1
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
3
|
Liang L, Deng Y, Ao Z, Liao C, Tian J, Li C, Yu X. Recent progress in biomimetic nanomedicines based on versatile targeting strategy for atherosclerosis therapy. J Drug Target 2024; 32:606-623. [PMID: 38656224 DOI: 10.1080/1061186x.2024.2347353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis (AS) is considered to be one of the major causes of cardiovascular disease. Its pathological microenvironment is characterised by increased production of reactive oxygen species, lipid oxides, and excessive inflammatory factors, which accumulate at the monolayer endothelial cells in the vascular wall to form AS plaques. Therefore, intervention in the pathological microenvironment would be beneficial in delaying AS. Researchers have designed biomimetic nanomedicines with excellent biocompatibility and the ability to avoid being cleared by the immune system through different therapeutic strategies to achieve better therapeutic effects for the characteristics of AS. Biomimetic nanomedicines can further enhance delivery efficiency and improve treatment efficacy due to their good biocompatibility and ability to evade clearance by the immune system. Biomimetic nanomedicines based on therapeutic strategies such as neutralising inflammatory factors, ROS scavengers, lipid clearance and integration of diagnosis and treatment are versatile approaches for effective treatment of AS. The review firstly summarises the targeting therapeutic strategy of biomimetic nanomedicine for AS in recent 5 years. Biomimetic nanomedicines using cell membranes, proteins, and extracellular vesicles as carriers have been developed for AS.
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People's Hospital, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Changli Liao
- Science and Technology Department, Southwest Medical University, Luzhou, Sichuan, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Abo Qoura L, Balakin KV, Hoffman RM, Pokrovsky VS. The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189122. [PMID: 38796027 DOI: 10.1016/j.bbcan.2024.189122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Cancer cells are addicted to L-methionine (L-Met) and have a much greater requirement for L-Met than normal cells due to excess transmethylation, termed the Hoffman effect. By targeting this vulnerability through dietary restriction of L-Met, researchers have been able to achieve promising results in inhibiting tumor growth and eradicating cancer cells. Methioninase (EC 4.4.1.11; METase) catalyzes the transformation of L-Met into α-ketobutyrate, ammonia, and methanethiol. The use of METase was initially limited due to its poor stability in vivo, high immunogenicity, and enzyme-induced inactivating antibodies. These issues could be partially resolved by PEGylation, encapsulation in erythrocytes, and various site-directed mutagenesis. The big breakthrough came when it was discovered that METase is effectively administered orally. The enzyme L-asparaginase is approved by the FDA for treatment of acute lymphoblastic leukemia. METase has more potential as a therapeutic since addiction to L-Met is a general and fundamental hallmark of cancer.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA; Department of Surgery, University of California, San Diego, La Jolla, CA 92037-7400, USA
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia.
| |
Collapse
|
5
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
6
|
Berikkhanova K, Taigulov E, Bokebaev Z, Kusainov A, Tanysheva G, Yedrissov A, Seredin G, Baltabayeva T, Zhumadilov Z. Drug-loaded erythrocytes: Modern approaches for advanced drug delivery for clinical use. Heliyon 2024; 10:e23451. [PMID: 38192824 PMCID: PMC10772586 DOI: 10.1016/j.heliyon.2023.e23451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Scientific organizations worldwide are striving to create drug delivery systems that provide a high local concentration of a drug in pathological tissue without side effects on healthy organs in the body. Important physiological properties of red blood cells (RBCs), such as frequent renewal ability, good oxygen carrying ability, unique shape and membrane flexibility, allow them to be used as natural carriers of drugs in the body. Erythrocyte carriers derived from autologous blood are even more promising drug delivery systems due to their immunogenic compatibility, safety, natural uniqueness, simple preparation, biodegradability and convenience of use in clinical practice. This review is focused on the achievements in the clinical application of targeted drug delivery systems based on osmotic methods of loading RBCs, with an emphasis on advancements in their industrial production. This article describes the basic methods used for encapsulating drugs into erythrocytes, key strategic approaches to the clinical use of drug-loaded erythrocytes obtained by hypotonic hemolysis. Moreover, clinical trials of erythrocyte carriers for the targeted delivery are discussed. This article explores the recent advancements and engineering approaches employed in the encapsulation of erythrocytes through hypotonic hemolysis methods, as well as the most promising inventions in this field. There is currently a shortage of reviews focused on the automation of drug loading into RBCs; therefore, our work fills this gap. Finally, further prospects for the development of engineering and technological solutions for the automatic production of drug-loaded RBCs were studied. Automated devices have the potential to provide the widespread production of RBC-encapsulated therapeutic drugs and optimize the process of targeted drug delivery in the body. Furthermore, they can expedite the widespread introduction of this innovative treatment method into clinical practice, thereby significantly expanding the effectiveness of treatment in both surgery and all areas of medicine.
Collapse
Affiliation(s)
- Kulzhan Berikkhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Erlan Taigulov
- University Medical Center, Nazarbayev University, Astana, 010000, Kazakhstan
- Astana Medical University, Astana, 010000, Kazakhstan
| | - Zhanybek Bokebaev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
- Astana Medical University, Astana, 010000, Kazakhstan
| | - Aidar Kusainov
- Semey State Medical University, Semey, 071400, Kazakhstan
| | | | - Azamat Yedrissov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - German Seredin
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Tolkyn Baltabayeva
- Scientific-Production Center of Transfusiology, Astana, 010000, Kazakhstan
| | - Zhaxybay Zhumadilov
- Departament of Surgery, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| |
Collapse
|
7
|
Yu B, Liu Y, Zhang Y, Xu L, Jin K, Sun A, Zhao X, Wang Y, Liu H. An SS31-rapamycin conjugate via RBC hitchhiking for reversing acute kidney injury. Biomaterials 2023; 303:122383. [PMID: 37939640 DOI: 10.1016/j.biomaterials.2023.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dysfunction plays a major role in driving acute kidney injury (AKI) via alteration in energy and oxygen supply, which creates further ROS and inflammatory responses. However, mitochondrial targeting medicine in recovering AKI is challenging. Herein, we conjugated SS31, a mitochondria-targeted antioxidant tetrapeptide connecting a cleavable linker to rapamycin (Rapa), which provided specific interaction with FK506-binding protein (FKBP) in the RBCs. Once entering the bloodstream, SS31-Rapa could be directed to the intracellular space of RBCs, allowing the slow diffusion of the conjugate to tissues via the concentration gradient. The new RBC hitchhiking strategy enables the encapsulation of conjugate into RBC via a less traumatic and more natural and permissive manner, resulting in prolonging the t1/2 of SS31 by 6.9 folds. SS31-Rapa underwent the direct cellular uptake, instead of the lysosomal pathway, released SS31 in response to activated caspase-3 stimulation in apoptotic cells, favoring the mitochondrial accumulation of SS31. Combined with autophagy induction associated with Rapa, a single dose of SS31-Rapa can effectively reverse cisplatin and ischemia reperfusion-induced AKI. This work thus highlights a simple and effective RBC hitchhiking strategy and a clinically translatable platform technology to improve the outcome of other mitochondrial dysfunctional related diseases.
Collapse
Affiliation(s)
- Bohong Yu
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yubo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Kai Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Andi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Xiuli Zhao
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| |
Collapse
|
8
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
9
|
Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1846. [PMID: 35979879 PMCID: PMC9938089 DOI: 10.1002/wnan.1846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Chemotherapeutic treatment with conventional drug formulations pose numerous challenges, such as poor solubility, high cytotoxicity and serious off-target side effects, low bioavailability, and ultimately subtherapeutic tumoral concentration leading to poor therapeutic outcomes. In the field of Nanomedicine, advances in nanotechnology have been applied with great success to design and develop novel nanoparticle-based formulations for the treatment of various types of cancer. The approval of the first nanomedicine, Doxil® (liposomal doxorubicin) in 1995, paved the path for further development for various types of novel delivery platforms. Several different types of nanoparticles, especially organic (soft) nanoparticles (liposomes, polymeric micelles, and albumin-bound nanoparticles), have been developed and approved for several anticancer drugs. Nanoparticulate drug delivery platform have facilitated to overcome of these challenges and offered key advantages of improved bioavailability, higher intra-tumoral concentration of the drug, reduced toxicity, and improved efficacy. This review introduces various commonly used nanoparticulate systems in biomedical research and their pharmacokinetic (PK) attributes, then focuses on the various physicochemical and physiological factors affecting the in vivo disposition of chemotherapeutic agents encapsulated in nanoparticles in recent years. Further, it provides a review of the current landscape of soft nanoparticulate formulations for the two most widely investigated anticancer drugs, paclitaxel, and doxorubicin, that are either approved or under investigation. Formulation details, PK profiles, and therapeutic outcomes of these novel strategies have been discussed individually and in comparison, to traditional formulations. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mahua Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Yang Wang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
10
|
Zheng J, Lu C, Yang M, Sun J, Zhang J, Meng Y, Wang Y, Li Z, Yang Y, Gong W, Gao C. Lung-Targeted Delivery of Cepharanthine by an Erythrocyte-Anchoring Strategy for the Treatment of Acute Lung Injury. Pharmaceutics 2022; 14:pharmaceutics14091820. [PMID: 36145566 PMCID: PMC9505324 DOI: 10.3390/pharmaceutics14091820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
As one of the most frequent complications of critical illness, acute lung injury (ALI) carries a high risk of clinical morbidity and mortality. Cepharanthine (CPA) has significant anti-inflammatory activity, however, due to poor water solubility, low bioavailability, and short half-life, it fails to provide effective clinical management measures. Here, we explored the flexibility of an erythrocyte-anchoring strategy using CPA-encapsulated chitosan-coating nanoparticles (CPA-CNPs) anchored onto circulating erythrocytes for the treatment of ALI. CPA-CNPs adhered to erythrocytes successfully (E-CPA-CNPs) and exhibited high erythrocyte adhesion efficiency (>80%). Limited toxicity and favorable biocompatibility enabled further application of E-CPA-CNPs. Next, the reticuloendothelial system evasion features were analyzed in RAW264.7 macrophages and Sprague-Dawley rats. Compared with bare CPA-CNPs, erythrocyte-anchored CNPs significantly decreased cellular uptake in immune cells and prolonged circulation time in vivo. Notably, the erythrocyte-anchoring strategy enabled CNPs to be delivered and accumulated in the lungs (up to 6-fold). In the ALI mouse model, E-CPA-CNPs attenuated the progression of ALI by inhibiting inflammatory responses. Overall, our results demonstrate the outstanding advantages of erythrocyte-anchored CPA-CNPs in improving the pharmacokinetics and bioavailability of CPA, which offers great promise for a lung-targeted drug delivery system for the effective treatment of ALI.
Collapse
Affiliation(s)
- Jinpeng Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Caihong Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (M.Y.); (C.G.)
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jinbang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- College of Pharmacy, Henan University, Kaifeng 475000, China
| | - Yuanyuan Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (M.Y.); (C.G.)
| |
Collapse
|
11
|
Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022; 12:3028-3048. [PMID: 35865096 PMCID: PMC9293719 DOI: 10.1016/j.apsb.2022.02.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Compared with traditional drug therapy, nanomedicines exhibit intriguing biological features to increase therapeutic efficiency, reduce toxicity and achieve targeting delivery. This review provides a snapshot of nanomedicines that have been currently launched or in the clinical trials, which manifests a diversified trend in carrier types, applied indications and mechanisms of action. From the perspective of indications, this article presents an overview of the applications of nanomedicines involving the prevention, diagnosis and treatment of various diseases, which include cancer, infections, blood disorders, cardiovascular diseases, immuno-associated diseases and nervous system diseases, etc. Moreover, the review provides some considerations and perspectives in the research and development of nanomedicines to facilitate their translations in clinic.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Jingyuan Wen
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Zywot EM, Orlova N, Ding S, Rampersad RR, Rabjohns EM, Wickenheisser VA, Wang Q, Welfare JG, Haar L, Eudy AM, Tarrant TK, Lawrence DS. Light-Triggered Drug Release from Red Blood Cells Suppresses Arthritic Inflammation. ADVANCED THERAPEUTICS 2022; 5:2100159. [PMID: 35528736 PMCID: PMC9075171 DOI: 10.1002/adtp.202100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Arthritis is a leading cause of disability in adults, which can be intensely incapacitating. The location and intensity of the pain is both subjective and challenging to manage. Consequently, patient-directed delivery of anti-inflammatories is an essential component of future therapeutic strategies for the management of this disorder. We describe the design and application of a light responsive red blood cell (RBC) conveyed dexamethasone (Dex) construct that enables targeted drug delivery upon illumination of the inflamed site. The red wavelength (650 nm) responsive nature of the phototherapeutic was validated using tissue phantoms mimicking the light absorbing properties of various skin types. Furthermore, photoreleased Dex has the same impact on cellular responses as conventional Dex. Murine RBCs containing the photoactivatable therapeutic display comparable circulation properties as fluorescently labelled RBCs. In addition, a single dose of light-targeted Dex delivery is 5-fold more effective in suppressing inflammation than the parent drug, delivered serially over multiple days. These results are consistent with the notion that the circulatory system be used as an on-command drug depot, providing the means to therapeutically target diseased sites both efficiently and effectively.
Collapse
Affiliation(s)
- Emilia M Zywot
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalia Orlova
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Song Ding
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rishi R Rampersad
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Emily M Rabjohns
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Victoria A Wickenheisser
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Qunzhao Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua G Welfare
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Haar
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amanda M Eudy
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M, Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279:121202. [PMID: 34749072 DOI: 10.1016/j.biomaterials.2021.121202] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Red blood cells (RBCs) are biocompatible carriers that can be employed to deliver different bioactive substances. In the past few decades, many strategies have been developed to encapsulate or attach drugs to RBCs. Osmotic-based encapsulation methods have been industrialized recently, and some encapsulated RBC formulations have reached the clinical stage for treating tumors and neurological diseases. Inspired by the intrinsic properties of intact RBCs, some advanced delivery strategies have also been proposed. These delivery systems combine RBCs with other novel systems to further exploit and expand the application of RBCs. This review summarizes the clinical progress of drugs encapsulated into intact RBCs, focusing on the loading and clinical trials. It also introduces the latest advanced research based on developing prospects and limitations of intact RBCs drug delivery system (DDS), hoping to provide a reference for related research fields and further application potential of intact RBCs based drug delivery system.
Collapse
Affiliation(s)
- Yichen Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yuhao Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yiqi Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Ruonan Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Mengyuan Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Weien Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Y Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - F Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - R Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - W Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - J Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
15
|
Robert M, Laperrousaz B, Piedrahita D, Gautier EF, Nemkov T, Dupuy F, Nader E, Salnot V, Mayeux P, D'Alessandro A, Lavazec C, Joly P, Scheer A, Connes P, Cibiel A. Multiparametric characterization of red blood cell physiology after hypotonic dialysis based drug encapsulation process. Acta Pharm Sin B 2021; 12:2089-2102. [PMID: 35847505 PMCID: PMC9279626 DOI: 10.1016/j.apsb.2021.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Red blood cells (RBCs) can act as carriers for therapeutic agents and can substantially improve the safety, pharmacokinetics, and pharmacodynamics of many drugs. Maintaining RBCs integrity and lifespan is important for the efficacy of RBCs as drug carrier. We investigated the impact of drug encapsulation by hypotonic dialysis on RBCs physiology and integrity. Several parameters were compared between processed RBCs loaded with l-asparaginase (“eryaspase”), processed RBCs without drug and non-processed RBCs. Processed RBCs were less hydrated and displayed a reduction of intracellular content. We observed a change in the metabolomic but not in the proteomic profile of processed RBCs. Encapsulation process caused moderate morphological changes and was accompanied by an increase of RBCs-derived Extracellular Vesicles release. Despite a decrease in deformability, processed RBCs were not mechanically retained in a spleen-mimicking device and had increased surface-to-volume ratio and osmotic resistance. Processed RBCs half-life was not significantly affected in a mouse model and our previous phase 1 clinical study showed that encapsulation of asparaginase in RBCs prolonged its in vivo half-life compared to free forms. Our study demonstrated that encapsulation by hypotonic dialysis may affect certain characteristics of RBCs but does not significantly affect the in vivo longevity of RBCs or their drug carrier function.
Collapse
|
16
|
Harmand TJ, Pishesha N, Rehm FBH, Ma W, Pinney WB, Xie YJ, Ploegh HL. Asparaginyl Ligase-Catalyzed One-Step Cell Surface Modification of Red Blood Cells. ACS Chem Biol 2021; 16:1201-1207. [PMID: 34129316 DOI: 10.1021/acschembio.1c00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Red blood cells (RBCs) can serve as vascular carriers for drugs, proteins, peptides, and nanoparticles. Human RBCs remain in the circulation for ∼120 days, are biocompatible, and are immunologically largely inert. RBCs are cleared by the reticuloendothelial system and can induce immune tolerance to foreign components attached to the RBC surface. RBC conjugates have been pursued in clinical trials to treat cancers and autoimmune diseases and to correct genetic disorders. Still, most methods used to modify RBCs require multiple steps, are resource-intensive and time-consuming, and increase the risk of inflicting damage to the RBCs. Here, we describe direct conjugation of peptides and proteins onto the surface of RBCs in a single step, catalyzed by a highly efficient, recombinant asparaginyl ligase under mild, physiological conditions. In mice, the modified RBCs remain intact in the circulation, display a normal circulatory half-life, and retain their immune tolerance-inducing properties, as shown for protection against an accelerated model for type 1 diabetes. We conjugated different nanobodies to RBCs with retention of their binding properties, and these modified RBCs can target cancer cells in vitro. This approach provides an appealing alternative to current methods of RBC engineering. It provides ready access to more complex RBC constructs and highlights the general utility of asparaginyl ligases for the modification of native cell surfaces.
Collapse
Affiliation(s)
- Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Fabian B H Rehm
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weiyi Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - William B Pinney
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Yushu J Xie
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| |
Collapse
|
17
|
Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021; 23:225-248. [PMID: 33788581 PMCID: PMC8277719 DOI: 10.1146/annurev-bioeng-121219-024239] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.
Collapse
Affiliation(s)
- Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Vladimir R Muzykantov
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
18
|
Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: strategies and applications. Acta Pharmacol Sin 2021; 42:1040-1054. [PMID: 33772141 DOI: 10.1038/s41401-020-00606-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/27/2020] [Indexed: 12/12/2022] Open
Abstract
Nano drug-delivery systems (DDS) may significantly improve efficiency and reduce toxicity of loaded drugs, but a few nano-DDS are highly successful in clinical use. Unprotected nanoparticles in blood flow are often quickly cleared, which could limit their circulation time and drug delivery efficiency. Elongating their blood circulation time may improve their delivery efficiency or grant them new therapeutic possibilities. Erythrocytes are abundant endogenous cells in blood and are continuously renewed, with a long life span of 100-120 days. Hence, loading nanoparticles on the surface of erythrocytes to protect the nanoparticles could be highly effective for enhancing their in vivo circulation time. One of the key questions here is how to properly attach nanoparticles on erythrocytes for different purposes and different types of nanoparticles to achieve ideal results. In this review, we describe various methods to attach nanoparticles and drugs to the erythrocyte surface, and discuss the key factors that influence the stability and circulation properties of the erythrocytes-based delivery system in vivo. These data show that using erythrocytes as a host for nanoparticles possesses great potential for further development.
Collapse
|
19
|
Della Pelle G, Kostevšek N. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. Int J Mol Sci 2021; 22:5264. [PMID: 34067699 PMCID: PMC8156122 DOI: 10.3390/ijms22105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has the potential to become a staple of 21st-century medicine. However, to overcome the limitations of existing gene-delivery therapies, that is, poor stability and inefficient and delivery and accumulation of nucleic acids (NAs), safe drug-delivery systems (DDSs) allowing the prolonged circulation and expression of the administered genes in vivo are needed. In this review article, the development of DDSs over the past 70 years is briefly described. Since synthetic DDSs can be recognized and eliminated as foreign substances by the immune system, new approaches must be found. Using the body's own cells as DDSs is a unique and exciting strategy and can be used in a completely new way to overcome the critical limitations of existing drug-delivery approaches. Among the different circulatory cells, red blood cells (RBCs) are the most abundant and thus can be isolated in sufficiently large quantities to decrease the complexity and cost of the treatment compared to other cell-based carriers. Therefore, in the second part, this article describes 70 years of research on the development of RBCs as DDSs, covering the most important RBC properties and loading methods. In the third part, it focuses on RBCs as the NA delivery system with advantages and drawbacks discussed to decide whether they are suitable for NA delivery in vivo.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
20
|
Javed S, Alshehri S, Shoaib A, Ahsan W, Sultan MH, Alqahtani SS, Kazi M, Shakeel F. Chronicles of Nanoerythrosomes: An Erythrocyte-Based Biomimetic Smart Drug Delivery System as a Therapeutic and Diagnostic Tool in Cancer Therapy. Pharmaceutics 2021; 13:368. [PMID: 33802156 PMCID: PMC7998655 DOI: 10.3390/pharmaceutics13030368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Saad Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| |
Collapse
|
21
|
Vickerman B, O’Banion CP, Tan X, Lawrence DS. Light-Controlled Release of Therapeutic Proteins from Red Blood Cells. ACS CENTRAL SCIENCE 2021; 7:93-103. [PMID: 33532572 PMCID: PMC7844852 DOI: 10.1021/acscentsci.0c01151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/09/2023]
Abstract
Protein therapeutics are a powerful class of drugs known for their selectivity and potency. However, the potential efficacy of these therapeutics is commonly offset by short circulatory half-lives and undesired action at otherwise healthy tissue. We describe herein a targeted protein delivery system that employs engineered red blood cells (RBCs) as carriers and light as the external trigger that promotes hemolysis and drug release. RBCs internally loaded with therapeutic proteins are readily surface modified with a dormant hemolytic peptide. The latter is activated via easily assigned wavelengths that extend into the optical window of tissue. We have demonstrated that photorelease transpires with spatiotemporal control and that the liberated proteins display the anticipated biological effects in vitro. Furthermore, we have confirmed targeted delivery of a clot-inducing enzyme in a mouse model. Finally, we anticipate that this strategy is not limited to RBC carriers but also should be applicable to nano- and microtransporters comprised of bilayer lipid membranes.
Collapse
Affiliation(s)
- Brianna
M. Vickerman
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Colin P. O’Banion
- Division
of Chemical Biology and Medicinal Chemistry, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xianming Tan
- Department
of Biostatistics, Lineberger Comprehensive Cancer, Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David. S. Lawrence
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Division
of Chemical Biology and Medicinal Chemistry, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Pharmacology and Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Shende P, Trivedi R. Biofluidic material-based carriers: Potential systems for crossing cellular barriers. J Control Release 2021; 329:858-870. [PMID: 33053397 DOI: 10.1016/j.jconrel.2020.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
Biofluids act as a repository for disease biomarkers and are excellent diagnostic tools applied in establishing a disease profile based on clinical testing, evaluation and monitoring the progression of patients suffering from various conditions. Furthermore, biofluids and their derived components such proteins, pigments, enzymes, hormones and cells carry a potential in the development of therapeutic drug delivery systems or as cargo materials for targeting the drug to the site of action. The presence of biofluids with respect to their specific location reveals the information of disease progression and mechanism, delivery aspects such as routes of administration as well as pharmacological factors such as binding affinity, rate of kinetics, efficacy, bioavailability and patient compliance. This review focuses on the properties and functional benefits of some biofluids, namely blood, saliva, bile, urine, amniotic fluid, synovial fluid and cerebrospinal fluid. It also covers the therapeutic and targeting action of fluid-derived substances in various micro- or nano-systems like nanohybrids, nanoparticles, self-assembled micelles, microparticles, cell-based systems, etc. The formulation of such biologically-oriented systems demonstrate the advantages of natural origin, biocompatibility and biodegradability and offer new techniques for overcoming the challenges experienced in conventional therapies.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India..
| | - Riddhi Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
23
|
Darki L, Jalali-Sohi A, Beydoun SR. Polyneuropathy Reveals Origins of Decade-long Gastrointestinal Symptoms in a Patient With Undiagnosed Mitochondrial Neurogastrointestinal Encephalopathy Caused by a Novel Mutation. J Clin Neuromuscul Dis 2020; 22:97-102. [PMID: 33214395 DOI: 10.1097/cnd.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare autosomal recessive disease that manifests with multiorgan presentation characterized by gastrointestinal, extraocular, and both peripheral and central nervous system involvement. MNGIE is caused by mutation in the TYMP (thymidine phosphorylase) gene, resulting in loss of thymidine phosphorylase enzyme activity. This causes its substrates, thymidine and deoxyuridine, to accumulate in tissues and plasma, while also causing secondary alterations in mitochondrial DNA. To date, more than 80 mutations have been reported in this gene. We present herein the clinical, neuroimaging, electrodiagnostic, and molecular findings of a patient with MNGIE caused by a novel homozygous missense mutation (C1175T > G) of the TYMP gene.
Collapse
Affiliation(s)
- Leila Darki
- *Department of Neurology, Neuromuscular Division, Keck Medicine of the University of Southern California, Los Angeles, CA; and
- Department of Neurology, University of Southern California Keck Medicine
| | - Arash Jalali-Sohi
- *Department of Neurology, Neuromuscular Division, Keck Medicine of the University of Southern California, Los Angeles, CA; and
- Department of Neurology, University of Southern California Keck Medicine
| | - Said R Beydoun
- *Department of Neurology, Neuromuscular Division, Keck Medicine of the University of Southern California, Los Angeles, CA; and
- Department of Neurology, University of Southern California Keck Medicine
| |
Collapse
|
24
|
Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K 1. Int J Pharm 2020; 592:120084. [PMID: 33188893 DOI: 10.1016/j.ijpharm.2020.120084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/13/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Nanocarriers have been extensively applied for intravascular drug delivery. However, rapid clearance from circulation by mononuclear phagocyte system has limited their applications. Erythrocytes carriers are potential solutions to overcome the limitations of nanocarriers and considered to be ideal natural carriers for drug delivery because of their unique properties. The purpose of this work is to combine nanocarriers with erythrocytes carriers for sustained release and prolonged circulation time of vitamin K1. Chitosan nanoparticles loading VK1 (VK-CSNPs) were prepared using ionotropic gelation method, which was optimized using box-behnken design and response surface methodology. VK-CSNPs adsorbed onto red blood cells (RBC-VK-CSNPs) rapidly via electrostatic interactions. The exposure of phosphatidylserine, osmotic fragility and turbulence fragility of RBC loading nanoparticles were investigated to study the toxicity of nanoparticles to erythrocytes. In vivo pharmacokinetic study indicated that Cmax, AUC and MRT of RBC-VK-CSNPs group were remarkably higher than that of VK-CSNPs group. Flow cytometry showed VK-CSNPs steadily retained on the surface of RBC for a long time without affecting the circulation profiles of RBC themselves. The nanoparticles carried on RBC released drug, desorbed and were eliminated in vivo. Therefore, the circulation time of RBC-hitchhiking chitosan nanoparticles was greatly prolonged compared with nanoparticles alone. RBC-hitchhiking could be a valuable hybrid strategy for prolonging the in vivo life of nanocarriers.
Collapse
|
25
|
Kumar R, Katwal S, Sharma B, Sharma A, Puri S, Kamboj N, Kanwar SS. Purification, characterization and cytotoxic properties of a bacterial RNase. Int J Biol Macromol 2020; 166:665-676. [PMID: 33137384 DOI: 10.1016/j.ijbiomac.2020.10.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
An RNase produced by Bacillus safensis RB-5 was purified up to 22.32-fold by successive techniques of salting out, DEAE-anion exchange and gel permeation (Sephadex G-100) chromatography techniques with a yield of 2.27%. The purified RNase possessed a single band in SDS-PAGE (Mr ~ 60 kDa). The purified RNase showed optimal activity at temperature of 37 °C and pH 7.5 in the presence of substrate (Yeast RNA) and Mg2+ ions. The RNase activity was strongly inhibited by Hg2+ and mildly by Fe2+, Ba2+ and Zn2+ ions. Its half-life was found to be 8 h at 37 °C. The RNase kinetics study showed Km and Vmax value of 0.3 mM and 9.2 μmol/mg/min, respectively. The purified RNase also showed cytotoxic and antiproliferative activities towards a few transformed cell lines. The purified RNase (IC50 0.035 U/mL) effectively inhibited RD and Hep-2C cells proliferation & migration, while sparing HEK 293 cells. The purified RNase was cytotoxic as well as effective degrader of the RNA of transformed RD cells at low concentration. Moreover, the purified RNase of B. safensis RB-5 was found to possess a little hemolytic activity towards human RBCs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sunita Katwal
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Bhupender Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sanjeev Puri
- Stem Cells & Tissue Engineering Division, University Institute of Engineering & Technology, Punjab University, Chandigarh 160 014, India
| | - Nidhi Kamboj
- Stem Cells & Tissue Engineering Division, University Institute of Engineering & Technology, Punjab University, Chandigarh 160 014, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India.
| |
Collapse
|
26
|
Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc Natl Acad Sci U S A 2020; 117:17727-17736. [PMID: 32665441 DOI: 10.1073/pnas.2002880117] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Erythrocytes naturally capture certain bacterial pathogens in circulation, kill them through oxidative stress, and present them to the antigen-presenting cells (APCs) in the spleen. By leveraging this innate immune function of erythrocytes, we developed erythrocyte-driven immune targeting (EDIT), which presents nanoparticles from the surface of erythrocytes to the APCs in the spleen. Antigenic nanoparticles were adsorbed on the erythrocyte surface. By engineering the number density of adsorbed nanoparticles, (i.e., the number of nanoparticles loaded per erythrocyte), they were predominantly delivered to the spleen rather than lungs, which is conventionally the target of erythrocyte-mediated delivery systems. Presentation of erythrocyte-delivered nanoparticles to the spleen led to improved antibody response against the antigen, higher central memory T cell response, and lower regulatory T cell response, compared with controls. Enhanced immune response slowed down tumor progression in a prophylaxis model. These findings suggest that EDIT is an effective strategy to enhance systemic immunity.
Collapse
|
27
|
Yoshikawa N, Yokota T, Matsuo A, Matsumoto N, Iwakiri T, Ikeda R. Role of FK506 Binding Protein on Tacrolimus Distribution in Red Blood Cells. Pharm Res 2020; 37:143. [PMID: 32661607 DOI: 10.1007/s11095-020-02875-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Tacrolimus is distributed mainly in red blood cells (RBCs) after transfer into blood. This study aimed to evaluate the effect of FK506-binding proteins (FKBPs) on RBC distribution of tacrolimus in a physiological environment. METHODS Human RBCs were isolated from fresh blood samples from healthy volunteers. The effect of FKBPs on each process of the RBC distribution of tacrolimus was evaluated in vitro. Effect of intracellular FKBPs was assessed by inhibition experiment with rapamycin, which competitively inhibits the binding of tacrolimus to FKBPs. Effect of extracellular FKBPs was examined by pre-exposure of RBCs to FKBP and preincubation of tacrolimus with FKBP. RESULTS Pretreatment with rapamycin significantly reduced the rate of tacrolimus distribution in RBCs in a concentration-dependent manner. Pre-exposure of RBCs to FKBP12 followed by exposure to tacrolimus significantly decreased tacrolimus distribution in RBCs in a concentration-dependent manner. In addition, preincubation of tacrolimus with FKBP12 significantly reduced the rate of tacrolimus distribution in RBCs. CONCLUSIONS FKBP played an important role in the distribution of tacrolimus in RBCs. The effect of intracellular and extracellular FKBPs on RBC distribution of tacrolimus in circulating blood was substantial. FKBP was shown as a potential biomarker for predicting the pharmacokinetics and pharmacodynamics of tacrolimus.
Collapse
Affiliation(s)
- Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan.
| | - Tsubasa Yokota
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Ayako Matsuo
- Department of Respiratory Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Nobuhiro Matsumoto
- Department of Respiratory Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Tomomi Iwakiri
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| |
Collapse
|
28
|
Rubio-Camacho M, Encinar JA, Martínez-Tomé MJ, Esquembre R, Mateo CR. The Interaction of Temozolomide with Blood Components Suggests the Potential Use of Human Serum Albumin as a Biomimetic Carrier for the Drug. Biomolecules 2020; 10:E1015. [PMID: 32659914 PMCID: PMC7408562 DOI: 10.3390/biom10071015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction of temozolomide (TMZ) (the main chemotherapeutic agent for brain tumors) with blood components has not been studied at the molecular level to date, even though such information is essential in the design of dosage forms for optimal therapy. This work explores the binding of TMZ to human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP), as well as to blood cell-mimicking membrane systems. Absorption and fluorescence experiments with model membranes indicate that TMZ does not penetrate into the lipid bilayer, but binds to the membrane surface with very low affinity. Fluorescence experiments performed with the plasma proteins suggest that in human plasma, most of the bound TMZ is attached to HSA rather than to AGP. This interaction is moderate and likely mediated by hydrogen-bonding and hydrophobic forces, which increase the hydrolytic stability of the drug. These experiments are supported by docking and molecular dynamics simulations, which reveal that TMZ is mainly inserted in the subdomain IIA of HSA, establishing π-stacking interactions with the tryptophan residue. Considering the overexpression of albumin receptors in tumor cells, our results propose that part of the administered TMZ may reach its target bound to plasma albumin and suggest that HSA-based nanocarriers are suitable candidates for designing biomimetic delivery systems that selectively transport TMZ to tumor cells.
Collapse
Affiliation(s)
| | | | | | - Rocío Esquembre
- Instituto e investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), E-03202 Elche, Spain; (M.R.-C.); (J.A.E.); (M.J.M.-T.)
| | - C. Reyes Mateo
- Instituto e investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), E-03202 Elche, Spain; (M.R.-C.); (J.A.E.); (M.J.M.-T.)
| |
Collapse
|
29
|
Bublil EM, Majtan T. Classical homocystinuria: From cystathionine beta-synthase deficiency to novel enzyme therapies. Biochimie 2020; 173:48-56. [DOI: 10.1016/j.biochi.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
|
30
|
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020; 12:E440. [PMID: 32397513 PMCID: PMC7284780 DOI: 10.3390/pharmaceutics12050440] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Red blood cells (RBC) have great potential as drug delivery systems, capable of producing unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery has begun to move out of the academic lab and into industrial drug development. RBC loading with drugs can be performed in several ways-either via encapsulation within the RBC or surface coupling, and either ex vivo or in vivo-depending on the intended application. In this review, we briefly summarize currently used technologies for RBC loading/coupling with an eye on how pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME (absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated drugs and address unique features of RBC pharmacokinetics. As thorough understanding of pharmacokinetics is critical in successful translation to the clinic, we expect that this review will provide a jumping off point for further investigations into this area.
Collapse
Affiliation(s)
- Patrick M. Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Carlos H. Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Paige Smith
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alan J. Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| |
Collapse
|
31
|
Bax BE. Erythrocytes as Carriers of Therapeutic Enzymes. Pharmaceutics 2020; 12:E435. [PMID: 32397259 PMCID: PMC7284836 DOI: 10.3390/pharmaceutics12050435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023] Open
Abstract
Therapeutic enzymes are administered for the treatment of a wide variety of diseases. They exert their effects through binding with a high affinity and specificity to disease-causing substrates to catalyze their conversion to a non-noxious product, to induce an advantageous physiological change. However, the metabolic and clinical efficacies of parenterally or intramuscularly administered therapeutic enzymes are very often limited by short circulatory half-lives and hypersensitive and immunogenic reactions. Over the past five decades, the erythrocyte carrier has been extensively studied as a strategy for overcoming these limitations and increasing therapeutic efficacy. This review examines the rationale for the different therapeutic strategies that have been applied to erythrocyte-mediated enzyme therapy. These strategies include their application as circulating bioreactors, targeting the monocyte-macrophage system, the coupling of enzymes to the surface of the erythrocyte and the engineering of CD34+ hematopoietic precursor cells for the expression of therapeutic enzymes. An overview of the diverse biomedical applications for which they have been investigated is also provided, including the detoxification of exogenous chemicals, thrombolytic therapy, enzyme replacement therapy for metabolic diseases and antitumor therapy.
Collapse
Affiliation(s)
- Bridget E Bax
- Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
| |
Collapse
|
32
|
Meinders M, Shoemark D, Dobbe JGG, Streekstra GJ, Frayne J, Toye AM. Expression and Retention of Thymidine Phosphorylase in Cultured Reticulocytes as a Novel Treatment for MNGIE. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:822-830. [PMID: 32368563 PMCID: PMC7191122 DOI: 10.1016/j.omtm.2020.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 11/04/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal metabolic disorder caused by thymidine phosphorylase (TP) deficiency. Successful therapeutic interventions for this disease rely on a means for efficient and long-lasting circulation of the TP enzyme. In this study we exploit lentiviral transduction of hematopoietic stem cells and an erythroid cell line (BEL-A) to generate reticulocytes that contain active TP. Significant loss of overexpressed TP during erythroid differentiation can be reduced by addition of the ubiquitination inhibitor MG132. However, the ubiquitination sites are located in the substrate binding site in human TP, and their removal abolished enzyme activity. Examination of the TP structure and mechanism suggested that these sites are only exposed in the absence of substrate. We show that supplementation of culture media with thymidine during differentiation reduces enzyme degradation, doubling the amount of TP retained in reticulocytes. This study provides proof of principle that therapeutic reticulocytes expressing TP can be generated in vitro and that ubiquitin-mediated degradation can be subverted through masking ubiquitination sites to ensure retention of human TP in reticulocytes following erythroid differentiation.
Collapse
Affiliation(s)
- Marjolein Meinders
- Bristol Synthetic Biology Centre (BrisSynBio), University of Bristol, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol BS8 1TD, UK
| | - Debbie Shoemark
- Bristol Synthetic Biology Centre (BrisSynBio), University of Bristol, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Johannes G G Dobbe
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Geert J Streekstra
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol BS34 7QH, UK
| | - Ashley M Toye
- Bristol Synthetic Biology Centre (BrisSynBio), University of Bristol, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol BS34 7QH, UK
| |
Collapse
|
33
|
Sousa-Junior AA, Mendanha SA, Carrião MS, Capistrano G, Próspero AG, Soares GA, Cintra ER, Santos SFO, Zufelato N, Alonso A, Lima EM, Miranda JRA, Silveira-Lacerda EDP, Cardoso CG, Bakuzis AF. Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study. Mol Pharm 2020; 17:837-851. [PMID: 31977228 DOI: 10.1021/acs.molpharmaceut.9b01094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.
Collapse
Affiliation(s)
| | - Sebastião A Mendanha
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Marcus S Carrião
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Gustavo Capistrano
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - André G Próspero
- Biomagnetism Lab, Physics and Biophysics Department, São Paulo State University, Unesp, Botucatu, São Paulo 18618-000, Brazil
| | - Guilherme A Soares
- Biomagnetism Lab, Physics and Biophysics Department, São Paulo State University, Unesp, Botucatu, São Paulo 18618-000, Brazil
| | - Emílio R Cintra
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás 74605-220, Brazil
| | - Sônia F O Santos
- Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás 74045-155, Brazil
| | - Nicholas Zufelato
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Antônio Alonso
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Eliana M Lima
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás 74605-220, Brazil
| | - José Ricardo A Miranda
- Biomagnetism Lab, Physics and Biophysics Department, São Paulo State University, Unesp, Botucatu, São Paulo 18618-000, Brazil
| | | | - Cléver G Cardoso
- Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás 74045-155, Brazil
| | - Andris F Bakuzis
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
34
|
Biomimetic cellular vectors for enhancing drug delivery to the lungs. Sci Rep 2020; 10:172. [PMID: 31932600 PMCID: PMC6957529 DOI: 10.1038/s41598-019-55909-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/10/2019] [Indexed: 02/01/2023] Open
Abstract
Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.
Collapse
|
35
|
Ji W, Smith PN, Koepsel RR, Andersen JD, Baker SL, Zhang L, Carmali S, Myerson JW, Muzykantov V, Russell AJ. Erythrocytes as carriers of immunoglobulin-based therapeutics. Acta Biomater 2020; 101:422-435. [PMID: 31669698 DOI: 10.1016/j.actbio.2019.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
Abstract
The global and economic success of immunoglobulin-based therapeutics in treating a wide range of diseases has heightened the need to further enhance their efficacy and lifetime while diminishing deleterious side effects. The three most ubiquitous challenges of therapeutic immunoglobulin delivery are their relatively short lifetimes in vivo, the immunologic consequences of soluble antibody-antigen complexes, and the emergence of anti-drug antibodies. We describe the rapid, cell-tolerated chemical engineering of the erythrocyte membrane in order to display any antibody, our model system being the display of anti-Tumor Necrosis Factor (anti-TNFα), on the surface of long-lived red blood cells (RBCs) while masking the antibody's Fc region. We developed four synthetic approaches to generate RBC-Staphylococcal protein A (RBC-SpA) complexes: amino group targeting through N-hydrosuccinidyl ester-functionalized homobifunctional poly(ethylene glycol) (NHS-PEG-NHS), direct thiol group targeting using heterobifunctional NHS-PEG-maleimide (NHS-PEG-MAL), converted thiol targeting using heterobifunctional NHS-PEG-MAL, and click chemistry using heterobifunctional NHS-PEG-azido (NHS-PEG-N3) and NHS-PEG-alkyne (NHS-PEG-alk). The RBC-PEG-SpA complexes were formed within minutes, followed by the attachment of over 105 antibodies per RBC to the accessible RBC-bound SpA via Fc-Protein A coupling. The RBC-PEG-SpA-antibody arrays were shown to be stable for more than 60 days in PBS and for more than 42 days in serum containing buffer. RBC-PEG-SpA-antibody complexes were shown to remove TNFα from physiological buffer and had similar mechanical properties to unmodified RBCs. Out of the four approaches, the converted thiol method provided the most controlled chemistry and construct stability. We are now ideally positioned to determine the long-term in vivo efficacy of chemically membrane-engineered RBCs to remove antigens, like TNFα, from serum. STATEMENT OF SIGNIFICANCE: The global and economic success of immunoglobulin-based therapeutics in treating a wide range of diseases has heightened the need to further enhance their efficacy and lifetime while diminishing deleterious side effects. The three most ubiquitous challenges of therapeutic immunoglobulin delivery are their relatively short lifetimes in vivo, the immunologic consequences of soluble antibody-antigen complexes, and the emergence of anti-drug antibodies. We describe the rapid, cell-tolerated chemical engineering of the erythrocyte membrane to display any antibody, our model system being the display of anti-Tumor Necrosis Factor (anti-TNFα), on the surface of long-lived red blood cells (RBCs) while masking the antibody's Fc region. Conversion of RBCs into therapeutic delivery vehicles, we argue, would enhance the circulation life of immunoglobulin-based therapeutics while simultaneously evading deleterious immune response.
Collapse
Affiliation(s)
- Weihang Ji
- Disruptive Health Technology Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Paige N Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Richard R Koepsel
- Disruptive Health Technology Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Jill D Andersen
- Disruptive Health Technology Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Stefanie L Baker
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Libin Zhang
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Sheiliza Carmali
- Disruptive Health Technology Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Jacob W Myerson
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan J Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
36
|
Zargar SM, Hafshejani DK, Eskandarinia A, Rafienia M, Kharazi AZ. A Review of Controlled Drug Delivery Systems Based on Cells and Cell Membranes. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:181-189. [PMID: 31544058 PMCID: PMC6743242 DOI: 10.4103/jmss.jmss_53_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Novel drug delivery systems have ameliorated drugs’ pharmacokinetics and declined undesired ramifications while led to a better patient compliance by extending the time of release. In fact, although there has been a multitude of encouraging achievements in controlled drug release, the application of micro- and nano-carriers is confronted with some challenges such as rapid clearance and inefficient targeting. In addition, since cell systems can be an appropriate alternative to micro- and nano-particles, they have been used as biological carriers. In general, features such as stable release into blood, slow clearance, efficient targeting, and high biocompatibility are the main properties of cells applied as drug carriers. Furthermore, some cells such as erythrocytes, leukocytes, stem cells, and platelets have been used as release systems. Hence, most common cells that were used as aforementioned release systems are going to be presented in this review article.
Collapse
Affiliation(s)
- Seyed Mohammad Zargar
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Darioush Khodabakhshi Hafshejani
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Eskandarinia
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Shear-Induced Encapsulation into Red Blood Cells: A New Microfluidic Approach to Drug Delivery. Ann Biomed Eng 2019; 48:236-246. [DOI: 10.1007/s10439-019-02342-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
|
38
|
Belén Castillo D, Rodriguez HM. General Approach to Drug Delivery Systems (DDS). BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The field of drug discovery drives to find out efficient, selective, stable and biocompatible new drugs. The purpose of drug delivery systems (DDS) is to reduce the side effects that treatments usually cause to mitigate some diseases, especially cancer. Cancer treatments are usually so strong and invasive that they end up weakening the patient, so the cure became as dangerous as the disease. That is the reason that DDS try to maximize the effectiveness of the drugs administered by wanting them to reach specifically to the area affected by the disease (High specificity). In this regard, the fruitfully use of liposome-, erythrocytes-, nanoparticles- or antibodies-based therapies became a choice for the treatment of a huge range of diseases, due to the biocompatibility that these macromolecular systems present. In the last five years, a broad range of DDS have been developed, and some of them, specifically four ADC´s are approved by the FDA and commercializing. In this work, we summarized the most important approach to DDS obtained through chemical conjugation, highlighting ADC´s like the most promising controlled release systems.
Collapse
|
39
|
Protasov ES, Borsakova DV, Alexandrovich YG, Korotkov AV, Kosenko EA, Butylin AA, Ataullakhanov FI, Sinauridze EI. Erythrocytes as bioreactors to decrease excess ammonium concentration in blood. Sci Rep 2019; 9:1455. [PMID: 30728433 PMCID: PMC6365525 DOI: 10.1038/s41598-018-37828-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Increased blood ammonium concentrations cause neurological complications. Existing drugs are not always sufficiently effective. Alternatively, erythrocytes-bioreactors (EBRs) loaded with enzymes utilizing ammonium, were suggested for ammonium removal from blood. However all they worked only for a short period of time. The reasons for this were not investigated. In this study, EBR mathematical models were developed and analysed based on the reactions of glycolysis and different enzymes utilizing ammonium, which showed that the efficiency and duration of EBRs' functioning could be limited due to low permeability of the cell membrane for some key substrates and products. A new enzyme system including glutamate dehydrogenase and alanine aminotransferase was proposed and realised experimentally, which was not limited by cell membrane permeability for glutamate and α-ketoglutarate due to creating metabolic pathway where these metabolites were produced and consumed cyclically. New bioreactors removed ammonium in vitro at the rate of 1.5 mmol/h × lRBCs (for human bioreactors) and in vivo in a model of hyperammoniemia in mice at the rate of 2.0 mmol/h × lRBCs (for mouse bioreactors), which correlated with model calculations. Experimental studies proved the proposed mathematical models are correct. Mathematical simulation of erythrocyte-bioreactors opens new opportunities for analysing the efficiency of any enzyme included in erythrocytes.
Collapse
Affiliation(s)
- Eugeniy S Protasov
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare, Samory Mashela str., 1, GSP-7, Moscow, 117997, Russia
- Faculty of Physics, Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Kosygina str., 4, Moscow, 119334, Russia
| | - Daria V Borsakova
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare, Samory Mashela str., 1, GSP-7, Moscow, 117997, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Kosygina str., 4, Moscow, 119334, Russia
| | - Yuliya G Alexandrovich
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare, Samory Mashela str., 1, GSP-7, Moscow, 117997, Russia
| | - Anatoliy V Korotkov
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow region, 141701, Russia
| | - Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow region, 142290, Russia
| | - Andrey A Butylin
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare, Samory Mashela str., 1, GSP-7, Moscow, 117997, Russia
- Faculty of Physics, Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Fazoil I Ataullakhanov
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare, Samory Mashela str., 1, GSP-7, Moscow, 117997, Russia
- Faculty of Physics, Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Kosygina str., 4, Moscow, 119334, Russia
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow region, 141701, Russia
| | - Elena I Sinauridze
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare, Samory Mashela str., 1, GSP-7, Moscow, 117997, Russia.
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Kosygina str., 4, Moscow, 119334, Russia.
| |
Collapse
|
40
|
Zelepukin IV, Yaremenko AV, Shipunova VO, Babenyshev AV, Balalaeva IV, Nikitin PI, Deyev SM, Nikitin MP. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. NANOSCALE 2019; 11:1636-1646. [PMID: 30644955 DOI: 10.1039/c8nr07730d] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Delivery of particle-based theranostic agents via their transportation on the surfaces of red blood cells, commonly referred to as RBC-hitchhiking, has historically been developed as a promising strategy for increasing the extremely poor blood circulation lifetime, primarily, of the large-sized sub-micron agents. Here, we show for the first time that RBC-hitchhiking can be extremely efficient for nanoparticle delivery and tumor treatment even in those cases when no circulation prolongation is observed. Specifically, we demonstrate that RBC-hitchhiking of certain small 100 nm particles, unlike that of the conventional sub-micron ones, can boost the delivery of non-targeted particles to lungs up to a record high value of 120-fold (and up to 40% of the injected dose). To achieve this remarkable result, we screened sub-200 nm nanoparticles of different sizes, polymer coatings and ζ-potentials and identified particles with the optimal RBC adsorption/desorption behavior. Furthermore, we demonstrated that such RBC-mediated rerouting of particles to lungs can be used to fight pulmonary metastases of aggressive melanoma B16-F1. Our findings could change the general paradigm of drug delivery for cancer treatment with RBC-hitchhiking. It is not the blood circulation lifetime that is the key factor for nanoparticle efficiency, but rather the complexation of nanoparticles with the RBC. The demonstrated technology could become a valuable tool for development of new strategies based on small nanoparticles for the treatment of aggressive and small-cell types of cancer as well as other lung diseases.
Collapse
Affiliation(s)
- I V Zelepukin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - A V Yaremenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V O Shipunova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - A V Babenyshev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | - I V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Nikitin
- Prokhorov General Physics, Institute of the Russian Academy of Sciences, Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - M P Nikitin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and Prokhorov General Physics, Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Adv 2019; 2:165-176. [PMID: 29365311 DOI: 10.1182/bloodadvances.2017011734] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023] Open
Abstract
Carriage of drugs by red blood cells (RBCs) modulates pharmacokinetics, pharmacodynamics, and immunogenicity. However, optimal targets for attaching therapeutics to human RBCs and adverse effects have not been studied. We engineered nonhuman-primate single-chain antibody fragments (scFvs) directed to human RBCs and fused scFvs with human thrombomodulin (hTM) as a representative biotherapeutic cargo (hTM-scFv). Binding fusions to RBCs on band 3/glycophorin A (GPA; Wright b [Wrb] epitope) and RhCE (Rh17/Hr0 epitope) similarly endowed RBCs with hTM activity, but differed in their effects on RBC physiology. scFv and hTM-scFv targeted to band 3/GPA increased membrane rigidity and sensitized RBCs to hemolysis induced by mechanical stress, while reducing sensitivity to hypo-osmotic hemolysis. Similar properties were seen for other ligands bound to GPA and band 3 on human and murine RBCs. In contrast, binding of scFv or hTM-scFv to RhCE did not alter deformability or sensitivity to mechanical and osmotic stress at similar copy numbers bound per RBCs. Contrasting responses were also seen for immunoglobulin G antibodies against band 3, GPA, and RhCE. RBC-bound hTM-scFv generated activated protein C (APC) in the presence of thrombin, but RhCE-targeted hTM-scFv demonstrated greater APC generation per bound copy. Both Wrb- and RhCE-targeted fusion proteins inhibited fibrin deposition induced by tumor necrosis factor-α in an endothelialized microfluidic model using human whole blood. RhCE-bound hTM-scFv more effectively reduced platelet and leukocyte adhesion, whereas anti-Wrb scFv appeared to promote platelet adhesion. These data provide a translational framework for the development of engineered affinity ligands to safely couple therapeutics to human RBCs.
Collapse
|
42
|
Turning Plasmodium survival strategies against itself. Future Med Chem 2018; 10:2245-2248. [PMID: 30215274 DOI: 10.4155/fmc-2018-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J Control Release 2018; 280:76-86. [DOI: 10.1016/j.jconrel.2018.04.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 11/17/2022]
|
44
|
Burnouf T, Burnouf PA, Wu YW, Chuang EY, Lu LS, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today 2018; 23:934-943. [DOI: 10.1016/j.drudis.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
|
45
|
Goh WJ, Zou S, Czarny B, Pastorin G. nCVTs: a hybrid smart tumour targeting platform. NANOSCALE 2018; 10:6812-6819. [PMID: 29595203 DOI: 10.1039/c7nr08720a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A hybrid drug delivery platform involving the fusion of cell membranes from U937 monocytes and synthetic lipids to create nano-cell vesicle technology systems (nCVTs) is designed. nCVTs are engineered for a targeted approach towards tumour sites by preserving key surface proteins from U937 monocytes, while being amendable to functionalization and loading due to their liposomal components.
Collapse
Affiliation(s)
- Wei Jiang Goh
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) 28 Medical Drive, #05-01, Singapore 117456.
| | | | | | | |
Collapse
|
46
|
Ding S, O'Banion CP, Welfare JG, Lawrence DS. Cellular Cyborgs: On the Precipice of a Drug Delivery Revolution. Cell Chem Biol 2018; 25:648-658. [PMID: 29628434 DOI: 10.1016/j.chembiol.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/17/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Cell-based drug delivery systems offer the prospect of biocompatibility, large-loading capacity, long in vivo lifespan, and active targeting of diseased sites. However, these opportunities are offset by an array of challenges, including safeguarding the integrity of the drug cargo and the cellular host, as well as ensuring that drug release occurs at the appropriate time and place. Emerging strategies that address these, and related, issues, are described herein.
Collapse
Affiliation(s)
- Song Ding
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua G Welfare
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Nguyen THP, Pham VTH, Baulin V, Croft RJ, Crawford RJ, Ivanova EP. The effect of a high frequency electromagnetic field in the microwave range on red blood cells. Sci Rep 2017; 7:10798. [PMID: 28883444 PMCID: PMC5589725 DOI: 10.1038/s41598-017-11288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022] Open
Abstract
The effect of red blood cells (RBC) exposed to an 18 GHz electromagnetic field (EMF) was studied. The results of this study demonstrated for the first time that exposure of RBCs to 18 GHz EMF has the capacity to induce nanospheres uptake in RBCs. The uptake of nanospheres (loading efficiency 96% and 46% for 23.5 and 46.3 nm nanospheres respectively), their presence and locality were confirmed using three independent techniques, namely scanning electron microscopy, confocal laser scanning microscopy and transmission electron microscopy. It appeared that 23.5 nm nanospheres were translocated through the membrane into the cytosol, while the 46.3 nm-nanospheres were mostly translocated through the phospholipid-cholesterol bilayer, with only some of these nanospheres passing the 2D cytoskeleton network. The nanospheres uptake increased by up to 12% with increasing temperature from 33 to 37 °C. The TEM analysis revealed that the nanospheres were engulfed by the cell membrane itself, and then translocated into the cytosol. It is believed that EMF-induced rotating water dipoles caused disturbance of the membrane, initiating its deformation and result in an enhanced degree of membrane trafficking via a quasi-exocytosis process.
Collapse
Affiliation(s)
- The Hong Phong Nguyen
- Faculty Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia
| | - Vy T H Pham
- Faculty Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia
| | - Vladimir Baulin
- Department d'Enginyeria Quimica, Universitat Rovira I Virgili, 26 Av. dels Paisos Catalans, 43007, Tarragona, Spain
| | - Rodney J Croft
- School of Psychology, Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong, NSW, 2522, Australia
| | | | - Elena P Ivanova
- Faculty Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia.
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
48
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
49
|
Gay F, Aguera K, Sénéchal K, Tainturier A, Berlier W, Maucort-Boulch D, Honnorat J, Horand F, Godfrin Y, Bourgeaux V. Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6. Cancer Med 2017; 6:1437-1452. [PMID: 28544589 PMCID: PMC5463067 DOI: 10.1002/cam4.1086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 12/27/2022] Open
Abstract
Erymet is a new therapy resulting from the encapsulation of a methionine gamma-lyase (MGL; EC number 4.4.1.11) in red blood cells (RBC). The aim of this study was to evaluate erymet potential efficacy in methionine (Met)-dependent cancers. We produced a highly purified MGL using a cGMP process, determined the pharmacokinetics/pharmacodynamics (PK/PD) properties of erymet in mice, and assessed its efficacy on tumor growth prevention. Cytotoxicity of purified MGL was tested in six cancer cell lines. CD1 mice were injected with single erymet product supplemented or not with vitamin B6 vitamer pyridoxine (PN; a precursor of PLP cofactor). NMRI nude mice were xenografted in the flank with U-87 MG-luc2 glioblastoma cells for tumor growth study following five intravenous (IV) injections of erymet with daily PN oral administration. Endpoints included efficacy and event-free survival (EFS). Finally, a repeated dose toxicity study of erymet combined with PN cofactor was conducted in CD1 mice. Recombinant MGL was cytotoxic on 4/6 cell lines tested. MGL half-life was increased from <24 h to 9-12 days when encapsulated in RBC. Conversion of PN into PLP by RBC was demonstrated. Combined erymet + PN treatment led to a sustained Met depletion in plasma for several days with a 85% reduction of tumor volume after 45 days following cells implantation, and a significant EFS prolongation for treated mice. Repeated injections in mice exhibited a very good tolerability with only minor impact on clinical state (piloerection, lean aspect) and a slight decrease in hemoglobin and triglyceride concentrations. This study demonstrated that encapsulation of methioninase inside erythrocyte greatly enhanced pharmacokinetics properties of the enzyme and is efficacy against tumor growth. The perspective on these results is the clinical evaluation of the erymet product in patients with Met starvation-sensitive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Delphine Maucort-Boulch
- Service de Biostatistique, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - Jérôme Honnorat
- Université Claude Bernard Lyon 1, Villeurbanne, France.,Service de Neuro-oncologie, Hôpital neurologique, Hospices Civils de Lyon, Lyon, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Lyon, France
| | | | | | | |
Collapse
|
50
|
Bayley R, Ahmed F, Glen K, McCall M, Stacey A, Thomas R. The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors. J Tissue Eng Regen Med 2017; 12:e368-e378. [PMID: 27696710 PMCID: PMC5811890 DOI: 10.1002/term.2337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Manufacture of red blood cells (RBCs) from progenitors has been proposed as a method to reduce reliance on donors. Such a process would need to be extremely efficient for economic viability given a relatively low value product and high (2 × 1012) cell dose. Therefore, the aim of these studies was to define the productivity of an industry standard stirred‐tank bioreactor and determine engineering limitations of commercial red blood cells production. Cord blood derived CD34+ cells were cultured under erythroid differentiation conditions in a stirred micro‐bioreactor (Ambr™). Enucleated cells of 80% purity could be created under optimal physical conditions: pH 7.5, 50% oxygen, without gas‐sparging (which damaged cells) and with mechanical agitation (which directly increased enucleation). O2 consumption was low (~5 × 10–8 μg/cell.h) theoretically enabling erythroblast densities in excess of 5 × 108/ml in commercial bioreactors and sub‐10 l/unit production volumes. The bioreactor process achieved a 24% and 42% reduction in media volume and culture time, respectively, relative to unoptimized flask processing. However, media exchange limited productivity to 1 unit of erythroblasts per 500 l of media. Systematic replacement of media constituents, as well as screening for inhibitory levels of ammonia, lactate and key cytokines did not identify a reason for this limitation. We conclude that the properties of erythroblasts are such that the conventional constraints on cell manufacturing efficiency, such as mass transfer and metabolic demand, should not prevent high intensity production; furthermore, this could be achieved in industry standard equipment. However, identification and removal of an inhibitory mediator is required to enable these economies to be realized. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Rachel Bayley
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Forhad Ahmed
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Katie Glen
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Mark McCall
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Adrian Stacey
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Robert Thomas
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|