1
|
Vimalanathan B, Thiyagarajan D, Mary RN, Sachidanandam M, Ignacimuthu S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Composites of Reduced Graphene Oxide Based on Silver Nanoparticles and Their Effect on Breast Cancer Stem Cells. Bioengineering (Basel) 2025; 12:508. [PMID: 40428127 PMCID: PMC12109224 DOI: 10.3390/bioengineering12050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Graphene and its related nanocomposites have garnered significant interest due to their distinct physiochemical and biological properties. In this study, reduced graphene oxide-silver hybrid nanostructures were synthesized for applications in biomedical nanotechnology, particularly in targeting cancer stem cells (CSCs). A range of analytical techniques, such as X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible absorption spectroscopy (UV-VIS), were employed to characterize graphene oxide (GO), reduced graphene oxide (rGO)-silver nanoparticles (AgNPs), and their composite structures. The GO-rGO-AgNPs exhibited potent anticancer properties as evidenced by cell culture assays, spheroid formation assay, and quantitative RT-PCR analysis. Treatment of breast cancer cells (MCF-7) with GO, rGO, and AgNPs significantly reduced cell proliferation and mammosphere formation. Furthermore, these treatments downregulated the expression of marker genes associated with CSCs in MCF-7 cells. Among the tested materials, rGO-AgNP, sodium citrate-mediated GO-AgNP, and rGO-AgNP nanocomposites demonstrated superior inhibitory effects on cell survival compared to GO alone. These findings suggest that these nanocomposites hold promise as effective and non-toxic therapeutic agents for targeting cancer cells and CSCs, thereby offering a novel approach to cancer treatment.
Collapse
Affiliation(s)
- Babu Vimalanathan
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India;
| | - Devasena Thiyagarajan
- Centre for Nanoscience and Nanotechnology, Anna University, Chennai 600025, Tamil Nadu, India;
| | - Ruby Nirmala Mary
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Thanjavur 613403, Tamil Nadu, India;
| | - Magesh Sachidanandam
- Department of Virology, King Institute of Preventive Medicine and Research, Chennai 600032, Tamil Nadu, India;
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St Xavier’s College, Palayamkottai, Tirunelveli 627002, Tamil Nadu, India;
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai 603203, Tamil Nadu, India;
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai 603203, Tamil Nadu, India;
| |
Collapse
|
2
|
Medina H, Child N. A Review of Developments in Carbon-Based Nanocomposite Electrodes for Noninvasive Electroencephalography. SENSORS (BASEL, SWITZERLAND) 2025; 25:2274. [PMID: 40218785 PMCID: PMC11991328 DOI: 10.3390/s25072274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Wearable biosensors have been of interest for their wide range of uses, varying from recording biological signals to measuring strain of bending joints. Carbon nanoparticles have been utilized in biocompatible polymers to create nanocomposites with highly tunable mechanical and electrical properties. These nanocomposites have been demonstrated to be highly effective as wearable sensors for recording physiological signals such as electroencephalography (EEG), offering advantages in mechanical and electrical properties and signal quality over commercially available sensors while maintaining feasibility and scalability in manufacturing. This review aims to provide a critical summary of the recent literature on the properties, design, fabrication, and performance of carbon-based nanocomposites for EEG electrodes. The goal of this review is to highlight the various design configurations and properties thereof, manufacturing methods, performance measurements, and related challenges associated with these promising noninvasive dry soft electrodes. While this technology offers many advantages over either other noninvasive or their invasive counterparts, there are still various challenges and opportunities for improvements and innovation. For example, the investigation of gradient composite structures, hybrid nanocomposite/composite materials, hierarchical contact surfaces, and the influence of loading and alignment of the dispersal phase in the performance of these electrodes could lead to novel and better designs. Finally, current practices for evaluating the performance of novel EEG electrodes are discussed and challenged, emphasizing the critical need for the development of standardized assessment protocols, which could provide reliability in the field, enable benchmarking, and hence promote innovation.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, University Blvd, Lynchburg, VA 24515, USA;
| | | |
Collapse
|
3
|
Parvin N, Joo SW, Jung JH, Mandal TK. Innovative Micro- and Nano-Architectures in Biomedical Engineering for Therapeutic and Diagnostic Applications. MICROMACHINES 2025; 16:419. [PMID: 40283294 PMCID: PMC12029970 DOI: 10.3390/mi16040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
The rapid evolution of micro- and nano-architectures is revolutionizing biomedical engineering, particularly in the fields of therapeutic and diagnostic micromechanics. This review explores the recent innovations in micro- and nanostructured materials and their transformative impact on healthcare applications, ranging from drug delivery and tissue engineering to biosensing and diagnostics. Key advances in fabrication techniques, such as lithography, 3D printing, and self-assembly, have enabled unprecedented control over material properties and functionalities at microscopic scales. These engineered architectures offer enhanced precision in targeting and controlled release in drug delivery, foster cellular interactions in tissue engineering, and improve sensitivity and specificity in diagnostic devices. We examine critical design parameters, including biocompatibility, mechanical resilience, and scalability, which influence their clinical efficacy and long-term stability. This review also highlights the translational potential and current limitations in bringing these materials from the laboratory research to practical applications. By providing a comprehensive overview of the current trends, challenges, and future perspectives, this article aims to inform and inspire further development in micro- and nano-architectures that hold promise for advancing personalized and precision medicine.
Collapse
Affiliation(s)
- Nargish Parvin
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Li Q, Shi H, Wang Y, Hu R, Feng C, Ma X, Wang Y, Li X, Zhu X, Zhang X. Enhancing the mechanical and antibacterial properties of hydroxyapatite bioceramics by in situ graphene doping to promote osseointegration in infected bone defects. J Mater Chem B 2025; 13:3930-3944. [PMID: 40013324 DOI: 10.1039/d4tb02330g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Hydroxyapatite (HA) bioceramics are extensively utilized in the field of bone repair owing to their remarkable biocompatibility, bioactivity, and osteoconductivity. However, their applications in load-bearing bones are significantly limited because of their inherent brittleness. Achieving a suitable balance between mechanical strength and osteogenic activity remains a critical challenge. In this work, HA ceramics with in situ graphene doping were fabricated via ball-milling and vacuum sintering processes in a convenient way, thereby increasing their fracture toughness and flexural strength to the levels of natural cortical bone. Furthermore, in situ graphene doping imparted outstanding photothermal property to HA bioceramics, achieving wet temperatures exceeding 60 °C under near-infrared radiation at 808 nm and exhibiting excellent antibacterial efficacy with a bacteriostasis rate of approximately 96% against S. aureus. Additionally, HA bioceramics with in situ graphene doping promoted the proliferation and differentiation of bone marrow stem cells (BMSCs). The anti-infective capability and osseointegration potential of these doped HA bioceramics were further validated using an infected bone defect model in the rabbit femur. In summary, these findings indicate that in situ graphene doping holds immense potential for broadening the applications of HA bioceramics in the repair of load-bearing and infected bone defects.
Collapse
Affiliation(s)
- Qipeng Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hao Shi
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ruitao Hu
- Pittsburgh Institute, Sichuan University, Chengdu, 610065, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiaodong Ma
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ye Wang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Moradi S, Nargesi Azam F, Abdollahi H, Rajabifar N, Rostami A, Guzman P, Zarrintaj P, Davachi SM. Graphene-Based Polymeric Microneedles for Biomedical Applications: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2025; 8:1835-1861. [PMID: 39927634 PMCID: PMC11921037 DOI: 10.1021/acsabm.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Transdermal drug delivery presents a promising noninvasive approach, bypassing first-pass metabolism and gastrointestinal degradation. However, the stratum corneum (SC) barrier limits drug absorption, necessitating the development of effective delivery systems. Microneedles, particularly polymer-based ones, offer a solution by penetrating the SC while avoiding critical nerves and capillaries. These microneedles are biodegradable, nontoxic, and easily manufacturable, making them a highly attractive platform for transdermal drug delivery. However, their clinical application remains limited due to suboptimal therapeutic efficacy and slow drug release rates. Recent advancements have introduced the incorporation of nanodrugs, such as nanoparticles and encapsulated drugs, into microneedles to enhance drug delivery efficiency. Among the materials explored, graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), have garnered significant attention. Their exceptional mechanical strength, electrical conductivity, and antibacterial properties not only improve the mechanical performance of microneedles but also enhance drug release rates and biocompatibility. This review synthesizes the current state of microneedle technologies, focusing on the materials, fabrication techniques, and performance challenges. It particularly examines the potential of graphene-based microneedles, comparing them to traditional polymer-based microneedles in terms of drug release efficiency and stability. The review highlights key challenges, such as scalability, biocompatibility, and fabrication complexity, and suggests future research directions to address these issues. The incorporation of graphene quantum dots (GQDs) is identified as a promising avenue for improving drug release profiles, stability, and real-time tracking of drug diffusion. Finally, the review outlines emerging applications, including smart drug delivery systems, biosensing, and real-time monitoring, urging further exploration to unlock the full potential of graphene-enhanced microneedles in clinical settings.
Collapse
Affiliation(s)
- Somayeh Moradi
- Department
of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran
| | - Faezeh Nargesi Azam
- Polymer
Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-114, Iran
| | - Hossein Abdollahi
- Department
of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran
| | - Nariman Rajabifar
- Department
of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Amir Rostami
- Department
of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical
Engineering, Persian Gulf University, Bushehr 75169-13817, Iran
| | - Pablo Guzman
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| | - Payam Zarrintaj
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| | - Seyed Mohammad Davachi
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| |
Collapse
|
6
|
Joshi R, Ravindran K V, Lahiri I. Graphene-based materials and electrochemical biosensors: an overview. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143001. [PMID: 39908672 DOI: 10.1088/1361-648x/adb2d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Graphene, an exceptional two-dimensional material, has attracted significant attention from the scientific community. Its unique physiochemical properties make it a suitable candidate for many applications in the field of biotechnology and medical sciences. High specific surface area, exceptionally high electrical conductivity, and good biocompatibility of graphene give it a large scope in disease diagnosis and biosensing applications. This review aims at presenting the advances in the journey of graphene-based materials and their successful implication as electrochemical nanobiosensors. The first part of the review summarizes the history, structure, and recent developments in the large-scale production of graphene. It further includes the sensing mechanism, the recent trends in biosensing, and improvements in graphene-based biosensors. The comparative analysis shows graphene-based electrochemical biosensors to have high sensitivity, long-term stability, and low detection limits compared to the various other biosensors.
Collapse
Affiliation(s)
- Rita Joshi
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Veena Ravindran K
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Indranil Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
7
|
Aarthi J, Kaviya S, Kirubavathi K, Selvaraju K, Shakeel F, Gowri S, Faiyazuddin M. Green synthesis of nickel oxide nanoparticles using leaf extract of Mimosa pudica for killing triple-negative breast cancer MDA-MB-231 cells and bacteria. J Mol Struct 2025; 1321:140178. [DOI: 10.1016/j.molstruc.2024.140178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Zhou Y, Chen L, Wang T. Nanoparticles in gynecologic cancers: a bibliometric and visualization analysis. Front Oncol 2025; 14:1465987. [PMID: 39845315 PMCID: PMC11750695 DOI: 10.3389/fonc.2024.1465987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Gynecological cancers are characterized by uncontrolled cell proliferation within the female reproductive organs. These cancers pose a significant threat to women's health, impacting life expectancy, quality of life, and fertility. Nanoparticles, with their small size, large surface area, and high permeability, have become a key focus in targeted cancer therapy. The aim of this study is to review recent advancements in nanoparticles applied to gynecologic cancers, providing valuable insights for future research. Methods We retrieved all literature on nanoparticles in gynecologic cancers from the Web of Science Core Collection (WOSCC) database between January 1, 2004, and June 4, 2024. Data analysis and visualization were conducted using R software (version 4.4.0), VOSviewer (version 1.6.19.0), and CiteSpace (version 6.1). Results A total of 2,843 publications from January 1, 2004, to June 4, 2024 were searched. Over the past 20 years, there has been a significant increase in publications. The leading countries and institutions in terms of productivity are China and the Chinese Academy of Sciences. The most prolific author and the most co-cited author are Sood, A K and Siegel, Rl. The top journals are the International Journal of Nanomedicine (n=97), followed by ACS Applied Materials & Interfaces (n=72) and Journal of Materials Chemistry B (n=53). Keyword analysis shows current research focuses on two main areas: the application of nanoparticles for drug delivery and their broader applications in gynecologic cancers. Future research will likely focus on "silver nanoparticles," "gold nanoparticles," and "green synthesis." Conclusions Over the past two decades, nanoparticles have rapidly advanced in the field of gynecologic cancers. Research has primarily focused on the applications of nanoparticles in drug delivery and applications. Future trends point toward optimizing synthesis techniques and advancing preclinical studies to clinical applications, particularly for silver and gold nanoparticles. These findings provide valuable scientific insights for researchers.
Collapse
Affiliation(s)
| | - Lizhang Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
9
|
Hassen A, Moawed EA, Bahy R, El Basaty AB, El-Sayed S, Ali AI, Tayel A. Synergistic effects of thermally reduced graphene oxide/zinc oxide composite material on microbial infection for wound healing applications. Sci Rep 2024; 14:22942. [PMID: 39358395 PMCID: PMC11447095 DOI: 10.1038/s41598-024-73007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Infections originating from pathogenic microorganisms can significantly impede the natural wound-healing process. To address this obstacle, innovative bio-active nanomaterials have been developed to enhance antibacterial capabilities. This study focuses on the preparation of nanocomposites from thermally reduced graphene oxide and zinc oxide (TRGO/ZnO). The hydrothermal method was employed to synthesize these nanocomposites, and their physicochemical properties were comprehensively characterized using X-ray diffraction analysis (XRD), High-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FT-IR), Raman spectroscopy, UV-vis, and field-emission scanning electron microscopy (FE-SEM) techniques. Subsequently, the potential of TRGO/ZnO nanocomposites as bio-active materials against wound infection-causing bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, was evaluated. Furthermore, the investigated samples show disrupted bacterial biofilm formation. A reactive oxygen species (ROS) assay was conducted to investigate the mechanism of nanocomposite inhibition against bacteria and for further in-vivo determination of antimicrobial activity. The MTT assay was performed to ensure the safety and biocompatibility of nanocomposite. The results suggest that TRGO/ZnO nanocomposites have the potential to serve as effective bio-active nanomaterials for combating pathogenic microorganisms present in wounds.
Collapse
Affiliation(s)
- A Hassen
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt.
| | - E A Moawed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| | - Rehab Bahy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, El Fayoum, 63514, Egypt
| | - A B El Basaty
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Nanotechnoloy Center, Helwan University, Helwan Al Sharqia, Cairo, 11722, Egypt
| | - S El-Sayed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
| | - Ahmed I Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Department of Applied Physics, Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Suwon, 446-701, Republic of Korea
| | - A Tayel
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| |
Collapse
|
10
|
Patil GS, Nangare SN, Patil DA, Borhade DD, Patil GB. Design of quetiapine fumarate loaded polyethylene glycol decorated graphene oxide nanosheets: Invitro-exvivo characterization. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:848-864. [PMID: 38685472 DOI: 10.1016/j.pharma.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Quetiapine Fumarate (QF) is an atypical antipsychotic with poor oral bioavailability (9%) due to its low permeability and pH-dependent solubility. Therefore, this study aims to design QF-loaded polyethylene glycol (PEG) functionalized graphene oxide nanosheets (GON) for nasal delivery of QF. In brief, GO was synthesized using a modified Hummers process, followed by ultra-sonication to produce GON. Subsequently, PEG-functionalized GON was prepared using carbodiimide chemistry (PEG-GON). QF was then decorated onto the cage of PEG-GON using the π-π stacking phenomenon (QF@PEG-GON). The QF@PEG-GON nanocomposite underwent several spectral characterizations, in vitro drug release, mucoadhesion study, ex vivo diffusion study, etc. The surface morphology of QF@PEG-GON nanocomposite validates the cracked nature of the nanocomposite, whereas the diffractograms and thermogram of nanocomposite confirm the conversion of QF into an amorphous form with uniform distribution in PEG-GON. Moreover, an ex vivo study of PEG-GON demonstrates superior mucoadhesion capacity due to its surface functional groups and hydrophilicity. The percent drug loading content and percent entrapment efficiency of the nanocomposite were found to be 9.2±0.62% and 92.3±1.02%, respectively. The developed nanocomposite exhibited 43.82±1.65% drug release within 24h, with the Korsemeyer-Peppas model providing the best-fit release kinetics (R2: 0.8614). Here, the interlayer spacing of PEG-GON prevented prompt diffusion of the buffer, leading to a delayed release pattern. In conclusion, the anticipated QF@PEG-GON nanocomposite shows promise as a nanocarrier platform for nasal delivery of QF.
Collapse
Affiliation(s)
- Gaurav S Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Sopan N Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Dilip A Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Dinesh D Borhade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Ganesh B Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India.
| |
Collapse
|
11
|
Rana A, Matiyani M, Negi PB, Tiwari H, Garwal K, Basak S, Sahoo NG. Polyvinylpyrrolidone‐functionalized graphene oxide as a nanocarrier for dual‐drug delivery of quercetin and curcumin against HeLa cancer cells. JOURNAL OF VINYL AND ADDITIVE TECHNOLOGY 2024; 30:1241-1253. [DOI: 10.1002/vnl.22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/30/2024] [Indexed: 01/06/2025]
Abstract
AbstractThis study is to develop a nanocarrier based on polyvinylpyrrolidone (PVP)‐functionalized graphene oxide (GO–PVP), loaded with both curcumin (CUR) and quercetin (QSR), and then its performance compared with nanocarriers carrying the drugs separately. The study also aimed to investigate the cytotoxic effects of these nanocarriers on HeLa cancer cells. To achieve this, GO was synthesized using a modified version of Hummer's method and subsequently functionalized with PVP. Drug loading onto the GO and GO–PVP nanocarriers was achieved through hydrophobic interactions. Furthermore, the ability of the nanocarriers to accommodate a single drug or a combination of drugs was examined. In our study, combined system shows higher drug loading, that is, 28.1% of QSR and 24.34% of CUR onto GO–PVP–QSR–CUR nanocarrier in comparison to single drug nanocarrier systems GO–PVP–QSR and GO–PVP–CUR which loaded 22.5% of QSR and 18.73% of CUR, respectively. Notably, the synthesized nanocarrier exhibited a pH‐sensitive drug release pattern. These results collectively suggest that GO–PVP–CUR–QSR displayed significantly higher cytotoxicity against HeLa cancer cells compared to both single‐drug nanocarrier systems at the specified concentrations. In addition, future pre‐clinical and clinical studies to evaluate the safety and efficacy of GO–PVP–CUR–QSR for cancer treatment are strongly recommended.Highlights
Developed nanocarrier based on polyvinylpyrrolidone functionalized GO (GO–PVP).
The GO–PVP nanocarrier was loaded with both curcumin (CUR) and quercetin (QSR).
GO–PVP displays a higher loading capacity for both QSR and CUR compared to GO.
QSR‐ and CUR‐loaded GO–PVP nanocarriers exhibited higher cytotoxic effects.
Collapse
Affiliation(s)
- Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
- Institute of Macromolecular Chemistry Academy of Science of the Czech Republic Prague 6 Czech Republic
| | - Monika Matiyani
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
- Institute of Macromolecular Chemistry Academy of Science of the Czech Republic Prague 6 Czech Republic
| | - Pushpa Bhakuni Negi
- Department of Chemistry Graphic Era Hill University, Bhimtal Campus Nainital India
| | - Himani Tiwari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| | - Kamal Garwal
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| | - Souvik Basak
- Department of Pharmaceutical Chemistry Dr. B.C. Roy College of Pharmacy & Allied Health Sciences Durgapur India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| |
Collapse
|
12
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
13
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
14
|
Xin L, Zhao H, Peng M, Zhu Y. Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects. Pharmaceuticals (Basel) 2024; 17:950. [PMID: 39065800 PMCID: PMC11279904 DOI: 10.3390/ph17070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Biofilm-associated infections pose a significant challenge in healthcare, constituting 80% of bacterial infections and often leading to persistent, chronic conditions. Conventional antibiotics struggle with efficacy against these infections due to the high tolerance and resistance induced by bacterial biofilm barriers. Two-dimensional nanomaterials, such as those from the graphene family, boron nitride, molybdenum disulfide (MoS2), MXene, and black phosphorus, hold immense potential for combating biofilms. These nanomaterial-based antimicrobial strategies are novel tools that show promise in overcoming resistant bacteria and stubborn biofilms, with the ability to circumvent existing drug resistance mechanisms. This review comprehensively summarizes recent developments in two-dimensional nanomaterials, as both therapeutics and nanocarriers for precision antibiotic delivery, with a specific focus on nanoplatforms coupled with photothermal/photodynamic therapy in the elimination of bacteria and penetrating and/or ablating biofilm. This review offers important insight into recent advances and current limitations of current antibacterial nanotherapeutic approaches, together with a discussion on future developments in the field, for the overall benefit of public health.
Collapse
Affiliation(s)
- Lei Xin
- Department of Ultraasound, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Hongkun Zhao
- Outpatient Department, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Min Peng
- Department of Ultraasound, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
15
|
Ramezani P, De Smedt SC, Sauvage F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng Transl Med 2024; 9:e10652. [PMID: 39036081 PMCID: PMC11256156 DOI: 10.1002/btm2.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024] Open
Abstract
Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.
Collapse
Affiliation(s)
- Pouria Ramezani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
16
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
17
|
Pieklarz K, Galita G, Majsterek I, Owczarz P, Modrzejewska Z. Nanoarchitectonics and Biological Properties of Nanocomposite Thermosensitive Chitosan Hydrogels Obtained with the Use of Uridine 5'-Monophosphate Disodium Salt. Int J Mol Sci 2024; 25:5989. [PMID: 38892176 PMCID: PMC11172958 DOI: 10.3390/ijms25115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method-by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide-uridine 5'-monophosphate disodium salt-as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol-gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues.
Collapse
Affiliation(s)
- Katarzyna Pieklarz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (G.G.); (I.M.)
| | - Piotr Owczarz
- Department of Chemical Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland;
| | - Zofia Modrzejewska
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland
| |
Collapse
|
18
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
19
|
Gouda MH, Khowdiary MM, Alsnani H, Roushdy N, Youssef ME, Elnouby M, Elessawy NA. Adsorption and antibacterial studies of a novel hydrogel adsorbent based on ternary eco-polymers doped with sulfonated graphene oxide developed from upcycled plastic waste. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104362. [PMID: 38735087 DOI: 10.1016/j.jconhyd.2024.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1-3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g-1 for MB and 654 mg g-1 for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.
Collapse
Affiliation(s)
- Marwa H Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - M M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Alqura Universty, Makkah 24382, Saudi Arabia
| | - Hind Alsnani
- Department of Physics, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - N Roushdy
- Electronics Materials Dep. Advanced Technology& New Materials Research Institute, City of Scientific Research & Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box 21934, Alexandria, Egypt
| | - M Elsayed Youssef
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications City (SRTA-City), Alexandria 21934, Egypt
| | - Mohamed Elnouby
- Nanomaterials and Composites Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Noha A Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications City (SRTA-City), Alexandria 21934, Egypt.
| |
Collapse
|
20
|
Rathinam Thiruppathi Venkadajapathy V, Sivaperumal S. Tailoring functional two-dimensional nanohybrids: A comprehensive approach for enhancing photocatalytic remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116221. [PMID: 38547728 DOI: 10.1016/j.ecoenv.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Photocatalysis is gaining prominence as a viable alternative to conventional biohazard treatment technologies. Two-dimensional (2D) nanomaterials have become crucial for fabricating novel photocatalysts due to their nanosheet architectures, large surface areas, and remarkable physicochemical properties. Furthermore, a variety of applications are possible with 2D nanomaterials, either in combination with other functional nanoparticles or by utilizing their inherent properties. Henceforth, the review commences its exploration into the synthesis of these materials, delving into their inherent properties and assessing their biocompatibility. Subsequently, an overview of mechanisms involved in the photocatalytic degradation of pollutants and the processes related to antimicrobial action is presented. As an integral part of our review, we conduct a systematic analysis of existing challenges and various types of 2D nanohybrid materials tailored for applications in the photocatalytic degradation of contaminants and the inactivation of pathogens through photocatalysis. This investigation will aid to contribute to the formulation of decision-making criteria and design principles for the next generation of 2D nanohybrid materials. Additionally, it is crucial to emphasize that further research is imperative for advancing our understanding of 2D nanohybrid materials.
Collapse
|
21
|
Wang Y, Yang B, Huang Z, Yang Z, Wang J, Ao Q, Yin G, Li Y. Progress and mechanism of graphene oxide-composited materials in application of peripheral nerve repair. Colloids Surf B Biointerfaces 2024; 234:113672. [PMID: 38071946 DOI: 10.1016/j.colsurfb.2023.113672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/09/2024]
Abstract
Peripheral nerve injuries (PNI) are one of the most common nerve injuries, and graphene oxide (GO) has demonstrated significant potential in the treatment of PNI. GO could enhance the proliferation, adhesion, migration, and differentiation of neuronal cells by upregulating the expression of relevant proteins, and regulate the angiogenesis process and immune response. Therefore, GO is a suitable additional component for fabricating artificial nerve scaffolds (ANS), in which the slight addition of GO could improve the physicochemical performance of the matrix materials, through hydrogen bonds and electrostatic attraction. GO-composited ANS can increase the expression of nerve regeneration-associated genes and factors, promoting angiogenesis by activating the RAS/MAPK and AKT-eNOS-VEGF signaling pathway, respectively. Moreover, GO could be metabolized and excreted from the body through the pathway of peroxidase degradation in vivo. Consequently, the application of GO in PNI regeneration exhibits significant potential for transitioning from laboratory research to clinical use.
Collapse
Affiliation(s)
- Yulin Wang
- College of Biomedical Engineering, Sichuan University, China; Institute of Regulatory Science for Medical Devices, Sichuan University, China
| | - Bing Yang
- College of Biomedical Engineering, Sichuan University, China; Precision Medical Center of Southwest China Hospital, Sichuan University, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, China.
| | - Zhaopu Yang
- Center for Drug Inspection, Guizhou Medical Products Administration, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, China
| | - Qiang Ao
- College of Biomedical Engineering, Sichuan University, China; Institute of Regulatory Science for Medical Devices, Sichuan University, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, China
| | - Ya Li
- College of Biomedical Engineering, Sichuan University, China; Institute of Regulatory Science for Medical Devices, Sichuan University, China
| |
Collapse
|
22
|
Aventaggiato M, Valentini F, Caissutti D, Relucenti M, Tafani M, Misasi R, Zicari A, Di Martino S, Virtuoso S, Neri A, Mardente S. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024; 12:256. [PMID: 38397858 PMCID: PMC10887315 DOI: 10.3390/biomedicines12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the discovery of graphene, there has been a wide range of the literature dealing with its versatile structure and easy binding of biomolecules as well as its large loading capacity. In the emerging field of immunotherapy, graphene and its derivatives have potential uses as drug delivery platforms directly into tumour sites or as adjuvants in cancer vaccines, as they are internalized by monocytes which in turn may activate adaptive anti-tumoral immune responses. In this study, we expose cells of the innate immune system and a human acute monocytic leukemia cell line (THP-1) to low doses of small-sized GO nanosheets functionalized with bovine serum albumin (BSA) and fluorescein isothiocyanate (FITC), to study their acute response after internalization. We show by flow cytometry, uptake in cells of GO-BSA-FITC reaches 80% and cell viability and ROS production are both unaffected by exposure to nanoparticles. On the contrary, GO-BSA nanosheets seem to have an inhibitory effect on ROS production, probably due to their antioxidant properties. We also provided results on chemotaxis of macrophages derived from peripheral blood monocytes treated with GO-BSA. In conclusion, we showed the size of nanosheets, the concentration used and the degree of functionalization were important factors for biocompatibility of GO in immune cells. Its low cytotoxicity and high adaptability to the cells of the innate immune system make it a good candidate for deployment in immunotherapy, in particular for delivering protein antigens to monocytes which activate adaptive immunity.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Federica Valentini
- Department of Sciences and Chemical Technologies, Tor Vergata University, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Daniela Caissutti
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Di Martino
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Virtuoso
- Higher Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Anna Neri
- Department of Biomedicine and Prevention, Tor Vergata University, Viale Montpellier, 1, 00133 Rome, Italy;
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| |
Collapse
|
23
|
Wu J, Wang C, Zhang S, Zhang L, Hao J, Jia Z, Zheng X, Lv Y, Fu S, Zhang G. Preparation and Properties of GO/ZnO/nHAp Composite Microsphere Bone Regeneration Material. MICROMACHINES 2024; 15:122. [PMID: 38258241 PMCID: PMC10820970 DOI: 10.3390/mi15010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The purpose of this study is to explore the possibility of using graphene-zinc oxide-hydroxyapatite (GO/ZnO/nHAp) composite microspheres as bone regeneration materials by making use of the complementary advantages of nanocomposites, so as to provide reference for the clinical application of preventing and solving bacterial infection after implantation of synthetic materials. Firstly, GO/ZnO composites and hydroxyapatite nanoparticles were synthesized using the hydrothermal method, and then GO/ZnO/nHAp composite microspheres were prepared via high-temperature sintering. The graphene-zinc oxide-calcium phosphate composite microspheres were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), energy dispersion spectroscopy (EDS), water contact angle measurement, degradation and pH determination, and differential thermal analysis (DiamondTG/DTA). The biocompatibility, osteogenic activity, and antibacterial activity of GO/ZnO/nHAp composite microspheres were further studied. The results of the cell experiment and antibacterial experiment showed that 0.5% and 1% GO-ZnO-nHAp composite microspheres not only had good biocompatibility and osteogenic ability but also inhibited Escherichia coli and Staphylococcus aureus by more than 45% and 70%. Therefore, GO/ZnO/nHAp composite microspheres have good physical and chemical properties and show good osteogenic induction and antibacterial activity, and this material has the possibility of being used as a bone regeneration material.
Collapse
Affiliation(s)
- Jiang Wu
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Chunmei Wang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Shuangsheng Zhang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Ling Zhang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Jingshun Hao
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Zijian Jia
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Xiaomei Zheng
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China;
| | - Shuang Fu
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| | - Guoliang Zhang
- School of Stomatology, Jiamusi University, Jiamusi 154007, China; (J.W.); (C.W.); (S.Z.); (L.Z.); (J.H.); (Z.J.); (X.Z.)
| |
Collapse
|
24
|
Castro JI, Payan-Valero A, Valencia-Llano CH, Insuasty D, Rodríguez Macias JD, Ordoñez A, Valencia Zapata ME, Mina Hernández JH, Grande-Tovar CD. Evaluation of the Antibacterial, Anti-Cervical Cancer Capacity, and Biocompatibility of Different Graphene Oxides. Molecules 2024; 29:281. [PMID: 38257194 PMCID: PMC10821421 DOI: 10.3390/molecules29020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.
Collapse
Affiliation(s)
- Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Alana Payan-Valero
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Juan David Rodríguez Macias
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Alejandra Ordoñez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Jose Herminsul Mina Hernández
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
25
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
26
|
AbouAitah K, Sabbagh F, Kim BS. Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2666. [PMID: 37836307 PMCID: PMC10574074 DOI: 10.3390/nano13192666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many illnesses, nanosized graphene oxide (NGO) is now garnering a large amount of attention among these materials. In addition to other benefits, NGO functions as a drug nanocarrier with remarkable biocompatibility, high pharmaceutical loading capacity, controlled drug release capability, biological imaging efficiency, multifunctional nanoplatform properties, and the power to increase the therapeutic efficacy of loaded agents. Thus, NGO is a perfect nanoplatform for the development of drug delivery systems (DDSs) to both detect and treat a variety of ailments. This review article's main focus is on investigating surface functionality, drug-loading methods, and drug release patterns designed particularly for smart delivery systems. The paper also examines the relevance of using NGOs to build DDSs and considers prospective uses in the treatment of diseases including cancer, infection by bacteria, and bone regeneration medicine. These factors cover the use of naturally occurring medicinal substances produced from plant-based sources.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| |
Collapse
|
27
|
Cebadero-Domínguez Ó, Diez-Quijada L, López S, Sánchez-Ballester S, Puerto M, Cameán AM, Jos A. Impact of Gastrointestinal Digestion In Vitro Procedure on the Characterization and Cytotoxicity of Reduced Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2285. [PMID: 37630872 PMCID: PMC10457766 DOI: 10.3390/nano13162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The growing interest in graphene derivatives is a result of their variety of applications in many fields. Due to their use, the oral route could be a potential way of entrance for the general population. This work assesses the biotransformation of reduced graphene oxide (rGO) after an in vitro digestion procedure (mouth, gastric, intestinal, and colon digestion), and its toxic effects in different cell models (HepG2, Caco-2, and 3D intestinal model). The characterization of rGO digestas evidenced the agglomeration of samples during the in vitro gastrointestinal (g.i.) digestion. Internalization of rGO was only evident in Caco-2 cells exposed to the colonic phase and no cellular defects were observed. Digestas of rGO did not produce remarkable cytotoxicity in any of the experimental models employed at the tested concentrations (up to 200 µg/mL), neither an inflammatory response. Undigested rGO has shown cytotoxic effects in Caco-2 cells, therefore these results suggest that the digestion process could prevent the systemic toxic effects of rGO. However, additional studies are necessary to clarify the interaction of rGO with the g.i. tract and its biocompatibility profile.
Collapse
Affiliation(s)
- Óscar Cebadero-Domínguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Sergio López
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain;
| | - Soraya Sánchez-Ballester
- Packaging, Transport and Logistic Research Institute, Albert Einstein, 1, Paterna, 46980 Valencia, Spain;
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| |
Collapse
|
28
|
Solomakha O, Stepanova M, Gofman I, Nashchekina Y, Rabchinskii M, Nashchekin A, Lavrentieva A, Korzhikova-Vlakh E. Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties. Polymers (Basel) 2023; 15:2714. [PMID: 37376360 DOI: 10.3390/polym15122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The development of new biodegradable biomaterials with osteoconductive properties for bone tissue regeneration is one of the urgent tasks of modern medicine. In this study, we proposed the pathway for graphene oxide (GO) modification with oligo/poly(glutamic acid) (oligo/poly(Glu)) possessing osteoconductive properties. The modification was confirmed by a number of methods such as Fourier-transform infrared spectroscopy, quantitative amino acid HPLC analysis, thermogravimetric analysis, scanning electron microscopy, and dynamic and electrophoretic light scattering. Modified GO was used as a filler for poly(ε-caprolactone) (PCL) in the fabrication of composite films. The mechanical properties of the biocomposites were compared with those obtained for the PCL/GO composites. An 18-27% increase in elastic modulus was found for all composites containing modified GO. No significant cytotoxicity of the GO and its derivatives in human osteosarcoma cells (MG-63) was revealed. Moreover, the developed composites stimulated the proliferation of human mesenchymal stem cells (hMSCs) adhered to the surface of the films in comparison with unfilled PCL material. The osteoconductive properties of the PCL-based composites filled with GO modified with oligo/poly(Glu) were confirmed via alkaline phosphatase assay as well as calcein and alizarin red S staining after osteogenic differentiation of hMSC in vitro.
Collapse
Affiliation(s)
- Olga Solomakha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Yulia Nashchekina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maxim Rabchinskii
- Ioffe Institute, Politekhnicheskaya St. 26, St. Petersburg 194021, Russia
| | - Alexey Nashchekin
- Ioffe Institute, Politekhnicheskaya St. 26, St. Petersburg 194021, Russia
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| |
Collapse
|
29
|
Li R, Liu C, Wan C, Liu T, Zhang R, Du J, Wang X, Jiao X, Gao R, Li B. A Targeted and pH-Responsive Nano-Graphene Oxide Nanoparticle Loaded with Doxorubicin for Synergetic Chemo-Photothermal Therapy of Oral Squamous Cell Carcinoma. Int J Nanomedicine 2023; 18:3309-3324. [PMID: 37351329 PMCID: PMC10284161 DOI: 10.2147/ijn.s402249] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is a malignant disease with serious impacts on human health and quality of life worldwide. This disease is traditionally treated through a combination of surgery, radiotherapy, and chemotherapy. However, the efficacy of traditional treatments is hindered by systemic toxicity, limited therapeutic effects, and drug resistance. Fibroblast activation protein (FAP) is a membrane-bound protease. Although FAP has limited expression in normal adult tissues, it is highly expressed in the tumor microenvironment of many solid cancers - a characteristic that makes it an ideal target for anticancer therapy. In this study, we constructed a nano-drug delivery system (NPF@DOX) targeting FAP to increase the therapeutic efficiency of synergistic chemo-photothermal therapy against OSCC. Methods We utilized PEGylated nano-graphene oxide (NGO) to link doxorubicin (DOX) and fluorescently-labeled, FAP-targeted peptide chains via hydrogen bonding and π-π bonding to enhance the targeting capability of NPF@DOX. The synthesis of NPF@DOX was analyzed using UV-Vis and FT-IR spectroscopy and its morphology using transmission electron microscopy (TEM). Additionally, the drug uptake efficiency in vitro, photo-thermal properties, release performance, and anti-tumor effects of NPF@DOX were evaluated and further demonstrated in vivo. Results Data derived from FT-IR, UV-Vis, and TEM implied successful construction of the NPF@DOX nano-drug delivery system. Confocal laser scanning microscopy images and in vivo experiments demonstrated the targeting effects of FAP on OSCC. Furthermore, NPF@DOX exhibited a high photothermal conversion efficiency (52.48%) under near-infrared radiation. The thermogenic effect of NPF@DOX simultaneously promoted local release of DOX and apoptosis based on a pH-stimulated effect. Importantly, FAP-targeted NPF@DOX in combination with PTT showed better tumor suppression performance in vivo and in vitro than did either therapy individually. Conclusion NPF@DOX can precisely target OSCC, and combined treatment with chemical and photothermal therapy can improve the therapeutic outcomes of OSCC. This method serves as an efficient therapeutic strategy for the development of synergistic anti-tumor research.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chen Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Rongrong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
30
|
El-Tantawy AI, Elmongy EI, Elsaeed SM, Abdel Aleem AAH, Binsuwaidan R, Eisa WH, Salman AU, Elharony NE, Attia NF. Synthesis, Characterization, and Docking Study of Novel Thioureidophosphonate-Incorporated Silver Nanocomposites as Potent Antibacterial Agents. Pharmaceutics 2023; 15:1666. [PMID: 37376114 DOI: 10.3390/pharmaceutics15061666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Newly synthesized mono- and bis-thioureidophosphonate (MTP and BTP) analogues in eco-friendly conditions were employed as reducing/capping cores for 100, 500, and 1000 mg L-1 of silver nitrate. The physicochemical properties of silver nanocomposites (MTP(BTP)/Ag NCs) were fully elucidated using spectroscopic and microscopic tools. The antibacterial activity of the nanocomposites was screened against six multidrug-resistant pathogenic strains, comparable to ampicillin and ciprofloxacin commercial drugs. The antibacterial performance of BTP was more substantial than MTP, notably with the best minimum inhibitory concentration (MIC) of 0.0781 mg/mL towards Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa. Among all, BTP provided the clearest zone of inhibition (ZOI) of 35 ± 1.00 mm against Salmonella typhi. After the dispersion of silver nanoparticles (AgNPs), MTP/Ag NCs offered dose-dependently distinct advantages over the same nanoparticle with BTP; a more noteworthy decline by 4098 × MIC to 0.1525 × 10-3 mg/mL was recorded for MTP/Ag-1000 against Pseudomonas aeruginosa over BTP/Ag-1000. Towards methicillin-resistant Staphylococcus aureus (MRSA), the as-prepared MTP(BTP)/Ag-1000 displayed superior bactericidal ability in 8 h. Because of the anionic surface of MTP(BTP)/Ag-1000, they could effectively resist MRSA (ATCC-43300) attachment, achieving higher antifouling rates of 42.2 and 34.4% at most optimum dose (5 mg/mL), respectively. The tunable surface work function between MTP and AgNPs promoted the antibiofilm activity of MTP/Ag-1000 by 1.7 fold over BTP/Ag-1000. Lastly, the molecular docking studies affirmed the eminent binding affinity of BTP over MTP-besides the improved binding energy of MTP/Ag NC by 37.8%-towards B. subtilis-2FQT protein. Overall, this study indicates the immense potential of TP/Ag NCs as promising nanoscale antibacterial candidates.
Collapse
Affiliation(s)
- Ahmed I El-Tantawy
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shimaa M Elsaeed
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Centre (NRC), Cairo 12622, Egypt
| | - Ayah Usama Salman
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Noura Elsayed Elharony
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| |
Collapse
|
31
|
Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II. BMC Oral Health 2023; 23:253. [PMID: 37131216 PMCID: PMC10155346 DOI: 10.1186/s12903-023-02957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Finding strategies to overcome the rising trends of antimicrobial resistance against currently available antimicrobial agents has become increasingly relevant. Graphene oxide has recently emerged as a promising material due to its outstanding physicochemical and biological properties. This study aimed to validate previous data on the antibacterial activity of nanographene oxide (nGO), double antibiotic paste (DAP), and their combination (nGO-DAP). METHODS The antibacterial evaluation was performed against a wide range of microbial pathogens. Synthesis of nGO was achieved using a modified Hummers' method, and loading it with ciprofloxacin and metronidazole resulted in nGO-DAP. The microdilution method was utilized to assess the antimicrobial efficacy of nGO, DAP, and nGO-DAP against two gram-positive bacteria (S. aureus and E. faecalis), two gram-negative bacteria (E. coli, and S. typhi), and an opportunistic pathogenic yeast (C. albicans). Statistical analysis was conducted using one-sample t-test and one-way ANOVA (α = 0.05). RESULTS All three antimicrobial agents significantly increased the killing percent of microbial pathogens compared to the control group (P < 0.05). Furthermore, the synthesized nGO-DAP exhibited higher antimicrobial activity than nGO and DAP per se. CONCLUSION The novel synthesized nGO-DAP can be used as an effective antimicrobial nanomaterial for use in dental, biomedical, and pharmaceutical fields against a range of microbial pathogens, including gram-negative and gram-positive bacteria, as well as yeasts.
Collapse
Affiliation(s)
- Fateme Eskandari
- Dentist, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Sun W. 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205744. [PMID: 36808712 PMCID: PMC10131803 DOI: 10.1002/advs.202205744] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF-NGC) consisting of electrospun poly(lactide-co-caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF-NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells. Animal studies using a rat sciatic nerve injury model reveal that the MF-NGCs promote neovascularization and M2 transition through the rapid recruitment of vascular cells and macrophages. Histological and functional assessments of the regenerated nerves confirm that the conductive MF-NGCs significantly enhance peripheral nerve regeneration, as indicated by improved axon myelination, muscle weight increase, and sciatic nerve function index. This study demonstrates the feasibility of using 3D-printed conductive MF-NGCs with hierarchically oriented fibers as functional conduits that can significantly enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Chengjin Wang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zibo Liu
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Jeonghoon Ko
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Li Chen
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Ting Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zhuo Xiong
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Lei Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Wei Sun
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
- Department of Mechanical EngineeringDrexel UniversityPhiladelphiaPA19104USA
| |
Collapse
|
33
|
Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional materials for contrast agents, drug, and heat delivery applications through green technologies. J Drug Target 2023; 31:369-389. [PMID: 36721905 DOI: 10.1080/1061186x.2023.2175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
Collapse
Affiliation(s)
- Dwi Setyawan
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Diva Meisya Maulina Dewi
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Zuhra Mumtazah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Agustina Oktafiani
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Fayza Putri Adila
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Moch Falah Hani Putra
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
34
|
Photo-Antibacterial Activity of Two-Dimensional (2D)-Based Hybrid Materials: Effective Treatment Strategy for Controlling Bacterial Infection. Antibiotics (Basel) 2023; 12:antibiotics12020398. [PMID: 36830308 PMCID: PMC9952232 DOI: 10.3390/antibiotics12020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Bacterial contamination in water bodies is a severe scourge that affects human health and causes mortality and morbidity. Researchers continue to develop next-generation materials for controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials do not have any side effects and have a minimal chance of developing bacterial resistance due to their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential for the control of bacterial infection due to their exceptional properties, such as high surface area, tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs, and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of 2D-NMs, the toxicity mechanism, and their challenges.
Collapse
|
35
|
Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023; 253:123945. [PMID: 36191514 DOI: 10.1016/j.talanta.2022.123945] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Biosensors are compact analytical devices capable of transducing a biological interaction event into a measurable signal outcome in real-time. They can provide sensitive and affordable analysis of samples without the need for additional laboratory equipment or complex preparation steps. Biosensors may be beneficial for forensic analysis as they can facilitate large-scale high-throughput, sensitive screening of forensic samples to detect target molecules that are of high evidential value. Nanomaterials are gaining attention as desirable components of biosensors that can enhance detection and signal efficiency. Biosensors that incorporate nanomaterials within their design have been widely reported and developed for medical purposes but are yet to find routine employment within forensic science despite their proven potential. In this article, key examples of the use of nanomaterials within optical biosensors designed for forensic analysis are outlined. Their design and mechanism of detection are both considered throughout, discussing how nanomaterials can enhance the detection of the target analyte. The critical evaluation of the optical biosensors detailed within this review article should help to guide future optical biosensor design via the incorporation of nanomaterials, for not only forensic analysis but alternative analytical fields where such biosensors may prove a valuable addition to current workflows.
Collapse
Affiliation(s)
- Hayley Costanzo
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James Gooch
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
36
|
Wu J, Liu Q, Wang S, Sun J, Zhang T. Trends and prospects in graphene and its derivatives toxicity research: A bibliometric analysis. J Appl Toxicol 2023; 43:146-166. [PMID: 35929397 DOI: 10.1002/jat.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
The purpose of this paper is to explore the current research status, hot topics, and future prospects in the field of graphene and its derivatives toxicity. In the article, the Web of Science Core Collection database was used as the data source, and the CiteSpace and VOSviewer were used to conduct a visual analysis of the last 10 years of research on graphene and its derivatives toxicity. A total of 8573 articles were included, and we analyzed the literature characteristics of the research results in the field of graphene and its derivatives toxicity, as well as the distribution of authors and co-cited authors; the distribution of countries and institutions; the situation of co-cited references; and the distribution of journals and categories. The most prolific countries, institutions, journals, and authors are China, the Chinese Academy of Sciences, RSC Advances, and Wang, Dayong, respectively. The co-cited author with the most citations was Akhavan, Omid. The five research hotspot keywords in the field of graphene and its derivatives toxicity were "nanomaterials," "exposure," "biocompatibility," "adsorption," and "detection." Frontier topics were "facile synthesis," "antibacterial activity," and "carbon dots." Our study provides perspectives for the study of graphene and its derivatives toxicity and yields valuable information and suggestions for the development of graphene and its derivatives toxicity research in the future.
Collapse
Affiliation(s)
- Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jinfang Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
37
|
Gelatin Meshes Enriched with Graphene Oxide and Magnetic Nanoparticles Support and Enhance the Proliferation and Neuronal Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2022; 24:ijms24010555. [PMID: 36613995 PMCID: PMC9820391 DOI: 10.3390/ijms24010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The field of tissue engineering is constantly evolving due to the fabrication of novel platforms that promise to stimulate tissue regeneration in the scenario of accidents. Here, we describe the fabrication of fibrous nanostructured substrates based on fish gelatin (FG) and enriched with graphene oxide (GO) and magnetic nanoparticles (MNPs) and demonstrate its biological properties in terms of cell viability and proliferation, cell adhesion, and differentiation. For this purpose, electrospun fibers were fabricated using aqueous precursors containing either only GO and only MNP nanospecies, or both of them within a fish gelatin solution. The obtained materials were investigated in terms of morphology, aqueous media affinity, tensile elasticity, and structural characteristics. The biological evaluation was assessed against adipose-derived stem cells by MTT, LDH, Live/Dead assay, cytoskeleton investigation, and neuronal trans-differentiation. The results indicate an overall good interaction and show that these materials offer a biofriendly environment. A higher concentration of both nanospecies types induced some toxic effects, thus 0.5% GO, MNPs, and GO/MNPs turned out to be the most suitable option for biological testing. Moreover, a successful neuronal differentiation has been shown on these materials, where cells presented a typical neuronal phenotype. This study demonstrates the potential of this scaffold to be further used in tissue engineering applications.
Collapse
|
38
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
39
|
Eltahir S, Al homsi R, Jagal J, Ahmed IS, Haider M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4261. [PMID: 36500884 PMCID: PMC9736459 DOI: 10.3390/nano12234261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intratumoral (IT) injection of chemotherapeutics into needle-accessible solid tumors can directly localize the anticancer drug in the tumor site, thus increasing its local bioavailability and reducing its undesirable effects compared to systemic administration. In this study, graphene oxide (GO)-based chitosan/β-glycerophosphate (CS/GP) thermosensitive injectable composite hydrogels (CH) were prepared and optimized for the localized controlled delivery of doxorubicin (DOX). A quality-by-design (QbD) approach was used to study the individual and combined effects of several formulation variables to produce optimal DOX-loaded GO/CS/GP CH with predetermined characteristics, including gelation time, injectability, porosity, and swelling capacity. The surface morphology of the optimal formulation (DOX/opt CH), chemical interaction between its ingredients and in vitro release of DOX in comparison to GO-free CS/GP CH were investigated. Cell viability and cellular uptake after treatment with DOX/opt CH were studied on MCF 7, MDB-MB-231 and FaDu cell lines. The statistical analysis of the measured responses revealed significant effects of the concentration of GO, the concentration of CS, and the CS:GP ratio on the physicochemical characteristics of the prepared GO/CS/GP CH. The optimization process showed that DOX-loaded GO/CS/GP CH prepared using 0.1% GO and 1.7% CS at a CS: GO ratio of 3:1 (v/v) had the highest desirability value. DOX/opt CH showed a porous microstructure and chemical compatibility between its ingredients. The incorporation of GO resulted in an increase in the ability of the CH matrices to control DOX release in vitro. Finally, cellular characterization showed a time-dependent increase in cytotoxicity and cellular uptake of DOX after treatment with DOX/opt CH. The proposed DOX/opt CH might be considered a promising injectable platform to control the release and increase the local bioavailability of chemotherapeutics in the treatment of solid tumors.
Collapse
Affiliation(s)
- Safaa Eltahir
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Reem Al homsi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
40
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
41
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
42
|
Bastos MK, Pijeira MSO, de Souza Sobrinho JH, Dos Santos Matos AP, Ricci-Junior E, de Almeida Fechine PB, Alencar LMR, Gemini-Piperni S, Alexis F, Attia MF, Santos-Oliveira R. Radiopharmacokinetics of Graphene Quantum Dots Nanoparticles In vivo: Comparing the Pharmacokinetics Parameters in Long and Short Periods. Curr Top Med Chem 2022; 22:2527-2533. [PMID: 35549877 DOI: 10.2174/1568026622666220512150625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Nanoparticles (NPs) have gained great importance during the last decades for developing new therapeutics with improved outcomes for biomedical applications due to their nanoscale size, surface properties, loading capacity, controlled drug release, and distribution. Among the carbon-based nanomaterials, one of the most biocompatible forms of graphene is graphene quantum dots (GQDs). GQDs are obtained by converting 2D graphene into zero-dimensional graphene nanosheets. Moreover, very few reports in the literature reported the pharmacokinetic studies proving the safety and effectiveness of GQDs for in vivo applications. OBJECTIVES This study evaluated the pharmacokinetics of GQDs radiolabeled with 99mTc, administered intravenously, in rodents (Wistar rats) in two conditions: short and long periods, to compare and understand the biological behavior. METHODS The graphene quantum dots were produced and characterized by RX diffractometry, Raman spectroscopy, and atomic force microscopy. The pharmacokinetic analysis was performed following the radiopharmacokinetics concepts, using radiolabeled graphene quantum dots with technetium 99 metastable (99mTc). The radiolabeling process of the graphene quantum dots with 99mTc was performed by the direct via. RESULTS The results indicate that the pharmacokinetic analyses with GQDs over a longer period were more accurate. Following a bicompartmental model, the long-time analysis considers each pharmacokinetic phase of drugs into the body. Furthermore, the data demonstrated that short-time analysis could lead to distortions in pharmacokinetic parameters, leading to misinterpretations. CONCLUSION The evaluation of the pharmacokinetics of GQDs over long periods is more meaningful than the evaluation over short periods.
Collapse
Affiliation(s)
- Matheus Keuper Bastos
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | | | - Ana Paula Dos Santos Matos
- School of Pharmacy, Galenic Development Laboratory (LADEG), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Galenic Development Laboratory (LADEG), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil
| | - Pierre Basilio de Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat)- Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza-CE, 451-970, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Sara Gemini-Piperni
- Institute of Biological Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, 21940000 Brazil
| | - Frank Alexis
- Politécnico, Quito 170910, Ecuador, Universidad San Francisco de Quito USFQ
| | - Mohamed Fathy Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil.,State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200 Brazil
| |
Collapse
|
43
|
Hui Y, Yan Z, Yang H, Xu X, Yuan WE, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4741-4759. [PMID: 36102324 DOI: 10.1021/acsabm.2c00663] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stem cells play a critical role in peripheral nerve regeneration. Nerve scaffolds fabricated by specific materials can help induce the neurogenic differentiation of stem cells. Therefore, it is a potential strategy to enhance therapeutic efficiency. Graphene family nanomaterials are widely applied in repairing peripheral nerves. However, the mechanism underlying the pro-regeneration effects remains elusive. In this review, we first discuss the properties of graphene family nanomaterials, including monolayer and multilayer graphene, few-layer graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots. We also introduce their applications in regulating stem cell differentiation. Then, we review the potential mechanisms of the neurogenic differentiation of stem cells facilitated by the materials. Finally, we discuss the existing challenges in this field to advance the development of nerve biomaterials.
Collapse
Affiliation(s)
- Yuxuan Hui
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Hao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Xingxing Xu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| |
Collapse
|
44
|
Nizami MZI, Yin IX, Lung CYK, Niu JY, Mei ML, Chu CH. In Vitro Studies of Graphene for Management of Dental Caries and Periodontal Disease: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14101997. [PMID: 36297434 PMCID: PMC9611330 DOI: 10.3390/pharmaceutics14101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Graphene is a single-layer two-dimensional carbon-based nanomaterial. It presents as a thin and strong material that has attracted many researchers’ attention. This study provides a concise review of the potential application of graphene materials in caries and periodontal disease management. Pristine or functionalized graphene and its derivatives exhibit favorable physicochemical, mechanical, and morphological properties applicable to biomedical applications. They can be activated and functionalized with metal and metal nanoparticles, polymers, and other small molecules to exhibit multi-differentiation activities, antimicrobial activities, and biocompatibility. They were investigated in preventive dentistry and regenerative dentistry. Graphene materials such as graphene oxide inhibit cariogenic microbes such as Streptococcus mutans. They also inhibit periodontal pathogens that are responsible for periodontitis and root canal infection. Graphene-fluorine promotes enamel and dentin mineralization. These materials were also broadly studied in regenerative dental research, such as dental hard and soft tissue regeneration, as well as periodontal tissue and bone regeneration. Graphene oxide-based materials, such as graphene oxide-fibroin, were reported as promising in tissue engineering for their biocompatibility, bioactivity, and ability to enhance cell proliferation properties in periodontal ligament stem cells. Laboratory research showed that graphene can be used exclusively or by incorporating it into existing dental materials. The success of laboratory studies can translate the application of graphene into clinical use.
Collapse
Affiliation(s)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | | | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
- Correspondence:
| |
Collapse
|
45
|
Kim J, Chang Y, Hwang Y, Kim S, Oh YK, Kim J. Graphene Nanosheets Mediate Efficient Direct Reprogramming into Induced Cardiomyocytes. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In vivo cardiac reprogramming is a potential therapeutic strategy to replace cardiomyocytes in patients with myocardial infarction. However, low conversion efficiency is a limitation of In vivo cardiac reprogramming for heart failure. In this study, we showed that graphene
nanosheets mediated efficient direct reprogramming into induced cardiomyocytes In vivo. We observed that the administration of graphene nanosheets led to the accumulation of H3K4me3, which resulted in direct cardiac reprogramming. Importantly, the administration of graphene nanosheets
combined with cardiac reprogramming factors in a mouse model of myocardial infarction enhanced the effectiveness of directly reprogrammed cell-based cardiac repair. Collectively, our findings suggest that graphene nanosheets can be used as an excellent biomaterial to promote cardiac cell fate
conversion and provide a robust reprogramming platform for cardiac regeneration in ischemic heart disease.
Collapse
Affiliation(s)
- Junyeop Kim
- Department of Chemistry and Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yujung Chang
- Department of Chemistry and Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yerim Hwang
- Department of Chemistry and Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sumin Kim
- Department of Chemistry and Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongpil Kim
- Department of Chemistry and Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
46
|
Martín-Moldes Z, Spey Q, Bhatacharya T, Kaplan DL. Silk-Elastin-Like-Protein/Graphene-Oxide Composites for Dynamic Electronic Biomaterials. Macromol Biosci 2022; 22:e2200122. [PMID: 35634798 PMCID: PMC9391278 DOI: 10.1002/mabi.202200122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Indexed: 08/03/2023]
Abstract
Genetically engineered silk-elastin-like-proteins (SELPs) synthesized with the combination of silk and elastin domains are bioengineered to also contain a graphene oxide (GO) binding domain. The conductivity and mechanical stability of graphene, combined with SELP-specific graphene interfaces are pursued as dynamic hybrid materials, toward biomaterial-based electronic switches. The resulting bioengineered proteins with added GO demonstrate cytocompatibility and conductivity that could be modulated by changing hydrogel size in response to temperature due to the SELP chemistry. Upon increased temperature, the gels coalesce and contract, providing sufficient condensed spacing to facilitate conductivity via the graphene domains, a feature that is lost at lower temperatures with the more expanded hydrogels. This thermally induced contraction-expansion is reversible and cyclable, providing an "on-off" conductive switch driven by temperature-driven hydrogel shape-change.
Collapse
Affiliation(s)
- Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Quintin Spey
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- OrganaBio LLC, 7800 SW 57th Ave, South Miami, FL 33143, USA
| | - Tiara Bhatacharya
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- The Lakshmi Mittal and Family South Asia Institute, Harvard University, 1730 Cambridge Street, Cambridge, MA 02138, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
47
|
Chen CY, Tsai PH, Lin YH, Huang CY, Chung JHY, Chen GY. Controllable graphene oxide-based biocompatible hybrid interface as an anti-fibrotic coating for metallic implants. Mater Today Bio 2022; 15:100326. [PMID: 35761844 PMCID: PMC9233272 DOI: 10.1016/j.mtbio.2022.100326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
In tissue engineering, foreign body reactions (FBRs) that may occur after the insertion of medical implants are a considerable challenge. Materials currently used in implants are mainly metals that are non-organic, and the lack of biocompatibility and absence of immune regulations may lead to fibrosis after long periods of implantation. Here, we introduce a highly biocompatible hybrid interface of graphene oxide (GO) and collagen type I (COL-I), where the topological nanostructure can effectively inhibit the differentiation of fibroblasts into myofibroblasts. The structure and roughness of this coating interface can be easily adjusted at the nanoscale level through changes in the GO concentration, thereby effectively inducing the polarization of macrophages to the M1 state without producing excessive amounts of pro-inflammatory factors. Compared to nanomaterials or the extracellular matrix as an anti-fibrotic interface, this hybrid bio-interface has superior mechanical strength, physical structures, and high inflammation. Evidenced by inorganic materials such as glass, titanium, and nitinol, GO-COL shows great potential for use in medical implants and cell-material interfaces.
Collapse
Affiliation(s)
- Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pei-Hsuan Tsai
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Ya-Hui Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chien-Yu Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H Y Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
48
|
Vasyukova IA, Zakharova OV, Kuznetsov DV, Gusev AA. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1797. [PMID: 35683652 PMCID: PMC9182201 DOI: 10.3390/nano12111797] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.
Collapse
Affiliation(s)
- Inna A. Vasyukova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
| | - Olga V. Zakharova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Denis V. Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Alexander A. Gusev
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
49
|
Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapidly aging society and increased concern for personal cardiovascular health, novel, flexible electrodes suitable for electrocardiogram (ECG) signal monitoring are in demand. Based on the excellent electrical and mechanical properties of graphene and the rapid development of graphene device fabrication technologies, graphene-based ECG electrodes have recently attracted much attention, and many flexible graphene electrodes with excellent performance have been developed. To understand the current research progress of graphene-based ECG electrodes and help researchers clarify current development conditions and directions, we systematically review the recent advances in graphene-based flexible ECG electrodes. Graphene electrodes are classified as bionic, fabric-based, biodegradable, laser-induced/scribed, modified-graphene, sponge-like, invasive, etc., based on their design concept, structural characteristics, preparation methods, and material properties. Moreover, some categories are further divided into dry or wet electrodes. Then, their performance, including electrode–skin impedance, signal-to-noise ratio, skin compatibility, and stability, is analyzed. Finally, we discuss possible development directions of graphene ECG electrodes and share our views.
Collapse
|
50
|
Elessawy NA, Gouda MH, Elnouby M, Ali SM, Salerno M, Youssef ME. Sustainable Microbial and Heavy Metal Reduction in Water Purification Systems Based on PVA/IC Nanofiber Membrane Doped with PANI/GO. Polymers (Basel) 2022; 14:polym14081558. [PMID: 35458309 PMCID: PMC9025637 DOI: 10.3390/polym14081558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Effective and efficient removal of both heavy metal pollutants and bacterial contamination from fresh water is an open issue, especially in developing countries. In this work, a novel eco-friendly functional composite for water treatment application was investigated. The composite consisted of electrospun nanofiber membrane from blended polyvinyl alcohol (PVA)/iota carrageenan (IC) polymers doped with equal concentrations of graphene oxide (GO) nanoparticles and polyaniline (PANI). The effectiveness of this composite as a water purification fixed-bed filter was optimized in a batch system for the removal of cadmium (Cd+2) and lead (Pb+2) ions, and additionally characterized for its antimicrobial and antifungal properties and cytotoxicity effect. The fiber nanocomposite exhibited efficient antibacterial activity, with maximum adsorption capacity of about 459 mg g−1 after 120 min for Cd+2 and of about 486 mg g−1 after 90 min for Pb+2. The optimized conditions for removal of both metals were assessed by using a response surface methodology model. The resulting scores at 25 °C were 91.4% (Cd+2) removal at 117 min contact time for 89.5 mg L−1 of initial concentration and 29.6 cm2 membrane area, and 97.19% (Pb+2) removal at contact time 105 min for 83.2 mg L−1 of initial concentration and 30.9 cm2 nanofiber composite membrane. Adsorption kinetics and isotherm followed a pseudo-second-order model and Langmuir and Freundlich isotherm model, respectively. The prepared membrane appears to be promising for possible use in domestic water purification systems.
Collapse
Affiliation(s)
- Noha A. Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research & Technological Applications (SRTA-City), Alexandria 21934, Egypt;
- Correspondence: (N.A.E.); (M.S.)
| | - Marwa H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Mohamed Elnouby
- Nanomaterials and Composites Research Department, Advanced Technology and NewMaterials Research Institute, City of Scientific Research and Technological; Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Safaa M. Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - M. Salerno
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01069 Dresden, Germany
- Correspondence: (N.A.E.); (M.S.)
| | - M. Elsayed Youssef
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research & Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| |
Collapse
|