1
|
Alyaydin E, Parianos D, Hermes-Laufer J, Nägele MP, Castro L, Papathanasiou M, Reinecke H, Flammer AJ. Sodium-glucose co-transporter 2 inhibitors in left ventricular assist device and heart transplant recipients: a mini-review. Heart Fail Rev 2025; 30:327-335. [PMID: 39514145 DOI: 10.1007/s10741-024-10465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In recent years, sodium-glucose co-transporter 2 inhibitors (SGLT2i) emerged as promising therapeutic agents in managing heart failure (HF). They demonstrated a significant impact on reducing HF hospitalizations and related mortality in patients with reduced and preserved ejection fraction. However, evidence supporting their use in patients with left ventricular assist device (LVAD) and heart transplant (HT) recipients is still limited. We identified six key studies investigating the safety and efficacy of SGLT2i in LVAD and HT recipients. In patients with LVAD, prescription of SGLT2i was predominantly associated with improved fluid management and reduced pulmonary artery pressures. However, the results regarding their effects on body weight, hemoglobin A1c, diuretic use, and right ventricular function were contradictory. In terms of safety, SGLT2i were generally well-tolerated in the LVAD population, and the reported incidence of adverse events was low. In HT recipients, SGLT2i were associated with better glycemic control and weight reduction. No relevant adverse events were reported. Despite these encouraging results, the long-term safety and efficacy of SGLT2i in these vulnerable patient populations are yet to be investigated. Future randomized controlled trials are needed to address existing gaps in evidence and help integrate SGLT2i into clinical practice for LVAD and HT recipients.
Collapse
Affiliation(s)
- Emyal Alyaydin
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland.
| | - Danaë Parianos
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Matthias P Nägele
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Liesa Castro
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Maria Papathanasiou
- Department of Cardiology, Angiology and Intensive Care Medicine, Goethe University Hospital, Frankfurt, Germany
| | - Holger Reinecke
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, Muenster, Germany
| | - Andreas J Flammer
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Kallash M, Frishman W. Investigating the Relationship Between Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors and Blood Pressure. Cardiol Rev 2025:00045415-990000000-00413. [PMID: 39898627 DOI: 10.1097/crd.0000000000000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors were originally approved for use in type 2 diabetes, but in recent years, these medications were found to also have significant cardiovascular benefits in patients with heart failure with reduced and preserved ejection fraction and chronic kidney disease. Part of the cardiovascular benefits of SGLT2 inhibitors likely comes from their antihypertensive effect in addition to other unknown effects, but the mechanism by which these medications reduce blood pressure has not been identified yet. Multiple mechanisms have been proposed to describe SGLT2 inhibitors' antihypertensive effect, including their associated weight loss and diuretic effect. However, studies have shown that these indirect mechanisms alone do not account for the antihypertensive effect seen with this medication, with more recent studies identifying a new potential mechanism by which SGLT2 inhibitors may derive their direct antihypertensive and cardiovascular benefits. In animal models, SGLT2 receptors were identified in parts of the brain responsible for regulating the sympathetic nervous system and adjusting blood pressure. In these studies, SGLT2 inhibitors suppressed the neuronal activity in these brain regions, reducing the sympathetic nervous system activity and blood pressure of the animals. Further investigation is needed to identify whether there are SGLT2 receptors in the central nervous system of humans and whether SGLT2 inhibitors can suppress neuronal activity in these brain regions. This information could be significant in learning more about the susceptibility and severity of primary hypertension in certain patient populations, as well as identifying whether SGLT2 inhibitors can be considered as a primary antihypertensive agent.
Collapse
Affiliation(s)
- Mohammed Kallash
- From the School of Medicine, New York Medical College, Valhalla, NY
| | | |
Collapse
|
3
|
Ryaboshapkina M, Ye R, Ye Y, Birnbaum Y. Effects of Dapagliflozin on Myocardial Gene Expression in BTBR Mice with Type 2 Diabetes. Cardiovasc Drugs Ther 2025; 39:43-61. [PMID: 37914900 DOI: 10.1007/s10557-023-07517-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved for the treatment of type 2 diabetes, heart failure, and chronic kidney disease. DAPA-HF and DELIVER trial results demonstrate that the cardiovascular protective effect of dapagliflozin extends to non-diabetic patients. Hence, the mechanism-of-action may extend beyond glucose-lowering and is not completely elucidated. We have previously shown that dapagliflozin reduces cardiac hypertrophy, inflammation, fibrosis, and apoptosis and increases ejection fraction in BTBR mice with type 2 diabetes. METHODS We conducted a follow-up RNA-sequencing study on the heart tissue of these animals and performed differential expression and Ingenuity Pathway analysis. Selected markers were confirmed by RT-PCR and Western blot. RESULTS SGLT2 had negligible expression in heart tissue. Dapagliflozin improved cardiac metabolism by decreasing glycolysis and pyruvate utilization enzymes, induced antioxidant enzymes, and decreased expression of hypoxia markers. Expression of inflammation, apoptosis, and hypertrophy pathways was decreased. These observations corresponded to the effects of dapagliflozin in the clinical trials.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Ong LT, Sia CH. Interactions between antidiabetes medications and heart-brain axis. Curr Opin Endocrinol Diabetes Obes 2025; 32:34-43. [PMID: 39639832 DOI: 10.1097/med.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW The heart - brain axis (HBA) is the physiological interactions between the cardiovascular and nervous systems through autonomic nerves, hormones, and cytokines. Patients diagnosed with diabetes mellitus have an increased risk of the cardiovascular and neurological diseases. However, recent evidence demonstrated that different antidiabetic drugs may delay cognitive impairment and improve cardiovascular outcomes. This review examines the impact of antidiabetic drugs on the HBA in patients with diabetes. RECENT FINDINGS Metformin improves the cardiovascular and cognitive outcomes through adenosine 5'-monophosphate-activated protein kinase activation. Sodium-glucose cotransporter-2 inhibitors reduce inflammation, oxidative stress by inhibiting the NLRP3 inflammasome thereby reducing the incidence of heart failure and formation of beta-amyloid and neurofibrillary tangles in the brain. Dipeptidyl peptidase-4 inhibitors exhibit neuroprotective effects in Alzheimer's disease by reducing amyloid-beta and tau pathology and inflammation but may exacerbate heart failure risk due to increased sympathetic activity and prolonged β-adrenergic stimulation. Glucagon-like peptide-1 receptor agonists exhibit neuroprotective effects in Alzheimer's and Parkinson's diseases by reducing neuroinflammation, but may increase sympathetic activity, potentially elevating heart rate and blood pressure, despite their cardioprotective benefits. SUMMARY Antidiabetes medications have the potential to improve cardiovascular and cognitive outcomes; however, additional studies are required to substantiate these effects.
Collapse
Affiliation(s)
- Leong Tung Ong
- Department of Cardiology, National University Heart Centre, Singapore
| | | |
Collapse
|
5
|
Ao N, Du J, Jin S, Suo L, Yang J. The cellular and molecular mechanisms mediating the protective effects of sodium-glucose linked transporter 2 inhibitors against metabolic dysfunction-associated fatty liver disease. Diabetes Obes Metab 2025; 27:457-467. [PMID: 39508115 DOI: 10.1111/dom.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a common, highly heterogeneous condition that affects about a quarter of the world's population, with no approved drug therapy. Current evidence from preclinical research and a number of small clinical trials indicates that SGLT2 inhibitors could also be effective for MAFLD. MAFLD is associated with a higher risk of chronic liver disease and multiple extrahepatic events, especially cardiovascular disease (CVD) and chronic kidney disease (CKD). MAFLD is considered a more appropriate terminology than NAFLD because it captures the complex bidirectional interplay between fatty liver and metabolic dysfunctions associated with disease progression, such as obesity and type 2 diabetes mellitus (T2DM). SGLT2 inhibitors are antidiabetic drugs that block glucose reabsorption in the kidney proximal tubule. In this article, we reviewed current clinical evidence supporting the potential use of SGLT2 inhibitors as a drug therapy for MAFLD and discussed the possible cellular and molecular mechanisms involved. We also reviewed the clinical benefits of SGLT2 inhibitors against MAFLD-related comorbidities, especially CVD, CKD and cardiovascular-kidney-metabolic syndrome (CKM). The broad beneficial effects of SGLT2 inhibitors support their use, likely in combination with other drugs, as a therapy for MAFLD.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Suo
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Della Vecchia S, Imbrici P, Liantonio A, Naef V, Damiani D, Licitra R, Bernardi S, Marchese M, Santorelli FM. Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model. Biomed Pharmacother 2025; 183:117800. [PMID: 39753095 PMCID: PMC11794196 DOI: 10.1016/j.biopha.2024.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD. With this in mind, we tested dapagliflozin (50 µM), canagliflozin (2.5 µM) and empagliflozin (200 µM) in our epm2a-/- zebrafish model, investigating their effects on pathological behaviour. In the case of dapagliflozin, we also investigated the possible mechanisms of action. Overall, the gliflozins reduced or rescued neuronal hyperexcitability and locomotor impairment. Dapagliflozin also reduced spontaneous seizure-like events in epm2a-/- larvae. At the biochemical and molecular level, dapagliflozin was found to slightly reduce glycogen content, and suppress inflammation and oxidative stress. It also ameliorates autophagic homeostasis and improves lysosomal markers. In conclusion, our preclinical study showed that dapagliflozin was able to ameliorate part of the pathological phenotype of epm2a-/- zebrafish larvae and could potentially be a suitable drug for repurposing in LD. However, since our model does not present Lafora bodies (LBs), at this early disease stage at least, it would be important to use mouse models in order to ascertain whether it is able to prevent or reduce LB formation.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, Florence 50139, Italy.
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Naef
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Devid Damiani
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Rosario Licitra
- Department of Veterinary Sciences, University of Pisa, Pisa 56124, Italy
| | - Sara Bernardi
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Maria Marchese
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | | |
Collapse
|
7
|
Zhou L, Niu M, Chen W, Hu Q, Chen Y, Geng X, Gu J. Effects of dapagliflozin on heart rate variability, cardiac function, and short-term prognosis in early-onset post-myocardial infarction heart failure. Front Cardiovasc Med 2025; 11:1490316. [PMID: 39834729 PMCID: PMC11743520 DOI: 10.3389/fcvm.2024.1490316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To investigate the effects of dapagliflozin, in addition to standard therapy, on heart rate variability (HRV), soluble growth stimulation expressed gene 2 protein (sST2), N-terminal pro B-type natriuretic peptide (NT-proBNP), and echocardiographic parameters in patients with early-onset post-myocardial infarction heart failure (HF). Methods A total of 98 patients with early-onset post-myocardial infarction HF were enrolled and randomly divided into a control group (n = 48, receiving standard therapy) and an observation group (n = 50, receiving standard therapy plus dapagliflozin 10 mg daily). HRV, cardiac function, and echocardiographic parameters were measured at baseline and after 24 weeks of treatment. Short-term prognosis and adverse events were also monitored. Results Compared with the control group, the observation group showed significantly greater improvements in SDNN and SDANN (P < 0.05). Significant improvements were also observed in sST2 and NT-proBNP levels in the observation group compared to the control group (P < 0.05). Additionally, echocardiographic parameters, including EF, LVESD, LVEDD, IVST, LVMI, and E/e', showed greater improvement in the observation group (P < 0.05). The incidence of major adverse cardiovascular events was lower in the observation group (P < 0.05). Multivariate logistic regression model revealed that dapagliflozin use was independently associated with a reduced risk of MACE (OR = 0.265, 95% CI: 0.097-0.724, P = 0.010). Conclusion Early administration of dapagliflozin 10 mg, in addition to standard therapy, can improve autonomic function, cardiac function, and short-term prognosis in patients with early-onset post-myocardial infarction heart failure.
Collapse
Affiliation(s)
- Le Zhou
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Mingyuan Niu
- Department of Cardiology, Shigatse People’s Hospital, Xizang, China
| | - Wei Chen
- Department of Cardiology, Zhabei Central Hospital of Jing’an District, Shanghai, China
| | - Qian Hu
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Yi Chen
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Xiaohong Geng
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Jiani Gu
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| |
Collapse
|
8
|
Dimitriadis K, Pitsiori D, Alexiou P, Pyrpyris N, Sakalidis A, Beneki E, Iliakis P, Tatakis F, Theofilis P, Tsioufis P, Konstantinidis D, Aggeli K, Tsioufis K. Modulating Sympathetic Nervous System With the Use of SGLT2 Inhibitors: Where There Is Smoke, There Is Fire? J Cardiovasc Pharmacol 2025; 85:12-20. [PMID: 39436317 DOI: 10.1097/fjc.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Heart failure (HF) has become even more prevalent in recent years, because of improved diagnostics and an increase in the risk factors predisposing to its pathology. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) emerged as one of the key pharmacotherapy options for both reduced and preserved ejection fraction, providing cardio- and renoprotection and improving mortality and cardiovascular (CV) outcomes. The pleiotropism of SGLT2i has led to multiple efforts to understand their distinct pathophysiologic interactions with various pathways, including microcirculation, endothelial dysfunction, and inflammation. More recently, the role of SGLT2i on the sympathetic nervous system (SNS) is starting to be recognized, especially because observations of retained or reduced heart rate despite volume contraction have been noted by investigators in the large clinical trials testing the safety and efficacy of these agents. Both preclinical and clinical studies have been performed, with conflicting results. Interestingly, in both settings, although there are indications of SNS modulation by SGLT2i, other studies contradict such findings, without showing, however, worsening of the autonomic homeostasis. Given the importance of neuromodulation in HF, in both pharmacologic and interventional therapies, in this review, we aim to describe the role of SNS in CV disease, focusing on HF, analyze preclinical and clinical data regarding the efficacy of SGLT2i in modulating autonomic dysfunction by examining various markers of SNS activation, and provide the most plausible theoretical backgrounds on the mechanism of benefit of SNS from the inhibition of SGLT2 receptors.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tanvir A, Jo J, Park SM. Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease. Cells 2024; 13:1876. [PMID: 39594624 PMCID: PMC11592965 DOI: 10.3390/cells13221876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glucose metabolism is essential for the maintenance and function of the central nervous system. Although the brain constitutes only 2% of the body weight, it consumes approximately 20% of the body's total energy, predominantly derived from glucose. This high energy demand of the brain underscores its reliance on glucose to fuel various functions, including neuronal activity, synaptic transmission, and the maintenance of ion gradients necessary for nerve impulse transmission. Increasing evidence shows that many neurodegenerative diseases, including Parkinson's disease (PD), are associated with abnormalities in glucose metabolism. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, accompanied by the accumulation of α-synuclein protein aggregates. These pathological features are exacerbated by mitochondrial dysfunction, oxidative stress, and neuroinflammation, all of which are influenced by glucose metabolism disruptions. Emerging evidence suggests that targeting glucose metabolism could offer therapeutic benefits for PD. Several antidiabetic drugs have shown promise in animal models and clinical trials for mitigating the symptoms and progression of PD. This review explores the current understanding of the association between PD and glucose metabolism, emphasizing the potential of antidiabetic medications as a novel therapeutic approach. By improving glucose uptake and utilization, enhancing mitochondrial function, and reducing neuroinflammation, these drugs could address key pathophysiological mechanisms in PD, offering hope for more effective management of this debilitating disease.
Collapse
Affiliation(s)
- Ahmed Tanvir
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Koychev I, Reid G, Nguyen M, Mentz RJ, Joyce D, Shah SH, Holman RR. Inflammatory proteins associated with Alzheimer's disease reduced by a GLP1 receptor agonist: a post hoc analysis of the EXSCEL randomized placebo controlled trial. Alzheimers Res Ther 2024; 16:212. [PMID: 39358806 PMCID: PMC11448378 DOI: 10.1186/s13195-024-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists are a viable option for the prevention of Alzheimer's disease (AD) but the mechanisms of this potential disease modifying action are unclear. We investigated the effects of once-weekly exenatide (EQW) on AD associated proteomic clusters. METHODS The Exenatide Study of Cardiovascular Event Lowering study compared the cardiovascular effects of EQW 2 mg with placebo in 13,752 people with type 2 diabetes mellitus. 4,979 proteins were measured (Somascan V0.4) on baseline and 1-year plasma samples of 3,973 participants. C-reactive protein (CRP), ficolin-2 (FCN2), plasminogen activator inhibitor 1 (PAI-1), soluble vascular cell adhesion protein 1 (sVCAM1) and 4 protein clusters were tested in multivariable mixed models. RESULTS EQW affected FCN2 (Cohen's d -0.019), PAI-1 (Cohen's d -0.033), sVCAM-1 (Cohen's d 0.035) and a cytokine-cytokine cluster (Cohen's d 0.037) significantly compared with placebo. These effects were sustained in individuals over the age of 65 but not in those under 65. CONCLUSIONS EQW treatment was associated with significant change in inflammatory proteins associated with AD. TRIAL REGISTRATION EXSCEL is registered on ClinicalTrials.gov: NCT01144338 on 10th of June 2010.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Graham Reid
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Maggie Nguyen
- Duke Center for Precision Health, Duke University School of Medicine, Durham, NC, USA
| | | | - Dan Joyce
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Svati H Shah
- Duke Center for Precision Health, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Chen TY, Lee HF, Chan YH, Chuang C, Li PR, Yeh YH, Su HC, See LC. Comparing clinical outcomes in patients with type 2 diabetes mellitus after ischaemic stroke: Sodium-glucose cotransporter 2 inhibitors users versus non-users. A propensity score matching National Cohort Study. Diabetes Obes Metab 2024; 26:4501-4509. [PMID: 39134462 DOI: 10.1111/dom.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 09/19/2024]
Abstract
AIM This nationwide cohort study evaluated the impact of sodium-glucose co-transporter-2 inhibitors (SGLT2i) on patients with type 2 diabetes mellitus (T2DM) after ischaemic stroke (IS), aiming to compare clinical outcomes between SGLT2i-treated patients and those not receiving SGLT2i. MATERIALS AND METHODS Utilizing Taiwan's National Health Insurance Research Database, we identified 707 patients with T2DM treated with SGLT2i and 27 514 patients not treated with SGLT2i after an IS, respectively, from 1 May 2016 to 31 December 2019. Propensity score matching was applied to balance baseline characteristics. The follow-up period extended from the index date (3 months after the index acute IS) until the independent occurrence of the study outcomes, 6 months after discontinuation of the index drug, or the end of the study period (31 December 2020), whichever came first. RESULTS After propensity score matching, compared with the non-SGLT2i group (n = 2813), the SGLT2i group (n = 707) exhibited significantly lower recurrent IS rates (3.605% per year vs. 5.897% per year; hazard ratio: 0.55; 95% confidence interval: 0.34-0.88; p = 0.0131) and a significant reduction in all-cause mortality (5.396% per year vs. 7.489% per year; hazard ratio: 0.58; 95% confidence interval: 0.39-0.85; p = 0.0058). No significant differences were observed in the rates of acute myocardial infarction, cardiovascular death, heart failure hospitalization, or lower limb amputation. CONCLUSIONS Our findings indicate significantly lower risks of recurrent IS and all-cause mortality among patients with T2DM receiving SGLT2i treatment. Further studies are required to validate these results and investigate the underlying mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Division of Cardiology, Department of Internal Medicine, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
| | - Hsin-Fu Lee
- Division of Cardiology, Department of Internal Medicine, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- The Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsin Chan
- The Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Microscopy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chi Chuang
- Division of Cardiology, Department of Internal Medicine, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- The Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Pei-Ru Li
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yung-Hsin Yeh
- The Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Hung-Chi Su
- Division of Cardiology, Department of Internal Medicine, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- The Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Lai-Chu See
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
12
|
Симаненкова АВ, Фукс ОС, Тимкина НВ, Суфиева ДА, Кирик ОВ, Коржевский ДЭ, Власов ТД, Каронова ТЛ. [Highly selective sodium-glucose co-transporter type 2 inhibitor empagliflozin as means of brain protection in conditions of chronic brain dyscirculation]. PROBLEMY ENDOKRINOLOGII 2024; 70:44-56. [PMID: 39302864 PMCID: PMC11551795 DOI: 10.14341/probl13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic brain dyscirculation is one of the frequent type 2 diabetes mellitus (DM) complications and leads to patients' disability. Sodium-glucose co-transporter type 2 inhibitors (SGLT-2i) have been proven to have advantages for cardiovascular system, but their effect on the central nervous system (CNS) has not been studied enough. AIM To study empagliflozin effect on CNS damage functional and laboratory parameters in patients with type 2 DM and, under experimental conditions, to investigate the mechanisms of the drug neurotropic effect. MATERIALS AND METHODS The clinical part of the study included patients with type 2 DM on metformin monotherapy (n=39). Patients with a target glycated hemoglobin level formed the "MET" group (n=19), in patients with a non-target glycated hemoglobin level empagliflozin was co-administered for the following 6 months (the "MET+EMPA" group, n=20). Healthy volunteers comprised the control group (n=16). The cognitive status and neuron-specific enolase (NSE) and neurofilament light chains (NLC) concentration were studied. DM was modeled in rats, thereafter the rats were treated with empagliflozin for 8 weeks. Microglia activation was assessed using anti-Iba-1 antibodies and morphological changes in neurons when stained by the Nissl method. RESULTS Both in the "MET+EMPA" and the "MET" groups cognitive deficits were observed, according to the Montreal Cognitive Assessment (MOCA) (24.0 (23.0; 27.0) and 25.0 (21.0; 27.0) points) and the Mini-Mental State Examination (MMSE) (23.75 (23.0; 27.0) and 25.0 (21.0; 27.0) points). Empagliflozin therapy led to the cognitive status normalization after 6 months (26.5 (24.0; 27.0) points according to the MOCA scale and 27.5 (24.0; 28.0) points according to the MMSE). Initially, all patients had a significant increase of NSE (3.60 (2.66; 3.76) ng/ml in the "MET" group, 3.22 (2.94; 3.54) ng/ml in the "MET+EMPA» group, 2.72 (2.13; 2.72) ng/ml in the «Control» group) and NLC (4.50 (3.31; 5.56) ng/ml in the «MET» group, 5, 25 (3.75; 6.25) ng/ml in the «MET+EMPA» group comparing with 3.50 (2.25; 3.50) ng/ml in the «Control» group). Empagliflozin therapy led to a significant decrease in NLC already after 3 months (3.80 (3.25; 3.87) ng/ml), without significant influence on the NSE level. In the experiment, DM was characterized by an increased number of activated microgliocytes and destructured neurons and a decreased number of neurons with a normal structure. Empagliflozin therapy was accompanied by a decrease in the number of immunopositive microgliocytes in the CA1 zone of the hippocampus and an increase in the number of structured neurons. CONCLUSION Type 2 diabetes mellitus is characterized by functional and biochemical changes in the central nervous system even under satisfactory glycemic control. Therapy with empagliflozin has a neuroprotective effect, manifested in an improvement in cognitive status and a decrease in NLC level. Empagliflozin reduces neuronal damage and abnormal microglial activation.
Collapse
Affiliation(s)
- А. В. Симаненкова
- Национальный медицинский исследовательский центр им. В.А. Алмазова; Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
| | - О. С. Фукс
- Национальный медицинский исследовательский центр им. В.А. Алмазова
| | - Н. В. Тимкина
- Национальный медицинский исследовательский центр им. В.А. Алмазова; Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
| | | | | | | | - Т. Д. Власов
- Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
| | - Т. Л. Каронова
- Национальный медицинский исследовательский центр им. В.А. Алмазова; Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
| |
Collapse
|
13
|
Huang Q, Liu L, Tan X, Wang S, Wang S, Luo J, Chen J, Yang N, Jiang J, Liu Y, Hong X, Guo S, Shen Y, Gao F, Feng H, Zhang J, Shen Q, Li C, Ji L. Empagliflozin alleviates neuroinflammation by inhibiting astrocyte activation in the brain and regulating gut microbiota of high-fat diet mice. J Affect Disord 2024; 360:229-241. [PMID: 38823591 DOI: 10.1016/j.jad.2024.05.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.
Collapse
Affiliation(s)
- Qiaoyan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyao Tan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shitong Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Sichen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Na Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiajun Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Feng Gao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Huina Feng
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Jianliang Zhang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
14
|
Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res 2024; 47:2094-2103. [PMID: 38783146 PMCID: PMC11298408 DOI: 10.1038/s41440-024-01723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that is located within the proximal tubule of the kidney's nephrons. While it is typically associated with the kidney, it was later identified in various areas of the central nervous system, including areas modulating cardiorespiratory regulation like blood pressure. In the kidney, SGLT2 functions by reabsorbing glucose from the nephron's tubule into the bloodstream. SGLT2 inhibitors are medications that hinder the function of SGLT2, thus preventing the absorption of glucose and allowing for its excretion through the urine. While SGLT2 inhibitors are not the first-line choice, they are given in conjunction with other pharmaceutical interventions to manage hyperglycemia in individuals with diabetes mellitus. SGLT2 inhibitors also have a surprising secondary effect of decreasing blood pressure independent of blood glucose levels. The implication of SGLT2 inhibitors in lowering blood pressure and its presence in the central nervous system brings to question the role of SGLT2 in the brain. Here, we evaluate and review the function of SGLT2, SGLT2 inhibitors, their role in blood pressure control, the future of SGLT2 inhibitors as antihypertensive agents, and the possible mechanisms of SGLT2 blood pressure control in the central nervous system.
Collapse
Affiliation(s)
- Priscilla Ahwin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA
| | - Diana Martinez
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
15
|
Koychev I, Adler AI, Edison P, Tom B, Milton JE, Butchart J, Hampshire A, Marshall C, Coulthard E, Zetterberg H, Hellyer P, Cormack F, Underwood BR, Mummery CJ, Holman RR. Protocol for a double-blind placebo-controlled randomised controlled trial assessing the impact of oral semaglutide in amyloid positivity (ISAP) in community dwelling UK adults. BMJ Open 2024; 14:e081401. [PMID: 38908839 PMCID: PMC11328662 DOI: 10.1136/bmjopen-2023-081401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), currently marketed for type 2 diabetes and obesity, may offer novel mechanisms to delay or prevent neurotoxicity associated with Alzheimer's disease (AD). The impact of semaglutide in amyloid positivity (ISAP) trial is investigating whether the GLP-1 RA semaglutide reduces accumulation in the brain of cortical tau protein and neuroinflammation in individuals with preclinical/prodromal AD. METHODS AND ANALYSIS ISAP is an investigator-led, randomised, double-blind, superiority trial of oral semaglutide compared with placebo. Up to 88 individuals aged ≥55 years with brain amyloid positivity as assessed by positron emission tomography (PET) or cerebrospinal fluid, and no or mild cognitive impairment, will be randomised. People with the low-affinity binding variant of the rs6971 allele of the Translocator Protein 18 kDa (TSPO) gene, which can interfere with interpreting TSPO PET scans (a measure of neuroinflammation), will be excluded.At baseline, participants undergo tau, TSPO PET and MRI scanning, and provide data on physical activity and cognition. Eligible individuals are randomised in a 1:1 ratio to once-daily oral semaglutide or placebo, starting at 3 mg and up-titrating to 14 mg over 8 weeks. They will attend safety visits and provide blood samples to measure AD biomarkers at weeks 4, 8, 26 and 39. All cognitive assessments are repeated at week 26. The last study visit will be at week 52, when all baseline measurements will be repeated. The primary end point is the 1-year change in tau PET signal. ETHICS AND DISSEMINATION The study was approved by the West Midlands-Edgbaston Research Ethics Committee (22/WM/0013). The results of the study will be disseminated through scientific presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN71283871.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Amanda I Adler
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Edison
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Brian Tom
- Medical Research Council Biostatistics Unit, University of Cambridge, UK
| | - Joanne E Milton
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe Butchart
- Royal Devon University Healthcare Foundation Trust, Exeter, UK
- University of Exeter Medical School, Exeter, UK
| | - Adam Hampshire
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Charles Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA18 Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | - Peter Hellyer
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | | | - Benjamin R Underwood
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation trust, Cambridge, UK
| | - Catherine J Mummery
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Lee SA, Riella LV. Narrative Review of Immunomodulatory and Anti-inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int Rep 2024; 9:1601-1613. [PMID: 38899203 PMCID: PMC11184259 DOI: 10.1016/j.ekir.2024.02.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 06/21/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have evolved from their initial role as antidiabetic drugs to garner recognition for their remarkable cardio-protective and reno-protective attributes. They have become a crucial component of therapeutic guidelines for congestive heart failure and proteinuric chronic kidney disease (CKD). These benefits extend beyond glycemic control, because improvements in cardiovascular and renal outcomes occur swiftly. Recent studies have unveiled the immunomodulatory properties of SGLT2 inhibitors; thus, shedding light on their potential to influence the immune system and inflammation. This comprehensive review explores the current state of knowledge regarding the impact of SGLT2 inhibitors on the immune system and inflammation, focusing on preclinical and clinical evidence. The review delves into their antiinflammatory and immunomodulating effects, offering insights into clinical implications, and exploring emerging research areas related to their prospective immunomodulatory impact.
Collapse
Affiliation(s)
- Sul A. Lee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine and Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Lv Y, Cheng X, Dong Q. SGLT1 and SGLT2 inhibition, circulating metabolites, and cerebral small vessel disease: a mediation Mendelian Randomization study. Cardiovasc Diabetol 2024; 23:157. [PMID: 38715111 PMCID: PMC11077823 DOI: 10.1186/s12933-024-02255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) and SGLT1 inhibitors may have additional beneficial metabolic effects on circulating metabolites beyond glucose regulation, which could contribute to a reduction in the burden of cerebral small vessel disease (CSVD). Accordingly, we used Mendelian Randomization (MR) to examine the role of circulating metabolites in mediating SGLT2 and SGLT1 inhibition in CSVD. METHODS Genetic instruments for SGLT1/2 inhibition were identified as genetic variants, which were both associated with the expression of encoding genes of SGLT1/2 inhibitors and glycated hemoglobin A1c (HbA1c) level. A two-sample two-step MR was used to determine the causal effects of SGLT1/2 inhibition on CSVD manifestations and the mediating effects of 1400 circulating metabolites linking SGLT1/2 inhibition with CSVD manifestations. RESULTS A lower risk of deep cerebral microbleeds (CMBs) and small vessel stroke (SVS) was linked to genetically predicted SGLT2 inhibition. Better white matter structure integrity was also achieved, as evidenced by decreased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), as well as lower deep (DWMH) and periventrivular white matter hyperintensity (PWMH) volume. Inhibiting SGLT2 could also lessen the incidence of severe enlarged perivascular spaces (EPVS) located at white matter, basal ganglia (BG) and hippocampus (HIP). SGLT1 inhibition could preserve white matter integrity, shown as decreased MD of white matter and DWMH volume. The effect of SGLT2 inhibition on SVS and MD of white matter through the concentration of 4-acetamidobutanoate and the cholesterol to oleoyl-linoleoyl-glycerol (18:1 to 18:2) ratio, with a mediated proportion of 30.3% and 35.5% of the total effect, respectively. CONCLUSIONS SGLT2 and SGLT1 inhibition play protective roles in CSVD development. The SGLT2 inhibition could lower the risk of SVS and improve the integrity of white matter microstructure via modulating the level of 4-acetamidobutanoate and cholesterol metabolism. Further mechanistic and clinical studies research are needed to validate our findings.
Collapse
Affiliation(s)
- Yanchen Lv
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- , 12 Wulumuqi Zhong Road, 200040, Shanghai, P. R. China.
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Borriello G, Buonincontri V, de Donato A, Della Corte M, Gravina I, Iulianiello P, Joshi R, Mone P, Cacciola G, Viggiano D. The interplay between sodium/glucose cotransporter type 2 and mitochondrial ionic environment. Mitochondrion 2024; 76:101878. [PMID: 38599300 DOI: 10.1016/j.mito.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.
Collapse
Affiliation(s)
- Gianmarco Borriello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | | | - Antonio de Donato
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, AV, Italy
| | - Michele Della Corte
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Ilenia Gravina
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pietro Iulianiello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Rashmi Joshi
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pasquale Mone
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; Casa di cura privata Montevergine, Mercogliano, Italy
| | - Giovanna Cacciola
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Davide Viggiano
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy.
| |
Collapse
|
19
|
Vercalsteren E, Karampatsi D, Buizza C, Nyström T, Klein T, Paul G, Patrone C, Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol 2024; 23:88. [PMID: 38424560 PMCID: PMC10905950 DOI: 10.1186/s12933-024-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Type-2 diabetes (T2D) worsens stroke recovery, amplifying post-stroke disabilities. Currently, there are no therapies targeting this important clinical problem. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are potent anti-diabetic drugs that also efficiently reduce cardiovascular death and heart failure. In addition, SGLT2i facilitate several processes implicated in stroke recovery. However, the potential efficacy of SGLT2i to improve stroke recovery in T2D has not been investigated. Therefore, we determined whether a post-stroke intervention with the SGLT2i Empagliflozin could improve stroke recovery in T2D mice. T2D was induced in C57BL6J mice by 8 months of high-fat diet feeding. Hereafter, animals were subjected to transient middle cerebral artery occlusion and treated with vehicle or the SGLTi Empagliflozin (10 mg/kg/day) starting from 3 days after stroke. A similar study in non diabetic mice was also conducted. Stroke recovery was assessed using the forepaw grip strength test. To identify potential mechanisms involved in the Empagliflozin-mediated effects, several metabolic parameters were assessed. Additionally, neuronal survival, neuroinflammation, neurogenesis and cerebral vascularization were analyzed using immunohistochemistry/quantitative microscopy. Empagliflozin significantly improved stroke recovery in T2D but not in non-diabetic mice. Improvement of functional recovery was associated with lowered glycemia, increased serum levels of fibroblast growth factor-21 (FGF-21), and the normalization of T2D-induced aberration of parenchymal pericyte density. The global T2D-epidemic and the fact that T2D is a major risk factor for stroke are drastically increasing the number of people in need of efficacious therapies to improve stroke recovery. Our data provide a strong incentive for the potential use of SGLT2i for the treatment of post-stroke sequelae in T2D.
Collapse
Affiliation(s)
- Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| |
Collapse
|
20
|
Lymperopoulos A. Editorial for the IJMS Special Issue on Sglt2 Inhibitors (Volume 2). Int J Mol Sci 2023; 24:16865. [PMID: 38069186 PMCID: PMC10706270 DOI: 10.3390/ijms242316865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The goal of the second volume of this Special Issue was to build upon the success of the first one and to continue to highlight the ever-expanding list of pharmacological properties of the sodium/glucose co-transporter (SGLT) type 2 (SGLT2) inhibitor (SGLT2i) drug class (also known as gliflozins) [...].
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
21
|
Chinyama HA, Wei L, Mokgautsi N, Lawal B, Wu ATH, Huang HS. Identification of CDK1, PBK, and CHEK1 as an Oncogenic Signature in Glioblastoma: A Bioinformatics Approach to Repurpose Dapagliflozin as a Therapeutic Agent. Int J Mol Sci 2023; 24:16396. [PMID: 38003585 PMCID: PMC10671581 DOI: 10.3390/ijms242216396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor whose median survival is less than 15 months. The current treatment regimen comprising surgical resectioning, chemotherapy with Temozolomide (TMZ), and adjuvant radiotherapy does not achieve total patient cure. Stem cells' presence and GBM tumor heterogeneity increase their resistance to TMZ, hence the poor overall survival of patients. A dysregulated cell cycle in glioblastoma enhances the rapid progression of GBM by evading senescence or apoptosis through an over-expression of cyclin-dependent kinases and other protein kinases that are the cell cycle's main regulatory proteins. Herein, we identified and validated the biomarker and predictive properties of a chemoradio-resistant oncogenic signature in GBM comprising CDK1, PBK, and CHEK1 through our comprehensive in silico analysis. We found that CDK1/PBK/CHEK1 overexpression drives the cell cycle, subsequently promoting GBM tumor progression. In addition, our Kaplan-Meier survival estimates validated the poor patient survival associated with an overexpression of these genes in GBM. We used in silico molecular docking to analyze and validate our objective to repurpose Dapagliflozin against CDK1/PBK/CHEK1. Our results showed that Dapagliflozin forms putative conventional hydrogen bonds with CDK1, PBK, and CHEK1 and arrests the cell cycle with the lowest energies as Abemaciclib.
Collapse
Affiliation(s)
- Harold A. Chinyama
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Li Wei
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, No.111, Sec. 3, Xinglong Rd., Taipei 11696, Taiwan;
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Alexander T. H. Wu
- PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
22
|
Simanenkova AV, Fuks OS, Timkina NV, Tikhomirova PA, Vlasov TD, Karonova TL. Neuroprotective effects of glucose-lowering drugs in rat focal brain ischemia-reperfusion model. "ARTERIAL’NAYA GIPERTENZIYA" ("ARTERIAL HYPERTENSION") 2023; 29:579-592. [DOI: 10.18705/1607-419x-2023-29-6-579-592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Background. Ischemic stroke is one of the leading causes of death in patients with type 2 diabetes mellitus (DM). According to the results of clinical and experimental studies, the ability of glucagon-like peptide-1 receptor agonists (GLP-1RA) to reduce the risk and severity of stroke in DM has been proven; data on the sodium-glucose cotransporter-2 inhibitors (SGLT-2i) effect are scarce. There has been no direct comparative study of the GLP-1RA and SGLT-2i neuroprotective effect.Objective. To evaluate and to compare the effect of GLP-1RA of varying duration of action and SGLT-2i of varying selectivity on the neurological deficit severity and the brain damage volume in a transient focal brain ischemia model in rats without DM.Design and methods. Male Wistar rats were divided into groups (n = 10 each) depending on the therapy received: “EMPA” (empagliflozin per os 2 mg/kg once daily), “CANA” (canagliflozin per os 25 mg/kg once daily), “LIRA” (liraglutide 1 mg/kg s. c. once daily), “DULA” (dulaglutide 0,12 mg/kg s. c. every 72 hours), “SEMA” (semaglutide 0,012 mg /kg s. c. once daily), “MET” (metformin per os 200 mg/kg once daily — comparison group), “Control” (administration of 0,9 % NaCl solution s. c. once daily). After 7 days, all groups underwent transient focal 30-minute filament middle cerebral artery occlusion. After 48 hours of reperfusion, neurological deficit was assessed using the Garcia scale, then the brain was collected and sections were stained with 1 % triphenyltetrazolium chloride solution to calculate the damage volume.Results. Neurological deficit severity in the “LIRA” (14,50 (12,25; 15,25) points) and “SEMA” (14,00 (13,50; 18,00) points) groups was significantly less than in the “Control” group (11.00 (6,75; 12,00) points). The use of both SGLT-2i, as well as metformin, had no effect on the neurological status. At the same time, therapy with all study drugs had an infarct-limiting effect, compared with the “Control” group (damage volume 24,50 (14,69; 30,12) % of the total brain volume). At the same time, the brain damage volume in the “MET” group (12,93 (6,65, 26,66) %) was greater than that in the “EMPA” (6,08 (2,97, 7,63) %), “CANA” (5,11 (3,96; 8,34) %), “LIRA” (3,40 (2,09; 8,08) %), “DULA” (4,37 (2,72; 5,40) %), “SEMA” (5,19 (4,11; 7,83) %) groups.Conclusions. SGLT-2i of varying selectivity and GLP-1RA of varying duration of action have a similar infarct-limiting effect in acute experimental brain ischemia. At the same time, GLP-1RA neuroprotective potential is higher, as it is characterized by an additional positive effect on the neurological status.
Collapse
Affiliation(s)
| | - O. S. Fuks
- Almazov National Medical Research Centre
| | - N. V. Timkina
- Almazov National Medical Research Centre; Pavlov University
| | | | | | - T. L. Karonova
- Almazov National Medical Research Centre; Pavlov University
| |
Collapse
|
23
|
Heusser K, Tank J, Diedrich A, Fischer A, Heise T, Jordan J. Randomized Trial Comparing SGLT2 Inhibition and Hydrochlorothiazide on Sympathetic Traffic in Type 2 Diabetes. Kidney Int Rep 2023; 8:2254-2264. [PMID: 38025218 PMCID: PMC10658269 DOI: 10.1016/j.ekir.2023.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Reductions in sympathetic nervous system activity may contribute to beneficial effects of sodium glucose cotransporter 2 (SGLT2) inhibition on cardiovascular outcomes. Therefore, we tested the hypothesis that SGLT2 inhibition with empagliflozin (Empa) lowers muscle sympathetic nerve activity (MSNA) in patients with type 2 diabetes mellitus (T2DM) compared with hydrochlorothiazide (HCT) to discern SGLT2-specific actions from responses to increased natriuresis. Methods We randomized patients with T2DM on metformin monotherapy to either 25 mg/d Empa (n = 20) or 25 mg/d HCT (n = 21) for 6 weeks in a parallel, double-blind fashion. We assessed MSNA by peroneal microneurography, blood pressure, cardiovascular and metabolic biomarkers at baseline and at the end of treatment. Results Both drugs elicited volume depletion, as indicated by increased thoracic impedance. Compared with HCT, Empa caused 1.23 kg more body weight loss (P = 0.011) and improved glycemic control. Seated systolic blood pressure decreased with both treatments (P < 0.002). MSNA did not change significantly with either treatment; however, MSNA changes were negatively correlated with changes in body weight on Empa (P = 0.042) and on HCT(P = 0.001). The relationship was shifted to lower MSNA on Empa compared with HCT (P = 0.002). Conclusion Increased renal sodium excretion eliciting body weight loss may promote sympathetic activation. However, sympathetic excitation in the face of increased sodium loss may be attenuated by SGLT2 inhibitor-specific actions.
Collapse
Affiliation(s)
- Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center, Cologne Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne Germany
| | - André Diedrich
- Vanderbilt Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Shim B, Stokum JA, Moyer M, Tsymbalyuk N, Tsymbalyuk O, Keledjian K, Ivanova S, Tosun C, Gerzanich V, Simard JM. Canagliflozin, an Inhibitor of the Na +-Coupled D-Glucose Cotransporter, SGLT2, Inhibits Astrocyte Swelling and Brain Swelling in Cerebral Ischemia. Cells 2023; 12:2221. [PMID: 37759444 PMCID: PMC10527352 DOI: 10.3390/cells12182221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Brain swelling is a major cause of death and disability in ischemic stroke. Drugs of the gliflozin class, which target the Na+-coupled D-glucose cotransporter, SGLT2, are approved for type 2 diabetes mellitus (T2DM) and may be beneficial in other conditions, but data in cerebral ischemia are limited. We studied murine models of cerebral ischemia with middle cerebral artery occlusion/reperfusion (MCAo/R). Slc5a2/SGLT2 mRNA and protein were upregulated de novo in astrocytes. Live cell imaging of brain slices from mice following MCAo/R showed that astrocytes responded to modest increases in D-glucose by increasing intracellular Na+ and cell volume (cytotoxic edema), both of which were inhibited by the SGLT2 inhibitor, canagliflozin. The effect of canagliflozin was studied in three mouse models of stroke: non-diabetic and T2DM mice with a moderate ischemic insult (MCAo/R, 1/24 h) and non-diabetic mice with a severe ischemic insult (MCAo/R, 2/24 h). Canagliflozin reduced infarct volumes in models with moderate but not severe ischemic insults. However, canagliflozin significantly reduced hemispheric swelling and improved neurological function in all models tested. The ability of canagliflozin to reduce brain swelling regardless of an effect on infarct size has important translational implications, especially in large ischemic strokes.
Collapse
Affiliation(s)
- Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Kounatidis D, Vallianou N, Evangelopoulos A, Vlahodimitris I, Grivakou E, Kotsi E, Dimitriou K, Skourtis A, Mourouzis I. SGLT-2 Inhibitors and the Inflammasome: What's Next in the 21st Century? Nutrients 2023; 15:nu15102294. [PMID: 37242177 DOI: 10.3390/nu15102294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in the kidney and the heart is increasingly being suggested to play a key role in mediating inflammation. In the kidney, NLRP3 activation was associated with the progression of diabetic kidney disease. In the heart, activation of the NLRP3 inflammasome was related to the enhanced release of interleukin-1β (IL-1β) and the subsequent induction of atherosclerosis and heart failure. Apart from their glucose-lowering effects, SGLT-2 inhibitors were documented to attenuate activation of the NLRP3, thus resulting in the constellation of an anti-inflammatory milieu. In this review, we focus on the interplay between SGLT-2 inhibitors and the inflammasome in the kidney, the heart and the neurons in the context of diabetes mellitus and its complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iordanis Mourouzis
- Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
26
|
Hsu CN, Hsuan CF, Liao D, Chang JKJ, Chang AJW, Hee SW, Lee HL, Teng SIF. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life (Basel) 2023; 13:1024. [PMID: 37109553 PMCID: PMC10144651 DOI: 10.3390/life13041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin-angiotensin II-aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients.
Collapse
Affiliation(s)
- Chih-Neng Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jack Keng-Jui Chang
- Biological Programs for Younger Scholar, Academia Sinica, Taipei 115, Taiwan
| | - Allen Jiun-Wei Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sean I. F. Teng
- Department of Cardiology, Ming-Sheng General Hospital, Taoyuan 330, Taiwan
| |
Collapse
|
27
|
Andreea MM, Surabhi S, Razvan-Ionut P, Lucia C, Camelia N, Emil T, Tiberiu NI. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Harms or Unexpected Benefits? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:742. [PMID: 37109700 PMCID: PMC10143699 DOI: 10.3390/medicina59040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
There is a need for innovative pharmaceutical intervention in light of the increasing prevalence of metabolic disease and cardiovascular disease. The kidneys' sodium-glucose cotransporter 2 inhibitors (SGLT2) receptors are targeted to reduce glucose reabsorption by SGLT2. Patients with type 2 diabetes mellitus (T2DM) benefit the most from reduced blood glucose levels, although this is just one of the numerous physiological consequences. To establish existing understanding and possible advantages and risks for SGLT2 inhibitors in clinical practice, this article will explore the influence of SGLT2 inhibitors on six major organ systems. In addition, this literature review will discuss the benefits and potential drawbacks of SGLT2 inhibitors on various organ systems and their potential application in therapeutic settings.
Collapse
Affiliation(s)
- Munteanu Madalina Andreea
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Swarnkar Surabhi
- Department of Cardiovascular Science, University Medical Center Gottingen, 37075 Gottingen, Germany
| | - Popescu Razvan-Ionut
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
- Department of Urology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ciobotaru Lucia
- Department of Nephrology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Nicolae Camelia
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Tufanoiu Emil
- Department of Neurology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nanea Ioan Tiberiu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
| |
Collapse
|
28
|
Molecular and neural roles of sodium-glucose cotransporter 2 inhibitors in alleviating neurocognitive impairment in diabetic mice. Psychopharmacology (Berl) 2023; 240:983-1000. [PMID: 36869919 PMCID: PMC10006050 DOI: 10.1007/s00213-023-06341-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
Diabetes causes a variety of molecular changes in the brain, making it a real risk factor for the development of cognitive dysfunction. Complex pathogenesis and clinical heterogeneity of cognitive impairment makes the efficacy of current drugs limited. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) gained our attention as drugs with potential beneficial effects on the CNS. In the present study, these drugs ameliorated the cognitive impairment associated with diabetes. Moreover, we verified whether SGLT2i can mediate the degradation of amyloid precursor protein (APP) and modulation of gene expression (Bdnf, Snca, App) involved in the control of neuronal proliferation and memory. The results of our research proved the participation of SGLT2i in the multifactorial process of neuroprotection. SGLT2i attenuate the neurocognitive impairment through the restoration of neurotrophin levels, modulation of neuroinflammatory signaling, and gene expression of Snca, Bdnf, and App in the brain of diabetic mice. The targeting of the above-mentioned genes is currently seen as one of the most promising and developed therapeutic strategies for diseases associated with cognitive dysfunction. The results of this work could form the basis of a future administration of SGLT2i in diabetics with neurocognitive impairment.
Collapse
|
29
|
Kuo YW, Lee JD, Lee CP, Huang YC, Lee M. Association between initial in-hospital heart rate and glycemic control in patients with acute ischemic stroke and diabetes mellitus. BMC Endocr Disord 2023; 23:69. [PMID: 36991469 PMCID: PMC10054020 DOI: 10.1186/s12902-023-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND A high resting heart rate (HR) has been associated with an increased risk of diabetes mellitus. This study explored the association between initial in-hospital HR and glycemic control in patients with acute ischemic stroke (AIS) and diabetes mellitus. METHODS We analyzed data from 4,715 patients with AIS and type 2 diabetes mellitus enrolled in the Chang Gung Research Database between January 2010 and September 2018. The study outcome was unfavorable glycemic control, defined as glycated hemoglobin (HbA1c) ≥ 7%. In statistical analyses, the mean initial in-hospital HR was used as both a continuous and categorical variable. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression analysis. The associations between the HR subgroups and HbA1c levels were analyzed using a generalized linear model. RESULTS Compared with the reference group (HR < 60 bpm), the adjusted ORs for unfavorable glycemic control were 1.093 (95% CI 0.786-1.519) for an HR of 60-69 bpm, 1.370 (95% CI 0.991-1.892) for an HR of 70-79 bpm, and 1.608 (95% CI 1.145-2.257) for an HR of ≥ 80 bpm. Even after adjusting for possible confounders, the HbA1c levels after admission and discharge among diabetic stroke patients increased significantly in the subgroups with higher HRs (p < 0.001). CONCLUSIONS High initial in-hospital HR is associated with unfavorable glycemic control in patients with AIS and diabetes mellitus, particularly in those with an HR of ≥ 80 bpm, compared with those with an HR of < 60 bpm.
Collapse
Affiliation(s)
- Ya-Wen Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
- Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jiann-Der Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, No.6, W. Sec., Jiapu Rd., Puzi City, Chiayi County 613, Chiayi, Taoyuan, Taiwan (R.O.C.).
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Chu Huang
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, No.6, W. Sec., Jiapu Rd., Puzi City, Chiayi County 613, Chiayi, Taoyuan, Taiwan (R.O.C.)
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, No.6, W. Sec., Jiapu Rd., Puzi City, Chiayi County 613, Chiayi, Taoyuan, Taiwan (R.O.C.)
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
30
|
Pistelli L, Parisi F, Correale M, Cocuzza F, Campanella F, de Ferrari T, Crea P, De Sarro R, La Cognata O, Ceratti S, Recupero T, Ruocco G, Palazzuoli A, Imbalzano E, Dattilo G. Gliflozins: From Antidiabetic Drugs to Cornerstone in Heart Failure Therapy-A Boost to Their Utilization and Multidisciplinary Approach in the Management of Heart Failure. J Clin Med 2023; 12:jcm12010379. [PMID: 36615178 PMCID: PMC9820867 DOI: 10.3390/jcm12010379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Heart failure (HF) is a complex, multifactorial, progressive clinical condition affecting 64.3 million people worldwide, with a strong impact in terms of morbidity, mortality and public health costs. In the last 50 years, along with a better understanding of HF physiopathology and in agreement with the four main models of HF, many therapeutic options have been developed. Recently, the European Society of Cardiology (ESC) HF guidelines enthusiastically introduced inhibitors of the sodium-glucose cotransporter (SGLT2i) as first line therapy for HF with reduced ejection fraction (HFrEF) in order to reduce hospitalizations and mortality. Despite drugs developed as hypoglycemic agents, data from the EMPA-REG OUTCOME trial encouraged the evaluation of the possible cardiovascular effects, showing SGLT2i beneficial effects on loading conditions, neurohormonal axes, heart cells' biochemistry and vascular stiffness, determining an improvement of each HF model. We want to give a boost to their use by increasing the knowledge of SGLT2-I and understanding the probable mechanisms of this new class of drugs, highlighting strengths and weaknesses, and providing a brief comment on major trials that made Gliflozins a cornerstone in HF therapy. Finally, aspects that may hinder SGLT2-i widespread utilization among different types of specialists, despite the guidelines' indications, will be discussed.
Collapse
Affiliation(s)
- Lorenzo Pistelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Francesca Parisi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Michele Correale
- Cardiothoracic Department, University Hospital Policlinico Riuniti, 71100 Foggia, Italy
- Correspondence: ; Tel.: +39-3282918518
| | - Federica Cocuzza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Francesca Campanella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Tommaso de Ferrari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Pasquale Crea
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Rosalba De Sarro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Olga La Cognata
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Simona Ceratti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Tonino Recupero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Gaetano Ruocco
- Cardiology Unit, Riuniti of Valdichiana Hospitals, USL-SUD-EST Toscana, 53045 Montepulciano, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, S. Maria alle Scotte Hospital, University of Siena, 53018 Siena, Italy
| | - Egidio Imbalzano
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| | - Giuseppe Dattilo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy
| |
Collapse
|
31
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Li Y, Yuan X, Xu D, Zhou L. The Neuronal and Non-Neuronal Pathways of Sodium-Glucose Cotransporter-2 Inhibitor on Body Weight-Loss and Insulin Resistance. Diabetes Metab Syndr Obes 2023; 16:425-435. [PMID: 36820270 PMCID: PMC9938665 DOI: 10.2147/dmso.s399367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
With the emergence of sodium-glucose cotransporter 2 inhibitors (SGLT2i), the treatment of type 2 diabetes mellitus (T2DM) has achieved a new milestone, of which the insulin-independent mechanism could produce weight loss, improve insulin resistance (IR) and exert other protective effects. Besides the well-acknowledged biochemical processes, the dysregulated balance between sympathetic and parasympathetic activity may play a significant role in IR and obesity. Weight loss caused by SGLT-2i could be achieved via activating the liver-brain-adipose neural axis in adipocytes. We previously demonstrated that SGLT-2 are widely expressed in central nervous system (CNS) tissues, and SGLT-2i could inhibit central areas associated with autonomic control through unidentified pathways, indicating that the role of the central sympathetic inhibition of SGLT-2i on blood pressure and weight loss. However, the exact pathway of SGLT2i related to these effects and to what extent it depends on the neural system are not fully understood. The evidence of how SGLT-2i interacts with the nervous system is worth exploring. Therefore, in this review, we will illustrate the potential neurological processes by which SGLT2i improves IR in skeletal muscle, liver, adipose tissue, and other insulin-target organs via the CNS and sympathetic nervous system/parasympathetic nervous system (SNS/PNS).
Collapse
Affiliation(s)
- Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liling Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China, Tel +8613611927616, Email
| |
Collapse
|
32
|
Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J Cardiovasc Pharmacol 2023; 81:4-14. [PMID: 36607775 DOI: 10.1097/fjc.0000000000001380] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to treat diabetes mellitus. Abundant evidence has shown that SGLT2 inhibitors can reduce hospitalization for heart failure (HF) in patients with or without diabetes. An increasing number of studies are being conducted on the mechanisms of action of SGLT2 inhibitors in HF. Our review summarizes a series of clinical trials on the cardioprotective effects of SGLT2 inhibitors in the treatment of HF. We have summarized several classical SGLT2 inhibitors in cardioprotection research, including empagliflozin, dapagliflozin, canagliflozin, ertugliflozin, and sotagliflozin. In addition, we provided a brief overview of the safety and benefits of SGLT2 inhibitors. Finally, we focused on the mechanisms of SGLT2 inhibitors in the treatment of HF, including ion-exchange regulation, volume regulation, ventricular remodeling, and cardiac energy metabolism. Exploring the mechanisms of SGLT2 inhibitors has provided insight into repurposing these diabetic drugs for the treatment of HF.
Collapse
|
33
|
Sardu C, Massimo Massetti M, Rambaldi P, Gatta G, Cappabianca S, Sasso FC, Santamaria M, Volpicelli M, Ducceschi V, Signoriello G, Paolisso G, Marfella R. SGLT2-inhibitors reduce the cardiac autonomic neuropathy dysfunction and vaso-vagal syncope recurrence in patients with type 2 diabetes mellitus: the SCAN study. Metabolism 2022; 137:155243. [PMID: 35732222 DOI: 10.1016/j.metabol.2022.155243] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) the vaso-vagal syncope (VVS) recurrence could be due to the alteration of autonomic system function, evaluated by heart rate variability (HRV), and by 123I-metaiodobenzylguanidine (123I-mIBG) myocardial scintigraphy indexes: Heart to Mediastinum ratio (H/Mlate), and Washout rate (WR). The SGLT2-I could modulate/reduce autonomic dysfunction in T2DM patients with VVS. This effect could reduce the VVS recurrence in T2DM patients. METHODS In a prospective multicenter study, after propensity score matching, we studied a population of 324 T2DM patients with VVS, divided into 161 SGLT2-I-users vs. 163 Non-SGLT2-I users. In these patients as SGLT2-I-users vs. Non-SGLT2-I users, we investigated the HRV and 123I-MIBG modifications and VVS recurrence at 12 months of follow-up. RESULTS At follow-up end, the SGLT2-I-users vs. Non-SGLT2-I users had best glucose homeostasis and lower values of inflammatory markers, and resting heart rate (p < 0.05). The SGLT2-I-users vs. Non-SGLT2-I users evidenced the lowest low frequency/high frequency ratio (LF/HFr), a significant difference for all the indexes of autonomic dysfunction via ECG Holter analysis, and higher values of H/Mlate (p < 0.05). Finally, comparing SGLT2-I-users vs. Non-SGLT2-I users, we found a higher rate of VVS recurrence events, specifically of the vasodepressor VVS recurrence at 1-year follow-up (p < 0.05). We did not find a significant difference of mixed and cardio-inhibitory VVS recurrence events at 1 year of follow-up in the study cohorts (p > 0.05). At the Cox regression analysis H/Mlate (0.710, [0.481-0.985]), and SGLT2-I therapy (0.550, [0.324-0.934]) predicted all causes of syncope recurrence at 1 year of follow-up. CONCLUSIONS Non-SGLT2-I users vs. SGLT2-I-users had alterations of the autonomic nervous system, with a higher rate of VVS recurrence at 1 year of follow-up. The indexes of cardiac denervation predicted the VVS recurrence, while the SGLT2-I reduced the risk of VVS recurrence. CLINICAL TRIAL REGISTRATION NUMBER NCT03717207.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - M Massimo Massetti
- Cardiovascular and Arrhythmias Department "Gemelli Molise", Campobasso, Italy; Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Rambaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Gianluca Gatta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Matteo Santamaria
- Cardiovascular and Arrhythmias Department "Gemelli Molise", Campobasso, Italy.
| | - Mario Volpicelli
- Cardiovascular Diseases and Electrophysiology Unit, "S. Maria della Pietà Hospital", Naples, Italy
| | - Valentino Ducceschi
- Cardiovascular Diseases and Electrophysiology Unit, "Vecchio Pellegrini Hospital", Naples, Italy
| | - Giuseppe Signoriello
- Department of Mental Health, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; "Mediterranea Cardiocentro", Naples, Italy.
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; "Mediterranea Cardiocentro", Naples, Italy.
| |
Collapse
|
34
|
Sanoudou D, Mantzoros CS, Hill MA. Sodium-glucose cotransporter-2 inhibitors: A treatment option for recurrent vasovagal syndrome? Metabolism 2022; 137:155309. [PMID: 36067806 DOI: 10.1016/j.metabol.2022.155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States; Section of Endocrinology, VA Boston Healthcare System, Jamaica Plain, MA 02130, United States
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
35
|
Bakkar NMZ, AlZaim I, El-Yazbi AF. Depot-specific adipose tissue modulation by SGLT2 inhibitors and GLP1 agonists mediates their cardioprotective effects in metabolic disease. Clin Sci (Lond) 2022; 136:1631-1651. [PMID: 36383188 DOI: 10.1042/cs20220404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 01/03/2025]
Abstract
Sodium-glucose transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide 1 (GLP-1) receptor agonists are newer antidiabetic drug classes, which were recently shown to decrease cardiovascular (CV) morbidity and mortality in diabetic patients. CV benefits of these drugs could not be directly attributed to their blood glucose lowering capacity possibly implicating a pleotropic effect as a mediator of their impact on cardiovascular disease (CVD). Particularly, preclinical and clinical studies indicate that SGLT-2i(s) and GLP-1 receptor agonists are capable of differentially modulating distinct adipose pools reducing the accumulation of fat in some depots, promoting the healthy expansion of others, and/or enhancing their browning, leading to the suppression of the metabolically induced inflammatory processes. These changes are accompanied with improvements in markers of cardiac structure and injury, coronary and vascular endothelial healing and function, vascular remodeling, as well as reduction of atherogenesis. Here, through a summary of the available evidence, we bring forth our view that the observed CV benefit in response to SGLT-2i or GLP-1 agonists therapy might be driven by their ameliorative impact on adipose tissue inflammation.
Collapse
Affiliation(s)
- Nour-Mounira Z Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alamein, Egypt
| |
Collapse
|
36
|
Heimke M, Lenz F, Rickert U, Lucius R, Cossais F. Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells 2022; 11:cells11193107. [PMID: 36231069 PMCID: PMC9563452 DOI: 10.3390/cells11193107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, including empagliflozin, are routinely used as antidiabetic drugs. Recent studies indicate that beside its beneficial effects on blood glucose level, empagliflozin may also exert vascular anti-inflammatory and neuroprotective properties. In the brain, microglia are crucial mediators of inflammation, and neuroinflammation plays a key role in neurodegenerative disorders. Dampening microglia-mediated inflammation may slow down disease progression. In this context, we investigated the immunomodulatory effect of empagliflozin on activated primary microglia. As a validated experimental model, rat primary microglial cells were activated into a pro-inflammatory state by stimulation with LPS. The influence of empagliflozin on the expression of pro-inflammatory mediators (NO, Nos2, IL6, TNF, IL1B) and on the anti-inflammatory mediator IL10 was assessed using quantitative PCR and ELISA. Further, we investigated changes in the activation of the ERK1/2 cascade by Western blot and NFkB translocation by immunostaining. We observed that empagliflozin reduces the expression of pro- and anti-inflammatory mediators in LPS-activated primary microglia. These effects might be mediated by NHE-1, rather than by SGLT2, and by the further inhibition of the ERK1/2 and NFkB pathways. Our results support putative anti-inflammatory effects of empagliflozin on microglia and suggest that SGLT2 inhibitors may exert beneficial effects in neurodegenerative disorders.
Collapse
|
37
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
38
|
Jayarathne HSM, Debarba LK, Jaboro JJ, Ginsburg BC, Miller RA, Sadagurski M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell 2022; 21:e13653. [PMID: 35707855 PMCID: PMC9282842 DOI: 10.1111/acel.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/24/2023] Open
Abstract
The aging brain is characterized by progressive increases in neuroinflammation and central insulin resistance, which contribute to neurodegenerative diseases and cognitive impairment. Recently, the Interventions Testing Program demonstrated that the anti-diabetes drug, Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, led to lower fasting glucose and improved glucose tolerance in both sexes, but extended median lifespan by 14% in male mice only. Here, we show that Cana treatment significantly improved central insulin sensitivity in the hypothalamus and the hippocampus of 30-month-old male mice. Aged males produce more robust neuroimmune responses than aged females. Remarkably, Cana-treated male and female mice showed significant reductions in age-associated hypothalamic gliosis with a decrease in inflammatory cytokine production by microglia. However, in the hippocampus, Cana reduced microgliosis and astrogliosis in males, but not in female mice. The decrease in microgliosis was partially correlated with reduced phosphorylation of S6 kinase in microglia of Cana-treated aged male, but not female mice. Thus, Cana treatment improved insulin responsiveness in aged male mice. Furthermore, Cana treatment improved exploratory and locomotor activity of 30-month-old male but not female mice. Taken together, we demonstrate the sex-specific neuroprotective effects of Cana treatment, suggesting its application for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hashan S. M. Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Lucas K. Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Jacob J. Jaboro
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Brett C. Ginsburg
- Department of Psychiatry and Behavioral SciencesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| |
Collapse
|
39
|
Čertíková Chábová V, Zakiyanov O. Sodium Glucose Cotransporter-2 Inhibitors: Spotlight on Favorable Effects on Clinical Outcomes beyond Diabetes. Int J Mol Sci 2022; 23:2812. [PMID: 35269954 PMCID: PMC8911473 DOI: 10.3390/ijms23052812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Sodium glucose transporter type 2 (SGLT2) molecules are found in proximal tubules of the kidney, and perhaps in the brain or intestine, but rarely in any other tissue. However, their inhibitors, intended to improve diabetes compensation, have many more beneficial effects. They improve kidney and cardiovascular outcomes and decrease mortality. These benefits are not limited to diabetics but were also found in non-diabetic individuals. The pathophysiological pathways underlying the treatment success have been investigated in both clinical and experimental studies. There have been numerous excellent reviews, but these were mostly restricted to limited aspects of the knowledge. The aim of this review is to summarize the known experimental and clinical evidence of SGLT2 inhibitors' effects on individual organs (kidney, heart, liver, etc.), as well as the systemic changes that lead to an improvement in clinical outcomes.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 12800 Prague 2, Czech Republic;
| | | |
Collapse
|
40
|
Dong M, Wen S, Zhou L. The Relationship Between the Blood-Brain-Barrier and the Central Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors. Diabetes Metab Syndr Obes 2022; 15:2583-2597. [PMID: 36035518 PMCID: PMC9417299 DOI: 10.2147/dmso.s375559] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes and obesity are growing problems worldwide and are associated with a range of acute and chronic complications, including acute myocardial infarction (AMI) and stroke. Novel anti-diabetic medications designed to treat T2DM, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT-2is), exert beneficial effects on metabolism and the cardiovascular system. However, the underlying mechanisms are poorly understood. GLP-1RAs induce anorexic effects by inhibiting the central regulation of food intake to reduce body weight. Central/peripheral administration of GLP-1RAs inhibits food intake, accompanied by an increase in c-Fos expression in neurons within the paraventricular nucleus (PVN), amygdala, the nucleus of the solitary tract (NTS), area postrema (AP), lateral parabrachial nucleus (LPB) and arcuate nucleus (ARC), induced by the activation of GLP-1 receptors in the central nervous system (CNS). Therefore, GLP-1RAs need to pass through the blood-brain barrier to exert their pharmacological effects. In addition, studies revealed that SGLT-2is could reduce the risk of chronic heart failure in people with type 2 diabetes. SGLT-2 is extensively expressed throughout the CNS, and c-Fos expression was also observed within 2 hours of administration of SGLT-2is in mice. Recent clinical studies reported that SGLT-2is improved hypertension and atrial fibrillation by modulating the "overstimulated" renin-angiotensin-aldosterone system (RAAS) and suppressing the sympathetic nervous system (SNS) by directly/indirectly acting on the rostral ventrolateral medulla. Despite extensive research into the central mechanism of GLP-1RAs and SGLT-2is, the penetration of the blood-brain barrier (BBB) remains controversial. This review discusses the interaction between GLP-1RAs and SGLT-2is and the BBB to induce pharmacological effects via the CNS.
Collapse
Affiliation(s)
- Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Tel +8613611927616, Email
| |
Collapse
|
41
|
Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021; 26:7213. [PMID: 34885795 PMCID: PMC8659196 DOI: 10.3390/molecules26237213] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Patients with diabetes are at higher risk of cardiovascular diseases and cognitive impairment. SGLT2 inhibitors (Empagliflozin, Canagliflozin, Dapagliflozin, Ertugliflozin, Sotagliflozin) are newer hypoglycemic agents with many pleiotropic effects. In this review, we discuss their neuroprotective potential. SGLT2 inhibitors (SGLT2i) are lipid-soluble and reach the brain/serum ratio from 0.3 to 0.5. SGLT receptors are present in the central nervous system (CNS). Flozins are not fully SGLT2-selective and have an affinity for the SGLT1 receptor, which is associated with protection against ischemia/reperfusion brain damage. SGLT2i show an anti-inflammatory and anti-atherosclerotic effect, including reduction of proinflammatory cytokines, M2 macrophage polarization, JAK2/STAT1 and NLRP3 inflammasome inhibition, as well as cIMT regression. They also mitigate oxidative stress. SGLT2i improve endothelial function, prevent remodeling and exert a protective effect on the neurovascular unit, blood-brain barrier, pericytes, astrocytes, microglia, and oligodendrocytes. Flozins are also able to inhibit AChE, which contributes to cognitive improvement. Empagliflozin significantly increases the level of cerebral BDNF, which modulates neurotransmission and ensures growth, survival, and plasticity of neurons. Moreover, they may be able to restore the circadian rhythm of mTOR activation, which is quite a novel finding in the field of research on metabolic diseases and cognitive impairment. SGLT2i have a great potential to protect against atherosclerosis and cognitive impairment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Marlena Broncel
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland; (A.P.); (E.W.); (P.G.-P.)
| | | | | |
Collapse
|
42
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
43
|
Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations. Drugs 2021; 81:1381-1395. [PMID: 34297330 DOI: 10.1007/s40265-021-01565-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/11/2022]
Abstract
The global burden of atrial fibrillation (AF) is constantly increasing, necessitating novel and effective therapeutic options. Sodium glucose co-transporter 2 (SGLT2) inhibitors have been introduced in clinical practice as glucose-lowering medications. However, they have recently gained prominence for their potential to exert substantial cardiorenal protection and are being evaluated in large clinical trials including patients with type 2 diabetes and normoglycemic adults. In this review we present up-to-date available evidence in a pathophysiology-directed manner from cell to bedside. Preclinical and clinical data regarding a conceivable antiarrhythmic effect of SGLT2 inhibitors are beginning to accumulate. Herein we comprehensively present data that explore the potential pathophysiological link between SGLT2 inhibitors and AF. With regard to clinical data, no randomized controlled trials evaluating SGLT2 inhibitors effects on AF as a pre-specified endpoint are available. However, data from randomized controlled trial post-hoc analysis as well as observational studies point to a possible beneficial effect of SGLT2 inhibitors on AF. Meta-analyses addressing this question report inconsistent results and the real magnitude of AF prevention by SGLT2 inhibition remains unclear. Still, while (i) pathophysiologic mechanisms involved in AF might be favorably affected by SGLT2 inhibitors and (ii) emerging, yet inconsistent, clinical data imply that SGLT2 inhibitor-mediated cardiorenal protection could also exert antiarrhythmic effects, the argument of whether these novel drugs will reduce AF burden is unsettled and mandates appropriately designed and adequately sized randomized controlled studies.
Collapse
|
44
|
Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int J Mol Sci 2021; 22:ijms22115863. [PMID: 34070765 PMCID: PMC8199383 DOI: 10.3390/ijms22115863] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) affects up to over 20% of patients with type 2 diabetes (T2DM), even more in the elderly. Although, in T2DM, both hyperglycemia and the proinflammatory status induced by insulin resistance are crucial in cardiac function impairment, SGLT2i cardioprotective mechanisms against HF are several. In particular, these beneficial effects seem attributable to the significant reduction of intracellular sodium levels, well-known to exert a cardioprotective role in the prevention of oxidative stress and consequent cardiomyocyte death. From a molecular perspective, patients’ exposure to gliflozins’ treatment mimics nutrient and oxygen deprivation, with consequent autophagy stimulation. This allows to maintain the cellular homeostasis through different degradative pathways. Thus, since their introduction in the clinical practice, the hypotheses on SGLT2i mechanisms of action have changed: from simple glycosuric drugs, with consequent glucose lowering, erythropoiesis enhancing and ketogenesis stimulating, to intracellular sodium-lowering molecules. This provides their consequent cardioprotective effect, which justifies its significant reduction in CV events, especially in populations at higher risk. Finally, the updated clinical evidence of SGLT2i benefits on HF was summarized. Thus, this review aimed to analyze the cardioprotective mechanisms of sodium glucose transporter 2 inhibitors (SGLT2i) in patients with HF, as well as their clinical impact on cardiovascular events.
Collapse
|
45
|
SGLT2is and Renal Protection: From Biological Mechanisms to Real-World Clinical Benefits. Int J Mol Sci 2021; 22:ijms22094441. [PMID: 33922865 PMCID: PMC8122991 DOI: 10.3390/ijms22094441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, following the publication of results from several RCTs, first on cardiovascular and more recently on renal outcomes, SGLT2is have become the standard of care to prevent diabetic kidney disease and slow its progression. This narrative review focuses on biological mechanisms, both renal and extrarenal, underlying kidney protection with SGLT2is. Furthermore, data from cardiovascular as well as renal outcome trials, mostly conducted in diabetic patients, are presented and discussed to provide an overview of current uses as well as the future therapeutic potential of these drugs.
Collapse
|
46
|
Takeda K, Ono H, Ishikawa K, Ohno T, Kumagai J, Ochiai H, Matumoto A, Yokoh H, Maezawa Y, Yokote K. Central administration of sodium-glucose cotransporter-2 inhibitors increases food intake involving adenosine monophosphate-activated protein kinase phosphorylation in the lateral hypothalamus in healthy rats. BMJ Open Diabetes Res Care 2021; 9:9/1/e002104. [PMID: 33879516 PMCID: PMC8061802 DOI: 10.1136/bmjdrc-2020-002104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Sodium glucose cotransporter-2 (SGLT2) inhibitors are widely used for diabetes treatment. Although SGLT2 inhibitors have been clinically observed to increase food intake, roles or even the presence of SGLT2 in the central nervous system (CNS) has not been established. We aimed to elucidate potential functions of SGLT2 in the CNS, and the effects of CNS-targeted SGLT2 inhibitors on food intake. RESEARCH DESIGN AND METHODS We administered three kinds of SGLT2 inhibitors, tofogliflozin, dapagliflozin, and empagliflozin, into the lateral ventricle (LV) in rats and evaluated their effects on food intake. We also evaluated the effects of tofogliflozin administration in the third (3V) and fourth ventricle (4V). Intraperitoneal administration of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist known to suppress food intake, was combined with central tofogliflozin to elucidate whether GLP-1 signaling antagonizes the effect of central SGLT2 inhibitors on food intake. To elucidate potential molecular mechanisms mediating changes in feeding, hypothalamic areas associated with food intake regulation were harvested and analyzed after intracerebroventricular administration (ICV) of tofogliflozin. RESULTS Bolus ICV injection of tofogliflozin induced a robust increase in food intake starting at 1.5 hours postinjection, and lasting for 5 days. No effect was observed when the same dose of tofogliflozin was administered intraperitoneally. ICV dapagliflozin and empagliflozin significantly enhanced food intake, although the strength of these effects varied among drugs. Food intake was most markedly enhanced when tofogliflozin was infused into the LV. Fewer or no effects were observed with infusion into the 3V or 4V, respectively. Systemic administration of liraglutide suppressed the effect of ICV tofogliflozin on food intake. ICV tofogliflozin increased phosphorylation of AMPK and c-fos expression in the lateral hypothalamus. CONCLUSIONS SGLT2 inhibitors in the CNS increase food intake. SGLT2 activity in the CNS may regulate food intake through AMPK phosphorylation in the lateral hypothalamic area.
Collapse
Affiliation(s)
- Kenji Takeda
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiraku Ono
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ko Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiro Ohno
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jin Kumagai
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidetoshi Ochiai
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ai Matumoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidetaka Yokoh
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
47
|
Wen S, Nguyen T, Gong M, Yuan X, Wang C, Jin J, Zhou L. An Overview of Similarities and Differences in Metabolic Actions and Effects of Central Nervous System Between Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) and Sodium Glucose Co-Transporter-2 Inhibitors (SGLT-2is). Diabetes Metab Syndr Obes 2021; 14:2955-2972. [PMID: 34234493 PMCID: PMC8254548 DOI: 10.2147/dmso.s312527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1RAs) and SGLT-2 inhibitors (SGLT-2is) are novel antidiabetic medications associated with considerable cardiovascular benefits therapying treatment of diabetic patients. GLP-1 exhibits atherosclerosis resistance, whereas SGLT-2i acts to ameliorate the neuroendocrine state in the patients with chronic heart failure. Despite their distinct modes of action, both factors share pathways by regulating the central nervous system (CNS). While numerous preclinical and clinical studies have demonstrated that GLP-1 can access various nuclei associated with energy homeostasis and hedonic eating in the CNS via blood-brain barrier (BBB), research on the activity of SGLT-2is remains limited. In our previous studies, we demonstrated that both GLP-1 receptor agonists (GLP-1RAs) liraglutide and exenatide, as well as an SGLT-2i, dapagliflozin, could activate various nuclei and pathways in the CNS of Sprague Dawley (SD) rats and C57BL/6 mice, respectively. Moreover, our results revealed similarities and differences in neural pathways, which possibly regulated different metabolic effects of GLP-1RA and SGLT-2i via sympathetic and parasympathetic systems in the CNS, such as feeding, blood glucose regulation and cardiovascular activities (arterial blood pressure and heart rate control). In the present article, we extensively discuss recent preclinical studies on the effects of GLP-1RAs and SGLT-2is on the CNS actions, with the aim of providing a theoretical explanation on their mechanism of action in improvement of the macro-cardiovascular risk and reducing incidence of diabetic complications. Overall, these findings are expected to guide future drug design approaches.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of ChinaTel +8613611927616 Email
| |
Collapse
|
48
|
Matthews JR, Herat LY, Magno AL, Gorman S, Schlaich MP, Matthews VB. SGLT2 Inhibitor-Induced Sympathoexcitation in White Adipose Tissue: A Novel Mechanism for Beiging. Biomedicines 2020; 8:biomedicines8110514. [PMID: 33218034 PMCID: PMC7698773 DOI: 10.3390/biomedicines8110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Recent preclinical data show that sodium glucose cotransporter 2 (SGLT2) inhibitors are able to reduce weight gain and induce beiging in white adipose tissue (WAT). We have previously shown that in neurogenic hypertensive Schlager (BPH/2J) mice, treatment with the SGLT2 inhibitor, Dapagliflozin, reduced blood pressure and prevented weight gain. Here we show that chemical sympathetic denervation achieved by systemic administration of 6-hydroxy-dopamine (6-OHDA) reduces body weight and the heightened sympathetic nervous system (SNS) innervation in WAT. Furthermore, we demonstrate that 2 weeks of Dapagliflozin treatment increases SNS innervation in WAT of hypertensive mice. This increase is accompanied by a non-significant elevation in mRNA levels of the Ucp1 and Pgc-1α genes, which are markers of beiging. No significant difference in the mRNA levels of the inflammatory mediators Il-6 and Tnf-α were detected in WAT of Dapagliflozin treated mice. These findings suggest that SGLT-2 inhibitor-associated prevention of weight gain may be mediated, at least in part, by inducing the beiging of WAT.
Collapse
Affiliation(s)
- Jennifer R. Matthews
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (L.Y.H.)
| | - Lakshini Y. Herat
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (L.Y.H.)
| | - Aaron L. Magno
- Research Centre, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia;
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (L.Y.H.)
- Correspondence: ; Tel.: +61-8-9224-0239
| |
Collapse
|
49
|
Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int J Mol Sci 2020; 21:ijms21217833. [PMID: 33105763 PMCID: PMC7660105 DOI: 10.3390/ijms21217833] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
The development of sodium-glucose transporter 2 inhibitor (SGLT2i) broadens the therapeutic strategies in treating diabetes mellitus. By inhibiting sodium and glucose reabsorption from the proximal tubules, the improvement in insulin resistance and natriuresis improved the cardiovascular mortality in diabetes mellitus (DM) patients. It has been known that SGLT2i also provided renoprotection by lowering the intraglomerular hypertension by modulating the pre- and post- glomerular vascular tone. The application of SGLT2i also provided metabolic and hemodynamic benefits in molecular aspects. The recent DAPA-CKD trial and EMPEROR-Reduced trial provided clinical evidence of renal and cardiac protection, even in non-DM patients. Therefore, the aim of the review is to clarify the hemodynamic and metabolic modulation of SGLT2i from the molecular mechanism.
Collapse
|