1
|
Stefanaki C, Rozou P, Efthymiou V, Xinias I, Mastorakos G, Bacopoulou F, Papagianni M. Impact of Probiotics on the Glycemic Control of Pediatric and Adolescent Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2629. [PMID: 39203766 PMCID: PMC11357215 DOI: 10.3390/nu16162629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Human recombinant insulin is currently the only therapy for children and adolescents with type 1 diabetes (T1D), although not always efficient for the glycemic control of these individuals. The interrelation between the gut microbiome and the glycemic control of apparently healthy populations, as well as various populations with diabetes, is undeniable. Probiotics are biotherapeutics that deliver active components to various targets, primarily the gastrointestinal tract. This systematic review and meta-analysis examined the effect of the administration of probiotics on the glycemic control of pediatric and adolescent individuals with T1D. MATERIALS AND METHODS Randomized controlled trials employing the administration of probiotics in children and adolescents with T1D (with ≥10 individuals per treatment arm), written in English, providing parameters of glycemic control, such as mean glucose concentrations and glycosylated hemoglobin (HbA1c), were deemed eligible. RESULTS The search strategy resulted in six papers with contradictory findings. Ultimately, five studies of acceptable quality, comprising 388 children and adolescents with T1D, were included in the meta-analysis. Employing a random and fixed effects model revealed statistically significant negative effect sizes of probiotics on the glycemic control of those individuals, i.e., higher concentrations of glucose and HbA1c than controls. CONCLUSIONS Children and adolescents with T1D who received probiotics demonstrated worse glycemic control than controls after the intervention. Adequately powered studies, with extended follow-up periods, along with monitoring of compliance and employing the proper strains, are required to unravel the mechanisms of action and the relative effects of probiotics, particularly concerning diabetes-related complications and metabolic outcomes.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Paraskevi Rozou
- Hygiene, Social & Preventive Medicine and Medical Statistics Laboratory, Medical School, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Pediatrics, General Hospital of Larisa, 38221 Larissa, Greece
| | - Vasiliki Efthymiou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Xinias
- Third Pediatric Department, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Papagianni
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
4
|
Zhang Y, Huang A, Li J, Munthali W, Cao S, Putri UMP, Yang L. The Effect of Microbiome-Modulating Agents (MMAs) on Type 1 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:1675. [PMID: 38892608 PMCID: PMC11174426 DOI: 10.3390/nu16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Gut microbiome-modulating agents (MMAs), including probiotics, prebiotics, postbiotics, and synbiotics, are shown to ameliorate type 1 diabetes (T1D) by restoring the microbiome from dysbiosis. The objective of this systematic review and meta-analysis was to assess the impact of MMAs on hemoglobin A1c (HbA1c) and biomarkers associated with (T1D). A comprehensive search was conducted in PubMed, Web of Science, Embase, Cochrane Library, National Knowledge Infrastructure, WeiPu, and WanFang Data up to 30 November 2023. Ten randomized controlled trials (n = 630) were included, with study quality evaluated using the Cochrane risk-of-bias tool. Random-effect models with standardized mean differences (SMDs) were utilized. MMA supplementation was associated with improvements in HbA1c (SMD = -0.52, 95% CI [-0.83, -0.20]), daily insulin usage (SMD = -0.41, 95% confidence interval (CI) [-0.76, -0.07]), and fasting C-peptide (SMD = 0.99, 95% CI [0.17, 1.81]) but had no effects on FBG, CRP, TNF-α, IL-10, LDL, HDL, and the Shannon index. Subgroup analysis of HbA1c indicated that a long-term intervention (>3 months) might exert a more substantial effect. These findings suggest an association between MMAs and glycemic control in T1D. Further large-scale clinical trials are necessary to confirm these findings with investigations on inflammation and gut microbiota composition while adjusting confounding factors such as diet, physical activity, and the dose and form of MMA intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Aiying Huang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jun Li
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - William Munthali
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Saiying Cao
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | | | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| |
Collapse
|
5
|
Baghel K, Khan A, Kango N. Role of Synbiotics (Prebiotics and Probiotics) as Dietary Supplements in Type 2 Diabetes Mellitus Induced Health Complications. J Diet Suppl 2024; 21:677-708. [PMID: 38622882 DOI: 10.1080/19390211.2024.2340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Aamir Khan
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
6
|
Lokesh MN, Kumar R, Jacob N, Sachdeva N, Rawat A, Yadav J, Dayal D. Supplementation of High-Strength Oral Probiotics Improves Immune Regulation and Preserves Beta Cells among Children with New-Onset Type 1 Diabetes Mellitus: A Randomised, Double-Blind Placebo Control Trial. Indian J Pediatr 2024:10.1007/s12098-024-05074-5. [PMID: 38557820 DOI: 10.1007/s12098-024-05074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To investigate the mechanism of glycemic control in children with type 1 diabetes (T1D) following high-strength probiotics supplementation by assessing immune-regulatory markers. METHODS In this single-centre randomised double-blinded placebo-controlled study, children with new-onset T1D on regular insulin therapy were randomised into probiotic or placebo groups with 30 children each. The probiotics group received oral powder of Vivomixx®, and the placebo group received corn starch for six months. The primary outcome parameters included induced T regulatory cells (i-Tregs) percentage, insulin autoantibodies (IAA), insulinoma associated 2 autoantibodies (IA2), glutamic acid decarboxylase autoantibodies (GAD 65) and plasma interleukin-10 (IL-10) levels. The secondary outcome variables were changes in plasma C-peptide levels and glycemic control parameters. RESULTS Twenty-three children in the placebo group and 27 in the probiotic group completed the study. There was a significant increase in the percentage of iTregs (3.40 in the probiotic vs. 2.46 in the placebo group; p = 0.034). Median glycated hemoglobin (HbA1c) levels significantly decreased from 68 mmol/mol (8.35%) in the placebo group to 60 mmol/mol (7.55%) in the probiotic group (p = 0.017). Median C-peptide levels were significantly higher in probiotics (0.72 ng/ml) vs. placebo group (0.11 ng/ml) (p = 0.036). The plasma IL-10 levels significantly increased in the probiotic group after six months of treatment (p = 0.002). CONCLUSIONS The high-strength probiotics improved the immunoregulatory milieu, thereby preserving the beta-cell function and better glycemic control.
Collapse
Affiliation(s)
- M N Lokesh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rakesh Kumar
- Endocrinology and Diabetes Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Neenu Jacob
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jaivinder Yadav
- Endocrinology and Diabetes Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Devi Dayal
- Endocrinology and Diabetes Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| |
Collapse
|
7
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Neiva LP, Lopez LC, Pasiani RO, Serra MJR, Rullo VEV. Use of probiotics and similar in pediatric patients with Type 1 Diabetes Mellitus: a systematic review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 42:e2023097. [PMID: 38359319 PMCID: PMC10868513 DOI: 10.1590/1984-0462/2024/42/2023097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To perform a systematic review of randomized controlled trials, evaluating the effect of probiotics, prebiotics or symbiotics supplementation on glycemic and inflammatory control in children with Type 1 Diabetes Mellitus (T1DM). DATA SOURCE The Medical Literature Analysis and Retrieval System Online (MEDLINE/PubMed), Clinical Trials, Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Scientific Electronic Library Online (SciELO) databases were searched. Randomized clinical trials of pediatric patients with DM1 using probiotics, prebiotics or symbiotics were included, regardless of year or language of publication. Studies that did not evaluate glycated hemoglobin (HbA1c) were excluded. Metabolic results (HbA1c, total insulin dose and C-peptide) and inflammatory control [interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ)] during probiotic supplementation or similar, related to modification of the intestinal microbiota, were analyzed. PROSPERO ID: CRD42022384485. DATA SYNTHESIS Five studies were selected for a systematic review. Regarding metabolic markers, only one of the articles that analyzed HbA1c showed a significant decrease (p=0.03) in the intervention group. One study identified a reduction in the total dose of insulin and increased C-peptide levels. Regarding the evaluation of inflammatory parameters (IL-10, TNF-α, INF-γ), there were no statistical relevant modifications. CONCLUSIONS Current data from the literature were not conclusive in identifying an improvement in glycemic control and did not observe changes in inflammatory parameters with the use of probiotics, prebiotics or symbiotics in pediatric patients with T1DM.
Collapse
|
9
|
Moravejolahkami AR, Shakibaei M, Fairley AM, Sharma M. Probiotics, prebiotics, and synbiotics in type 1 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Diabetes Metab Res Rev 2024; 40:e3655. [PMID: 37183580 DOI: 10.1002/dmrr.3655] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Dysbiosis or imbalance of microbes in the gut has been associated with susceptibility and progression of type 1 diabetes mellitus (T1DM). The present systematic review and meta-analysis examined the effects of probiotics, prebiotics, and synbiotics on fasting blood glucose (FBG), haemoglobin A1c (HbA1c), C-peptide, and insulin requirements in T1DM patients. A systematic search for trials published up to October 2022 was conducted in PubMed, EMBASE, Scopus, Google Scholar, ScienceDirect, Web of Science, and the Central Cochrane Library. Random effect models were used to synthesise quantitative data by STATA14 . After the evaluation of 258 identified entries, five randomised controlled trials (n = 356; mean age = 11.7 years old) were included. The pooled effect size showed that FBG decreased following probiotic supplementation (weighted mean difference = -31.24 mg/dL; 95% confidence interval = -45.65, -16.83; p < 0.001), however, there was no significant improvement in serum HbA1c, C-peptide, and insulin requirements. Probiotic supplementation could be a complementary therapeutic strategy in T1DM. The evidence is limited; therefore, it is crucial to conduct more trials.
Collapse
Affiliation(s)
- Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shakibaei
- Faculty of Medicine, Institute of Anatomy, Musculoskeletal & Tumor Biology Research Group, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Mary Fairley
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Manoj Sharma
- Department of Social & Behavioral Health, School of Public Health, University of Nevada, Las Vegas, Nevada, USA
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
10
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
11
|
Zhang X, Zhang Y, Luo L, Le Y, Li Y, Yuan F, Wu Y, Xu P. The Beneficial Effects of a Multispecies Probiotic Supplement on Glycaemic Control and Metabolic Profile in Adults with Type 1 Diabetes: A Randomised, Double-Blinded, Placebo-Controlled Pilot-Study. Diabetes Metab Syndr Obes 2023; 16:829-840. [PMID: 36970073 PMCID: PMC10032215 DOI: 10.2147/dmso.s400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
Objective In this pilot-study, the effects of a multispecies probiotic supplement on glycaemic control and metabolic parameters in adults with type 1 diabetes (T1DM) were explored. Material and Methods A total of 50 T1DM patients were enrolled and randomly placed into a group receiving capsules containing multi-probiotic strains (Bifidobacterium longum, Lactobacterium bulagricumi, Streptococcus thermophilus) and insulin (probiotics group, n = 27) or a group receiving a placebo and insulin (placebo group, n = 23). All patients underwent continuous glucose monitoring at baseline and 12 weeks after intervention. The primary outcomes were determined by comparing factors such as changes in fasting blood glucose (FBG) and haemoglobin A1c (HbA1c) between the groups. Results Probiotic supplementation significantly reduced FBG (-1.0 ± 4.7 vs 1.8 ± 4.7 mmol/L, p = 0.048), 30 min postprandial glucose (-0.5 ± 4.6 vs 1.9 ± 3.3 mmol/L, p = 0.0495), and low-density lipoprotein cholesterol (-0.07 ± 0.45 vs 0.32 ± 0.78 mmol/L, p = 0.0413), compared with the placebo. Although not statistically significant, probiotic supplementation also lowered HbA1c levels by 0.49% (-5.33 mmol/mol, p = 0.310). Besides, no significant difference was observed in the continuous glucose monitoring (CGM) parameters between the two groups. Further subgroup analysis revealed a significant reduction in mean sensor glucose (MSG; -0.75 (-2.11, 0.48) mmol/L vs 1.51 (-0.37, 2.74) mmol/L, p = 0.010) and time above range (TAR; -5.47 (-20.1, 3.04)% vs 18.9 (-1.11, 35.6)%, p = 0.006), as well as an greater improvement in the time in range (TIR; 9.32 (-4.84, 16.6)% vs -19.9 (-31.4, 0.69)%, p = 0.005) in male patients than female patients in the probiotics group. Conclusion Multispecies probiotics exerted beneficial effects on fasting and postprandial glucose and lipid profiles in adult T1DM patients, especially for male patients and those with higher baseline FBG levels.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Limei Luo
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ying Le
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ying Li
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Fengyi Yuan
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yan Wu
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
12
|
Rubin D, Bosy-Westphal A, Kabisch S, Kronsbein P, Simon MC, Tombek A, Weber KS, Skurk T. Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2023; 131:33-50. [PMID: 36638807 DOI: 10.1055/a-1946-3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany.,Vivantes Humboldt Hospital, Berlin, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition, Faculty of Agriculture and Nutritional Sciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Diabetes Research (DZD), Munich, Germany
| | - Peter Kronsbein
- Faculty of Nutrition and Food Sciences, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rhenish Friedrich Wilhelm University of Bonn, Bonn, Germany
| | - Astrid Tombek
- Diabetes Center Bad Mergentheim, Bad Mergentheim, Germany
| | - Katharina S Weber
- Institute for Epidemiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas Skurk
- ZIEL - Institute for Food & Health, Technical University Munich, Freising, Germany
| |
Collapse
|
13
|
Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 2022; 368:110223. [DOI: 10.1016/j.cbi.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
14
|
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment.
Collapse
|
15
|
Zhang T, Gao G, Sakandar HA, Kwok LY, Sun Z. Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Front Nutr 2022; 9:814269. [PMID: 35242797 PMCID: PMC8885515 DOI: 10.3389/fnut.2022.814269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic-related disorders such as pancreatitis, pancreatic cancer, and type 1 diabetes mellitus (T1DM) impose a substantial challenge to human health and wellbeing. Even though our understanding of the initiation and progression of pancreatic diseases has broadened over time, no effective therapeutics is yet available for these disorders. Mounting evidence suggests that gut dysbiosis is closely related to human health and disease, and pancreatic diseases are no exception. Now much effort is under way to explore the correlation and eventually potential causation between the gut microbiome and the course of pancreatic diseases, as well as to develop novel preventive and/or therapeutic strategies of targeted microbiome modulation by probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT) for these multifactorial disorders. Attempts to dissect the intestinal microbial landscape and its metabolic profile might enable deep insight into a holistic picture of these complex conditions. This article aims to review the subtle yet intimate nexus loop between the gut microbiome and pancreatic diseases, with a particular focus on current evidence supporting the feasibility of preventing and controlling pancreatic diseases via microbiome-based therapeutics and therapies.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Hafiz Arbab Sakandar
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Zhihong Sun
| |
Collapse
|
16
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Correspondence: Jian-Hui Xiao, Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, HuiChuan District, Zunyi, 563003, People’s Republic of China, Email
| |
Collapse
|
17
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
19
|
Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, Desai MS. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:885-902. [PMID: 34580480 DOI: 10.1038/s41575-021-00512-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function, but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet-microbiome interactions in local inflammation, gut microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation, probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of the gut microbiome at a time of increasing autoimmune disease.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg. .,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
20
|
Kumar S, Kumar R, Rohilla L, Jacob N, Yadav J, Sachdeva N. A high potency multi-strain probiotic improves glycemic control in children with new-onset type 1 diabetes mellitus: A randomized, double-blind, and placebo-controlled pilot study. Pediatr Diabetes 2021; 22:1014-1022. [PMID: 34174128 DOI: 10.1111/pedi.13244] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Studies in animal models and humans with type 1 diabetes mellitus (T1DM) have shown that probiotic supplementation leads to decreased pro-inflammatory cytokines (responsible for damaging β-cells of the pancreas), improved gut barrier function, and induction of immune tolerance. OBJECTIVE To study the effect of supplementation of probiotics in children with T1DM on glycemic control, insulin dose, and plasma C-peptide levels. METHODS A single-centered, double-blinded, and randomized placebo-controlled pilot trial was conducted in children (2-12 years) with new-onset T1DM. Ninety-six children were randomized and allocated to Placebo or Intervention groups. The intervention included high dose (112.5 billion viable lyophilized bacteria per capsule) multi-strain probiotic De Simone formulation (manufactured by Danisco-Dupont) sold as Visbiome® in India. The probiotic was supplemented for 3 months and HbA1c, fasting C-peptide, blood sugar records, and insulin dose was recorded at baseline and 3 months. RESULTS A total of 90 patients (45 in each group) were analyzed for outcome parameters. We found a significant decrease in HbA1c (5.1 vs. 3.8; p = 0.021) and a significant decline in total and bolus insulin dose (U/kg/day; p = 0.037 and 0.018, respectively) in the intervention group when compared with the placebo group. A significantly higher (p = 0.023) number of children achieved remission in the treatment group. We did not notice adverse effects in either of the study groups. CONCLUSION Children with newly diagnosed T1DM managed with standard treatment along with probiotics showed better glycemic control and a decrease in insulin requirements; however, more extensive studies are further warranted.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kumar
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Latika Rohilla
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neenu Jacob
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jaivinder Yadav
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
21
|
Rubin D, Bosy-Westphal A, Kabisch S, Kronsbein P, Simon MC, Tombek A, Weber K, Skurk T. Empfehlungen zur Ernährung von Personen mit Typ-1-Diabetes mellitus. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1515-8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diana Rubin
- Vivantes Klinikum Spandau, Berlin
- Vivantes Humboldt Klinikum, Berlin
| | - Anja Bosy-Westphal
- Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Stefan Kabisch
- Deutsches Zentrum für Diabetesforschung (DZD), München
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising
| | - Peter Kronsbein
- Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach
| | - Marie-Christine Simon
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
| | | | - Katharina Weber
- Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Thomas Skurk
- ZIEL – Institute for Food & Health, Technische Universität München, München
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising
| | | |
Collapse
|
22
|
Vitheejongjaroen P, Kanthawang P, Loison F, Jaisin Y, Pachekrepapol U, Taweechotipatr M. Antioxidant activity of Bifidobacterium animalis MSMC83 and its application in set-style probiotic yoghurt. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Groele L, Szajewska H, Szalecki M, Świderska J, Wysocka-Mincewicz M, Ochocińska A, Stelmaszczyk-Emmel A, Demkow U, Szypowska A. Lack of effect of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: a randomised controlled trial. BMJ Open Diabetes Res Care 2021; 9:9/1/e001523. [PMID: 33771763 PMCID: PMC8006832 DOI: 10.1136/bmjdrc-2020-001523] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The gut microbiota may be relevant in the development of type 1 diabetes (T1D). We examined the effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed T1D. RESEARCH DESIGN AND METHODS Children aged 8-17 years with newly (within 60 days) diagnosed T1D were enrolled in a double-blind, randomised controlled trial in which they received L. rhamnosus GG and B. lactis Bb12 at a dose of 109 colony-forming units or placebo, orally, once daily, for 6 months. The follow-up was for 12 months. The primary outcome measure was the area under the curve (AUC) of the C-peptide level during 2-hour responses to a mixed meal. RESULTS Ninety-six children were randomised (probiotics, n=48; placebo n=48; median age 12.3 years). Eighty-eight (92%) completed the 6-month intervention, and 87 (91%) completed the follow-up at 12 months. There was no significant difference between the study groups for the AUC of the C-peptide level. For the secondary outcomes at 6 months, there were no differences between the study groups. At 12 months, with one exception, there also were no significant differences between the groups. Compared with the placebo group, there was a significantly increased number of subjects with thyroid autoimmunity in the probiotic group. However, at baseline, there was also a higher frequency of thyroid autoimmunity in the probiotic group. There were no cases of severe hypoglycemia or ketoacidosis in any of the groups. No adverse events related to the study products were reported. CONCLUSIONS L. rhamnosus GG and B. lactis Bb12, as administered in this study, had no significant effect in maintaining the residual pancreatic beta-cell function in children with newly diagnosed T1D. It remains unclear which probiotics, if any, alone or in combination, are potentially the most useful for management of T1D. TRIAL REGISTRATION NUMBER NCT03032354.
Collapse
Affiliation(s)
- Lidia Groele
- Department of Paediatrics, The Children's Clinical Hospital Józef Polikarp Brudziński, Warsaw, Poland
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Mieczysław Szalecki
- Clinic of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
- Collegium Medicum (Jan Kochanowski University), Kielce, Poland
| | - Jolanta Świderska
- Clinic of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marta Wysocka-Mincewicz
- Clinic of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Ochocińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Deparment of Laboratory Diagnostics and Clinical Immunology of Developmental Age, The Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Deparment of Laboratory Diagnostics and Clinical Immunology of Developmental Age, The Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
24
|
Bock PM, Telo GH, Ramalho R, Sbaraini M, Leivas G, Martins AF, Schaan BD. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021; 64:26-41. [PMID: 33047170 DOI: 10.1007/s00125-020-05295-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The aim was to conduct a systematic review and meta-analysis of randomised controlled clinical trials assessing the effect of probiotic, prebiotic or synbiotic supplementation on gut microbiota and glucose control and lipid levels in individuals with diabetes. METHODS MEDLINE, EMBASE and the Cochrane Library were searched. The eligibility criteria for the studies was involvement of participants with a diagnosis of type 1 or type 2 diabetes. Metabolic outcomes (glucose control, insulinaemia, and lipid profile) of any probiotic, prebiotic or synbiotic supplementation related to modification of gut microbiota (prebiotics, probiotics and synbiotics) were analysed. We provided a narrative synthesis and meta-analysis of the findings on metabolic outcomes from the studies. Metabolic outcomes were extracted post-intervention and expressed as mean differences (MDs) and 95% CIs between treatment and comparator groups. We pooled the results using a random-effects meta-analysis. The meta-analysis was conducted using Review Manager (RevMan) software. RESULTS After the removal of duplicates and ineligible studies, 5219 studies were retained for review of titles and abstracts. The number of articles was reduced to 130 by review, for which the full-text articles were obtained and reassessed, 38 of which were included in the final meta-analysis. Overall, the use of prebiotics, probiotics or synbiotics reduced HbA1c levels, but did not reach the threshold for significance (-2.17 mmol/mol, 95% CI -4.37, 0.03; p = 0.05, [-0.20%, 95% CI -0.40 to 0.00; p = 0.05, I2 = 66%]) and had no effect on LDL-cholesterol levels (-0.05 mmol/l; 95% CI -0.14, 0.05, p = 0.35, I2 = 37%). However, their consumption decreased levels of fasting blood glucose (-0.58 mmol/l; 95% CI -0.86, -0.30; p < 0.01, I2 = 60%), total cholesterol (-0.14 mmol/l; 95% CI -0.26, -0.02, p = 0.02, I2 = 39%), triacylglycerols (-0.11 mmol/l; 95% CI -0.20, -0.02, p = 0.01, I2= 21%) and insulinaemia (-10.51 pmol/l; 95% CI -16.68,-4.33, p < 0.01, I2 = 74%), and increased HDL-cholesterol levels (0.04 mmol/l; 95% CI 0.01, 0.07, p < 0.01, I2= 24%). CONCLUSIONS/INTERPRETATION In individuals with diabetes mellitus, supplementation with probiotics, prebiotics or synbiotics improved metabolic variables, although the magnitude of this effect is low. Our results suggest that consumption of probiotics, prebiotics or synbiotics may be a potential adjuvant treatment for improving metabolic outcomes. REGISTRATION PROSPERO ID CRD42017080071. Graphical abstract.
Collapse
Affiliation(s)
- Patricia M Bock
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Faculdades Integradas de Taquara, Taquara, Brazil.
- National Institute of Science and Technology for Health Technology Assessment (IATS) - CNPq/Brazil, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Gabriela H Telo
- Department of Internal Medicine, Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Ramalho
- Department of Microbiology, Immunology and Parasitology, Health Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Sbaraini
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Leivas
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza F Martins
- Department of Microbiology, Immunology and Parasitology, Health Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beatriz D Schaan
- Department of Internal Medicine, Faculty of Medicine, Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS) - CNPq/Brazil, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
25
|
Rubin D, Bosy-Westphal A, Kabisch S, Kronsbein P, Simon MC, Tombek A, Weber KS, Skurk T. Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2020; 129:S27-S43. [PMID: 33374025 DOI: 10.1055/a-1284-6036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany.,Vivantes Humboldt Hospital, Berlin, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition, Faculty of Agriculture and Nutritional Sciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Stefan Kabisch
- German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany
| | - Peter Kronsbein
- Faculty of Nutrition and Food Sciences, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | | | - Katharina S Weber
- Institute for Epidemiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas Skurk
- ZIEL - Institute for Food & Health, Technical University Munich, Munich, Germany
| |
Collapse
|
26
|
Rubin D, Bosy-Westphal A, Kabisch S, Kronsbein P, Simon MC, Tombek A, Weber K, Skurk T. Empfehlungen zur Ernährung von Personen mit Typ-1-Diabetes mellitus. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1245-5623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Diana Rubin
- Vivantes Klinikum Spandau, Berlin
- Vivantes Humboldt Klinikum, Berlin
| | - Anja Bosy-Westphal
- Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Stefan Kabisch
- Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Potsdam
| | - Peter Kronsbein
- Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach
| | - Marie-Christine Simon
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
| | | | - Katharina Weber
- Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Thomas Skurk
- ZIEL – Institute for Food & Health, Technische Universität München, München
| | | |
Collapse
|
27
|
Marietta E, Mangalam AK, Taneja V, Murray JA. Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Front Immunol 2020; 11:573079. [PMID: 33193357 PMCID: PMC7655733 DOI: 10.3389/fimmu.2020.573079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that a number of common autoimmune diseases have perturbations of their intestinal microbiome (dysbiosis). These include: Celiac Disease (CeD), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Sjogren’s Syndrome (SS), and Type 1 diabetes (T1D). All of these have intestinal microbiomes that are different from healthy controls. There have been numerous studies using animal models of single probiotics (monoclonal) or mixtures of probiotics (polyclonal) and even complete microbiota transfer (fecal microbial transfer-FMT) to inhibit or delay the onset of autoimmune diseases such as the aforementioned common ones. However, proportionally, fewer clinical trials have utilized monoclonal therapies or FMT than polyclonal therapies for treating autoimmune diseases, even though bacterial mono-therapies do inhibit the development of autoimmune diseases and/or delay the onset of autoimmune diseases in rodent models of those autoimmune diseases. In this review then, we review the previously completed and currently ongoing clinical trials that are testing bacterial therapies (FMT, monoclonal, and polyclonal) to treat common autoimmune dseases and discuss the successes in using bacterial monotherapies to treat rodent models of these common autoimmune diseases.
Collapse
Affiliation(s)
- Eric Marietta
- Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, United States.,Department of Immunology, Mayo Clinic Rochester, Rochester, MN, United States.,Department of Dermatology, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - Veena Taneja
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Joseph A Murray
- Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, United States.,Department of Immunology, Mayo Clinic Rochester, Rochester, MN, United States
| |
Collapse
|
28
|
Yan L, Wang M, Chen J, Zhao X, Wang H. Effects of gut microbiome-targeted therapies on cardiometabolic outcomes in children and adolescents: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21612. [PMID: 32756217 PMCID: PMC7402758 DOI: 10.1097/md.0000000000021612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Emerging evidence indicates the role of gut microbiota in the development of cardiovascular diseases. Thus, gut microbiota is increasingly recognized as a potential therapeutic target of cardiovascular disease. However, the effects of gut microbiome-targeted therapies on cardiometabolic outcomes in children and adolescents remain unclear. METHODS We plan to perform a systematic search from PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science. Two authors will independently select the relevant studies and extract data according to a previously defined data extraction sheet. We will use the Stata 14.0 statistical software and RevMan V.5.3 software to conduct data analyses. RESULTS AND CONCLUSION The results of this study will be published in a peer-reviewed journal and provide more evidence for the application of gut microbiome-targeted therapies in children and adolescents for the intervention of cardiovascular risk factors in clinical practice. PROTOCOL REGISTRATION NUMBER INPLASY202060050.
Collapse
|
29
|
Microbiota derived factors as drivers of type 1 diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:215-235. [PMID: 32475523 DOI: 10.1016/bs.pmbts.2020.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by complex interactions between host genetics and environmental factors, culminating in the T-cell mediated destruction of the insulin producing cells in the pancreas. The rapid increase in disease frequency over the past 50 years or more has been too rapid to attribute to genetics. Dysbiosis of the gut microbiota is currently being widely investigated as a major contributor to environmental change driving increased T1D onset. In this chapter, we discuss the major changes in gut microbiota composition and function linked to T1D risk as well as the potential origin of these changes including infant diet, antibiotic use and host genetics. We examine the interaction between inflammation and gut barrier function and the dysbiotic gut microbiota that have been linked to T1D.
Collapse
|