1
|
Exploring the Tryptophan Metabolic Pathways in Migraine-Related Mechanisms. Cells 2022; 11:cells11233795. [PMID: 36497053 PMCID: PMC9736455 DOI: 10.3390/cells11233795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Migraine is a complex neurovascular disorder, which causes intense socioeconomic problems worldwide. The pathophysiology of disease is enigmatic; accordingly, therapy is not sufficient. In recent years, migraine research focused on tryptophan, which is metabolized via two main pathways, the serotonin and kynurenine pathways, both of which produce neuroactive molecules that influence pain processing and stress response by disturbing neural and brain hypersensitivity and by interacting with molecules that control vascular and inflammatory actions. Serotonin has a role in trigeminal pain processing, and melatonin, which is another product of this pathway, also has a role in these processes. One of the end products of the kynurenine pathway is kynurenic acid (KYNA), which can decrease the overexpression of migraine-related neuropeptides in experimental conditions. However, the ability of KYNA to cross the blood-brain barrier is minimal, necessitating the development of synthetic analogs with potentially better pharmacokinetic properties to exploit its therapeutic potential. This review summarizes the main translational and clinical findings on tryptophan metabolism and certain neuropeptides, as well as therapeutic options that may be useful in the prevention and treatment of migraine.
Collapse
|
2
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Bratek-Gerej E, Ziembowicz A, Godlewski J, Salinska E. The Mechanism of the Neuroprotective Effect of Kynurenic Acid in the Experimental Model of Neonatal Hypoxia-Ischemia: The Link to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111775. [PMID: 34829646 PMCID: PMC8615281 DOI: 10.3390/antiox10111775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
The over-activation of NMDA receptors and oxidative stress are important components of neonatal hypoxia-ischemia (HI). Kynurenic acid (KYNA) acts as an NMDA receptor antagonist and is known as a reactive oxygen species (ROS) scavenger, which makes it a potential therapeutic compound. This study aimed to establish the neuroprotective and antioxidant potential of KYNA in an experimental model of HI. HI on seven-day-old rats was used as an experimental model. The animals were injected i.p. with different doses of KYNA 1 h or 6 h after HI. The neuroprotective effect of KYNA was determined by the measurement of brain damage and elements of oxidative stress (ROS and glutathione (GSH) level, SOD, GPx, and catalase activity). KYNA applied 1 h after HI significantly reduced weight loss of the ischemic hemisphere, and prevented neuronal loss in the hippocampus and cortex. KYNA significantly reduced HI-increased ROS, GSH level, and antioxidant enzyme activity. Only the highest used concentration of KYNA showed neuroprotection when applied 6 h after HI. The presented results indicate induction of neuroprotection at the ROS formation stage. However, based on the presented data, it is not possible to pinpoint whether NMDA receptor inhibition or the scavenging abilities are the dominant KYNA-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ewelina Bratek-Gerej
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.Z.); (E.S.)
- Correspondence:
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.Z.); (E.S.)
| | - Jakub Godlewski
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.Z.); (E.S.)
| |
Collapse
|
5
|
Skorobogatov K, De Picker L, Verkerk R, Coppens V, Leboyer M, Müller N, Morrens M. Brain Versus Blood: A Systematic Review on the Concordance Between Peripheral and Central Kynurenine Pathway Measures in Psychiatric Disorders. Front Immunol 2021; 12:716980. [PMID: 34630391 PMCID: PMC8495160 DOI: 10.3389/fimmu.2021.716980] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Disturbances in the kynurenine pathway have been implicated in the pathophysiology of psychotic and mood disorders, as well as several other psychiatric illnesses. It remains uncertain however to what extent metabolite levels detectable in plasma or serum reflect brain kynurenine metabolism and other disease-specific pathophysiological changes. The primary objective of this systematic review was to investigate the concordance between peripheral and central (CSF or brain tissue) kynurenine metabolites. As secondary aims we describe their correlation with illness course, treatment response, and neuroanatomical abnormalities in psychiatric diseases. Methods We performed a systematic literature search until February 2021 in PubMed. We included 27 original research articles describing a correlation between peripheral and central kynurenine metabolite measures in preclinical studies and human samples from patients suffering from neuropsychiatric disorders and other conditions. We also included 32 articles reporting associations between peripheral KP markers and symptom severity, CNS pathology or treatment response in schizophrenia, bipolar disorder or major depressive disorder. Results For kynurenine and 3-hydroxykynurenine, moderate to strong concordance was found between peripheral and central concentrations not only in psychiatric disorders, but also in other (patho)physiological conditions. Despite discordant findings for other metabolites (mainly tryptophan and kynurenic acid), blood metabolite levels were associated with clinical symptoms and treatment response in psychiatric patients, as well as with observed neuroanatomical abnormalities and glial activity. Conclusion Only kynurenine and 3-hydroxykynurenine demonstrated a consistent and reliable concordance between peripheral and central measures. Evidence from psychiatric studies on kynurenine pathway concordance is scarce, and more research is needed to determine the validity of peripheral kynurenine metabolite assessment as proxy markers for CNS processes. Peripheral kynurenine and 3-hydroxykynurenine may nonetheless represent valuable predictive and prognostic biomarker candidates for psychiatric disorders.
Collapse
Affiliation(s)
- Katrien Skorobogatov
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Livia De Picker
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Marion Leboyer
- INSERM U955, Equipe Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental - Hôpital Albert Chenevier - Pôle Psychiatrie, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, DHU Pepsy, Pôle de Psychiatrie et d'Addictologie, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Creteil, France
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, München, Germany
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| |
Collapse
|
6
|
Fila M, Chojnacki J, Pawlowska E, Szczepanska J, Chojnacki C, Blasiak J. Kynurenine Pathway of Tryptophan Metabolism in Migraine and Functional Gastrointestinal Disorders. Int J Mol Sci 2021; 22:ijms221810134. [PMID: 34576297 PMCID: PMC8469852 DOI: 10.3390/ijms221810134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine, the leading cause of disability in the population aged below 50, is associated with functional gastrointestinal (GI) disorders (FGIDs) such as functional nausea, cyclic vomiting syndrome, and irritable bowel syndrome (IBS). Conversely, changes in intestinal GI transit may cause diarrhea or constipation and are a component of the autonomic symptoms associated with pre- and post-dorsal phases of migraine attack. These mutual relationships provoke a question on a common trigger in migraine and FGIDs. The kynurenine (l-kyn) pathway (KP) is the major route for l-tryptophan (l-Trp) metabolism and transforms l-Trp into several neuroactive compounds. Changes in KP were reported in both migraine and FGIDs. Migraine was largely untreatable, but several drugs approved lately by the FDA, including monoclonal antibodies for calcitonin gene-related peptide (CGRP) and its receptor, create a hope for a breakthrough in migraine treatment. Derivatives of l-kyn were efficient in pain relief with a mechanism including CGRP inhibition. KP products are important ligands to the aryl hydrocarbon receptor (AhR), whose activation is implicated in the pathogenesis of GI and migraine. Toll-like receptors (TLRs) may play a role in migraine and IBS pathogeneses, and KP metabolites detected downstream of TLR activation may be an IBS marker. The TLR4 signaling was observed in initiating and maintaining migraine-like behavior through myeloid differentiation primary response gene 88 (MyD88) in the mouse. The aim of this review is to justify the view that KP modulation may provide common triggers for migraine and FGIDs with the involvement of TLR, AhR, and MyD88 activation.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
7
|
Tuka B, Nyári A, Cseh EK, Körtési T, Veréb D, Tömösi F, Kecskeméti G, Janáky T, Tajti J, Vécsei L. Clinical relevance of depressed kynurenine pathway in episodic migraine patients: potential prognostic markers in the peripheral plasma during the interictal period. J Headache Pain 2021; 22:60. [PMID: 34171996 PMCID: PMC8229298 DOI: 10.1186/s10194-021-01239-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Altered glutamatergic neurotransmission and neuropeptide levels play a central role in migraine pathomechanism. Previously, we confirmed that kynurenic acid, an endogenous glutamatergic antagonist, was able to decrease the expression of pituitary adenylate cyclase-activating polypeptide 1–38, a neuropeptide with known migraine-inducing properties. Hence, our aim was to reveal the role of the peripheral kynurenine pathway (KP) in episodic migraineurs. We focused on the complete tryptophan (Trp) catabolism, which comprises the serotonin and melatonin routes in addition to kynurenine metabolites. We investigated the relationship between metabolic alterations and clinical characteristics of migraine patients. Methods Female migraine patients aged between 25 and 50 years (n = 50) and healthy control subjects (n = 34) participated in this study. Blood samples were collected from the cubital veins of subjects (during both the interictal/ictal periods in migraineurs, n = 47/12, respectively). 12 metabolites of Trp pathway were determined by neurochemical measurements (UHPLC-MS/MS). Results Plasma concentrations of the most Trp metabolites were remarkably decreased in the interictal period of migraineurs compared to healthy control subjects, especially in the migraine without aura (MWoA) subgroup: Trp (p < 0.025), L-kynurenine (p < 0.001), kynurenic acid (p < 0.016), anthranilic acid (p < 0.007), picolinic acid (p < 0.03), 5-hydroxy-indoleaceticacid (p < 0.025) and melatonin (p < 0.023). Several metabolites showed a tendency to elevate during the ictal phase, but this was significant only in the cases of anthranilic acid, 5-hydroxy-indoleaceticacid and melatonin in MWoA patients. In the same subgroup, higher interictal kynurenic acid levels were identified in patients whose headache was severe and not related to their menstruation cycle. Negative linear correlation was detected between the interictal levels of xanthurenic acid/melatonin and attack frequency. Positive associations were found between the ictal 3-hydroxykynurenine levels and the beginning of attacks, just as between ictal picolinic acid levels and last attack before ictal sampling. Conclusions Our results suggest that there is a widespread metabolic imbalance in migraineurs, which manifests in a completely depressed peripheral Trp catabolism during the interictal period. It might act as trigger for the migraine attack, contributing to glutamate excess induced neurotoxicity and generalised hyperexcitability. This data can draw attention to the clinical relevance of KP in migraine. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01239-1.
Collapse
Affiliation(s)
- Bernadett Tuka
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary
| | - Tamás Körtési
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Radiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Tömösi
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, Szeged, H6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Neurology, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.
| |
Collapse
|
8
|
Vuralli D, Karatas H, Yemisci M, Bolay H. Updated review on the link between cortical spreading depression and headache disorders. Expert Rev Neurother 2021; 21:1069-1084. [PMID: 34162288 DOI: 10.1080/14737175.2021.1947797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Experimental animal studies have revealed mechanisms that link cortical spreading depression (CSD) to the trigeminal activation mediating lateralized headache. However, conventional CSD as seen in lissencephalic brain is insufficient to explain some clinical features of aura and migraine headache. AREAS COVERED The importance of CSD in headache development including dysfunction of the thalamocortical network, neuroinflammation, calcitonin gene-related peptide, transgenic models, and the role of CSD in migraine triggers, treatment options, neuromodulation and future directions are reviewed. EXPERT OPINION The conventional understanding of CSD marching across the hemisphere is invalid in gyrencephalic brains. Thalamocortical dysfunction and interruption of functional cortical network systems by CSD, may provide alternative explanations for clinical manifestations of migraine phases including aura. Not all drugs showing CSD blocking properties in lissencephalic brains, have efficacy in migraine headache and monoclonal antibodies against CGRP ligand/receptors which are effective in migraine treatment, have no impact on aura in humans or CSD properties in rodents. Functional networks and molecular mechanisms mediating and amplifying the effects of limited CSD in migraine brain remain to be investigated to define new targets.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | - Hulya Karatas
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Muge Yemisci
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey.,Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey.,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
9
|
Özdemir Z, Utku S, Mathew B, Carradori S, Orlando G, Di Simone S, Alagöz MA, Özçelik AB, Uysal M, Ferrante C. Synthesis and biological evaluation of new 3(2 H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. J Enzyme Inhib Med Chem 2020; 35:1100-1109. [PMID: 32321320 PMCID: PMC7191905 DOI: 10.1080/14756366.2020.1755670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 01/05/2023] Open
Abstract
Novel 3(2H)-pyridazinone derivatives were designed, synthesised in satisfactory yields and evaluated in different experimental assays to assess their preliminary toxicity in vivo and anti-proliferative effects against HCT116 cell lines in vitro. Artemia salina lethality test provided LC50 values >100 µg/mL for all compounds. Successive assays revealed that some compounds were endowed with a promising anti-proliferative effect against HCT116 cells, alone or stimulated by serotonin as a pro-inflammatory factor in order to mimick an inflamed model in vivo of cancer cell microenvironment. Moreover, the kinurenic acid level after treatment with these newly synthesised compounds was monitored as a marker of anti-proliferation in colon carcinoma models. The IC50 values obtained for the best-in-class compounds were comparable to that of daunorubicin as a reference drug. Conversely, these compounds were not able to counteract the spontaneous migration of human cancer HCT116 cell line in the wound healing paradigm.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Department of Pharmaceutical Chemistry, İnönü University, Malatya, Turkey
| | - Semra Utku
- Department of Pharmaceutical Chemistry, Mersin University, Mersin, Turkey
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry Research Lab, Ahalia School of Pharmacy, Palakkad, India
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | | | - Mehtap Uysal
- Department of Pharmaceutical Chemistry, Gazi University, Ankara, Turkey
- Department of Pharmaceutical Chemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol 2020; 11:914. [PMID: 32848858 PMCID: PMC7424030 DOI: 10.3389/fphys.2020.00914] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) allows the brain to selectively import nutrients and energy critical to neuronal function while simultaneously excluding neurotoxic substances from the peripheral circulation. In contrast to the highly permeable vasculature present in most organs that reside outside of the central nervous system (CNS), the BBB exhibits a high transendothelial electrical resistance (TEER) along with a low rate of transcytosis and greatly restricted paracellular permeability. The property of low paracellular permeability is controlled by tight junction (TJ) protein complexes that seal the paracellular route between apposing brain microvascular endothelial cells. Although tight junction protein complexes are principal contributors to physical barrier properties, they are not static in nature. Rather, tight junction protein complexes are highly dynamic structures, where expression and/or localization of individual constituent proteins can be modified in response to pathophysiological stressors. These stressors induce modifications to tight junction protein complexes that involve de novo synthesis of new protein or discrete trafficking mechanisms. Such responsiveness of BBB tight junctions to diseases indicates that these protein complexes are critical for maintenance of CNS homeostasis. In fulfillment of this vital role, BBB tight junctions are also a major obstacle to therapeutic drug delivery to the brain. There is an opportunity to overcome this substantial obstacle and optimize neuropharmacology via acquisition of a detailed understanding of BBB tight junction structure, function, and regulation. In this review, we discuss physiological characteristics of tight junction protein complexes and how these properties regulate delivery of therapeutics to the CNS for treatment of neurological diseases. Specifically, we will discuss modulation of tight junction structure, function, and regulation both in the context of disease states and in the setting of pharmacotherapy. In particular, we will highlight how these properties can be potentially manipulated at the molecular level to increase CNS drug levels via paracellular transport to the brain.
Collapse
|
11
|
Huang YS, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Front Immunol 2020; 11:388. [PMID: 32194572 PMCID: PMC7066259 DOI: 10.3389/fimmu.2020.00388] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Nahomi RB, Nam MH, Rankenberg J, Rakete S, Houck JA, Johnson GC, Stankowska DL, Pantcheva MB, MacLean PS, Nagaraj RH. Kynurenic Acid Protects Against Ischemia/Reperfusion-Induced Retinal Ganglion Cell Death in Mice. Int J Mol Sci 2020; 21:ijms21051795. [PMID: 32151061 PMCID: PMC7084183 DOI: 10.3390/ijms21051795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. Methods: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. Results: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. Conclusion: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.
Collapse
Affiliation(s)
- Rooban B. Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
- Correspondence: (R.B.N.); (R.H.N.); Tel.: +1-303-724-8824 (R.H.N.)
| | - Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Johanna Rankenberg
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Stefan Rakete
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (J.A.H.); (G.C.J.); (P.S.M.)
| | - Ginger C. Johnson
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (J.A.H.); (G.C.J.); (P.S.M.)
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Mina B. Pantcheva
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (J.A.H.); (G.C.J.); (P.S.M.)
| | - Ram H. Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA; (M.-H.N.); (J.R.); (S.R.); (M.B.P.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
- Correspondence: (R.B.N.); (R.H.N.); Tel.: +1-303-724-8824 (R.H.N.)
| |
Collapse
|
13
|
Sinan KI, Chiavaroli A, Orlando G, Bene K, Zengin G, Cziáky Z, Jekő J, Fawzi Mahomoodally M, Picot-Allain MCN, Menghini L, Recinella L, Brunetti L, Leone S, Ciferri MC, Di Simone S, Ferrante C. Biopotential of Bersama abyssinica Fresen Stem Bark Extracts: UHPLC Profiles, Antioxidant, Enzyme Inhibitory, and Antiproliferative Propensities. Antioxidants (Basel) 2020; 9:antiox9020163. [PMID: 32079363 PMCID: PMC7094211 DOI: 10.3390/antiox9020163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, ethyl acetate, methanol, and water extracts of Bersama abyssinica (Melianthaceae) stem bark were screened for enzyme inhibitory and antioxidant properties. The water extract possessed the highest concentration of phenols (230.83 mg gallic acid equivalent/g extract), while the methanol extract was rich in flavonoids (75.82 mg rutin equivalent/g extract), and the ethyl acetate extract possessed the highest amount of saponins (97.37 mg quillaja equivalent/g). The aim of this study was to investigate the antiproliferative effects against the human colon cancer HCT116 cell line challenged with serotonin (5-HT) as a stimulating-proliferation factor. The level of HCT116 cell-deriving pool of kynurenic acid (KA) was also assessed. The UHPLC results confirmed the presence of 58, 68, and 63 compounds in the ethyl acetate, methanol, and water extracts, respectively. Mangiferin, vitexin and its isomer isovitexin were tentatively identified in all extracts and KA (m/z 190.05042 [M−H]+) was also tentatively identified in the methanol and water extracts. The methanol extract (1464.08 mg Trolox equivalent [TE]/g extract) showed the highest activity in the CUPRAC assay, whereas the water extract (1063.70 mg TE/g extract) showed the highest activity with the FRAP technique. The ethyl acetate extract was the most active acetylcholinesterase (4.43 mg galantamine equivalent/g extract) and α-glucosidase (mmol acarbose equivalent /g extract) inhibitor. The water extract was able to inhibit 5-HT-stimulated viability of HCT116 cells, and blunt 5-HT-induced reduction of cell-deriving KA. The scientific data generated in this study provide baseline data regarding the biological properties of B. abyssinica stem bark, highlighting its potential use for the development of new pharmaceutic and cosmetic agents.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus, Konya, 42130 Konya, Turkey;
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
- Correspondence: (G.O.); (G.Z.)
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, Abidjan 02, Cote D’Ivoire;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus, Konya, 42130 Konya, Turkey;
- Correspondence: (G.O.); (G.Z.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 230, Mauritius;
| | | | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Maria Chiara Ciferri
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Simonetta Di Simone
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.M.); (L.R.); (L.B.); (S.L.); (S.D.S.); (C.F.)
| |
Collapse
|
14
|
Comparison of the Effect of Tanacethum Parthenium, 5-Hydroxy Tryptophan, and Magnesium (Aurastop) versus Magnesium Alone on Aura Phenomenon and Its Evolution. Pain Res Manag 2019; 2019:6320163. [PMID: 31687058 PMCID: PMC6803726 DOI: 10.1155/2019/6320163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 01/03/2023]
Abstract
None of the clinical trials on migraine conducted thus far have focused on the possibility to modulate the phenomenon of aura. Furthermore, whether proper management of aura results in a better control of the headache phase has been poorly investigated. In the setting of a single-center, pilot, clinical trial, we aimed at comparing the effects of Aurastop (a combination of tanacetum parthenium (150 mg extracted at 0.8% = 1.2 mg di of active parthenolide), griffonia simplicifoila (20 mg of 5-hydroxy tryptophan), and magnesium (185 mg of magnesium pidolatum)) with those of magnesium alone (2.25 grams/tablet, corresponding to 184 mg of Mg++) in the treatment of acute attacks of migraine with aura. Between June 2017 and June 2018, 50 consecutive patients (27/23 male/female; mean age, 31 [18–57] years) with at least 3 episodes of aura per year were included (t0). Participants were instructed to keep track of the following 4 episodes of migraine with aura (t1) and invited to assume (1) a tablet of Aurastop at the beginning of the following 2 episodes of aura and (2) a magnesium tablet alone at the occurrence of the third and fourth aura attacks. Forty-eight patients (96.0%) had >50% reduction in aura duration when treated with Aurastop vs. 7 patients (14.0%) when treated with magnesium alone (p < 0.001); 48 patients (96.0%) had >50% reduction of aura-related disability when receiving Aurastop vs. 5 patients (10.0%) when treated with magnesium alone (p < 0.001); however, patients receiving Aurastop did not need to take pain killers in 35% of aura attacks vs. 3% when assuming magnesium (p < 0.001). These results support the hypothesis that Aurastop might be effective in interfering with the phenomenon of aura and provide evidence that the clinical benefit attributable to this combination of molecules might be greater than that obtained with single compounds of proven effect on the biology of migraine.
Collapse
|
15
|
Cottier KE, Galloway EA, Calabrese EC, Tome ME, Liktor-Busa E, Kim J, Davis TP, Vanderah TW, Largent-Milnes TM. Loss of Blood-Brain Barrier Integrity in a KCl-Induced Model of Episodic Headache Enhances CNS Drug Delivery. eNeuro 2018; 5:ENEURO.0116-18.2018. [PMID: 30073201 PMCID: PMC6071204 DOI: 10.1523/eneuro.0116-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Cortical spreading depression (CSD) in the CNS is suggested as a common mechanism contributing to headache. Despite strong evidence for CNS involvement in headache disorders, drug development for headache disorders remains focused on peripheral targets. Difficulty in delivering drugs across the blood-brain barrier (BBB) may partially account for this disparity. It is known, however, that BBB permeability is increased during several CNS pathologies. In this study, we investigated BBB changes in response to KCl-induced CSD events and subsequent allodynia in rats. Cortical KCl injection in awake, freely moving rats produced facial allodynia with peak intensity between 1.5 and 3 h and CSD induction within 0.5-2 h postinjection. Brain perfusion of 14C-sucrose as a marker of BBB paracellular permeability revealed increased leak in the cortex, but not brainstem, beginning 0.5 h post-KCl injection and resolving within 6 h; no changes in tight junction (TJ) proteins occludin or claudin-5 expression were observed. Acute pretreatment with topiramate to inhibit CSD did not prevent the increased BBB paracellular permeability. CNS delivery of the abortive anti-migraine agent sumatriptan was increased in the cortex 1.5 h post-KCl injection. Surprisingly, sumatriptan uptake was also increased in the brainstem following CSD induction, suggesting regulation of active transport mechanisms at the BBB. Together, these results demonstrate the ability of CSD events to produce transient, time-dependent changes in BBB permeability when allodynia is present and to mediate access of clinically relevant therapeutics (i.e., sumatriptan) to the CNS.
Collapse
Affiliation(s)
- Karissa E. Cottier
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Emily A. Galloway
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Elisa C. Calabrese
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Margaret E. Tome
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - John Kim
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Thomas P. Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | | |
Collapse
|
16
|
Klass A, Sánchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab 2018; 38:1149-1179. [PMID: 29673289 PMCID: PMC6434447 DOI: 10.1177/0271678x18771440] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spreading depolarization (SD) occurs alongside brain injuries and it can lead to neuronal damage. Therefore, pharmacological modulation of SD can constitute a therapeutic approach to reduce its detrimental effects and to improve the clinical outcome of patients. The major objective of this article was to produce a systematic review of all the drugs that have been tested against SD. Of the substances that have been examined, most have been shown to modulate certain SD characteristics. Only a few have succeeded in significantly inhibiting SD. We present a variety of strategies that have been proposed to overcome the notorious harmfulness and pharmacoresistance of SD. Information on clinically used anesthetic, sedative, hypnotic agents, anti-migraine drugs, anticonvulsants and various other substances have been compiled and reviewed with respect to the efficacy against SD, in order to answer the question of whether a drug at safe doses could be of therapeutic use against SD in humans.
Collapse
Affiliation(s)
- Anna Klass
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| | | | - Edgar Santos
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Lajkó E, Tuka B, Fülöp F, Krizbai I, Toldi J, Magyar K, Vécsei L, Kőhidai L. Kynurenic acid and its derivatives are able to modulate the adhesion and locomotion of brain endothelial cells. J Neural Transm (Vienna) 2018; 125:899-912. [PMID: 29332257 DOI: 10.1007/s00702-018-1839-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/03/2018] [Indexed: 01/26/2023]
Abstract
The neuroprotective actions of kynurenic acid (KYNA) and its derivatives in several neurodegenerative disorders [characterized by damage to the cerebral endothelium and to the blood-brain barrier (BBB)] are well established. Cell-extracellular matrix (ECM) adhesion is supposedly involved in recovery of impaired cerebral endothelium integrity (endothelial repair). The present work aimed to investigate the effects of KYNA and its synthetic derivatives on cellular behaviour (e.g. adhesion and locomotion) and on morphology of the GP8 rat brain endothelial cell line, modeling the BBB endothelium. The effects of KYNA and its derivatives on cell adhesion were measured using an impedance-based technique, the xCELLigence SP system. Holographic microscopy (Holomonitor™ M4) was used to analyse both chemokinetic responses and morphometry. The GP8 cells proved to be a suitable model cell line for investigating cell adhesion and the locomotion modulator effects of kynurenines. KYNA enhanced cell adhesion and spreading, and also decreased the migration/motility of GP8 cells at physiological concentrations (10-9 and 10-7 mol/L). The derivatives containing an amide side-chain at the C2 position (KYNA-A1 and A2) had lower adhesion inducer effects compared to KYNA. All synthetic analogues (except KYNA-A5) had a time-dependent inhibitory effect on GP8 cell adhesion at a supraphysiological concentration (10-3 mol/L). The immobilization promoting effect of KYNA and the adhesion inducer activity of its derivatives indicate that these compounds could contribute to maintaining or restoring the protective function of brain endothelium; they also suggest that cell-ECM adhesion and related cell responses (e.g. migration/motility) could be potential new targets of KYNA.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, Szeged, 6720, Hungary
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, Szeged, H-6720, Hungary
| | - István Krizbai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - József Toldi
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Kálmán Magyar
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
18
|
Lochhead JJ, Ronaldson PT, Davis TP. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS JOURNAL 2017; 19:910-920. [PMID: 28353217 DOI: 10.1208/s12248-017-0076-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.
Collapse
Affiliation(s)
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
19
|
Knapp L, Szita B, Kocsis K, Vécsei L, Toldi J. Nitroglycerin enhances the propagation of cortical spreading depression: comparative studies with sumatriptan and novel kynurenic acid analogues. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 11:27-34. [PMID: 28053504 PMCID: PMC5191838 DOI: 10.2147/dddt.s117166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The complex pathophysiology of migraine is not yet clearly understood; therefore, experimental models are essential for the investigation of the processes related to migraine headache, which include cortical spreading depression (CSD) and NO donor-induced neurovascular changes. Data on the assessment of drug efficacy in these models are often limited, which prompted us to investigate a novel combined migraine model in which an effective pharmacon could be more easily identified. Materials and methods In vivo electrophysiological experiments were performed to investigate the effect of nitroglycerin (NTG) on CSD induced by KCl application. In addition, sumatriptan and newly synthesized neuroactive substances (analogues of the neuromodulator kynurenic acid [KYNA]) were also tested. Results The basic parameters of CSDs were unchanged following NTG administration; however, propagation failure was decreased compared to the controls. Sumatriptan decreased the number of CSDs, whereas propagation failure was as minimal as in the NTG group. On the other hand, both of the KYNA analogues restored the ratio of propagation to the control level. Discussion The ratio of propagation appeared to be the indicator of the effect of NTG. This is the first study providing direct evidence that NTG influences CSD; furthermore, we observed different effects of sumatriptan and KYNA analogues. Sumatriptan changed the generation of CSDs, whereas the analogues acted on the propagation of the waves. Our experimental design overlaps with a large spectrum of processes present in migraine pathophysiology, and it can be a useful experimental model for drug screening.
Collapse
Affiliation(s)
- Levente Knapp
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged
| | - Bence Szita
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged
| | - Kitti Kocsis
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged; MTA-SZTE Neuroscience Research Group
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group; Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged; MTA-SZTE Neuroscience Research Group
| |
Collapse
|
20
|
Kynurenine Aminotransferase Isozyme Inhibitors: A Review. Int J Mol Sci 2016; 17:ijms17060946. [PMID: 27314340 PMCID: PMC4926479 DOI: 10.3390/ijms17060946] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022] Open
Abstract
Kynurenine aminotransferase isozymes (KATs 1–4) are members of the pyridoxal-5’-phosphate (PLP)-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN) to kynurenic acid (KYNA), a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS) diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70%) in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies.
Collapse
|
21
|
Curto M, Lionetto L, Negro A, Capi M, Fazio F, Giamberardino MA, Simmaco M, Nicoletti F, Martelletti P. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J Headache Pain 2016; 17:47. [PMID: 27130315 PMCID: PMC4851673 DOI: 10.1186/s10194-016-0638-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Activation of glutamate (Glu) receptors plays a key role in the pathophysiology of migraine. Both NMDA and metabotropic Glu receptors are activated or inhibited by metabolites of the kynurenine pathway, such as kynureninic acid (KYNA), quinolinic acid (QUINA), and xanthurenic acid (XA). In spite of the extensive research carried out on KYNA and other kynurenine metabolites in experimental models of migraine, no studies have ever been carried out in humans. Here, we measured all metabolites of the kynurenine pathway in the serum of patients affected by chronic migraine (CM) and age- and gender-matched healthy controls. Methods We assessed serum levels of tryptophan (Trp), L-kynurenine (KYN), KYNA, anthranilic acid (ANA), 3-hydroxyanthranilic acid (3-HANA), 3-hydroxykynirenine (3-HK), XA, QUINA, and 5-hydroxyindolacetic acid (5-HIAA) in 119 patients affected by CM (ICHD-3beta criteria) and 84 age-matched healthy subjects. Patients with psychiatric co-morbidities, systemic inflammatory, endocrine or neurological disorders, and mental retardation were excluded. Serum levels of all metabolites were assayed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Results LC-MS/MS analysis of kynurenine metabolites showed significant reductions in the levels of KYN (−32 %), KYNA (−25 %), 3-HK (−49 %), 3-HANA (−63 %), 5-HIAA (−36 %) and QUINA (−80 %) in the serum of the CM patients, as compared to healthy controls. Conversely, levels of Trp, ANA and XA were significantly increased in CM patients (+5 %, +339 % and +28 %, respectively). Conclusions These findings suggest that in migraine KYN is unidirectionally metabolized into ANA at expenses of KYNA and 3-HK. The reduction in the levels of KYNA, which behaves as a competitive antagonist of the glycine site of NMDA receptors, is consistent with the hypothesis that NMDA receptors are overactive in migraine. The increase in XA, a putative activator of Glu2 receptors, may represent a compensatory event aimed at reinforcing endogenous analgesic mechanisms. The large increase in the levels of ANA encourages research aimed at establishing whether ANA has any role in the regulation of nociceptive transmission.
Collapse
Affiliation(s)
- Martina Curto
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University, Via di Grottarossa 1035-1039, Rome, 00189, Italy.
| | | | - Andrea Negro
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University, Via di Grottarossa 1035-1039, Rome, 00189, Italy.,Regional referral headache center, Sant'Andrea Hospital, Rome, Italy
| | - Matilde Capi
- Advanced Molecular Diagnostics, IDI-IRCSS, Rome, Italy
| | | | - Maria Adele Giamberardino
- Headache Center and Geriatrics Clinic, Department of Medicine and Science of Aging, "G. D'Annunzio" University, Chieti, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University, Via di Grottarossa 1035-1039, Rome, 00189, Italy.,Regional referral headache center, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
22
|
Curto M, Lionetto L, Fazio F, Mitsikostas DD, Martelletti P. Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important. Intern Emerg Med 2015; 10:413-21. [PMID: 25708356 DOI: 10.1007/s11739-015-1208-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
Abstract
Kynurenine pathway, the quantitatively main branch of tryptophan metabolism, has been long been considered a source of nicotinamide adenine dinucleotide, although several of its products, the so-called kynurenines, are endowed with the capacity to activate glutamate receptors, thus potentially influencing a large group of functions in the central nervous system (CNS). Migraine, a largely unknown pathology, is strictly related to the glutamate system in the CNS pathologic terms. Despite the large number of studies conducted on migraine etio-pathology, the kynurenine pathway has been only recently linked to this disease. Nonetheless, some evidence suggests an intriguing role for some kynurenines, and an exploratory study on the serum kynurenine level might be helpful to better understand possible alterations of the kynurenine pathway in patients suffering from migraine.
Collapse
Affiliation(s)
- Martina Curto
- Psychiatric Unit, Neurosciences, Mental Health and Sensory Organs (NESMOS) Department, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|