1
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
2
|
Timofte DV, Tudor RC, Mocanu V, Labusca L. Obesity, Osteoarthritis, and Myokines: Balancing Weight Management Strategies, Myokine Regulation, and Muscle Health. Nutrients 2024; 16:4231. [PMID: 39683624 PMCID: PMC11644804 DOI: 10.3390/nu16234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity and osteoarthritis (OA) are increasingly prevalent conditions that are intricately linked, with each exacerbating the other's pathogenesis and worsening patient outcomes. This review explores the dual impact of obesity on OA, highlighting the role of excessive weight in aggravating joint degeneration and the limitations OA imposes on physical activity, which further perpetuates obesity. The role of muscle tissue, particularly the release of myokines during physical activity, is examined in the context of OA and obesity. Myokines such as irisin, IL-6, and myostatin are discussed for their roles in metabolic regulation, inflammation, and tissue repair, offering insights into their potential therapeutic targets. This review emphasizes the importance of supervised weight management methods in parallel with muscle rehabilitation in improving joint health and metabolic balance. The potential for myokine modulation through targeted exercise and weight loss interventions to mitigate the adverse effects of obesity and OA is also discussed, suggesting avenues for future research and therapy development to reduce the burden of these chronic conditions.
Collapse
Affiliation(s)
- Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
| | - Razvan Cosmin Tudor
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
- Dr. Iacob Czihac Military Emergency Hospital Iasi, General Henri Mathias Berthelot Str. 7-9, 700483 Iași, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences II (Pathophysiology), Center for Obesity BioBehavioral Experimental Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Labusca
- Department of Orthopedics and Traumatology, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania;
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania
| |
Collapse
|
3
|
Mao X, Larsen SB, Zachariassen LSF, Brunse A, Adamberg S, Mejia JLC, Larsen F, Adamberg K, Nielsen DS, Hansen AK, Hansen CHF, Rasmussen TS. Transfer of modified gut viromes improves symptoms associated with metabolic syndrome in obese male mice. Nat Commun 2024; 15:4704. [PMID: 38830845 PMCID: PMC11148109 DOI: 10.1038/s41467-024-49152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.
Collapse
Affiliation(s)
- Xiaotian Mao
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Sabina Birgitte Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Line Sidsel Fisker Zachariassen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Josue Leonardo Castro Mejia
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Frej Larsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Dennis Sandris Nielsen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Axel Kornerup Hansen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Camilla Hartmann Friis Hansen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Torben Sølbeck Rasmussen
- Section of Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
4
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Epidemiological, mechanistic, and practical bases for assessment of cardiorespiratory fitness and muscle status in adults in healthcare settings. Eur J Appl Physiol 2023; 123:945-964. [PMID: 36683091 PMCID: PMC10119074 DOI: 10.1007/s00421-022-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
Given their importance in predicting clinical outcomes, cardiorespiratory fitness (CRF) and muscle status can be considered new vital signs. However, they are not routinely evaluated in healthcare settings. Here, we present a comprehensive review of the epidemiological, mechanistic, and practical bases of the evaluation of CRF and muscle status in adults in primary healthcare settings. We highlight the importance of CRF and muscle status as predictors of morbidity and mortality, focusing on their association with cardiovascular and metabolic outcomes. Notably, adults in the best quartile of CRF and muscle status have as low as one-fourth the risk of developing some of the most common chronic metabolic and cardiovascular diseases than those in the poorest quartile. The physiological mechanisms that underlie these epidemiological associations are addressed. These mechanisms include the fact that both CRF and muscle status reflect an integrative response to the body function. Indeed, muscle plays an active role in the development of many diseases by regulating the body's metabolic rate and releasing myokines, which modulate metabolic and cardiovascular functions. We also go over the most relevant techniques for assessing peak oxygen uptake as a surrogate of CRF and muscle strength, mass, and quality as surrogates of muscle status in adults. Finally, a clinical case of a middle-aged adult is discussed to integrate and summarize the practical aspects of the information presented throughout. Their clinical importance, the ease with which we can assess CRF and muscle status using affordable techniques, and the availability of reference values, justify their routine evaluation in adults across primary healthcare settings.
Collapse
|
6
|
Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models. J Biomed Sci 2022; 29:64. [PMID: 36058931 PMCID: PMC9443036 DOI: 10.1186/s12929-022-00851-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein–protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.
Collapse
|
7
|
Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci 2022; 23:4636. [PMID: 35563026 PMCID: PMC9102915 DOI: 10.3390/ijms23094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D) and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have now been identified, and research on myokine signaling mechanisms and functions is rapidly emerging. This review summarizes the current state of the field regarding the role of myokines in tissue cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
8
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
9
|
Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022; 234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, termed myokines, into the circulation. Importantly, other tissues such as the liver and adipose tissue may also release cytokines and peptides in response to exercise. Hence, exercise-released molecules are collectively called exerkines. Moreover, extracellular vesicles (EVs), in the form of exosomes or microvesicles, may carry some of the signals involved in tissue crosstalk. This review focuses on the role of factors potentially mediating crosstalk between muscle and other tissues in response to exercise.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| |
Collapse
|
10
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
11
|
Zumbaugh MD, Yen CN, Bodmer JS, Shi H, Gerrard DE. Skeletal Muscle O-GlcNAc Transferase Action on Global Metabolism Is Partially Mediated Through Interleukin-15. Front Physiol 2021; 12:682052. [PMID: 34326778 PMCID: PMC8313823 DOI: 10.3389/fphys.2021.682052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023] Open
Abstract
Besides its roles in locomotion and thermogenesis, skeletal muscle plays a significant role in global glucose metabolism and insulin sensitivity through complex nutrient sensing networks. Our previous work showed that the muscle-specific ablation of O-GlcNAc transferase (OGT) led to a lean phenotype through enhanced interleukin-15 (IL-15) expression. We also showed OGT epigenetically modified and repressed the Il15 promoter. However, whether there is a causal relationship between OGT ablation-induced IL-15 secretion and the lean phenotype remains unknown. To address this question, we generated muscle specific OGT and interleukin-15 receptor alpha subunit (IL-15rα) double knockout mice (mDKO). Deletion of IL-15rα in skeletal muscle impaired IL-15 secretion. When fed with a high-fat diet, mDKO mice were no longer protected against HFD-induced obesity compared to wild-type mice. After 22 weeks of HFD feeding, mDKO mice had an intermediate body weight and glucose sensitivity compared to wild-type and OGT knockout mice. Taken together, these data suggest that OGT action is partially mediated by muscle IL-15 production and provides some clarity into how disrupting the O-GlcNAc nutrient signaling pathway leads to a lean phenotype. Further, our work suggests that interfering with the OGT-IL15 nutrient sensing axis may provide a new avenue for combating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Con-Ning Yen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jocelyn S Bodmer
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
12
|
Minuzzi LG, da Conceição LR, Muñoz VR, Vieira RFL, Gaspar RC, da Silva ASR, Cintra DE, Pereira de Moura L, Ropelle ER, Teixeira AM, Pauli JR. Effects of short-term physical training on the interleukin-15 signalling pathway and glucose tolerance in aged rats. Cytokine 2021; 137:155306. [PMID: 33010727 DOI: 10.1016/j.cyto.2020.155306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Interleukin-15 (IL-15) is a myokine that has been proposed to modulate skeletal muscle and adipose tissue mass, as well as insulin sensitivity. However, the evidence suggesting a role for IL-15 in improving whole-body insulin sensitivity and decreasing adiposity comes mainly from studies using supraphysiological levels of this cytokine. This study examined the effect of a short-term exercise training protocol on the protein content of IL-15, it's signaling pathway, and glucose tolerance in aged rats. METHODS Fourteen Wistar rats were divided into Young Sedentary (Young, n = 4); Old Sedentary (Old, n = 5); Old Exercise (Old.Exe, n = 5) groups. The animals from the exercised group were submitted to a short-term physical exercise protocol for five days. At the end of physical training and after 16 h of the last exercise session, the animals were euthanized, and tissue collection was done. RESULTS Physical exercise decreased epididymal and mesenteric fat mass and promoted positive effects on glucose tolerance and insulin sensitivity. Muscle IL-15 protein levels were not changed following the short-term physical exercise training with no alterations in the post-exercise IL-15-JAK/STAT signaling pathway. We found a tendency to increased HIF1α and a significant increase in its regulator, PHD2, in the skeletal muscle after exercise. CONCLUSION The elderly rats submitted to short-term aerobic physical training did not present skeletal muscle alteration in the protein content of the IL-15 and IL-15-JAK/STAT signaling pathway. However, short-term aerobic physical training was able to modulate the expression of HIF1α and its regulator PHD2, suggesting an essential role of these proteins in improving post-exercise glucose tolerance and insulin sensitivity in elderly rats.
Collapse
Affiliation(s)
- Luciele Guerra Minuzzi
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal; Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| | - Luciana Renata da Conceição
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Post-graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Maria Teixeira
- University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
13
|
Dysregulated Autophagy Mediates Sarcopenic Obesity and Its Complications via AMPK and PGC1α Signaling Pathways: Potential Involvement of Gut Dysbiosis as a Pathological Link. Int J Mol Sci 2020; 21:ijms21186887. [PMID: 32961822 PMCID: PMC7555990 DOI: 10.3390/ijms21186887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcopenic obesity (SOB), which is closely related to being elderly as a feature of aging, is recently gaining attention because it is associated with many other age-related diseases that present as altered intercellular communication, dysregulated nutrient sensing, and mitochondrial dysfunction. Along with insulin resistance and inflammation as the core pathogenesis of SOB, autophagy has recently gained attention as a significant mechanism of muscle aging in SOB. Known as important cellular metabolic regulators, the AMP-activated protein kinase (AMPK) and the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) signaling pathways play an important role in autophagy, inflammation, and insulin resistance, as well as mutual communication between skeletal muscle, adipose tissue, and the liver. Furthermore, AMPK and PGC-1α signaling pathways are implicated in the gut microbiome-muscle axis. In this review, we describe the pathological link between SOB and its associated complications such as metabolic, cardiovascular, and liver disease, falls and fractures, osteoarthritis, pulmonary disease, and mental health via dysregulated autophagy controlled by AMPK and/or PGC-1α signaling pathways. Here, we propose potential treatments for SOB by modulating autophagy activity and gut dysbiosis based on plausible pathological links.
Collapse
|
14
|
Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, Yan X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel) 2020; 9:E656. [PMID: 32722013 PMCID: PMC7464156 DOI: 10.3390/antiox9080656] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
High-intensity exercise/training, especially interval exercise/training, has gained popularity in recent years. Hypoxic training was introduced to elite athletes half a century ago and has recently been adopted by the general public. In the current review, we have summarised the molecular adaptive responses of skeletal muscle to high-intensity exercise/training, focusing on mitochondrial biogenesis, angiogenesis, and muscle fibre composition. The literature suggests that (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) PGC-1α, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor 1-alpha (HIF1-α) might be the main mediators of skeletal muscle adaptations to high-intensity exercises in hypoxia. Exercise is known to be anti-inflammatory, while the effects of hypoxia on inflammatory signalling are more complex. The anti-inflammatory effects of a single session of exercise might result from the release of anti-inflammatory myokines and other cytokines, as well as the downregulation of Toll-like receptor signalling, while training-induced anti-inflammatory effects may be due to reductions in abdominal and visceral fat (which are main sources of pro-inflammatory cytokines). Hypoxia can lead to inflammation, and inflammation can result in tissue hypoxia. However, the hypoxic factor HIF1-α is essential for preventing excessive inflammation. Disease-induced hypoxia is related to an upregulation of inflammatory signalling, but the effects of exercise-induced hypoxia on inflammation are less conclusive. The effects of high-intensity exercise under hypoxia on skeletal muscle molecular adaptations and inflammatory signalling have not been fully explored and are worth investigating in future studies. Understanding these effects will lead to a more comprehensive scientific basis for maximising the benefits of high-intensity exercise.
Collapse
Affiliation(s)
- Jia Li
- College of Physical Education, Southwest University, Chongqing 400715, China;
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - Muhammed M. Atakan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
15
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Guo L, Liu MF, Huang JN, Li JM, Jiang J, Wang JA. Role of interleukin-15 in cardiovascular diseases. J Cell Mol Med 2020; 24:7094-7101. [PMID: 32406586 PMCID: PMC7339208 DOI: 10.1111/jcmm.15296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)‐15 is a recently identified cytokine, which belongs to the interleukin‐2(IL‐2) family, and plays an important role in innate and adaptive immunoreaction. Given the fact that the structure of IL‐15 is partially similar to IL‐2, they share some common biological effects, including immunoregulation. IL‐2 was proven to protect cardiac function in mouse myocardial infarction models. Cardiovascular diseases (CVDs) dominate the cause of mortality worldwide. Besides atherosclerosis, inflammation is also widely involved in the pathogenesis of many CVDs including hypertension, heart failure (HF) and aneurysm. IL‐15, as a pro‐inflammatory cytokine, is up‐regulated in some cardiovascular diseases, such as myocardial infarction and atherosclerosis. The current understanding of IL‐15, including its signal pathway and cellular function, was described. Furthermore, IL‐15 has a protective effect in myocardial infarction and myocarditis by decreasing cardiomyocyte death and improving heart function. The inhibited effect of IL‐15 in ductus arteriosus (DA) should be focused on. IL‐15 promoted atherogenesis. IL‐15 may be a good target in treatment of cardiovascular diabetology. Finally, future research direction of IL‐15 deserves attention. Since IL‐15 plays several roles in CVDs, understanding the role of the IL‐15/IL‐15R system may provide a scientific basis for the development of new approaches that use IL‐15 for the treatment of CVDs.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ming-Fei Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ji-Niu Huang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jia-Min Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jian-An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Zhang W, Bai Y, Chen Z, Li X, Fu S, Huang L, Lin S, Du H. Comprehensive analysis of long non-coding RNAs and mRNAs in skeletal muscle of diabetic Goto-Kakizaki rats during the early stage of type 2 diabetes. PeerJ 2020; 8:e8548. [PMID: 32095365 PMCID: PMC7023842 DOI: 10.7717/peerj.8548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/12/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle long non-coding RNAs (lncRNAs) were reported to be involved in the development of type 2 diabetes (T2D). However, little is known about the mechanism of skeletal muscle lncRNAs on hyperglycemia of diabetic Goto-Kakizaki (GK) rats at the age of 3 and 4 weeks. To elucidate this, we used RNA-sequencing to profile the skeletal muscle transcriptomes including lncRNAs and mRNAs, in diabetic GK and control Wistar rats at the age of 3 and 4 weeks. In total, there were 438 differentially expressed mRNAs (DEGs) and 401 differentially expressed lncRNAs (DELs) in skeletal muscle of 3-week-old GK rats compared with age-matched Wistar rats, and 1000 DEGs and 726 DELs between GK rats and Wistar rats at 4 weeks of age. The protein-protein interaction analysis of overlapping DEGs between 3 and 4 weeks, the correlation analysis of DELs and DEGs, as well as the prediction of target DEGs of DELs showed that these DEGs (Pdk4, Stc2, Il15, Fbxw7 and Ucp3) might play key roles in hyperglycemia, glucose intolerance, and increased fatty acid oxidation. Considering the corresponding co-expressed DELs with high correlation coefficients or targeted DELs of these DEGs, our study indicated that these dysregulated lncRNA-mRNA pairs (NONRATG017315.2-Pdk4, NONRATG003318.2-Stc2, NONRATG011882.2-Il15, NONRATG013497.2-Fbxw7, MSTRG.1662-Ucp3) might be related to above biological processes in GK rats at the age of 3 and 4 weeks. Our study could provide more comprehensive knowledge of mRNAs and lncRNAs in skeletal muscle of GK rats at 3 and 4 weeks of age. And our study may provide deeper understanding of the underlying mechanism in T2D of GK rats at the age of 3 and 4 weeks.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xingsong Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Chen Y, Yu CY, Deng WM. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int Rev Immunol 2019; 38:249-266. [PMID: 31353985 DOI: 10.1080/08830185.2019.1645138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue has been considered as a crucial source of certain pro-inflammatory cytokines; conversely, these pro-inflammatory cytokines are involved in regulating the proliferation and apoptosis of adipocytes, promoting lipolysis, inhibiting lipid synthesis and decreasing blood lipids, etc. In recent decades, extensive studies have indicated that pro-inflammatory cytokines play important roles in the development of lipid metabolism of metabolic diseases, including obesity, atherosclerosis, steatohepatitis and hyperlipoproteinemia. However, the involved pro-inflammatory cytokines types and the underlying mechanisms remain largely unknown. The "re-discovery" of cancer as a metabolic disorder largely occurred in the last five years. Although pro-inflammatory cytokines have been intensively investigated in cancer research, there are very few studies about the roles of pro-inflammatory cytokines in the lipid metabolism of cancer. In the current review, we provide an overview of the progress that has been made in the roles of different pro-inflammatory cytokines in lipid metabolism of metabolic diseases including cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Chun-Yan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Wei-Min Deng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Nadeau L, Aguer C. Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism. Appl Physiol Nutr Metab 2019; 44:229-238. [DOI: 10.1139/apnm-2018-0022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-15 is a cytokine with important immunological functions. It is highly expressed in skeletal muscle and is believed to be a myokine, a hypothesis supported by the rapid increase in circulating levels of IL-15 in response to exercise. Treatment with high doses of IL-15 results in metabolic adaptations such as improved insulin sensitivity and whole-body fatty acid oxidation and protection from high-fat-diet-induced obesity and insulin resistance. IL-15 secreted by contracting muscle may therefore act as an endocrine factor to improve adiposity and energy metabolism in different tissues. Most studies have used supraphysiological doses of IL-15 that do not represent circulating IL-15 in response to exercise. However, evidence shows that IL-15 levels are higher in muscle interstitium and that IL-15 might improve muscle glucose homeostasis and oxidative metabolism in an autocrine/paracrine manner. Nevertheless, how IL-15 signals in skeletal muscle to improve muscle energy metabolism is not understood completely, especially because the absence of the α subunit of the IL-15 receptor (IL-15Rα) results in a phenotype similar to that of overexpressing/oversecreting IL-15 in mice. In this article, we review the literature to propose a model for the regulation of IL-15 by the soluble form of IL-15Rα to explain why some findings in the literature seem, at first glance, to be contradictory.
Collapse
Affiliation(s)
- Lucien Nadeau
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Céline Aguer
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
20
|
Overexpression of Interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-Activated protein kinase pathway in skeletal muscle. Biochem Biophys Res Commun 2019; 509:994-1000. [DOI: 10.1016/j.bbrc.2019.01.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 01/12/2023]
|
21
|
Nadeau L, Patten DA, Caron A, Garneau L, Pinault-Masson E, Foretz M, Haddad P, Anderson BG, Quinn LS, Jardine K, McBurney MW, Pistilli EE, Harper ME, Aguer C. IL-15 improves skeletal muscle oxidative metabolism and glucose uptake in association with increased respiratory chain supercomplex formation and AMPK pathway activation. Biochim Biophys Acta Gen Subj 2018; 1863:395-407. [PMID: 30448294 DOI: 10.1016/j.bbagen.2018.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND IL-15 is believed to play a role in the beneficial impact of exercise on muscle energy metabolism. However, previous studies have generally used supraphysiological levels of IL-15 that do not represent contraction-induced IL-15 secretion. METHODS L6 myotubes were treated acutely (3 h) and chronically (48 h) with concentrations of IL-15 mimicking circulating (1-10 pg/ml) and muscle interstitial (100 pg/ml -20 ng/ml) IL-15 levels with the aim to better understand its autocrine/paracrine role on muscle glucose uptake and mitochondrial function. RESULTS Acute exposure to IL-15 levels representing muscle interstitial IL-15 increased basal glucose uptake without affecting insulin sensitivity. This was accompanied by increased mitochondrial oxidative functions in association with increased AMPK pathway and formation of complex III-containing supercomplexes. Conversely, chronic IL-15 exposure resulted in a biphasic effect on mitochondrial oxidative functions and ETC supercomplex formation was increased with low IL-15 levels but decreased with higher IL-15 concentrations. The AMPK pathway was activated only by high levels of chronic IL-15 treatment. Similar results were obtained in skeletal muscle from muscle-specific IL-15 overexpressing mice that show very high circulating IL-15 levels. CONCLUSIONS Acute IL-15 treatment that mimics local IL-15 concentrations enhances muscle glucose uptake and mitochondrial oxidative functions. That mitochondria respond differently to different levels of IL-15 during chronic treatments indicates that IL-15 might activate two different pathways in muscle depending on IL-15 concentrations. GENERAL SIGNIFICANCE Our results suggest that IL-15 may act in an autocrine/paracrine fashion and be, at least in part, involved in the positive effect of exercise on muscle energy metabolism.
Collapse
Affiliation(s)
- L Nadeau
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - D A Patten
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - A Caron
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - L Garneau
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - E Pinault-Masson
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - M Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - P Haddad
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - B G Anderson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - L S Quinn
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - K Jardine
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - M W McBurney
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - E E Pistilli
- West Virginia University School of Medicine, Morgantown, WV, United States
| | - M E Harper
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - C Aguer
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada.
| |
Collapse
|
22
|
Leal LG, Lopes MA, Batista ML. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front Physiol 2018; 9:1307. [PMID: 30319436 PMCID: PMC6166321 DOI: 10.3389/fphys.2018.01307] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023] Open
Abstract
Physical exercise has beneficial effects on metabolic diseases, and a combined therapeutic regimen of regular exercise and pharmaceutical treatment is often recommended for their clinical management. However, the mechanisms by which exercise produces these beneficial effects are not fully understood. Myokines, a group of skeletal muscle (SkM) derived peptides may play an important part in this process. Myokines are produced, expressed and released by muscle fibers under contraction and exert both local and pleiotropic effects. Myokines such as IL-6, IL-10, and IL-1ra released during physical exercise mediate its health benefits. Just as exercise seems to promote the myokine response, physical inactivity seems to impair it, and could be a mechanism to explain the association between sedentary behavior and many chronic diseases. Myokines help configure the immune-metabolic factor interface and the health promoting effects of physical exercise through the release of humoral factors capable of interacting with other tissues, mainly adipose tissue (AT). AT itself secretes proinflammatory cytokines (adipokines) as a result of physical inactivity and it is well recognized that AT inflammation can lead to the development of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and atherosclerosis. On the other hand, the browning phenotype of AT has been suggested to be one of the mechanisms through which physical exercise improves body composition in overweight/obese individuals. Although, many cytokines are involved in the crosstalk between SkM and AT, in respect of these effects, it is IL-6, IL-15, irisin, and myostatin which seem to have the decisive role in this “conversation” between AT and SkM. This review article proposes to bring together the latest “state of the art” knowledge regarding Myokines and muscle-adipose tissue crosstalk. Furthermore, it is intended to particularly focus on the immune-metabolic changes from AT directly mediated by myokines.
Collapse
Affiliation(s)
- Luana G Leal
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil.,Technological Research Group, University of Mogi das Cruzes, São Paulo, Brazil
| | - Magno A Lopes
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil
| | - Miguel L Batista
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil.,Technological Research Group, University of Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
23
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
24
|
Kang X, Yang MY, Shi YX, Xie MM, Zhu M, Zheng XL, Zhang CK, Ge ZL, Bian XT, Lv JT, Wang YJ, Zhou BH, Tang KL. Interleukin-15 facilitates muscle regeneration through modulation of fibro/adipogenic progenitors. Cell Commun Signal 2018; 16:42. [PMID: 30029643 PMCID: PMC6053744 DOI: 10.1186/s12964-018-0251-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Background Chronic muscle injury is characteristics of fatty infiltration and fibrosis. Recently, fibro/adipogenic progenitors (FAPs) were found to be indispensable for muscular regeneration while were also responsible for fibrosis and fatty infiltration in muscle injury. Many myokines have been proven to regulate the adipose or cell proliferation. Because the fate of FAPs is largely dependent on microenvironment and the regulation of myokines on FAPs is still unclear. We screened the potential myokines and found Interleukin-15 (IL-15) may regulate the fatty infiltration in muscle injury. In this study, we investigated how IL-15 regulated FAPs in muscle injury and the effect on muscle regeneration. Methods Cell proliferation assay, western blots, qRT-PCR, immunohistochemistry, flow cytometric analysis were performed to investigate the effect of IL-15 on proliferation and adipogensis of FAPs. Acute muscle injury was induced by injection of glycerol or cardiotoxin to analyze how IL-15 effected on FAPs in vivo and its function on fatty infiltration or muscle regeneration. Results We identified that the expression of IL-15 in injured muscle was negatively associated with fatty infiltration. IL-15 can stimulate the proliferation of FAPs and prevent the adipogenesis of FAPs in vitro and in vivo. The growth of FAPs caused by IL-15 was mediated through JAK-STAT pathway. In addition, desert hedgehog pathway may participate in IL-15 inhibiting adipogenesis of FAPs. Our study showed IL-15 can cause the fibrosis after muscle damage and promote the myofiber regeneration. Finally, the expression of IL-15 was positively associated with severity of fibrosis and number of FAPs in patients with chronic rotator cuff tear. Conclusions These findings supported the potential role of IL-15 as a modulator on fate of FAPs in injured muscle and as a novel therapy for chronic muscle injury. Electronic supplementary material The online version of this article (10.1186/s12964-018-0251-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xia Kang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Ming-Yu Yang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - You-Xing Shi
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Mei-Ming Xie
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Min Zhu
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Xiao-Long Zheng
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Zi-Lu Ge
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Xu-Ting Bian
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Jing-Tong Lv
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Yun-Jiao Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Bing-Hua Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| | - Kang-Lai Tang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| |
Collapse
|
25
|
Dubé C, Aguer C, Adamo K, Bainbridge S. A role for maternally derived myokines to optimize placental function and fetal growth across gestation. Appl Physiol Nutr Metab 2017; 42:459-469. [DOI: 10.1139/apnm-2016-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise during pregnancy is associated with improved health outcomes for both mother and baby, including a reduced risk of future obesity and susceptibility to chronic diseases. Overwhelming evidence demonstrates a protective effect of maternal exercise against fetal birth weight extremes, reducing the rates of both large- and small-for-gestational-age infants. It is speculated that this protective effect is mediated in part through exercise-induced regulation of maternal physiology and placental development and function. However, the specific mechanisms through which maternal exercise regulates these changes remain to be discovered. We hypothesize that myokines, a collection of peptides and cytokines secreted from contracting skeletal muscles during exercise, may be an important missing link in the story. Myokines are known to reduce inflammation, improve metabolism and enhance macronutrient transporter expression and activity in various tissues of nonpregnant individuals. Little research to date has focused on the specific roles of the myokine secretome in the context of pregnancy; however, it is likely that myokines secreted from exercising skeletal muscles may modulate the maternal milieu and directly impact the vital organ of pregnancy—the placenta. In the current review, data in strong support of this potential role of myokines will be presented, suggesting myokine secretion as a key mechanism through which maternal exercise optimizes fetal growth trajectories. It is clear that further research is warranted in this area, as knowledge of the biological roles of myokines in the context of pregnancy would better inform clinical recommendations for exercise during pregnancy and contribute to the development of important therapeutic interventions.
Collapse
Affiliation(s)
- Chantal Dubé
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Céline Aguer
- Institut de recherche de l’Hôpital Montfort, Ottawa, ON K1K 0T1, Canada
- Biochemistry, Microbiology and Immunology department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kristi Adamo
- School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 1A2, Canada
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shannon Bainbridge
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
26
|
Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2016; 114:E396-E405. [PMID: 27994144 DOI: 10.1073/pnas.1612930114] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15tg) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8+ T and natural killer (NK) cells was augmented in these GFAP-IL-15tg mice after brain ischemia. Of note, depletion of CD8+ T or NK cells attenuated ischemic brain injury in GFAP-IL-15tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8+ T and NK cells in GFAP-IL-15tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8+ T and NK cell-mediated immunity.
Collapse
|
27
|
Li F, Li Y, Duan Y, Hu CAA, Tang Y, Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev 2016; 33:73-82. [PMID: 27765498 DOI: 10.1016/j.cytogfr.2016.10.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Skeletal muscle and adipose tissue are the two largest organs in the body. Skeletal muscle is an effector organ, and adipose tissue is an organ that stores energy; in addition, they are endocrine organs that secrete cytokines, namely myokines and adipokines, respectively. Myokines consist of myostatin, interleukin (IL)-8, IL-15, irisin, fibroblast growth factor 21, and myonectin; adipokines include leptin, adiponectin, resistin, chemerin, and visfatin. Furthermore, certain cytokines, such as IL-6 and tumor necrosis factor-α, are released by both skeletal muscle and adipose tissue and exhibit a bioactive effect; thus, they are called adipo-myokines. Recently, novel myokines or adipokines were identified through the secretomic technique, which has expanded our knowledge on the previously unknown functions of skeletal muscle and adipose tissue and provide a new avenue of investigation for obesity treatment or animal production. This review focuses on the roles of and crosstalk between myokines and adipokines in skeletal muscle and adipose tissue that modulate the molecular events in the metabolic homeostasis of the whole body.
Collapse
Affiliation(s)
- Fengna Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China
| | - Yinghui Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Yulong Tang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, Hunan, China.
| |
Collapse
|
28
|
Quinn LS, Anderson BG, Conner JD, Wolden-Hanson T. Circulating irisin levels and muscle FNDC5 mRNA expression are independent of IL-15 levels in mice. Endocrine 2015; 50:368-77. [PMID: 25920499 DOI: 10.1007/s12020-015-0607-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Interleukin-15 (IL-15) and irisin are exercise-induced myokines that exert favorable effects on energy expenditure and metabolism. IL-15 can induce PGC-1α expression, which in turn induces expression of irisin and its precursor, FNDC5. Therefore, the present study tested the hypothesis that increases in circulating irisin levels and muscle FNDC5 mRNA expression are dependent on IL-15. Circulating irisin levels and gastrocnemius muscle FNDC5 mRNA expression were examined following acute exercise in control and IL-15-deleted (IL-15 KO) mice, following injection of IL-15 into IL-15 KO mice, and in transgenic mice with elevated circulating IL-15 levels (IL-15 Tg mice). Circulating IL-15 levels and muscle PGC-1α and PPARδ mRNA expressions were determined as positive controls. No effect of IL-15 deletion on post-exercise serum irisin levels or muscle FNDC5 mRNA expression was detected. While serum IL-15 levels and muscle PGC-1α expression were elevated post-exercise in control mice, both serum irisin levels and muscle FNDC5 expression decreased shortly after exercise in both control and IL-15 KO mice. A single injection of recombinant IL-15 into IL-15 KO mice that significantly increased muscle PPARδ and PGC-1α mRNA expressions had no effect on circulating irisin release, but modestly induced muscle FNDC5 expression. Additionally, serum irisin and gastrocnemius muscle FNDC5 expression in IL-15 Tg mice were similar to those of control mice. Muscle FNDC5 mRNA expression and irisin release are not IL-15-dependent in mice.
Collapse
Affiliation(s)
- LeBris S Quinn
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, S-182 GRECC, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Research Service, VA Puget Sound Health Care System, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, 98108, USA.
| | - Barbara G Anderson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, S-182 GRECC, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer D Conner
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, 98108, USA
| | - Tami Wolden-Hanson
- Research Service, VA Puget Sound Health Care System, Seattle, WA, 98108, USA
| |
Collapse
|
29
|
Loro E, Seifert EL, Moffat C, Romero F, Mishra MK, Sun Z, Krajacic P, Anokye-Danso F, Summer RS, Ahima RS, Khurana TS. IL-15Rα is a determinant of muscle fuel utilization, and its loss protects against obesity. Am J Physiol Regul Integr Comp Physiol 2015; 309:R835-44. [PMID: 26269523 DOI: 10.1152/ajpregu.00505.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/12/2015] [Indexed: 12/19/2022]
Abstract
IL-15Rα is the widely expressed primary binding partner for IL-15. Because of the wide distribution in nonlymphoid tissues like skeletal muscle, adipose, or liver, IL-15/IL-15Rα take part in physiological and metabolic processes not directly related to immunity. In fast muscle, lack of IL-15Rα promotes an oxidative switch, with increased mitochondrial biogenesis and fatigue resistance. These effects are predicted to reproduce some of the benefits of exercise and, therefore, improve energy homeostasis. However, the direct effects of IL-15Rα on metabolism and obesity are currently unknown. We report that mice lacking IL-15Rα (IL-15Rα(-/-)) are resistant to diet-induced obesity (DIO). High-fat diet-fed IL-15Rα(-/-) mice have less body and liver fat accumulation than controls. The leaner phenotype is associated with increased energy expenditure and enhanced fatty acid oxidation by muscle mitochondria. Despite being protected against DIO, IL-15Rα(-/-) are hyperglycemic and insulin-resistant. These findings identify novel roles for IL-15Rα in metabolism and obesity.
Collapse
Affiliation(s)
- Emanuele Loro
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin L Seifert
- Department of Pathology, Anatomy, and Cell Biology and MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cynthia Moffat
- Department of Pathology, Anatomy, and Cell Biology and MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Freddy Romero
- Department of Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Manoj K Mishra
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zheng Sun
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Philadelphia, Pennsylvania
| | - Predrag Krajacic
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia; and
| | - Frederick Anokye-Danso
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Philadelphia, Pennsylvania
| | - Ross S Summer
- Department of Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Rexford S Ahima
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Philadelphia, Pennsylvania
| | - Tejvir S Khurana
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
30
|
Molanouri Shamsi M, Hassan ZM, Quinn LS, Gharakhanlou R, Baghersad L, Mahdavi M. Time course of IL-15 expression after acute resistance exercise in trained rats: effect of diabetes and skeletal muscle phenotype. Endocrine 2015; 49:396-403. [PMID: 25522723 DOI: 10.1007/s12020-014-0501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes is associated with skeletal muscle atrophy. Skeletal muscle is an endocrine organ producing myokines such as interleukin-15 (IL-15) and interleukin-6 (IL-6) in response to contraction. These factors may mediate the effects of exercise on skeletal muscle metabolism and anabolic pathways. Lack of correlation between muscle IL-15 mRNA and protein levels after exercise training has been observed, while regulatory effects of IL-6 on IL-15 expression have also been suggested. This study determined post-exercise changes in muscle IL-15 and IL-6 mRNA expression and IL-15 protein levels in healthy and streptozotocin-induced diabetic rats in both the fast flexor hallucis longus (FHL) and slow soleus muscles. Resistance training preserved FHL muscle weight in diabetic rats and increased IL-15 protein levels in both the soleus and FHL muscles. However, the temporal pattern of this response was distinct in normal and diabetic rats. Moreover, discordance between post-exercise muscle IL-15 mRNA and protein expression was observed in our study, and diabetes suppressed post-exercise increases in FHL muscle IL-6 mRNA expression. Our study indicates that training, skeletal muscle phenotype, and metabolic status all influence the temporal pattern of post-exercise changes in IL-15 expression. Muscle IL-15 protein levels increase following training, suggesting this may be an adaptation contributing to increased capacity for secretion of this myokine that is not depressed by the diabetic state.
Collapse
Affiliation(s)
- Mahdieh Molanouri Shamsi
- Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Islamic Republic of Iran,
| | | | | | | | | | | |
Collapse
|
31
|
Yang HT, Luo LJ, Chen WJ, Zhao L, Tang CS, Qi YF, Zhang J. IL-15 expression increased in response to treadmill running and inhibited endoplasmic reticulum stress in skeletal muscle in rats. Endocrine 2015; 48:152-63. [PMID: 24647688 DOI: 10.1007/s12020-014-0233-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/28/2014] [Indexed: 12/12/2022]
Abstract
Interleukin 15 (IL-15) has recently been proposed as a circulating myokine involved in glucose uptake and utilization in skeletal muscle. However, the role and mechanism of IL-15 in exercise improving insulin resistance (IR) is unclear. Here, we investigated the alteration in expression of IL-15 and IL-15 receptor α (IL-15Rα) in skeletal muscle during treadmill running in rats with IR induced by a high-fat diet (HFD) and elucidated the mechanism of the anti-IR effects of IL-15. At 20 weeks of HFD, rats showed severe IR, with increased levels of fasting blood sugar and plasma insulin, impaired glucose tolerance, and reduced glucose transport activity. IL-15 immunoreactivity and mRNA level in gastrocnemius muscle were decreased markedly as compared with controls. IL-15Rα protein and mRNA levels in both soleus and gastrocnemius muscle were significantly decreased, which might attenuate the signaling or secretion of IL-15 in muscle. Eight-week treadmill running completely ameliorated HFD-induced IR and reversed the downregulated level of IL-15 and IL-15Rα in skeletal muscle of HFD-fed rats. To investigate whether IL-15 exerts its anti-IR effects directly in muscle, we pre-incubated muscle strips with the endoplasmic reticulum stress (ERS) inducer dithiothreitol (DTT) or tunicamycin (Tm); IL-15 treatment markedly decreased the protein expression of the ERS markers 78-kDa glucose-regulated protein, 94-kDa glucose-regulated protein and C/EBP homologous protein and inhibited ERS induced by DTT or Tm. Therefore, treadmill running promoted skeletal IL-15 and IL-15Rα expression in HFD-induced IR in rats. The inhibitory effect of IL-15 on ERS may be involved in improved insulin sensitivity with exercise training.
Collapse
Affiliation(s)
- Hong-Tao Yang
- School of P.E. and Sports Science, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | | | | | |
Collapse
|
32
|
IL-27 is required for shaping the magnitude, affinity distribution, and memory of T cells responding to subunit immunization. Proc Natl Acad Sci U S A 2014; 111:16472-7. [PMID: 25267651 DOI: 10.1073/pnas.1407393111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An elusive goal of cellular immune vaccines is the generation of large numbers of antigen-specific T cells in response to subunit immunization. A broad spectrum of cytokines and cell-surface costimulatory molecules are known to shape the programming, magnitude, and repertoire of T cells responding to vaccination. We show here that the majority of innate immune receptor agonist-based vaccine adjuvants unexpectedly depend on IL-27 for eliciting CD4(+) and CD8(+) T-cell responses. This is in sharp contrast to infectious challenge, which generates T-cell responses that are IL-27-independent. Mixed bone marrow chimera experiments demonstrate that IL-27 dependency is T cell-intrinsic, requiring T-cell expression of IL-27Rα. Further, we show that IL-27 dependency not only dictates the magnitude of vaccine-elicited T-cell responses but also is critical for the programming and persistence of high-affinity T cells to subunit immunization. Collectively, our data highlight the unexpected central importance of IL-27 in the generation of robust, high-affinity cellular immune responses to subunit immunization.
Collapse
|
33
|
From anabolic to oxidative: reconsidering the roles of IL-15 and IL-15Rα in skeletal muscle. Exerc Sport Sci Rev 2014; 41:100-6. [PMID: 23072822 DOI: 10.1097/jes.0b013e318275d230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Quinn LS, Anderson BG, Conner JD, Wolden-Hanson T, Marcell TJ. IL-15 is required for postexercise induction of the pro-oxidative mediators PPARδ and SIRT1 in male mice. Endocrinology 2014; 155:143-55. [PMID: 24169546 PMCID: PMC5378429 DOI: 10.1210/en.2013-1645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Physical exercise induces transient upregulation of the pro-oxidative mediators peroxisome proliferator-activated receptor-δ (PPARδ), silent information regulator of transcription (sirtuin)-1 (SIRT1), PPARγ coactivator 1α (PGC-1α), and PGC-1β in skeletal muscle. To determine the role of the cytokine IL-15 in acute postexercise induction of these molecules, expression of these factors after a bout of exhaustive treadmill running was examined in the gastrocnemius muscle of untrained control and IL-15-knockout (KO) mice. Circulating IL-15 levels increased transiently in control mice after exercise. Control mice, but not IL-15-KO mice, upregulated muscle PPARδ and SIRT1 protein after exercise, accompanied by a complex pattern of mRNA expression for these factors. However, in exhaustive exercise, control mice ran significantly longer than IL-15-KO mice. Therefore, in a second experiment, mice were limited to a 20-minute run, after which a similar pattern of induction of muscle PPARδ and SIRT1 protein by control mice only was observed. In a separate experiment, IL-15-KO mice injected systemically with recombinant IL-15 upregulated muscle PPARδ and SIRT1 mRNA within 30 minutes and also exhibited increased muscle PPARδ protein levels by 3 hours. After exercise, both control and IL-15-KO mice downregulated IL-15 receptor-α (IL-15Rα) mRNA, whereas IL-15Rα-deficient mice exhibited constitutively elevated circulating IL-15 levels. These observations indicate IL-15 release after exercise is necessary for induction of PPARδ and SIRT1 at the protein level in muscle tissue and suggest that exercise releases IL-15 normally sequestered by the IL-15Rα in the resting state. These findings could be used to develop an IL-15-based strategy to induce many of the metabolic benefits of physical exercise.
Collapse
Affiliation(s)
- Lebris S Quinn
- Geriatric Research, Education, and Clinical Center (L.S.Q., B.G.A.) and Research Service (L.S.Q., J.D.C., T.W.-H.), VA Puget Sound Health Care System, and Seattle Institute for Biomedical and Clinical Research (L.S.Q., J.D.C.), Seattle, Washington 98108; Division of Gerontology and Geriatric Medicine (L.S.Q., B.G.A.), Department of Medicine, University of Washington, Seattle, Washington 98195; and Department of Kinesiology (T.J.M.), California State University Stanislaus, Turlock, California 95382
| | | | | | | | | |
Collapse
|
35
|
Quinn LS, Anderson BG, Conner JD, Wolden-Hanson T. IL-15 overexpression promotes endurance, oxidative energy metabolism, and muscle PPARδ, SIRT1, PGC-1α, and PGC-1β expression in male mice. Endocrinology 2013; 154:232-45. [PMID: 23161867 PMCID: PMC3529369 DOI: 10.1210/en.2012-1773] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endurance exercise initiates a pattern of gene expression that promotes fat oxidation, which in turn improves endurance, body composition, and insulin sensitivity. The signals from exercise that initiate these pathways have not been completely characterized. IL-15 is a cytokine that is up-regulated in skeletal muscle after exercise and correlates with leanness and insulin sensitivity. To determine whether IL-15 can induce any of the metabolic adaptations associated with exercise, substrate metabolism, endurance, and molecular expression patterns were examined in male transgenic mice with constitutively elevated muscle and circulating IL-15 levels. IL-15 transgenic mice ran twice as long as littermate control mice in a run-to-exhaustion trial and preferentially used fat for energy metabolism. Fast muscles in IL-15 transgenic mice exhibited high expression of intracellular mediators of oxidative metabolism that are induced by exercise, including sirtuin 1, peroxisome proliferator-activated receptor (PPAR)-δ, PPAR-γ coactivator-1α, and PPAR-γ coactivator-1β. Muscle tissue in IL-15 transgenic mice exhibited myosin heavy chain and troponin I mRNA isoform expression patterns indicative of a more oxidative phenotype than controls. These findings support a role for IL-15 in induction of exercise endurance, oxidative metabolism, and skeletal muscle molecular adaptations induced by physical training.
Collapse
Affiliation(s)
- Lebris S Quinn
- S-182 Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108, USA.
| | | | | | | |
Collapse
|
36
|
Pistilli EE, Guo G, Stauber WT. IL-15Rα deficiency leads to mitochondrial and myofiber differences in fast mouse muscles. Cytokine 2012; 61:41-5. [PMID: 23116661 DOI: 10.1016/j.cyto.2012.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to determine mitochondrial changes in fast muscles from interleukin-15 receptor alpha knockout (IL-15RαKO) mice. We tested the hypothesis that fast muscles from IL-15RαKO mice would have a greater mitochondrial density and altered internal structure compared to muscles from control mice. In fast muscles from IL-15RαKO mice, mitochondrial density was 48% greater with a corresponding increase in mitochondrial DNA content. Although there were no differences in the relative size of isolated mitochondria, internal complexity was lower in mitochondria from IL-15RαKO mice. These data support an increase in mitochondrial biogenesis and provide direct evidence for a greater density and altered internal structure of mitochondria in EDL muscles deficient in IL-15Rα.
Collapse
Affiliation(s)
- Emidio E Pistilli
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|