaceae, and Enterococcaceae in effective probiotic formulations for the control of CP and NE disease.
Collapse
Affiliation(s)
- Yewande O Fasina
- North Carolina Agricultural and Technical State University, Department of Animal Sciences, Greensboro, NC 27411
| | - Molli M Newman
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849
| | - Joshua M Stough
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849
| | - Mark R Liles
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849
| |
Collapse
|
46
|
Pereira R, Menten J, Bortoluzzi C, Napty G, Longo F, Vittori J, Lourenço M, Santin E. Organic acid blend in diets of broiler chickens challenged with Clostridium perfringens. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Yitbarek A, Echeverry H, Munyaka P, Rodriguez-Lecompte J. Innate immune response of pullets fed diets supplemented with prebiotics and synbiotics. Poult Sci 2015; 94:1802-11. [DOI: 10.3382/ps/pev147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2015] [Indexed: 01/04/2023] Open
|
48
|
Roberts T, Wilson J, Guthrie A, Cookson K, Vancraeynest D, Schaeffer J, Moody R, Clark S. New issues and science in broiler chicken intestinal health: Emerging technology and alternative interventions. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
49
|
Kenney NM, Vanzant ES, Harmon DL, McLeod KR. Effect of direct-fed microbials on utilization of degradable intake protein in receiving steers. CANADIAN JOURNAL OF ANIMAL SCIENCE 2015. [DOI: 10.4141/cjas-2014-021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kenney, N. M., Vanzant, E. S., Harmon, D. L. and McLeod, K. R. 2015. Effect of direct-fed microbials on utilization of degradable intake protein in receiving steers. Can. J. Anim. Sci. 95: 93–102. One hundred ninety-two crossbred beef steers (280±25 kg) were assigned to a 5×2 factorial; degradable intake protein (DIP; 80, 90, 100, 110, 120% of requirement) with and without a direct-fed microbial (DFM) primarily containing Lactobacillus acidophilus and Enterococcus faecium (109CFU steer−1d−1). Dry matter intake, morbidity, and immune response were not affected (P≥0.11). The first 28 d, average daily gain (ADG) did not differ with DIP in control, but increased in a cubic fashion with DFM (DIP×DFM; P=0.05). No differences (P≥0.25) in ADG occurred from days 29 to 56; however, there was a tendency (P=0.08) for a cubic increase in ADG with increasing DIP with DFM over 56 d. The first 28 d, growth efficiency did not differ across DIP levels in control but increased linearly with DFM (DIP×DFM; P=0.05). No differences (P≥0.21) in efficiency were observed from days 29 to 56 or overall. Without DFM, fecal pH decreased between days 7 and 14; however, with DFM there was no change in pH (DFM×time; P<0.05). Performance response to DFM is dependent on DIP; however, DFM does not impact morbidity or humoral immune response.
Collapse
Affiliation(s)
- N. M. Kenney
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
| | - E. S. Vanzant
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
| | - D. L. Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
| | - K. R. McLeod
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA 40546-0215
| |
Collapse
|
50
|
Dersjant-Li Y, van de Belt K, van der Klis J, Kettunen H, Rinttilä T, Awati A. Effect of multi-enzymes in combination with a direct-fed microbial on performance and welfare parameters in broilers under commercial production settings. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|