1
|
Brandt MP, Vakhrusheva O, Hackl H, Daher T, Tagscherer K, Roth W, Tsaur I, Handle F, Eigentler A, Culig Z, Thomas C, Erb HHH, Haferkamp A, Jüngel E, Puhr M. Inhibition of the Sterol Regulatory Element Binding Protein SREBF-1 Overcomes Docetaxel Resistance in Advanced Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2150-2162. [PMID: 39168364 DOI: 10.1016/j.ajpath.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Resistance to antiandrogens and chemotherapy (Cx) limits therapeutic options for patients with metastatic hormone-sensitive (mHSPC) and metastatic castration-resistant (mCRPC) prostate cancer. In this context, up-regulation of the glucocorticoid receptor is identified as a potential bypass mechanism in mCRPC. A combination of docetaxel and mifepristone (Doc + RU-486), an inhibitor of the glucocorticoid receptor, re-sensitizes docetaxel-resistant cell models to Cx. This study was designed to elucidate the molecular mechanisms responsible for this phenomenon. RNA sequencing was performed in docetaxel-resistant prostate cancer cell models after Doc + RU-486 treatment with consecutive functional assays. Expression of selected proteins was verified in prostatic tissue from prostate cancer patients with progressive disease. Treatment with Doc + RU-486 significantly reduced cancer cell viability, and RNA sequencing revealed sterol regulatory element of binding transcription factor 1 (SREBF-1), a transcription factor of cholesterol and lipid biosynthesis, as a significantly down-regulated target. Functional assays confirmed that SREBF-1 down-regulation is partially responsible for this observation. In concordance, SREBF-1 knockdown and pharmacologic sterol regulatory element binding protein inhibition, together with other key enzymes in the cholesterol pathway, showed similar results. Furthermore, SREBF-1 expression is significantly elevated in advanced prostate cancer tissues, showing its potential involvement in tumor progression and emerging therapy resistance. Therefore, specific inhibition of cholesterol and lipid biosynthesis might also target Cx-resistant cancer cells and represents a potential additive future therapeutic option to improve mCRPC therapy.
Collapse
Affiliation(s)
- Maximilian P Brandt
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany.
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany; Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tamas Daher
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany; Optipath, Ambulatory Health Care Center for Pathology Frankfurt, Frankfurt, Germany
| | - Katrin Tagscherer
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany; Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany
| | - Eva Jüngel
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Gillessen S, Turco F, Davis ID, Efstathiou JA, Fizazi K, James ND, Shore N, Small E, Smith M, Sweeney CJ, Tombal B, Zilli T, Agarwal N, Antonarakis ES, Aparicio A, Armstrong AJ, Bastos DA, Attard G, Axcrona K, Ayadi M, Beltran H, Bjartell A, Blanchard P, Bourlon MT, Briganti A, Bulbul M, Buttigliero C, Caffo O, Castellano D, Castro E, Cheng HH, Chi KN, Clarke CS, Clarke N, de Bono JS, De Santis M, Duran I, Efstathiou E, Ekeke ON, El Nahas TIH, Emmett L, Fanti S, Fatiregun OA, Feng FY, Fong PCC, Fonteyne V, Fossati N, George DJ, Gleave ME, Gravis G, Halabi S, Heinrich D, Herrmann K, Hofman MS, Hope TA, Horvath LG, Hussain MHA, Jereczek-Fossa BA, Jones RJ, Joshua AM, Kanesvaran R, Keizman D, Khauli RB, Kramer G, Loeb S, Mahal BA, Maluf FC, Mateo J, Matheson D, Matikainen MP, McDermott R, McKay RR, Mehra N, Merseburger AS, Morgans AK, Morris MJ, Mrabti H, Mukherji D, Murphy DG, Murthy V, Mutambirwa SBA, Nguyen PL, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Parker C, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Renard-Penna R, Ryan CJ, Saad F, Sade JP, Sandhu S, Sartor OA, Schaeffer E, Scher HI, Sharifi N, Skoneczna IA, Soule HR, Spratt DE, Srinivas S, Sternberg CN, Suzuki H, Taplin ME, Thellenberg-Karlsson C, Tilki D, Türkeri LN, Uemura H, Ürün Y, Vale CL, Vapiwala N, Walz J, Yamoah K, Ye D, Yu EY, Zapatero A, Omlin A. Management of Patients with Advanced Prostate Cancer. Report from the 2024 Advanced Prostate Cancer Consensus Conference (APCCC). Eur Urol 2024:S0302-2838(24)02610-1. [PMID: 39394013 DOI: 10.1016/j.eururo.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Innovations have improved outcomes in advanced prostate cancer (PC). Nonetheless, we continue to lack high-level evidence on a variety of topics that greatly impact daily practice. The 2024 Advanced Prostate Cancer Consensus Conference (APCCC) surveyed experts on key questions in clinical management in order to supplement evidence-based guidelines. Here we present voting results for questions from APCCC 2024. METHODS Before the conference, a panel of 120 international PC experts used a modified Delphi process to develop 183 multiple-choice consensus questions on eight different topics. Before the conference, these questions were administered via a web-based survey to the voting panel members ("panellists"). KEY FINDINGS AND LIMITATIONS Consensus was a priori defined as ≥75% agreement, with strong consensus defined as ≥90% agreement. The voting results show varying degrees of consensus, as discussed in this article and detailed in the Supplementary material. These findings do not include a formal literature review or meta-analysis. CONCLUSIONS AND CLINICAL IMPLICATIONS The voting results can help physicians and patients navigate controversial areas of clinical management for which high-level evidence is scant or conflicting. The findings can also help funders and policymakers in prioritising areas for future research. Diagnostic and treatment decisions should always be individualised on the basis of patient and cancer characteristics, and should incorporate current and emerging clinical evidence, guidelines, and logistic and economic factors. Enrolment in clinical trials is always strongly encouraged. Importantly, APCCC 2024 once again identified important gaps (areas of nonconsensus) that merit evaluation in specifically designed trials.
Collapse
Affiliation(s)
- Silke Gillessen
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biosciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Fabio Turco
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ian D Davis
- Monash University, Melbourne, Australia; Eastern Health, Melbourne, Australia
| | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | | | - Neal Shore
- Carolina Urologic Research Center and GenesisCare, Myrtle Beach, SC, USA
| | - Eric Small
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, USA
| | - Matthew Smith
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christopher J Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Bertrand Tombal
- Division of Urology, Clinique Universitaire St. Luc, Brussels, Belgium
| | - Thomas Zilli
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biosciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Armstrong
- Center for Prostate and Urologic Cancer, Duke Cancer Institute, Duke University, Durham, NC, USA
| | | | | | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | - Mouna Ayadi
- Salah Azaiz Institute, Medical School of Tunis, Tunis, Tunisia
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Pierre Blanchard
- Department of Radiation Oncology, Oncostat U1018 INSERM, Université Paris-Saclay, Gustave-Roussy, Villejuif, France
| | - Maria T Bourlon
- Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Muhammad Bulbul
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Consuelo Buttigliero
- Department of Oncology, San Luigi Hospital, University of Turin, Orbassano, Italy
| | - Orazio Caffo
- Medical Oncology Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Heather H Cheng
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Kim N Chi
- BC Cancer and University of British Columbia, Vancouver, Canada
| | - Caroline S Clarke
- Research Department of Primary Care and Population Health, University College London, London, UK
| | - Noel Clarke
- The Christie and Salford Royal Hospitals, Manchester, UK
| | - Johann S de Bono
- Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Maria De Santis
- Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Ignacio Duran
- Medical Oncology Department, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Spain
| | | | - Onyeanunam N Ekeke
- Urology Division, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | | | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Stefano Fanti
- Department of Nuclear Medicine, IRCCS AOU Bologna, Bologna, Italy
| | | | - Felix Y Feng
- University of California-San Francisco, San Francisco, CA, USA
| | - Peter C C Fong
- Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | | | - Nicola Fossati
- Department of Surgery (Urology Service), Ente Ospedaliero Cantonale, Università della Svizzera Italiana Lugano, Switzerland
| | - Daniel J George
- Departments of Medicine and Surgery, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Daniel Heinrich
- Department of Oncology and Radiotherapy, Innlandet Hospital Trust, Gjøvik, Norway
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium, University Hospital Essen, Essen, Germany
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, University of Sydney, Sydney, Australia
| | - Maha H A Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Robert J Jones
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, Australia
| | | | - Daniel Keizman
- Genitourinary Unit, Division of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Raja B Khauli
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon; Division of Urology, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Stacy Loeb
- Department of Urology and Population Health, New York University Langone Health, New York, NY, USA; Department of Surgery/Urology, Manhattan Veterans Affairs, New York, NY, USA
| | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Sylvester Cancer Center, Miami, FL, USA
| | - Fernando C Maluf
- Beneficiência Portuguesa de São Paulo, São Paulo, Brazil; Departamento de Oncologia, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - David Matheson
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Mika P Matikainen
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Ray McDermott
- Department of Medical Oncology, St. Vincent's University Hospital and Cancer Trials, Dublin, Ireland
| | - Rana R McKay
- University of California-San Diego, Palo Alto, CA, USA
| | - Niven Mehra
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alicia K Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hind Mrabti
- Institut National d'Oncologie, Mohamed V University, Rabat, Morocco
| | - Deborah Mukherji
- Clemenceau Medical Center, Dubai, United Arab Emirates; Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Vedang Murthy
- Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr. George Mukhari Academic Hospital, Medunsa, South Africa
| | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - Chris Parker
- Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Darren M C Poon
- Hong Kong Sanatorium and Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Danny M Rabah
- Cancer Research Chair and Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Urology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dana Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Raphaele Renard-Penna
- Department of Imagery, GRC 5 Predictive Onco-Uro, Pitie-Salpetriere Hospital, AP-HP, Sorbonne University, Paris, France
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fred Saad
- Centre Hospitalier de Université de Montréal, Montreal, Canada
| | | | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Oliver A Sartor
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Edward Schaeffer
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iwona A Skoneczna
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Sandy Srinivas
- Division of Medical Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Division of Hematology and Oncology, Meyer Cancer Center, New York Presbyterian Hospital, New York, NY, USA
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Sakura, Japan
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Derya Tilki
- Martini-Klinik Prostate Cancer Center and Department of Urology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Levent N Türkeri
- Department of Urology, M.A. Aydınlar Acıbadem University, Altunizade Hospital, Istanbul, Turkey
| | - Hiroji Uemura
- Yokohama City University Medical Center, Yokohama, Japan
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
| | - Claire L Vale
- MRC Clinical Trials Unit, University College London, London, UK
| | - Neha Vapiwala
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jochen Walz
- Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Kosj Yamoah
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Evan Y Yu
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Almudena Zapatero
- University Hospital La Princesa, Health Research Institute, Madrid, Spain
| | - Aurelius Omlin
- Onkozentrum Zurich, University of Zurich and Tumorzentrum Hirslanden Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Sucman NS, Ya Bilan D, Cojocari SV, Pogrebnoi VS, Stîngaci EP, Khripach VA, Zhabinskii VN, Tsybruk TV, Grabovec IP, Panibrat OV, Persoons L, Schols D, Froeyen M, Shova S, De Jonghe S, Macaev FZ. Steroidal 21-imidazolium salt derivatives: Synthesis and anticancer activity. Steroids 2024; 210:109475. [PMID: 39067611 DOI: 10.1016/j.steroids.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Nitrogen-containing steroids are known as prostate cancer therapeutics. In this work, a series of pregnane derivatives bearing an imidazolium moiety were synthesized using Δ16-20-ketones as starting material. An improved approach for the construction of the 20-keto-21-heterocycle-substituted fragment involved the rearrangement of 16,17-epoxides with HCl, followed by reaction of the formed α-chloroketone with 1-substituted imidazoles. Binding affinity analysis of the imidazolium steroids and their synthetic intermediates to human CYP17A1 showed only type I (substrate-like) interactions. The strongest affinity was observed for 16α,17α-epoxy-5α-pregnan-20-on-3β-ol (Kd = 0.66 ± 0.05 µM). The steroid derivatives have been evaluated for antitumor activity against a range of prostate cancer cells as well as against various other solid tumor and hematologic cancer cell lines. All 21-imidazolium salts were active against the hormone-dependent prostate cancer line LNCaP. The most pronounced cytotoxicity in solid tumor and hematologic cancer cell lines was observed for intermediate product, 21-chloro-5α-pregn-16-en-20-on-3β-ol. Among the imidazolium salts, the derivatives with a single bond were more cytotoxic than their unsaturated congeners.
Collapse
Affiliation(s)
- Natalia S Sucman
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Dmitri Ya Bilan
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Sergiu V Cojocari
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Vsevolod S Pogrebnoi
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Eugenia P Stîngaci
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Tatsiana V Tsybruk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Irina P Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Olesya V Panibrat
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium.
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, P.O. Box 1030, B-3000 Leuven, Belgium.
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore GhicaVoda 41-A, Iasi 700487, Romania.
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium.
| | - Fliur Z Macaev
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| |
Collapse
|
4
|
Csizmarik A, Nagy N, Keresztes D, Váradi M, Bracht T, Sitek B, Witzke K, Puhr M, Tornyi I, Lázár J, Takács L, Kramer G, Sevcenco S, Maj-Hes A, Hadaschik B, Nyirády P, Szarvas T. Comparative proteome and serum analysis identified FSCN1 as a marker of abiraterone resistance in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:451-456. [PMID: 37634036 PMCID: PMC11319194 DOI: 10.1038/s41391-023-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Abiraterone (Abi) is an androgen receptor signaling inhibitor that significantly improves patients' life expectancy in metastatic prostate cancer (PCa). Despite its beneficial effects, many patients have baseline or acquired resistance against Abi. The aim of this study was to identify predictive serum biomarkers for Abi treatment. METHODS We performed a comparative proteome analysis on three Abi sensitive (LNCaPabl, LAPC4, DuCaP) and resistant (LNCaPabl-Abi, LAPC4-Abi, DuCaP-Abi) PCa cell lines using liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Two bioinformatic selection workflows were applied to select the most promising candidate serum markers. Serum levels of selected proteins were assessed in samples of 100 Abi-treated patients with metastatic castration-resistant disease (mCRPC) using ELISA. Moreover, FSCN1 serum concentrations were measured in samples of 69 Docetaxel (Doc) treated mCRPC patients. RESULTS Our proteome analysis identified 68 significantly, at least two-fold upregulated proteins in Abi resistant cells. Using two filtering workflows four proteins (AMACR, KLK2, FSCN1 and CTAG1A) were selected for ELISA analyses. We found high baseline FSCN1 serum levels to be significantly associated with poor survival in Abi-treated mCRPC patients. Moreover, the multivariable analysis revealed that higher ECOG status (>1) and high baseline FSCN1 serum levels (>10.22 ng/ml by ROC cut-off) were independently associated with worse survival in Abi-treated patients (p < 0.001 and p = 0.021, respectively). In contrast, no association was found between serum FSCN1 concentrations and overall survival in Doc-treated patients. CONCLUSIONS Our analysis identified baseline FSCN1 serum levels to be independently associated with poor survival of Abi-treated, but not Doc-treated mCRPC patients, suggesting a therapy specific prognostic value for FSCN1.
Collapse
Affiliation(s)
- Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Nikolett Nagy
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Urology, Semmelweis University, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Melinda Váradi
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
- Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
- Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Kathrin Witzke
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ilona Tornyi
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
| | - József Lázár
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
| | - László Takács
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
- Biosystems International Kft, Debrecen, Hungary
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Sabina Sevcenco
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Agnieszka Maj-Hes
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
6
|
Frederick MI, Abdesselam D, Clouvel A, Croteau L, Hassan S. Leveraging PARP-1/2 to Target Distant Metastasis. Int J Mol Sci 2024; 25:9032. [PMID: 39201718 PMCID: PMC11354653 DOI: 10.3390/ijms25169032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Poly (ADP-Ribose) Polymerase (PARP) inhibitors have changed the outcomes and therapeutic strategy for several cancer types. As a targeted therapeutic mainly for patients with BRCA1/2 mutations, PARP inhibitors have commonly been exploited for their capacity to prevent DNA repair. In this review, we discuss the multifaceted roles of PARP-1 and PARP-2 beyond DNA repair, including the impact of PARP-1 on chemokine signalling, immune modulation, and transcriptional regulation of gene expression, particularly in the contexts of angiogenesis and epithelial-to-mesenchymal transition (EMT). We evaluate the pre-clinical role of PARP inhibitors, either as single-agent or combination therapies, to block the metastatic process. Efficacy of PARP inhibitors was demonstrated via DNA repair-dependent and independent mechanisms, including DNA damage, cell migration, invasion, initial colonization at the metastatic site, osteoclastogenesis, and micrometastasis formation. Finally, we summarize the recent clinical advancements of PARP inhibitors in the prevention and progression of distant metastases, with a particular focus on specific metastatic sites and PARP-1 selective inhibitors. Overall, PARP inhibitors have demonstrated great potential in inhibiting the metastatic process, pointing the way for greater use in early cancer settings.
Collapse
Affiliation(s)
- Mallory I. Frederick
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Djihane Abdesselam
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Anna Clouvel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Laurent Croteau
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
7
|
Do TA, Tran PM, Vu TH, Tran HK, Nguyen HQ, Nguyen LD, Nguyen HT, Van Nguyen C. Real-world Efficacy and Safety of Low-Dose Abiraterone With Food and Standard-Dose Abiraterone in De Novo Metastatic Hormone-Sensitive Prostate Cancer: A Retrospective Analysis. Clin Genitourin Cancer 2024; 22:102191. [PMID: 39226637 DOI: 10.1016/j.clgc.2024.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The standard treatment for de novo metastatic hormone-sensitive prostate cancer (mHSPC) involves androgen deprivation therapy (ADT) combined with next-generation hormonal agents and/or docetaxel. While the standard dose (STD) of abiraterone is 1,000 mg administered while fasting, recent evidence suggests that a low dose (LOW) of 250 mg taken with a low-fat meal may achieve comparable pharmacokinetic outcomes. OBJECTIVES This study aimed to evaluate the failure-free survival (FFS) and safety of LOW and STD in de novo high-risk mHSPC patients. MATERIALS AND METHODS We conducted a retrospective analysis of males with de novo high-risk mHSPC treated with ADT plus abiraterone (250 mg with a low-fat meal or 1000 mg fasting) at the Vietnam National Cancer Hospital from January 2019 to May 2024. The primary endpoint was FFS, assessed using Kaplan-Meier and multivariate Cox regression analyses. RESULTS The study included 183 patients, with 91 in the LOW group and 92 in the STD group. The rates of patients who achieved undetectable PSA (PSA < 0.2 ng/ml) were 52.7% in the LOW group and 47.8% in the STD group. The median time to undetectable PSA was 6.9 months in the LOW group and 6.4 months in the STD group. The median overall FFS was 28.1 months (95% CI: 21.1 to 35.0) in the LOW group and 25.4 months (95% CI: 15.5 to 35.3) in the STD group (P = .286). Multivariate analysis indicated that visceral metastases and detectable PSA (PSA ≥ 0.2 ng/ml) were significant negative predictors of FFS in both groups. The incidence of grade 3 and grade 4 adverse events was similar between the LOW group and the STD group. CONCLUSIONS The LOW group and STD group showed effectiveness and safety in de novo high-risk mHSPC. The use of low-dose abiraterone in de novo mHSPC can significantly reduce treatment costs.
Collapse
Affiliation(s)
- Tu Anh Do
- Department of Tam Hiep Medical Oncology, National Cancer Hospital, Hanoi, Vietnam
| | - Phuong Mai Tran
- Department of Tam Hiep Medical Oncology, National Cancer Hospital, Hanoi, Vietnam
| | - Trang Huyen Vu
- Department of Tam Hiep Medical Oncology, National Cancer Hospital, Hanoi, Vietnam
| | - Hung Khac Tran
- Department of Tam Hiep Medical Oncology, National Cancer Hospital, Hanoi, Vietnam
| | - Huong Quynh Nguyen
- Department of Medical Oncology 3, National Cancer Hospital, Hanoi, Vietnam
| | - Loi Dinh Nguyen
- Department of Oncology, Hanoi Medical University, Hanoi, Vietnam.
| | - Hong Thi Nguyen
- Department of Oncology, Hanoi Medical University, Hanoi, Vietnam
| | - Chu Van Nguyen
- Quansu Pathology Department, National Cancer Hospital, Hanoi, Vietnam
| |
Collapse
|
8
|
Paolieri F, Sammarco E, Ferrari M, Salfi A, Bonato A, Serafin D, Coccia N, Manfredi F, Zatteri L, Dima G, Carli C, Di Vita R, Oliveri M, Doni L, Galli L, Sisani M, Catalano M, Roviello G, Bloise F. Front-Line Therapeutic Strategy in Metastatic Hormone Sensitive Prostate Cancer: An Updated Therapeutic Algorithm. Clin Genitourin Cancer 2024; 22:102096. [PMID: 38759335 DOI: 10.1016/j.clgc.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Prostate carcinoma (PC), the second most diagnosed cancer globally, saw approximately 1,414,000 new cases in 2020, with 17% being de novo metastatic. In these cases, the 5-year relative survival rate is 32%. Metastatic hormone-sensitive prostate cancer (mHSPC) includes those with metastatic disease at initial diagnosis or after initial therapy without long-term androgen deprivation therapy (ADT), eventually progressing to castration-resistant prostate cancer (CRPC). The established therapeutic principle of ADT has persisted for 80 years, with luteinizing hormone-releasing hormone (LHRH) agonists like leuprorelin being commonly used. LHRH antagonists, such as degarelix, have also emerged. Recent advances in mHSPC treatment involve combination strategies with drugs proven effective in CRPC, considering prognostic factors like disease volume and presentation. This review outlines pivotal trials leading to drug approvals in mHSPC and proposes a treatment decision algorithm for the same, based on statement from the Tuscan Interdisciplinary Uro-Oncological Group. A multidisciplinary approach is crucial to tailor treatment intensity and weigh risks and benefits effectively.
Collapse
Affiliation(s)
- Federico Paolieri
- Department of Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Enrico Sammarco
- Medical Oncology Unit, Livorno Hospital, Azienda Toscana Nord Ovest, Livorno, Italy
| | - Marco Ferrari
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessia Salfi
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Adele Bonato
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Debora Serafin
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Natalia Coccia
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Fiorella Manfredi
- Medical Oncology Unit, Sant'Andrea Hospital, Azienda Sanitaria Locale 5 Spezzino, La Spezia, Italy
| | - Luca Zatteri
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giovanni Dima
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Carli
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Rosanna Di Vita
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Oliveri
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Laura Doni
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Luca Galli
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Michele Sisani
- Medical Oncology Unit, San Donato Hospital, Azienda Toscana Sud Est, Arezzo, Italy
| | - Martina Catalano
- Department of Health Sciences, University of Florence, Florence, Italy.
| | | | - Francesco Bloise
- Medical Oncology Unit, San Donato Hospital, Azienda Toscana Sud Est, Arezzo, Italy
| |
Collapse
|
9
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Shukla N, Shah K, Rathore D, Soni K, Shah J, Vora H, Dave H. Androgen receptor: Structure, signaling, function and potential drug discovery biomarker in different breast cancer subtypes. Life Sci 2024; 348:122697. [PMID: 38710280 DOI: 10.1016/j.lfs.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kanisha Shah
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Deepshikha Rathore
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kinal Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Hemangini Vora
- The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat 380016, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
11
|
Kulasegaran T, Oliveira N. Metastatic Castration-Resistant Prostate Cancer: Advances in Treatment and Symptom Management. Curr Treat Options Oncol 2024; 25:914-931. [PMID: 38913213 PMCID: PMC11236885 DOI: 10.1007/s11864-024-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
OPINION STATEMENT The management of metastatic castrate-resistant prostate cancer (mCRPC) has evolved in the past decade due to substantial advances in understanding the genomic landscape and biology underpinning this form of prostate cancer. The implementation of various therapeutic agents has improved overall survival but despite the promising advances in therapeutic options, mCRPC remains incurable. The focus of treatment should be not only to improve survival but also to preserve the patient's quality of life (QoL) and ameliorate cancer-related symptoms such as pain. The choice and sequence of therapy for mCRPC patients are complex and influenced by various factors, such as side effects, disease burden, treatment history, comorbidities, patient preference and, more recently, the presence of actionable genomic alterations or biomarkers. Docetaxel is the first-line treatment for chemo-naïve patients with good performance status and those who have yet to progress on docetaxel in the castration-sensitive setting. Novel androgen agents (NHAs), such as abiraterone and enzalutamide, are effective treatment options that are utilized as second-line options. These medications can be considered upfront in frail patients or patients who are NHA naïve. Current guidelines recommend genetic testing in mCRPC for mutations in DNA repair deficiency genes to inform treatment decisions, as for example in breast cancer gene mutation testing. Other potential biomarkers being investigated include phosphatase and tensin homologues and homologous recombination repair genes. Despite a growing number of studies incorporating biomarkers in their trial designs, to date, only olaparib in the PROFOUND study and lutetium-177 in the VISION trial have improved survival. This is an unmet need, and future trials should focus on biomarker-guided treatment strategies. The advent of novel noncytotoxic agents has enhanced targeted drug delivery and improved treatment responses with favourable toxicity profiling. Trials should continue to incorporate and report health-related QoL scores and functional assessments into their trial designs.
Collapse
Affiliation(s)
- Tivya Kulasegaran
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia.
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia.
| | - Niara Oliveira
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
12
|
Detassis S, Precazzini F, Grasso M, Del Vescovo V, Maines F, Caffo O, Campomenosi P, Denti MA. Plasma microRNA Signature as Companion Diagnostic for Abiraterone Acetate Treatment in Metastatic Castration-Resistant Prostate Cancer: A Pilot Study. Int J Mol Sci 2024; 25:5573. [PMID: 38891761 PMCID: PMC11171781 DOI: 10.3390/ijms25115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Abiraterone acetate (AA) serves as a medication for managing persistent testosterone production in patients with metastatic castration-resistant prostate cancer (mCRPC). However, its efficacy varies among individuals; thus, the identification of biomarkers to predict and follow treatment response is required. In this pilot study, we explored the potential of circulating microRNAs (c-miRNAs) to stratify patients based on their responsiveness to AA. We conducted an analysis of plasma samples obtained from a cohort of 33 mCRPC patients before and after three, six, and nine months of AA treatment. Using miRNA RT-qPCR panels for candidate discovery and TaqMan RT-qPCR for validation, we identified promising miRNA signatures. Our investigation indicated that a signature based on miR-103a-3p and miR-378a-5p effectively discriminates between non-responder and responder patients, while also following the drug's efficacy over time. Additionally, through in silico analysis, we identified target genes and transcription factors of the two miRNAs, including PTEN and HOXB13, which are known to play roles in AA resistance in mCRPC. In summary, our study highlights two c-miRNAs as potential companion diagnostics of AA in mCRPC patients, offering novel insights for informed decision-making in the treatment of mCRPC.
Collapse
Affiliation(s)
- Simone Detassis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- OPTOI Srl, Via Vienna 8, 38100 Trento, TN, Italy
| | - Francesca Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione di Bolzano, Via Laura Conti 4, 39100 Bolzano, BZ, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- L.N.Age Srl-Link Neuroscience and Healthcare, Via Mario Savini 15, 00136 Roma, RO, Italy
| | - Valerio Del Vescovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Kapadi Italy Srl, Corso Italia 22, 20122 Milano, MI, Italy
| | - Francesca Maines
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Orazio Caffo
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
| |
Collapse
|
13
|
Feng J, Liu Y, Tian X, Shen C, Feng Z, Zhang J, Yao X, Pu M, Miao X, Ma L, Liu S. Discovery of novel peptide-dehydroepiandrosterone hybrids inducing endoplasmic reticulum stress with effective in vitro and in vivo anti-melanoma activities. Eur J Med Chem 2024; 269:116296. [PMID: 38467086 DOI: 10.1016/j.ejmech.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Steroid hybrids have emerged as a type of advantageous compound as they could offer improved pharmacological and pharmaceutical properties. Here, we report a series of novel peptide-dehydroepiandrosterone hybrids, which would effectively induce endoplasmic reticulum stress (ERS) and lead to apoptosis with outstanding in vitro and in vivo anti-melanoma effects. The lead compound IId among various steroids conjugated with peptides and pyridines showed effective in vivo activity in B16 xenograft mice: in medium- and high-dose treatment groups (60 and 80 mg/kg), compound IId would significantly inhibit the growth of tumours by 98%-99% compared to the control group, with the highest survival rate as well. Further mechanism studies showed that compound IId would damage the endoplasmic reticulum and upregulate the ERS markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), which could further regulate caspase and Bcl-2 family proteins and lead to cell apoptosis. The compound IId was also proven to be effective in inhibiting B16 cell migration and invasion.
Collapse
Affiliation(s)
- Juan Feng
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Yidong Liu
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China.
| | - Xia Tian
- School of Science, Hebei University of Science and Technology, Shijiazhuang, 050022, Hebei, China
| | - Chen Shen
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Zhiqiang Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingxu Zhang
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Xiangli Yao
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Meilin Pu
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Xuguang Miao
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Lan Ma
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Shouxin Liu
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China.
| |
Collapse
|
14
|
Han JY, Seo YE, Kwon JH, Kim JH, Kim MG. Cardioprotective Effects of PARP Inhibitors: A Re-Analysis of a Meta-Analysis and a Real-Word Data Analysis Using the FAERS Database. J Clin Med 2024; 13:1218. [PMID: 38592677 PMCID: PMC10932277 DOI: 10.3390/jcm13051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Objective: This study aimed to assess the potential of PARP inhibitors to prevent cardiotoxicity. Methods: First, a re-analysis and update of a previously published study was conducted. Additional searches were conducted of the PubMed and Cochrane Central Register of Controlled Trials databases on 2 June 2023. After the selection process, the pooled odds ratio (OR) for cardiac adverse events (AEs) was calculated. Second, the FAERS database was examined for 10 frequently co-administered anticancer agents. The reporting odds ratio (ROR) was calculated based on the occurrence of cardiac AEs depending on the co-administration of PARP inhibitors. Results: Seven studies were selected for the meta-analysis. Although not statistically significant, co-administration of PARP inhibitors with chemotherapy/bevacizumab decreased the risk of cardiac AEs (Peto OR = 0.61; p = 0.36), while co-administration with antiandrogens increased the risk of cardiac AEs (Peto OR = 1.83; p = 0.18). A total of 19 cases of cardiac AEs were reported with co-administration of PARP inhibitors in the FAERS database. Co-administration of PARP inhibitors with chemotherapy/bevacizumab significantly decreased the risk of cardiac AEs (ROR = 0.352; 95% confidence interval (CI), 0.194-0.637). On the other hand, for antiandrogens co-administered with PARP inhibitors, the ROR was 3.496 (95% CI, 1.539-7.942). The ROR for immune checkpoint inhibitors co-administered with PARP inhibitors was 0.606 (95% CI, 0.151-2.432), indicating a non-significant effect on cardiac AEs. Conclusion: This study reports that PARP inhibitors show cardioprotective effects when used with conventional anticancer agents.
Collapse
Affiliation(s)
- Ja-Young Han
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Eun Seo
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jae-Hee Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae Hyun Kim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Myeong Gyu Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
15
|
Reiss AB, Gulkarov S, Pinkhasov A, Sheehan KM, Srivastava A, De Leon J, Katz AE. Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:77. [PMID: 38256338 PMCID: PMC10819522 DOI: 10.3390/medicina60010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Prostate cancer is the second leading cause of cancer death in men in the United States. Androgen deprivation therapy (ADT) is currently the primary treatment for metastatic prostate cancer, and some studies have shown that the use of anti-androgen drugs is related to a reduction in cognitive function, mood changes, diminished quality of life, dementia, and possibly Alzheimer's disease. ADT has potential physiological effects such as a reduction in white matter integrity and a negative impact on hypothalamic functions due to the lowering of testosterone levels or the blockade of downstream androgen receptor signaling by first- and second-generation anti-androgen drugs. A comparative analysis of prostate cancer patients undergoing ADT and Alzheimer patients identified over 30 shared genes, illustrating common ground for the mechanistic underpinning of the symptomatology. The purpose of this review was to investigate the effects of ADT on cognitive function, mood, and quality of life, as well as to analyze the relationship between ADT and Alzheimer's disease. The evaluation of prostate cancer patient cognitive ability via neurocognitive testing is described. Future studies should further explore the connection among cognitive deficits, mood disturbances, and the physiological changes that occur when hormonal balance is altered.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Psychiatry, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Katie M. Sheehan
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Aaron E. Katz
- Department of Urology, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| |
Collapse
|
16
|
Ogbodo UC, Enejoh OA, Okonkwo CH, Gnanasekar P, Gachanja PW, Osata S, Atanda HC, Iwuchukwu EA, Achilonu I, Awe OI. Computational identification of potential inhibitors targeting cdk1 in colorectal cancer. Front Chem 2023; 11:1264808. [PMID: 38099190 PMCID: PMC10720044 DOI: 10.3389/fchem.2023.1264808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Despite improved treatment options, colorectal cancer (CRC) remains a huge public health concern with a significant impact on affected individuals. Cell cycle dysregulation and overexpression of certain regulators and checkpoint activators are important recurring events in the progression of cancer. Cyclin-dependent kinase 1 (CDK1), a key regulator of the cell cycle component central to the uncontrolled proliferation of malignant cells, has been reportedly implicated in CRC. This study aimed to identify CDK1 inhibitors with potential for clinical drug research in CRC. Methods: Ten thousand (10,000) naturally occurring compounds were evaluated for their inhibitory efficacies against CDK1 through molecular docking studies. The stability of the lead compounds in complex with CDK1 was evaluated using molecular dynamics simulation for one thousand (1,000) nanoseconds. The top-scoring candidates' ADME characteristics and drug-likeness were profiled using SwissADME. Results: Four hit compounds, namely, spiraeoside, robinetin, 6-hydroxyluteolin, and quercetagetin were identified from molecular docking analysis to possess the least binding scores. Molecular dynamics simulation revealed that robinetin and 6-hydroxyluteolin complexes were stable within the binding pocket of the CDK1 protein. Discussion: The findings from this study provide insight into novel candidates with specific inhibitory CDK1 activities that can be further investigated through animal testing, clinical trials, and drug development research for CRC treatment.
Collapse
Affiliation(s)
| | - Ojochenemi A. Enejoh
- Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | - Chinelo H. Okonkwo
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | - Pauline W. Gachanja
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Shamim Osata
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Halimat C. Atanda
- Biotechnology Department, Federal University of Technology, Akure, Nigeria
| | - Emmanuel A. Iwuchukwu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Olaitan I. Awe
- Department of Computer Science, University of Ibadan, Ibadan, Nigeria
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
17
|
Alsamraae M, Costanzo-Garvey D, Teply BA, Boyle S, Sommerville G, Herbert ZT, Morrissey C, Dafferner AJ, Abdalla MY, Fallet RW, Kielian T, Jensen-Smith H, deOliveira EI, Chen K, Bettencourt IA, Wang JM, McVicar DW, Keeley T, Yu F, Cook LM. Androgen receptor inhibition suppresses anti-tumor neutrophil response against bone metastatic prostate cancer via regulation of TβRI expression. Cancer Lett 2023; 579:216468. [PMID: 37940068 PMCID: PMC10710875 DOI: 10.1016/j.canlet.2023.216468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Bone metastatic disease of prostate cancer (PCa) is incurable and progression in bone is largely dictated by tumor-stromal interactions in the bone microenvironment. We showed previously that bone neutrophils initially inhibit bone metastatic PCa growth yet metastatic PCa becomes resistant to neutrophil response. Further, neutrophils isolated from tumor-bone lost their ability to suppress tumor growth through unknown mechanisms. With this study, our goal was to define the impact of metastatic PCa on neutrophil function throughout tumor progression and to determine the potential of neutrophils as predictive biomarkers of metastatic disease. Using patient peripheral blood polymorphonuclear neutrophils (PMNs), we identified that PCa progression dictates PMN cell surface markers and gene expression, but not cytotoxicity against PCa. Importantly, we also identified a novel phenomenon in which second generation androgen deprivation therapy (ADT) suppresses PMN cytotoxicity via increased transforming growth factor beta receptor I (TβRI). High dose testosterone and genetic or pharmacologic TβRI inhibition rescued androgen receptor-mediated neutrophil suppression and restored neutrophil anti-tumor immune response. These studies highlight the ability to leverage standard-care ADT to generate neutrophil anti-tumor responses against bone metastatic PCa.
Collapse
Affiliation(s)
- Massar Alsamraae
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diane Costanzo-Garvey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin A Teply
- Fred & Pamela Buffett Cancer Center, Omaha, NE, USA; Division of Oncology & Hematology/Oncology, Department of Internal Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Shawna Boyle
- Fred & Pamela Buffett Cancer Center, Omaha, NE, USA
| | | | | | | | - Alicia J Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel W Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Jensen-Smith
- Fred & Pamela Buffett Cancer Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, USA
| | - Edson I deOliveira
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keqiang Chen
- Laboratory of Cancer Innovation, National Cancer Institute, Frederick, MD, USA
| | - Ian A Bettencourt
- Laboratory of Cancer Innovation, National Cancer Institute, Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, National Cancer Institute, Frederick, MD, USA
| | - Daniel W McVicar
- Laboratory of Cancer Innovation, National Cancer Institute, Frederick, MD, USA
| | - Tyler Keeley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Hammouda MM, Elattar KM, Rashed MM, Osman AMA. Synthesis and biological activities of bicyclic pyridines integrated steroid hybrid. Steroids 2023; 199:109287. [PMID: 37517592 DOI: 10.1016/j.steroids.2023.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Reports on structural modification of heterosteroids through various reactions, and developed synthetic routes have considerably increased over the last decade. The present review encompasses the applicable approaches dealing with the utility of reactive moieties in various steroids for the synthesis of fused bicyclic pyridines, and binary bicyclic pyridines all over the years. The different sections include the synthesis of steroids-fused, and binary quinolines, pyridopyrimidines, imidazopyridines, spirocyclic imidazopyridines, pyrazolopyridines, thienopyridines, pyridinyl-thiazoles, and tetrazolopyridine hybrids, as well as, the diverse biological applications of these heterocyclic steroids. The researchers' interest was principally focused on investigating the flexibility of synthetic strategies for various derivatives of natural steroids and building proposals based on heterocyclic steroids for drug discovery, biological assessments, and synthetic applications.
Collapse
Affiliation(s)
- Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| | - Marwa M Rashed
- Toxicology Department, Mansoura Hospital, Faculty of Medicine, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| | - Amany M A Osman
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt.
| |
Collapse
|
19
|
Elshazly AM, Gewirtz DA. Making the Case for Autophagy Inhibition as a Therapeutic Strategy in Combination with Androgen-Targeted Therapies in Prostate Cancer. Cancers (Basel) 2023; 15:5029. [PMID: 37894395 PMCID: PMC10605431 DOI: 10.3390/cancers15205029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Androgen receptor targeting remains the primary therapeutic strategy in prostate cancer, encompassing androgen biosynthesis inhibitors and androgen receptor antagonists. While both androgen-receptor-positive and "castration-resistant" prostate cancer are responsive to these approaches, the development of resistance is an almost inevitable outcome leading to the castration-resistant form of the disease. Given that "cytoprotective" autophagy is considered to be a predominant mechanism of resistance to various chemotherapeutic agents as well as to radiation in the cancer literature, the purpose of this review is to evaluate whether autophagy plays a central role in limiting the utility of androgen deprivation therapies in prostate cancer. Unlike most of our previous reports, where multiple functional forms of autophagy were identified, making it difficult if not impossible to propose autophagy inhibition as a therapeutic strategy, the cytoprotective form of autophagy appears to predominate in the case of androgen deprivation therapies. This opens a potential pathway for improving the outcomes for prostate cancer patients once effective and reliable pharmacological autophagy inhibitors have been developed.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
20
|
Mitsogianni M, Papatsoris A, Bala VM, Issa H, Moussa M, Mitsogiannis I. An overview of hormonal directed pharmacotherapy for the treatment of prostate cancer. Expert Opin Pharmacother 2023; 24:1765-1774. [PMID: 37545430 DOI: 10.1080/14656566.2023.2244415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Prostate cancer is the most common malignancy in the male. Androgen-deprivation therapy (ADT) has been the mainstay in the treatment of metastatic prostate cancer however, due to the outgrowth of castration-resistant cell population the disease inevitably progresses to an aggressive, difficult to handle stage. AREAS COVERED We have reviewed the literature regarding hormonal-directed therapy prostate cancer. New agents, namely abiraterone acetate, combined with prednisone, and next generation antiandrogens (enzalutamide, apalutamide and darolutamide) have shown considerable efficacy, not only in patients with metastatic but also in those with non-metastatic disease, either castration resistant (CRPC) or hormone sensitive (HSPC). EXPERT OPINION The addition of abiraterone and of the second-generation antiandrogens to our therapeutic armamentarium has improved prognosis ofprostate cancer in the last decade. Abiraterone is a viable option in patients with metastatic disease (hormone-sensitive and castration-resistant), whereas all next-generation antiandrogens have demonstrated efficacy in terms of metastasis-free and overall survival in non-metastatic CRPC. In addition, enzalutamide has also been found efficacious in mCRPC and mHSPC, while apalutamide in mHSPC. Currently there are no reliable data to indicate a potential superiority of one of these agents over the others in CRPC or HSPC as there are no relevant head to head studies . Sequencing hormone treatment modalities, chemotherapies and immunotherapies have not reached a consensus as yet. Randomized controlled trials are warranted to clearly define the role of novel antiandrogens in the treatment of prostate cancer. The choice of treatment should be individualized following discussion with the patient .
Collapse
Affiliation(s)
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vanessa-Meletia Bala
- 2nd Department of Medical Oncology, General Oncology Hospital of Kifissia 'Agioi Anargyroi', Athens, Greece
| | - Hussein Issa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Beirut, Lebanon
| | - Mohammad Moussa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Beirut, Lebanon
| | - Iraklis Mitsogiannis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Jeong SH, Yeon SE, Kim SY, Kwon TG, Jeon SS, Choi YD, Kwon D, Chung BH, Hong SH, Kim BH, Lee HJ, Shin SJ, Choi WS, Park SW, Kang TW, Yun SJ, Cho JS, Choi SM, Lee NR, Kwak C. A prospective, multicenter study on the clinical effectiveness of abiraterone in metastatic castration-resistant prostate cancer in Korea: Pre- vs. post-chemotherapy. Investig Clin Urol 2023; 64:466-473. [PMID: 37668202 PMCID: PMC10482671 DOI: 10.4111/icu.20230128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 09/06/2023] Open
Abstract
PURPOSE The proper treatment sequence for administering abiraterone acetate plus prednisolone (AAP) and chemotherapeutic agents has not yet been elucidated for metastatic castration-resistant prostate cancer (mCRPC). Hence, this study evaluated the effectiveness and safety of AAP in pre- and post-chemotherapy settings using real-world data. MATERIALS AND METHODS This prospective, multicenter, open-label, observational study included 506 patients with mCRPC. Patients were classified according to the timing of chemotherapy into pre- and post-chemotherapy groups. The effectiveness and safety of AAP were compared between the groups; the prostate-specific antigen (PSA) response, PSA progression-free survival, and radiologic progression-free survival were assessed; and adverse drug reactions were recorded. RESULTS Among the included patients, 319 and 187 belonged to the pre- and post-chemotherapy groups, respectively. Risk classification was similar between the two groups. The PSA response was 61.8% in the pre-chemotherapy group and 39.0% in the post-chemotherapy group (p<0.001). The median time to PSA progression (5.00 vs. 2.93 mo, p=0.001) and radiologic progression-free survival (11.84 vs. 9.17 mo, p=0.002) were significantly longer in the pre-chemotherapy group. Chemotherapy status was associated with PSA (hazard ratio [HR] 1.39, 95% confidence interval [CI] 1.09-1.77) and radiologic progression (HR 1.66, 95% CI 1.18-2.33) during AAP treatment. Adverse drug reactions were reported at similar frequencies in both groups. CONCLUSIONS In this postmarketing surveillance, AAP benefited patients with mCRPC, especially in settings before chemotherapy was administered, resulting in a high PSA response and longer PSA and radiologic progression-free survival with tolerable adverse drug reactions.
Collapse
Affiliation(s)
- Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | | | - Su Youn Kim
- Medical Affairs, Janssen Korea Ltd, Seoul, Korea
- Department of Biostatistics and Computing, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Gyun Kwon
- Department of Urology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Dongdeuk Kwon
- Department of Urology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Byung Ha Chung
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Byung Hoon Kim
- Department of Urology, Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Suk Choi
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sung Woo Park
- Department of Urology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Taek Won Kang
- Department of Urology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Jin Seon Cho
- Department of Urology, Hallym University College of Medicine, Anyang, Korea
| | - See Min Choi
- Department of Urology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Na-Ri Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
22
|
Birukova V, Scherbakov A, Ilina A, Salnikova D, Andreeva O, Dzichenka Y, Zavarzin I, Volkova Y. Discovery of highly potent proapoptotic antiestrogens in a series of androst-5,16-dienes D-modified with imidazole-annulated pendants. J Steroid Biochem Mol Biol 2023; 231:106309. [PMID: 37037385 DOI: 10.1016/j.jsbmb.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Heterocyclic derivatives of steroid hormones are potent anticancer agents, which are used in the chemotherapy of breast and prostate cancers. Here, we describe a novel series of androstenes, D-modified with imidazole-annulated pendants, with significant anticancer activity. Novel C17-linked imidazole-annulated heterocyclic derivatives of dehydropregnenolone acetate were synthesized by the cyclocondensation with amidines using 3β-acetoxy-21-bromopregna-5,16-dien-20-one as the substrate. The antiproliferative potency of all the synthesized compounds was evaluated against human prostate (22Rv1) and human breast (MCF7) cancer cell lines and cytochromes P450. The lead compound, imidazo[1,2-a]pyridine derivative 3h, was revealed to be a promising candidate for future anticancer drug design, particularly against ERα-positive breast cancer. Lead compound 3h was found to be selective against MCF7 cells with IC50 of 0.1μM and to act as both a potent selective agent blocking estrogen receptor α, which is involved in the stimulation of breast cancer growth, and an effective apoptosis inducer. The potential ability of compound 3h to bind to ERα was studded using molecular docking and molecular dynamics simulation. The selectivity analysis showed that lead steroid 3h produces no effects on cytochromes P450 CYP17A1, CYP7A1, and CYP21A2.
Collapse
Affiliation(s)
- Valentina Birukova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Anastasia Ilina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Diana Salnikova
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Olga Andreeva
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevich str., 220141, Minsk, Belarus
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| |
Collapse
|
23
|
Wu ZX, Wang CJ, Shi P, Liu YP, Li T, Sun FF, Fu Y, Gao XM, Ma YP, Cao Y. Pharmacokinetics and Bioequivalence of Abiraterone Acetate Tablets in Healthy Chinese Volunteers: An Open, Randomized, Single-Dose, Three-Period, Three-Sequence Crossover Study. Drugs R D 2023:10.1007/s40268-023-00418-6. [PMID: 37012461 DOI: 10.1007/s40268-023-00418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Abiraterone acetate tablet is an inhibitor of androgen synthesis, primarily for the treatment of metastatic castration-resistant prostate cancer (mCRPC). This study evaluated the bioequivalence and pharmacokinetics of the reference and test formulations of abiraterone acetate tablets in healthy Chinese volunteers. METHODS A single-center, open, single-dose, randomized, three-period, three-sequence, semi-repeat (only repeated reference formulations), and reference formulation-corrected fasting reference-scaled average bioequivalence test was conducted in 36 healthy volunteers included in this study. Volunteers were randomly assigned to one of three groups in a 1:1:1 ratio. There was a minimum 7-day washout period between each dose. Blood samples were collected at prescribed time intervals, the plasma concentration of abiraterone acetate tablets was determined by liquid chromatography-tandem mass spectrometry, and adverse events were recorded. RESULTS Under fasting conditions, the maximum plasma concentration (Cmax) was 27.02 ± 14.21 ng/mL, area under the concentration-time curve from time zero to time t (AUCt) was 125.30 ± 82.41 h·ng/mL, and AUC from time zero to infinity (AUC∞) was 133.70 ± 83.99 h·ng/mL. The 90% confidence intervals (CIs) of the geometric mean ratio (GMR) of AUCt and AUC∞ were in the range of 0.8000-1.2500, and the coefficient of variation (CVWR) of Cmax was more than 30%. The Critbound result was - 0.0522, and the GMR was between 0.8000 and 1.2500. CONCLUSION Both test and reference formulations of abiraterone acetate tablets were bioequivalent in healthy Chinese subjects under fasting conditions. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04863105, registered 26 April 2021-retrospectively registered ( https://register. CLINICALTRIALS gov/prs/app/action/SelectProtocol?sid=S000ARAA&selectaction=Edit&uid=U00050YQ&ts=2&cx=-vbtjri.
Collapse
Affiliation(s)
- Zhao-Xin Wu
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Chen-Jing Wang
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Shi
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan-Ping Liu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ting Li
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei-Fei Sun
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yao Fu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Meng Gao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ya-Ping Ma
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Sasikala CVA, Namshamgari S, Bandreddi V, Nahide PD, Kiran Kumar C, Kumar Roy A, Vakamulla M, Kumar Madhra M, Annapragada R, Bandichhor R. Synthesis and Characterization of API‐Related Substances in Abiraterone Acetate**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ch. V. A. Sasikala
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
- Department of Chemistry GITAM University, Rudraram Hyderabad, Telangana 502329 India
| | - Srikanth Namshamgari
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | | | - Pradip D. Nahide
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - C. Kiran Kumar
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Amrendra Kumar Roy
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Malati Vakamulla
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Mukesh Kumar Madhra
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| | - Ratnamala Annapragada
- Department of Chemistry GITAM University, Rudraram Hyderabad, Telangana 502329 India
| | - Rakeshwar Bandichhor
- API R & D, IPDO Dr. Reddy's Laboratories Ltd. Bachupally Hyderabad, Telangana 500090 India
| |
Collapse
|
25
|
Wang J, Ma S, Wu Q, Xu Q, Wang J, Zhang R, Bai L, Li L, Liu H. Effects of testis testosterone deficiency on gene expression in the adrenal gland and skeletal muscle of ducks. Br Poult Sci 2023. [PMID: 36735924 DOI: 10.1080/00071668.2023.2176741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Testosterone has an anabolic effect on skeletal muscle. The testes produce most of the testosterone in vivo, while the adrenal glands contribute smaller amounts. When testis testosterone is deficient the adrenal gland increases steroid hormone synthesis, which is referred to as compensatory testicular adaptation (CTA).2. To reveal the effects of testis testosterone deficiency on adrenal steroid hormones synthesis and skeletal muscle development, gene expression related to adrenal steroid hormones synthesis and skeletal muscle development were determined by RNA-seq.3. The results showed that castrating male ducks had significant effects on their body weight but no significant impact on cross-sectional area (CSA) or density of pectoral muscle fibres. In skeletal muscle protein metabolism, expression levels of the catabolic gene atrogin1/MAFbx and the anabolic gene eEF2 were significantly higher, with concomitant increases after castration. The adrenal glands' alteration of the steroid hormone 11β-hydroxylase (CYP11B1) was significantly lower following castration.4. Expression pattern analysis showed that the adrenal glands' glucocorticoid receptor (NR3C1/GR) had a potential regulatory relationship with the skeletal muscle-related genes (Pax7, mTOR, FBXO32, FOXO3, and FOXO4).5. The data showed that castration affected muscle protein metabolism, adrenal steroid and testosterone synthesis. In addition, it was speculated that, after castration, steroid hormones produced by the adrenal gland could have a compensatory effect, which might mediate the changes in skeletal muscle protein metabolism and development.
Collapse
Affiliation(s)
- J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - S Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - R Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
26
|
AR and PI3K/AKT in Prostate Cancer: A Tale of Two Interconnected Pathways. Int J Mol Sci 2023; 24:ijms24032046. [PMID: 36768370 PMCID: PMC9917224 DOI: 10.3390/ijms24032046] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men. The androgen receptor (AR) has a pivotal role in the pathogenesis and progression of PCa. Many therapies targeting AR signaling have been developed over the years. AR signaling inhibitors (ARSIs), including androgen synthesis inhibitors and AR antagonists, have proven to be effective in castration-sensitive PCa (CSPC) and improve survival, but men with castration-resistant PCa (CRPC) continue to have a poor prognosis. Despite a good initial response, drug resistance develops in almost all patients with metastatic CRPC, and ARSIs are no longer effective. Several mechanisms confer resistance to ARSI and include AR mutations but also hyperactivation of other pathways, such as PI3K/AKT/mTOR. This pathway controls key cellular processes, including proliferation and tumor progression, and it is the most frequently deregulated pathway in human cancers. A significant interaction between AR and the PI3K/AKT/mTOR signaling pathway has been shown in PCa. This review centers on the current scene of different AR and PI3K signaling pathway inhibitors, either as monotherapy or in combination treatments in PCa, and the treatment outcomes involved in both preclinical and clinical trials. A PubMed-based literature search was conducted up to November 2022. The most relevant and recent articles were selected to provide essential information and current evidence on the crosstalk between AR and the PI3K signaling pathways. The ClinicalTrials.gov registry was used to report information about clinical studies and their results using the Advanced research tool, filtering for disease and target.
Collapse
|
27
|
Khadela A, Chavda VP, Soni S, Megha K, Pandya AJ, Vora L. Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010233. [PMID: 36612226 PMCID: PMC9818775 DOI: 10.3390/cancers15010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Triple-negative tumors are progressively delineating their existence over the extended spectrum of breast cancers, marked by intricate molecular heterogeneity, a low overall survival rate, and an unexplored therapeutic approach. Although the basal subtype transcends the group and contributes approximately 80% to triple-negative breast cancer (TNBC) cases, the exceptionally appearing mesenchymal and luminal androgen receptor (LAR) subtypes portray an unfathomable clinical course. LAR with a distinct generic profile frequently metastasizes to regional lymph nodes and bones. This subtype is minimally affected by chemotherapy and shows the lowest pathologic complete response. The androgen receptor is the only sex steroid receptor that plays a cardinal role in the progression of breast cancers and is typically overexpressed in LAR. The partial AR antagonist bicalutamide and the next-generation AR inhibitor enzalutamide are being assessed in standard protocols for the mitigation of TNBC. There arises an inevitable need to probe into the strategies that could neutralize these androgen receptors and alleviate the trajectory of concerning cancer. This paper thus focuses on reviewing literature that provides insights into the anti-androgenic elements against LAR typical TNBC that could pave the way for clinical advancements in this dynamic sphere of oncology.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Correspondence: (V.P.C.); (L.V.)
| | - Shruti Soni
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Kaivalya Megha
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Aanshi J. Pandya
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (V.P.C.); (L.V.)
| |
Collapse
|
28
|
Synthesis and Preclinical Evaluation of Small-Molecule Prostate-Specific Membrane Antigen-Targeted Abiraterone Conjugate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248795. [PMID: 36557929 PMCID: PMC9783881 DOI: 10.3390/molecules27248795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc.
Collapse
|
29
|
The Androgen Regulated lncRNA NAALADL2-AS2 Promotes Tumor Cell Survival in Prostate Cancer. Noncoding RNA 2022; 8:ncrna8060081. [PMID: 36548180 PMCID: PMC9787508 DOI: 10.3390/ncrna8060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Castration resistance is the leading cause of death in men with prostate cancer. Recent studies indicate long noncoding RNAs (lncRNAs) to be important drivers of therapy resistance. The aim of this study was to identify differentially expressed lncRNAs in castration-resistant prostate cancer (CRPC) and to functionally characterize them in vitro. Tumor-derived RNA-sequencing data were used to quantify and compare the expression of 11,469 lncRNAs in benign, primary prostate cancer, and CRPC samples. CRPC-associated lncRNAs were selected for semi-quantitative PCR validation on 68 surgical tumor specimens. In vitro functional studies were performed by antisense-oligonucleotide-mediated lncRNA knockdown in hormone-sensitive prostate cancer (HSPC) and CRPC cell line models. Subsequently, cell proliferation, apoptosis, cell cycle, transcriptome and pathway analyses were performed using the appropriate assays. Transcriptome analysis of a prostate cancer tumor specimens unveiled NAALADL2-AS2 as a novel CRPC-upregulated lncRNA. The expression of NAALADL2-AS2 was found to be particularly high in HSPC in vitro models and to increase under androgen deprived conditions. NAALADL2-AS2 knockdown decreased cell viability and increased caspase activity and apoptotic cells. Cellular fractionization and RNA fluorescent in situ hybridization identified NAALADL2-AS2 as a nuclear transcript. Transcriptome and pathway analyses revealed that NAALADL2-AS2 modulates the expression of genes involved with cell cycle control and glycogen metabolism. We hypothesize that the nuclear lncRNA, NAALADL2-AS2, functions as a pro-survival signal in prostate cancer cells under pressure of targeted hormone therapy.
Collapse
|
30
|
Yuan K, Li Z, Kuang W, Wang X, Ji M, Chen W, Ding J, Li J, Min W, Sun C, Ye X, Lu M, Wang L, Ge H, Jiang Y, Hao H, Xiao Y, Yang P. Targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 with a highly selective inhibitor for the treatment of prostate cancer. Nat Commun 2022; 13:2903. [PMID: 35614066 PMCID: PMC9133015 DOI: 10.1038/s41467-022-30581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein, dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is found and confirmed to be highly expressed in the PCa tissues and cells, and knock-down of DYRK2 remarkably reduces PCa burden in vitro and in vivo. On the base of DYRK2 acting as a promising target, we further discover a highly selective DYRK2 inhibitor YK-2-69, which specifically interacts with Lys-231 and Lys-234 in the co-crystal structure. Especially, YK-2-69 exhibits more potent anti-PCa efficacy than the first-line drug enzalutamide in vivo. Meanwhile, YK-2-69 displays favorable safety properties with a maximal tolerable dose of more than 10,000 mg/kg and pharmacokinetic profiles with 56% bioavailability. In summary, we identify DYRK2 as a potential drug target and verify its critical roles in PCa. Meanwhile, we discover a highly selective DYRK2 inhibitor with favorable druggability for the treatment of PCa. The kinase DYRK2 is a known oncogene but its role in prostate cancer is unexplored. Here, the authors identify DYRK2 as a target for prostate cancer with a role in invasion and they discover a specific DYRK2 inhibitor that has good pharmacokinetics and efficacy in vivo.
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, 313000, Huzhou, China
| | - Yuzhang Jiang
- Department of Laboratory, Huai'an First People's Hospital, Nanjing Medical University, 223300, Huai'an, Jiangsu, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
31
|
Mohammad Hossein Shirazi S, Mokhtari J, Mirjafary Z. Synthesis and characterization of epoxide impurities of abiraterone acetate. Steroids 2022; 180:108988. [PMID: 35189134 DOI: 10.1016/j.steroids.2022.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Abiraterone acetate is an antiandrogen steroidal drug that is used to treat patients with metastatic prostate cancer. During the process development of abiraterone acetate, two process α and β-epoxy abiraterone acetate related impurities (2 and 3) were observed along with the final API. In the present work we describe the synthesis of these two known impurities using abiraterone acetate in the presence of hydrogen peroxide and acetic acid as oxidizing agent. The structure of these impurities fully characterized by NMR, Mass, CHN and HPLC analysis.
Collapse
Affiliation(s)
| | - Javad Mokhtari
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran.
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| |
Collapse
|
32
|
Su S, Cao J, Meng X, Liu R, Vander Ark A, Woodford E, Zhang R, Stiver I, Zhang X, Madaj ZB, Bowman MJ, Wu Y, Xu HE, Chen B, Yu H, Li X. Enzalutamide-induced and PTH1R-mediated TGFBR2 degradation in osteoblasts confers resistance in prostate cancer bone metastases. Cancer Lett 2022; 525:170-178. [PMID: 34752846 PMCID: PMC9669895 DOI: 10.1016/j.canlet.2021.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/30/2023]
Abstract
Enzalutamide resistance has been observed in approximately 50% of patients with prostate cancer (PCa) bone metastases. Therefore, there is an urgent need to investigate the mechanisms and develop strategies to overcome resistance. We observed enzalutamide resistance in bone lesion development induced by PCa cells in mouse models. We found that the bone microenvironment was indispensable for enzalutamide resistance because enzalutamide significantly inhibited the growth of subcutaneous C4-2B tumors and the proliferation of C4-2B cells isolated from the bone lesions, and the resistance was recapitulated only when C4-2B cells were co-cultured with osteoblasts. In revealing how osteoblasts contribute to enzalutamide resistance, we found that enzalutamide decreased TGFBR2 protein expression in osteoblasts, which was supported by clinical data. This decrease was possibly through PTH1R-mediated endocytosis. We showed that PTH1R blockade rescued enzalutamide-mediated decrease in TGFBR2 levels and enzalutamide responses in C4-2B cells that were co-cultured with osteoblasts. This is the first study to reveal the contribution of the bone microenvironment to enzalutamide resistance and identify PTH1R as a feasible target to overcome the resistance in PCa bone metastases.
Collapse
Affiliation(s)
- Shang Su
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Department of Cancer Biology, the University of Toledo, Toledo, OH, 43614
| | - Jingchen Cao
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Xiangqi Meng
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Ruihua Liu
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Department of Cancer Biology, the University of Toledo, Toledo, OH, 43614;,Inner Mongolia University, Hohhot, 010021, China
| | - Alexandra Vander Ark
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Erica Woodford
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Reian Zhang
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,University of Michigan, Ann Arbor, MI, 48109
| | - Isabelle Stiver
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,University of Michigan, Ann Arbor, MI, 48109
| | - Xiaotun Zhang
- Anatomic/Clinical Pathology, Mayo Clinic, Rochester, MN, 55905
| | - Zachary B. Madaj
- Bioinformatics & Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503
| | - Megan J. Bowman
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Ball Horticultural Company, West Chicago, IL, 60185
| | - Yingying Wu
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503;,Current address: Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138
| | - H. Eric Xu
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503
| | - Haiquan Yu
- Inner Mongolia University, Hohhot, 010021, China
| | - Xiaohong Li
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Department of Cancer Biology, the University of Toledo, Toledo, OH, 43614;,Corresponding author: Xiaohong Li, the University of Toledo, 3000 Transverse Drive, Toledo, OH 43614. Phone: +1-419-383-3982;
| |
Collapse
|
33
|
[OVERALL SURVIVAL EVALUATION OF PROSTATE CANCER PATIENTS TREATED WITH ANDROGEN DEPRIVATION THERAPY BY ESTIMATING FLUCTUANT PATTERNS OF METABOLIC FACTOR SERUM LEVELS]. Nihon Hinyokika Gakkai Zasshi 2022; 113:1-11. [PMID: 36682805 DOI: 10.5980/jpnjurol.113.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
(Background) The effects of fluctuant patterns of serum alkaline phosphatase (ALP) and lactic acid dehydrogenase (LDH) levels on overall survival of patients with prostate cancer (PC) treated with androgen deprivation therapy (ADT) remain unclear. (Methods) We enrolled 236 patients with PC and divided into 3 cohorts by fluctuant patterns of serum levels of ALP and LDH between at baseline and at 1 year later, or at diagnosis of castration-resistant prostate cancer (CRPC): intermediate, within interquartile range (IQR) [I]; lower than IQR [L]; higher than IQR [H]. (Results) In the 1 year later ALP cohort, all parameters except age were significantly different. In the L cohort, 75% of patients had bone metastasis and > 50% developed CRPC or died. In the 1 year later LDH cohort, Eastern Cooperative Oncology Group-performance status (ECOG-PS) and clinical metastasis classification were significantly different among the cohorts. In the CRPC/ALP cohorts, baseline prostate-specific antigen values and clinical metastasis classification were significantly different among the cohorts, and all cases had metastasis in the L cohort. In the CRPC/LDH cohort, the L cohort had higher ECOG-PS and shorter time to CRPC. In the 1 year later ALP cohort, the hazard ratio (HR) for death of the L and H cohort to the I cohort was 3.77 and 2.27, respectively and both were significant. In the CRPC/LDH cohort, the HR for death of L cohort to I cohort was 1.99. (Conclusions) Larger fluctuations in serum ALP and LDH levels were a sign of poorer prognosis, especially for patients in the L cohort.
Collapse
|
34
|
Treatment of Metastatic Hormone-Sensitive Prostate Cancer. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Dahiya S, Savjani K, Savjani J. Development, Characterization, and Optimization of a Novel Abiraterone Acetate Formulation to Improve Biopharmaceutical Attributes Aided by Pharmacokinetic Modelling. AAPS PharmSciTech 2021; 23:4. [PMID: 34811624 DOI: 10.1208/s12249-021-02168-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Abiraterone acetate has very low bioavailability and drastic food effect to warrant a dosing regimen under fasting state only. Therefore, we aimed to develop and optimize a liquisolid compact formulation of abiraterone acetate to improve biopharmaceutical attributes aided by pharmacokinetic modelling and achieve dose reduction with no food effect on the formulation. Preliminary studies highlighted the importance of the selection of olive oil as a compatible vehicle. The pharmacokinetic model, integrated with gastrointestinal physiology, was used to predict fasted and fed state pharmacokinetic parameters. Optimization of the liquisolid formulation containing abiraterone acetate was carried at more than five times lower dose, i.e. 190 mg, compared to 1000 mg. A central composite design (CCD) was used to identify optimal levels of formulation factors, namely the amount of vehicle (olive oil), the amount of coating agent (silicon dioxide), and the amount of surfactant (polysorbate 80). Graphical optimization using the selected models in conjunction with maximization of the desirability was used to identify the optimized liquisolid formulation. The predicted pharmacokinetic parameters (fasted Cmax 901.83 ng/mL, fasted AUCinf 2723.82 ng·h/mL, fed Cmax 1024.34 ng/mL, and fed AUCinf 3041.83 ng·h/mL) of the optimized formulation were acceptable. Overall, the liquisolid compact formulation of abiraterone acetate was successfully developed and optimized. In vitro solubility and dissolution results aided by pharmacokinetic modelling also showed improved predicted bioavailability with greater than five times reduction in dose and elimination of food effect.
Collapse
|
36
|
Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021; 9:745177. [PMID: 34805155 PMCID: PMC8602797 DOI: 10.3389/fcell.2021.745177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the most common type of cancer among men and the second most frequent cause of cancer-related mortality around the world. The progression of advanced prostate cancer to castration-resistant prostate cancer (CRPC) plays a major role in disease-associated morbidity and mortality, posing a significant therapeutic challenge. Resistance has been associated with the activation of androgen receptors via several mechanisms, including alternative dehydroepiandrosterone biosynthetic pathways, other androgen receptor activator molecules, oncogenes, and carcinogenic signaling pathways. Tumor microenvironment plays a critical role not only in the cancer progression but also in the drug resistance. Numerous natural products have shown major potential against particular or multiple resistance pathways as shown by in vitro and in vivo studies. However, their efficacy in clinical trials has been undermined by their unfavorable pharmacological properties (hydrophobic molecules, instability, low pharmacokinetic profile, poor water solubility, and high excretion rate). Nanoparticle formulations can provide a way out of the stalemate, employing targeted drug delivery, improved pharmacokinetic drug profile, and transportation of diagnostic and therapeutic agents via otherwise impermeable biological barriers. This review compiles the available evidence regarding the use of natural products for the management of CRPC with a focus on nanoparticle formulations. PubMed and Google Scholar search engines were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical studies. The results of our study suggest the efficacy of natural compounds such as curcumin, resveratrol, apigenin, quercetin, fisetin, luteolin, kaempferol, genistein, berberine, ursolic acid, eugenol, gingerol, and ellagic acid against several mechanisms leading to castration resistance in preclinical studies, but fail to set the disease under control in clinical studies. Nanoparticle formulations of curcumin and quercetin seem to increase their potential in clinical settings. Using nanoparticles based on betulinic acid, capsaicin, sintokamide A, niphatenones A and B, as well as atraric acid seems promising but needs to be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rajat Goyal
- MM School of Pharmacy, MM University, Ambala, India
| | | | | | - Shikha Joon
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Sakai Y, Fukami T, Nagaoka M, Hirosawa K, Ichida H, Sato R, Suzuki K, Nakano M, Nakajima M. Arylacetamide deacetylase as a determinant of the hydrolysis and activation of abiraterone acetate in mice and humans. Life Sci 2021; 284:119896. [PMID: 34450168 DOI: 10.1016/j.lfs.2021.119896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022]
Abstract
AIM Abiraterone acetate for metastatic castration-resistant prostate cancer is an acetylated prodrug to be hydrolyzed to abiraterone. Abiraterone acetate is known to be hydrolyzed by pancreatic cholesterol esterase secreted into the intestinal lumen. This study aimed to investigate the possibility that arylacetamide deacetylase (AADAC) expressed in enterocytes contributes to the hydrolysis of abiraterone acetate based on its substrate preference. MATERIALS AND METHODS Abiraterone acetate hydrolase activity was measured using human intestinal (HIM) and liver microsomes (HLM) as well as recombinant AADAC. Correlation analysis between activity and AADAC expression was performed in 14 individual HIMs. The in vivo pharmacokinetics of abiraterone acetate was examined using wild-type and Aadac knockout mice administered abiraterone acetate with or without orlistat, a pancreatic cholesterol esterase inhibitor. KEY FINDINGS Recombinant AADAC showed abiraterone acetate hydrolase activity with similar Km value to HIM and HLM. The positive correlation between activity and AADAC levels in individual HIMs supported the responsibility of AADAC for abiraterone acetate hydrolysis. The area under the plasma concentration-time curve (AUC) of abiraterone after oral administration of abiraterone acetate in Aadac knockout mice was 38% lower than that in wild-type mice. The involvement of pancreatic cholesterol esterase in abiraterone formation was revealed by the decreased AUC of abiraterone by coadministration of orlistat. Orlistat potently inhibited AADAC, implying its potential as a perpetrator of drug-drug interactions. SIGNIFICANCE AADAC is responsible for the hydrolysis of abiraterone acetate in the intestine and liver, suggesting that concomitant use of abiraterone acetate and drugs potently inhibiting AADAC should be avoided.
Collapse
Affiliation(s)
- Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroyuki Ichida
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Rei Sato
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kohei Suzuki
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
38
|
Jacob A, Raj R, Allison DB, Myint ZW. Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies. Cancers (Basel) 2021; 13:5417. [PMID: 34771580 PMCID: PMC8582395 DOI: 10.3390/cancers13215417] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding of the molecular mechanisms of prostate cancer has led to development of therapeutic strategies targeting androgen receptor (AR). These androgen-receptor signaling inhibitors (ARSI) include androgen synthesis inhibitor-abiraterone and androgen receptor antagonists-enzalutamide, apalutamide, and darolutamide. Although these medications provide significant improvement in survival among men with prostate cancer, drug resistance develops in nearly all patients with time. This could be through androgen-dependent or androgen-independent mechanisms. Even weaker signals and non-canonical steroid ligands can activate AR in the presence of truncated AR-splice variants, AR overexpression, or activating mutations in AR. AR splice variant, AR-V7 is the most studied among these and is not targeted by available ARSIs. Non-androgen receptor dependent resistance mechanisms are mediated by activation of an alternative signaling pathway when AR is inhibited. DNA repair pathway, PI3K/AKT/mTOR pathway, BRAF-MAPK and Wnt signaling pathway and activation by glucocorticoid receptors can restore downstream signaling in prostate cancer by alternative proteins. Multiple clinical trials are underway exploring therapeutic strategies to overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Aasems Jacob
- Department of Medicine, Division of Hematology & Oncology, Pikeville Medical Center, Pikeville, KY 41501, USA;
| | - Rishi Raj
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Pikeville Medical Center, Pikeville, KY 41501, USA;
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Urology, University of Kentucky, Lexington, KY 40536, USA
| | - Zin W. Myint
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
39
|
Shirazi SMH, Mokhtari J, Mirjafary Z. A new method for the synthesis of abiraterone drug catalyzed by Pd‐NPs@Zn‐MOF as efficient reusable catalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Javad Mokhtari
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
40
|
Androprostamine A: a unique antiprostate cancer agent. J Antibiot (Tokyo) 2021; 74:717-725. [PMID: 34321608 DOI: 10.1038/s41429-021-00449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
The androgen receptor (AR) is an important therapeutic target for all clinical states of prostate cancer. We screened cultured broths of microorganisms for their ability to suppress androgen-dependent growth of human prostate cancer LNCaP and VCaP cells without cytotoxicity. We have already identified androprostamine A (APA) from a Streptomyces culture broth as a functional inhibitor of AR. APA repressed R1881 (the synthetic androgen methyltrienolone)-induced androgen-regulated gene expression and dramatically inhibited R1881-induced prostate-specific antigen levels. However, APA did not act as an AR antagonist and did not inhibit AR transcriptional activity. Moreover, AS2405, an APA derivative, significantly inhibited the growth of VCaP cells in SCID mice upon oral administration.
Collapse
|
41
|
Westaby D, Maza MDLDFDL, Paschalis A, Jimenez-Vacas JM, Welti J, de Bono J, Sharp A. A New Old Target: Androgen Receptor Signaling and Advanced Prostate Cancer. Annu Rev Pharmacol Toxicol 2021; 62:131-153. [PMID: 34449248 DOI: 10.1146/annurev-pharmtox-052220-015912] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remains central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | | | - Alec Paschalis
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | | | - Jon Welti
- The Institute of Cancer Research, London SM2 5NG, United Kingdom;
| | - Johann de Bono
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| |
Collapse
|
42
|
Sun Y, Gao P, Zhu L, Li Z, Zhao R, Li C, Shan L. Synthesis and biological evaluation of 17-cyanopyridine derivatives of pregnenolone as potential anti-prostate cancer agents. Steroids 2021; 171:108841. [PMID: 33901535 DOI: 10.1016/j.steroids.2021.108841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
A series of new 17-cyanopyridine derivatives of pregnenolone have been synthesized, and their anti-proliferative activities against different human cancer cell lines were tested. The extensive structure-activity relationship (SAR) data suggested that the introduction of 2-amino-4-aryl-3-cyanopyridine to the D ring of pregnenolone may increase the anti-cancer activity. Among the products, the most potent compound 4j exhibited good growth inhibition against all the tested cells especially for PC- 3 cells with an IC50 value of 2.0 μM. Further mechanistic studies showed that 4j inhibited the formation of cell colonies and migration, increased the level of reactive oxygen species (ROS) in PC-3 cells in a concentration-dependent manner, and induced necroptosis through the phosphorylation of receptor interacting protein 1/3 (P-RIP1/3) and phosphorylation of mixed lineage kinase domain-like protein (P-MLKL) pathway. The 17-pregnenolone cyanopyridine derivatives hold promising potential as anti-proliferative agents, and the most potent compound could be used as a starting point for the development of new steroidal heterocycles with improved anticancer potency and selectivity.
Collapse
Affiliation(s)
- Yingying Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Peipei Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Li Zhu
- Taiyuan Central Hospital of Shanxi Medical University, No. 5, Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Zhaoxiang Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Ruiyun Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Congyu Li
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Lihong Shan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| |
Collapse
|
43
|
Parulava MJ, Kotovshchikov YN, Latyshev GV, Sokolova DV, Beletskaya IP, Lukashev NV. Synthesis of novel cytotoxic 3-azolylsteroids via Cu-catalyzed C–N coupling. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Parulava MJ, Kotovshchikov YN, Latyshev GV, Sokolova DV, Beletskaya IP, Lukashev NV. Synthesis of novel cytotoxic 3-azolylsteroids via Cu-catalyzed C–N coupling. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Morales X, Garnica D, Isaza D, Isaza N, Durán-Torres F. Syncope due to non-sustained episodes of Torsade de Pointes associated to androgen-deprivation therapy use: a case presentation. BMC Cardiovasc Disord 2021; 21:136. [PMID: 33711933 PMCID: PMC7953541 DOI: 10.1186/s12872-021-01945-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Abiraterone is a medication frequently used for metastatic castrate-resistant prostate cancer. We report a case of non-sustained episodes of TdP associated with severe hypokalemia due to androgen-deprivation therapy. Few case presentations describe this association; the novelty lies in the potentially lethal cardiovascular events among cancer patients receiving hormonal therapy. CASE PRESENTATION A 70-year-old male presented with recurrent syncope without prodrome. ECG revealed frequent ventricular ectopy, non-sustained episodes of TdP, and severe hypomagnesemia and hypokalemia. During potassium and magnesium infusion for repletion, the patient underwent temporary transvenous atrial pacing. As part of the work-up, coronary angiography revealed a mild coronary artery disease, and transthoracic echocardiogram showed a moderately depressed ejection fraction. After electrolyte disturbances were corrected, the QT interval normalized, and transvenous pacing was no longer necessary. Abiraterone was discontinued during the admission, and the patient returned to baseline. CONCLUSIONS Cancer treatment is complex and requires a multidisciplinary approach. We presented a case of non-sustained TdP associated with androgen-deprivation therapy in an elderly patient with mild coronary artery disease and moderately reduced ejection fraction. Close follow-up and increased awareness are required in patients with hormonal treatment, especially in the setting of other cardiovascular risk factors.
Collapse
Affiliation(s)
- Ximena Morales
- School of Medicine and Health Sciences, Internal Medicine Program, Fundación Cardioinfantil, Universidad del Rosario, Carrera 24 #63C-69, Bogotá, Colombia.
| | - Diego Garnica
- Fundación Cardioinfantil, Universidad del Bosque, Bogotá, Colombia
| | - Daniel Isaza
- Division of Cardiology, Fundación Cardioinfantil, Bogotá, Colombia
| | - Nicolas Isaza
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Felipe Durán-Torres
- School of Medicine and Health Sciences, Public Health Research Group, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
46
|
Das S, Samanta A, Mondal S, Roy D, Nayak AK. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2020.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Challa AA, Calaway AC, Cullen J, Garcia J, Desai N, Weintraub NL, Deswal A, Kutty S, Vallakati A, Addison D, Baliga R, Campbell CM, Guha A. Cardiovascular Toxicities of Androgen Deprivation Therapy. Curr Treat Options Oncol 2021; 22:47. [PMID: 33866442 PMCID: PMC8053026 DOI: 10.1007/s11864-021-00846-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
OPINION STATEMENT Prostate cancer is the second leading cause of cancer death in men, and cardiovascular disease is the number one cause of death in patients with prostate cancer. Androgen deprivation therapy, the cornerstone of prostate cancer treatment, has been associated with adverse cardiovascular events. Emerging data supports decreased cardiovascular risk of gonadotropin releasing hormone (GnRH) antagonists compared to agonists. Ongoing clinical trials are assessing the relative safety of different modalities of androgen deprivation therapy. Racial disparities in cardiovascular outcomes in prostate cancer patients are starting to be explored. An intriguing inquiry connects androgen deprivation therapy with reduced risk of COVID-19 infection susceptibility and severity. Recognition of the cardiotoxicity of androgen deprivation therapy and aggressive risk factor modification are crucial for optimal patient care.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Adam Christopher Calaway
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Jennifer Cullen
- Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Cleveland, OH USA
| | - Jorge Garcia
- Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Nihar Desai
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT USA ,Center for Outcomes Research and Evaluation, New Haven, CT USA
| | - Neal L. Weintraub
- Vascular Biology Center, Augusta University, August, GA USA ,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shelby Kutty
- The Helen B. Taussig Heart Center, The Johns Hopkins Hospital and Johns Hopkins University, Baltimore, MD USA
| | - Ajay Vallakati
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Ragavendra Baliga
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Courtney M. Campbell
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Avirup Guha
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA ,Harrington Heart and Vascular Institute, UH Cleveland Medical Center, Cleveland, OH USA
| |
Collapse
|
48
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
49
|
Abstract
Prostate Cancer is now the second biggest cause of cancer mortality in the UK. Media coverage has been rising, with some attributing to a rise in the cases diagnosed and treated in the NHS down to the “Fry and Turnbull effect”. Our understanding of prostate cancer has increased tremendously in the past decades, with advances in molecular biology and genomics driving the way to new treatments and diagnostics. This Special Edition of Translational Andrology and Urology 2019: Prostate Cancer Biology and Genomics aims to review the current state of prostate cancer genomics, proteomics, diagnostics and treatment.
Collapse
Affiliation(s)
- Hayley Whitaker
- Division of Surgical and Interventional Sciences, Faculty of Medicine, University College London, London, UK
| | - Joseph O Tam
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martin J Connor
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Alistair Grey
- Division of Surgical and Interventional Sciences, Faculty of Medicine, University College London, London, UK.,Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.,Department of Urology, Bart's and Royal London Hospitals, London, UK
| |
Collapse
|
50
|
Chen WS, Feng EL, Aggarwal R, Foye A, Beer TM, Alumkal JJ, Gleave M, Chi KN, Reiter RE, Rettig MB, Evans CP, Small EJ, Sharifi N, Zhao SG. Germline polymorphisms associated with impaired survival outcomes and somatic tumor alterations in advanced prostate cancer. Prostate Cancer Prostatic Dis 2020; 23:316-323. [PMID: 31745256 PMCID: PMC7529063 DOI: 10.1038/s41391-019-0188-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/19/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Germline variants in androgen metabolism genes may influence clinical response to androgen deprivation therapy (ADT) in advanced prostate cancer. We sought to investigate the prognostic significance of germline variants in androgen metabolism genes with respect to overall survival (OS) after ADT, and to associate germline variants with tumor genomic features. METHODS Germline and somatic whole-genome sequencing (WGS) data were evaluated in a cohort of 101 men with metastatic castration-resistant prostate cancer (mCRPC). Survival analyses were performed to identify polymorphisms associated with impaired OS after primary ADT. Germline variants found to be prognostic of OS were associated with tumor somatic DNA-sequence alterations based on WGS performed on paired metastasis biopsies from the same 101 patients. Gene set enrichment analysis was performed based on tumor RNA-sequencing data to identify genomic pathways differentially expressed in patients with germline variants. RESULTS A comprehensive literature review identified 17 candidate polymorphisms in nine androgen metabolism genes that have been previously shown to have an association with response to ADT in prostate cancer. Of these, the variant rs1856888 allele located 13 kb upstream of HSD3B1 was found to be significantly associated with impaired OS (P = 0.029). Variant rs1856888 was commonly co-inherited with the well-characterized HSD3B1(1245A>C) polymorphism, and there was a trend toward shorter median OS in patients with HSD3B1(1245A>C) compared with homozygous wild-type patients (P = 0.052). While HSD3B1 germline variants were not associated with common somatic tumor DNA alterations, they were associated with increased tumor expression of cell proliferation and cell cycle genes. CONCLUSIONS This study presents a comprehensive assessment of germline variants in androgen metabolism genes and highlights HSD3B1 polymorphisms as prognostic of OS after ADT and associated with an aggressive gene expression tumor profile in mCRPC.
Collapse
Affiliation(s)
- William S Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Yale School of Medicine, New Haven, CT, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric L Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshi J Alumkal
- Rogel Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Martin Gleave
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Kim N Chi
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Matthew B Rettig
- University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|