1
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Rasoulian B, Poormoghadam D, Hoveizi E, Rezayat SM, Tavakol S. Small but mighty: nanoemulsion particle size dictates bone regeneration potential of FTY720. NANOSCALE 2025; 17:2091-2104. [PMID: 39652087 DOI: 10.1039/d4nr02884h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The burgeoning field of nano-bone regeneration is yet to establish a definitive optimal particle size for nanocarriers. This study investigated the impacts of nanocarrier's particle size on the bone regeneration efficacy of fingolimod (FTY720)-loaded nanoemulsions. Two distinct particle sizes (60 and 190 nm, designated as NF60 and NF190, respectively) were produced using low-energy and high-energy emulsion techniques, maintaining a consistent surfactant, co-surfactant, and oil. In vitro studies using rat mesenchymal stem cells revealed that both NF60 and NF190 exhibited cell viability and reduced lactate dehydrogenase. Interestingly, NF60 demonstrated superior antioxidant properties, significantly reducing nitric oxide and intracellular reactive oxygen species (ROS) levels compared to NF190. Furthermore, NF60 significantly enhanced ALP activity and calcium deposition during osteogenic differentiation, indicating its potential to promote the early stages of bone formation. In vivo studies using a rat calvarial bone defect model demonstrated that both NF60 and NF190 significantly upregulated the expression of key osteogenic genes, including Runx2, Col, ALP, OCN, and BMP2. Notably, NF60 induced significantly higher expression of Runx2 and BMP2. X-ray and histological investigations revealed significantly improved bone regeneration in the NF60 group, highlighting the superior bone healing potential of smaller FTY720 nanoemulsions, without infiltration of inflammatory cells. The smaller particle size demonstrated superior antioxidant properties, enhanced osteogenic differentiation, and improved bone regeneration, suggesting smaller nanoparticles, with their larger surface area, accelerated drug release rate, and lower viscosity, interact more effectively with cells, leading to increased and effective drug delivery and cellular uptake. Findings highlight the importance of nanocarrier size in optimizing drug delivery for bone tissue engineering applications.
Collapse
Affiliation(s)
- Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- School of biomedical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Delaram Poormoghadam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Elham Hoveizi
- Department of biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nanomedicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research and Develoment Departement, Tavakol BioMimetich Technologies Co (TMBT), Tehran, Iran
| |
Collapse
|
3
|
Zhang R, Yang H, Guo M, Niu S, Xue Y. Mitophagy and its regulatory mechanisms in the biological effects of nanomaterials. J Appl Toxicol 2024; 44:1834-1853. [PMID: 38642013 DOI: 10.1002/jat.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Mitophagy is a selective cellular process critical for the removal of damaged mitochondria. It is essential in regulating mitochondrial number, ensuring mitochondrial functionality, and maintaining cellular equilibrium, ultimately influencing cell destiny. Numerous pathologies, such as neurodegenerative diseases, cardiovascular disorders, cancers, and various other conditions, are associated with mitochondrial dysfunctions. Thus, a detailed exploration of the regulatory mechanisms of mitophagy is pivotal for enhancing our understanding and for the discovery of novel preventive and therapeutic options for these diseases. Nanomaterials have become integral in biomedicine and various other sectors, offering advanced solutions for medical uses including biological imaging, drug delivery, and disease diagnostics and therapy. Mitophagy is vital in managing the cellular effects elicited by nanomaterials. This review provides a comprehensive analysis of the molecular mechanisms underpinning mitophagy, underscoring its significant influence on the biological responses of cells to nanomaterials. Nanoparticles can initiate mitophagy via various pathways, among which the PINK1-Parkin pathway is critical for cellular defense against nanomaterial-induced damage by promoting mitophagy. The role of mitophagy in biological effects was induced by nanomaterials, which are associated with alterations in Ca2+ levels, the production of reactive oxygen species, endoplasmic reticulum stress, and lysosomal damage.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Sánchez-Cano F, Hernández-Kelly LC, Ortega A. Silica Nanoparticles Decrease Glutamate Uptake in Blood-Brain Barrier Components. Neurotox Res 2024; 42:20. [PMID: 38436780 PMCID: PMC10912144 DOI: 10.1007/s12640-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain, playing an important role in most brain functions. It exerts its activity through plasma membrane receptors and transporters, expressed both in neurons and glia cells. Overstimulation of neuronal glutamate receptors is linked to cell death in a process known as excitotoxicity, that is prevented by the efficient removal of the neurotransmitter through glutamate transporters enriched in the glia plasma membrane and in the components of the blood-brain barrier (BBB). Silica nanoparticles (SiO2-NPs) have been widely used in biomedical applications and directed to enter the circulatory system; however, little is known about the potential adverse effects of SiO2-NPs exposure on the BBB transport systems that support the critical isolation function between the central nervous system (CNS) and the peripheral circulation. In this contribution, we investigated the plausible SiO2-NPs-mediated disruption of the glutamate transport system expressed by BBB cell components. First, we evaluated the cytotoxic effect of SiO2-NPs on human brain endothelial (HBEC) and Uppsala 87 Malignant glioma (U-87MG) cell lines. Transport kinetics were evaluated, and the exposure effect of SiO2-NPs on glutamate transport activity was determined in both cell lines. Exposure of the cells to different SiO2-NP concentrations (0.4, 4.8, 10, and 20 µg/ml) and time periods (3 and 6 h) did not affect cell viability. We found that the radio-labeled D-aspartate ([3H]-D-Asp) uptake is mostly sodium-dependent, and downregulated by its own substrate (glutamate). Furthermore, SiO2-NPs exposure on endothelial and astrocytes decreases [3H]-D-Asp uptake in a dose-dependent manner. Interestingly, a decrease in the transporter catalytic efficiency, probably linked to a diminution in the affinity of the transporter, was detected upon SiO2-NPs. These results favor the notion that exposure to SiO2-NPs could disrupt BBB function and by these means shed some light into our understanding of the deleterious effects of air pollution on the CNS.
Collapse
Affiliation(s)
- Fredy Sánchez-Cano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
6
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
7
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Tan Y, Yu D, Feng J, You H, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv Transl Res 2023:10.1007/s13346-023-01312-z. [PMID: 37024610 DOI: 10.1007/s13346-023-01312-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 04/08/2023]
Abstract
Silica nanoparticles (SiNPs) are being explored as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics. To translate laboratory innovation into clinical application, their potential toxicity has been of great concern. This review attempts to comprehensively summarize the existing literature on the toxicity assessment of SiNPs. The current data suggest that the composition of SiNPs, their physicochemical properties, their administration route, their frequency and duration of administration, and the sex of animal models are related to their tissue and blood toxicity, immunotoxicity, and genotoxicity. However, the correlation between in vitro and in vivo toxicity has not been well established, mainly because both the in vitro and the in vivo-dosed quantities are unrealistic. This article also discusses important factors to consider in the toxicology of SiNPs and current approaches to reducing their toxicity. The aim is to give readers a better understanding of the toxicology of silica nanoparticles and to help identify key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023; 13:736-766. [PMID: 36632220 PMCID: PMC9830443 DOI: 10.7150/thno.79876] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cellular mitophagy means that cells selectively wrap and degrade damaged mitochondria through an autophagy mechanism, thus maintaining mitochondria and intracellular homeostasis. In recent years, mitophagy has received increasing attention as a research hotspot related to the pathogenesis of clinical diseases, such as neurodegenerative diseases, cardiovascular diseases, cancer, metabolic diseases, and so on. It has been found that the regulation of mitophagy may become a new direction for the treatment of some diseases. In addition, numerous small molecule modulators of mitophagy have also been reported, which provides new opportunities to comprehend the procedure and potential of therapeutic development. Taken together, in this review, we summarize current understanding of the mechanism of mitophagy, discuss the roles of mitophagy and its relationship with diseases, introduce the existing small-molecule pharmacological modulators of mitophagy and further highlight the significance of their development.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| |
Collapse
|
11
|
Jia H, Vashisth MK, Ge Y, Dai Q, He F, Wang X. Anti-inflammation and anti-aging mechanisms of mercaptopurine in vivo and in vitro. Biochem Biophys Res Commun 2023; 638:103-111. [PMID: 36442232 DOI: 10.1016/j.bbrc.2022.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Skin is the biggest organ of the human body, which easily gets irritated by exposure to the sun. Skin photoaging and acute photodamage are caused by intense UV-B radiation. Therefore, it is imperative to find new compounds to prevent skin damage and aging. Mercaptopurine is an immunologic agent commonly used for treating Acute lymphoblastic leukemia and inflammatory bowel disease. The beneficial effects of mercaptopurine on the skin have not been reported, and its intrinsic mechanism of action is unclear. Therefore, this study was to explore mercaptopurine when exposed to UV-B radiation in HacaT cells and C57BL6 mice aging and damage effects. The model of in vivo UV-B-induced skin damage and skin photoaging was established, and the impact of mercaptopurine on cell and animal skin was studied. The study found that mercaptopurine, on the one hand, inhibits cellular and animal senescence. On the other, it inhibits the expression of mitogen-activated protein kinase (MAPK) and the nuclear factor κB (NF-κB), which are important signaling molecules in the early UV-B reaction signaling pathway. In addition, mercaptopurine downregulates matrix metalloproteinase expression, increases collagen fiber content, and facilitates collagen synthesis. Treatment with mercaptopurine also inhibits the expression of inflammatory factors and reduces inflammatory cell infiltration of the skin. In conclusion, our study elucidates mercaptopurine's anti-photoaging and anti-inflammatory activity in cellular and animal models.
Collapse
Affiliation(s)
- HuiJie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Manoj Kumar Vashisth
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Department of Human Anatomy, School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Fei He
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
12
|
Poormoghadam D, Shiadeh BR, Azedi F, Tavakol H, Rezayat SM, Tavakol S. Fingolimod Nanoemulsions at Different Particle Sizes Define the Fate of Spinal Cord Injury Recovery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5703426. [PMID: 36017379 PMCID: PMC9398798 DOI: 10.1155/2022/5703426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition for which no definitive treatment has yet been identified. Notably, it influences other tissues through inflammatory reactions and metabolic disturbances. Therefore, fingolimod (FTY-720), as an FDA-approved inflammatory modulator, would be promising. In the present study, nanocarriers with two distinct monodisperse particle sizes of 60 (nF60) and 190 (nF190) nm were prepared via low-(stirring) and high-energy (probe ultrasound) emulsion oil in water (O/W) methods. Larger nanocarriers showed higher EE% and sustained-release profile than smaller nanocarriers. Neural stem cell (NSC) viability and lactate dehydrogenase (LDH) release were studied in the presence of nanocarriers and free FTY-720. The results indicated that nanocarriers and free FTY-720 enhanced NSC viability compared with the control group. However, nF190 induced significantly less cell membrane damage than nF60. Nanocarriers and free FTY-720 enhanced motor neuron recovery in SCI rats, while body weight and return to bladder reflux by nF190 were significantly higher than those in the nF60 group. Return to bladder reflux might be due to the role of FTY-720 in the regulation of detrusor muscle tone and preservation of the integrity of vessels by acting on endothelial cells. Moreover, nF190 gained higher soleus muscle weight than the free drugs; probably decreasing proinflammatory cytokines in the soleus diminishes muscular atrophy in SCI rats. In summary, it might be said that larger nanocarriers with sustained-release profile and less cell membrane damage seem to be more efficient than smaller ones to manage SCI and enhance bladder reflux. These data will help pharmaceutical companies select the correct particle size for nanodrugs and develop more efficient drug formulations to treat SCI.
Collapse
Affiliation(s)
| | | | - Fereshte Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hani Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Li Y, Zhu Y, Zhao B, Yao Q, Xu H, Lv S, Wang J, Sun Z, Li Y, Guo C. Amorphous silica nanoparticles caused lung injury through the induction of epithelial apoptosis via ROS/Ca 2+/DRP1-mediated mitochondrial fission signaling. Nanotoxicology 2022; 16:713-732. [PMID: 36441139 DOI: 10.1080/17435390.2022.2144774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The adverse effects of amorphous silica nanoparticles (SiNPs) exposure on the respiratory system were increasingly recognized, however, its potential pathogenesis still remains not fully elucidated. So, this study aimed to explore its effects on pulmonary injury, and to investigate related mechanisms. Histological investigations illustrated SiNPs triggered the lung injury, mainly manifested as alveolar structure destruction, collagen deposition, and mitochondrial ultrastructural injury. In particular, SiNPs greatly enhanced pulmonary ROS and TUNEL positive rate in lungs, both of which were positively correlated with lung impairments. Further, the underlying mechanisms were investigated in cultured human bronchial epithelial cells (16HBE). Consistent with the in vivo findings, SiNPs caused the impairments on mitochondrial structure, as well as the activation of ROS generation and oxidative injury. Upon SiNPs stimuli, mitochondrial respiration was greatly inhibited, while Ca2+ overload in cytosol and mitochondria owing to ER calcium release was noticed, resulting in mitochondrial-dependent epithelial apoptosis. More importantly, mitochondrial dynamics was imbalanced toward a fission type, as evidenced by upregulated DRP1 and its phosphorylation at Ser616 (DRP1s616), while downregulated DRP1s637, and also MFN1, MFN2. Mechanistic investigations revealed that the activation of ROS/Ca2+ signaling promoted DRP1-mediated mitochondrial fission by SiNPs, forming a vicious cycle, and ultimately contributing to apoptosis in 16HBE. In summary, our results disclosed SiNPs caused pulmonary injury through the induction of epithelial apoptosis via a ROS/Ca2+/DRP1-mediated mitochondrial fission axis.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yawen Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Bosen Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
15
|
Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022; 476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The adsorption of biological molecules to nanomaterials (NMs) will significantly impact NMs' behavior in complex microenvironments. Previously we proposed the need to consider the interactions between food components and NMs for the evaluation of oral toxicity of NMs. This review updated this concept as nutrient molecule corona, that the adsorption of nutrient molecules alters the uptake of nutrient molecules and/or NMs, as well as the signaling pathways to induce a combined toxicity due to the biologically active nature of nutrient molecules. Even with the presence of protein corona, nutrient molecules may still bind to NMs to change the identities of NMs in vivo. Furthermore, this review proposed the binding of excessive nutrient molecules to NMs to induce a combined toxicity under pathological conditions such as metabolic diseases. The structures of nutrient molecules and physicochemical properties of NMs determine nutrient molecule corona formation, and these aspects should be considered to limit the unwanted effects brought by nutrient molecule corona. In conclusion, similar to other biological molecule corona, the formation of nutrient molecule corona due to the presence of food components or excessive nutrient molecules in pathophysiological microenvironments will alter the behaviors of NMs.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
16
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
17
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
18
|
Sant V, Som M, Karkisaval AG, Carnahan P, Lal R. Scavenging amyloid oligomers from neurons with silica nanobowls: Implications for amyloid diseases. Biophys J 2021; 120:3329-3340. [PMID: 34242592 PMCID: PMC8391079 DOI: 10.1016/j.bpj.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β (Aβ) oligomers are toxic species implicated in Alzheimer's disease (AD). The prevailing hypothesis implicates a major role of membrane-associated amyloid oligomers in AD pathology. Our silica nanobowls (NB) coated with lipid-polymer have submicromolar affinity for Aβ binding. We demonstrate that NB scavenges distinct fractions of Aβs in a time-resolved manner from amyloid precursor protein-null neuronal cells after incubation with Aβ. At short incubation times in cell culture, NB-Aβ seeds have aggregation kinetics resembling that of extracellular fraction of Aβ, whereas at longer incubation times, NB-Aβ seeds scavenge membrane-associated Aβ. Aβ aggregates can be eluted from NB surfaces by mechanical agitation and appear to retain their aggregation driving domains as seen in seeding aggregation experiments. These results demonstrate that the NB system can be used for time-resolved separation of toxic Aβ species from biological samples for characterization and in diagnostics. Scavenging membrane-associated amyloids using lipid-functionalized NB without chemical manipulation has wide applications in the diagnosis and therapy of AD and other neurodegenerative diseases, cancer, and cardiovascular conditions.
Collapse
Affiliation(s)
- Vrinda Sant
- Materials Science and Engineering, University of California San Diego, La Jolla, California.
| | - Madhura Som
- Department of Nanoengineering, University of California San Diego, La Jolla, California
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Parker Carnahan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ratnesh Lal
- Materials Science and Engineering, University of California San Diego, La Jolla, California; Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
19
|
Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021; 175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The interactions between inorganic-based nanomaterials (NMs) and biological membranes are among the most important phenomena for developing NM-based therapeutics and resolving nanotoxicology. Herein, we introduce the structural and functional effects of inorganic-based NMs on biological membranes, mainly the plasma membrane and the endomembrane system, with an emphasis on the interface, which involves highly complex networks between NMs and biomolecules (such as membrane proteins and lipids). Significant efforts have been devoted to categorizing and analyzing the interaction mechanisms in terms of the physicochemical characteristics and biological effects of NMs, which can directly or indirectly influence the effects of NMs on membranes. Importantly, we summarize that the biological membranes act as platforms and thereby mediate NMs-immune system contacts. In this overview, the existing challenges and potential applications in the areas are addressed. A strong understanding of the discussed concepts will promote therapeutic NM designs for drug delivery systems by leveraging the NMs-membrane interactions and their functions.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
20
|
Zhao X, Abulikemu A, Lv S, Qi Y, Duan J, Zhang J, Chen R, Guo C, Li Y, Sun Z. Oxidative stress- and mitochondrial dysfunction-mediated cytotoxicity by silica nanoparticle in lung epithelial cells from metabolomic perspective. CHEMOSPHERE 2021; 275:129969. [PMID: 33662726 DOI: 10.1016/j.chemosphere.2021.129969] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Quantities of researches have demonstrated silica nanoparticles (SiNPs) exposure inevitably induced damage to respiratory system, nonetheless, knowledge of its toxicological behavior and metabolic interactions with the cellular machinery that determines the potentially deleterious outcomes are limited and poorly elucidated. Here, the metabolic responses of lung bronchial epithelial cells (BEAS-2B) under SiNPs exposure were investigated using ultra performance liquid chromatography-mass spectrum (UPLC-MS)-based metabolomics research. Results revealed that even with low cytotoxicity, SiNPs disturbed global metabolism. Five metabolic pathways were significantly perturbed, in particular, oxidative stress- and mitochondrial dysfunction-related GSH metabolism and pantothenate and coenzyme A (CoA) biosynthesis, where the identified metabolites glutathione (GSH), glycine, beta-alanine, cysteine, cysteinyl-glycine and pantothenic acid were included. In support of the metabolomics profiling, SiNPs caused abnormality in mitochondrial structure and mitochondrial dysfunction, as evidenced by the inhibition of cellular respiration and ATP production. Moreover, SiNPs triggered oxidative stress as confirmed by the dose-dependent ROS generation, down-regulated nuclear factor erythroid 2-related factor 2 (NRF2) signaling, together with GSH depletion in SiNPs-treated BEAS-2B cells. Oxidative DNA damage and cell membrane dis-integrity were also detected in response to SiNPs exposure, which was correspondingly in agreed with the elevated 8-hydroxyguanosine (8-OHdG) and decreased phospholipids screened through metabolic analysis. Thereby, we successfully used the metabolomics approaches to manifest SiNPs-elicited toxicity through oxidative stress, mitochondrial dysfunction, DNA damage and rupture of membrane integrity in BEAS-2B cells. Overall, our study provided novel insights into the mechanism underlying SiNPs-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
21
|
Zhang L, Feng G, Yang S, Liu B, Niu Y, Fan P, Liu Z, Chen J, Cui L, Zhou G, Jing H, Liu J, Shen Y. Polyethylenimine-Modified Mesoporous Silica Nanoparticles Induce a Survival Mechanism in Vascular Endothelial Cells via Microvesicle-Mediated Autophagosome Release. ACS NANO 2021; 15:10640-10658. [PMID: 34080832 DOI: 10.1021/acsnano.1c03456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-modified mesoporous silica nanoparticles (MSNs) have attracted more and more attention as promising materials for biomolecule delivery. However, the lack of detailed evaluation relevant to the potential cytotoxicity of these MSNs is still a major obstacle for their applications. Unlike the bare MSNs and amino- or liposome-modified MSNs, we found that polyethylenimine-modified MSNs (MSNs-PEI) had no obvious toxicity to human umbilical vein endothelial cells (HUVECs) at the concentrations up to 100 μg/mL. However, MSNs-PEI induced autophagosomes accumulation by blocking their fusion with lysosomes, an essential mechanism for the cytotoxicity of many nanoparticles (NPs). Thus, we predicted that an alternative pathway for autophagosome clearance exists in HUVECs to relieve autophagic stress induced by MSNs-PEI. We found that MSNs-PEI prevented STX17 loading onto autophagosomes instead of influencing lysosomal pH or proteolytic activity. MSNs-PEI induced the structural alternation of the cytoskeleton but did not cause endoplasmic reticulum stress. The accumulated autophagosomes were released to the extracellular space via microvesicles (MVs) when the autophagic degradation was blocked by MSNs-PEI. More importantly, blockade of either autophagosome formation or release caused the accumulation of damaged mitochondria and excessive ROS production in the MSNs-PEI-treated HUVECs, which in turn led to cell death. Thus, we propose here that the MV-mediated autophagosome release, a compensation mechanism, allows the vascular endothelial cell survival when the degradation of autophagosomes is blocked by MSNs-PEI. Accordingly, promoting the release of accumulated autophagosomes may be a protective strategy against the endothelial toxicity of NPs.
Collapse
Affiliation(s)
- Lu Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Gaoqing Feng
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Shuoye Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Bin Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Yakun Niu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Pei Fan
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Zhihui Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Jingxuan Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Guangzhou Zhou
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Hongjuan Jing
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Jing Liu
- Laboratory of Microvascular Medicine, Medical Research Center, the First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Yunpeng Shen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| |
Collapse
|
22
|
Xu XY, Tran THM, Perumalsamy H, Sanjeevram D, Kim YJ. Biosynthetic gold nanoparticles of Hibiscus syriacus L. callus potentiates anti-inflammation efficacy via an autophagy-dependent mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112035. [PMID: 33947536 DOI: 10.1016/j.msec.2021.112035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Biological applications of gold nanoparticles (AuNps) have potentially explored an efficient agent attributed to their biocompatibility and high efficiency in drug delivery. Our study applied an extract of Hibiscus syriacus L. callus (HCE) with a pioneer implementation on the induction of mass production. Bioactive compounds present in HCE were identified by Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography MS (LC-MS), wherein, the Denatonium was exclusively identifiable in HCE. Next, AuNps were synthesized and optimized using HCE (HCE-AuNps), and the comparison was conducted to evaluate the anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated macrophages. As per result, HCE-AuNps was reported to show a prominent reduction of pro-inflammatory cytokines and renovate the mitochondrial function through restoring the mitochondrial membrane potential changes, decreasing reactive oxygen species (ROS) accumulation, and recovering ATP contents, respectively. Furthermore, the immunoblotting of LC3b/a accumulation, and p62 rapid degradation revealed that HCE-AuNps could induce the autophagy as an intracellular response to reinforce alleviation of pro-inflammatory cytokines and mitochondria dysfunction. Besides, 740 Y-P (PI3K agonist) was used to verify that inhibiting autophagy could partially reverse HCE-AuNps suppressed mitochondrial dysfunction, and thus exacerbated inflammation, supporting a causal role for autophagy in the anti-inflammatory effect of HCE-AuNps. Taken together, we strongly anticipate that HCE-AuNps would act as a potential autophagy inducer for LPS-triggered macrophage's inflammation, providing a novel insight for biosynthetic nanoparticles in the treatment of mitochondria dysfunction and inflammation related diseases.
Collapse
Affiliation(s)
- Xing Yue Xu
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Thi Hoa My Tran
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Haribalan Perumalsamy
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Dhandapani Sanjeevram
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
23
|
Huang T, Guo W, Wang Y, Chang L, Shang N, Chen J, Fan R, Zhang L, Gao X, Niu Q, Zhang Q. Involvement of Mitophagy in Aluminum Oxide Nanoparticle-Induced Impairment of Learning and Memory in Mice. Neurotox Res 2021; 39:378-391. [PMID: 32915414 DOI: 10.1007/s12640-020-00283-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Aluminum oxide nanoparticles (nano-aluminum) have been known to be widespread in the environment for decades. Exposure to nano-aluminum may impair learning and memory, but the potential mechanism has not yet been elucidated. In neurons, efficient clearance of damaged mitochondria through mitophagy plays an important role in mitochondrial energy supply, neuronal survival, and health. However, abnormal mitophagy induces accumulation of damaged mitochondria, which induces cellular dysfunction, contributing to the impairment of learning and memory. It is currently unclear whether nano-aluminum interferes with the function of nerve cells through mitophagy, leading to learning and memory disorders. Institute of Cancer Research (ICR) female mice were randomly divided into four groups, and treated with normal saline (control) and 50 nm nano-aluminum at concentrations of 25, 50, and 75 mg/kg for 30 days. Our results showed that exposure to nano-aluminum impaired the spatial learning and memory of mice. Superoxide dismutase levels decreased, whereas the levels of malondialdehyde increased. Moreover, there were significant pathological changes in the ultra-structure and function of mitochondria. Finally, expression of autophagy-related proteins LC3-II and Beclin-1 was upregulated and p62 expression decreased, but the expression of apoptotic and necrosis-related proteins had no significant difference among groups. Our results suggest that learning and memory impairment induced by nano-aluminum could be related to mitophagy.
Collapse
Affiliation(s)
- Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Weiwei Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lijun Chang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Shang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Rong Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaocheng Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China.
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
24
|
Xiao X, Huang M, Fan C, Zuo F. DUOX2 participates in skin aging induced by UVB in HSF2 cells by activating NF-κB signaling. Exp Ther Med 2020; 21:157. [PMID: 33456524 DOI: 10.3892/etm.2020.9588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Skin and in particular photoaging or premature aging, are caused by a variety of factors, including hormone imbalance and exposure to ultraviolet radiation. The aim of the present study was to explore the roles of Dual oxidase 2 (DUOX2) and related NF-κB signals in skin photoaging. Cell models of photoaging were constructed by irradiating human skin fibroblast lines (HSF2) with ultraviolet B (UVB) of different doses (0, 15, 30 and 60 mj/cm2). The cell counting kit-8 (CCK8) was used to determine cell proliferation. Flow cytometry was used to determine the production of reactive oxygen species (ROS). A biochemical method was to determine the content of hydrogen peroxide, and the quantitative PCR (qPCR) was used to determine the expression of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), Col-Ⅰ and α-SMA in the cells. Enzyme-linked immunosorbent assay (ELISA) was used to determine the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Western blot analysis was performed to determine the expression of DUOX2, p65 and p-p65. The results showed that,UVB irradiation dose- and time-dependently inhibited the proliferation of HSF2 cells. Cellular inflammatory response, ROS production and hydrogen peroxide increase was promoted. Col-Ⅰ and α-SMA were downregulated, MMP2 and MMP9 were upregulated, and the phosphorylation of NF-κB p65 was promoted. The above indicators were all reversed by interference with DUOX2. Overexpression of DUOX2 has an effect that is similar to UVB irradiation, but the effects can be significantly weakened by NF-κB inhibitor, NAC. Upregulation of DUOX2 expression plays a crucial role in UVB-induced aging of HSF2 cells. The specific mechanism is related to the promotion of ROS production and cellular inflammatory response and activation of NF-κB signals.
Collapse
Affiliation(s)
- Xiaoqing Xiao
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Minghuan Huang
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Chunyan Fan
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fuguo Zuo
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
25
|
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, Hu C, Shao L. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol 2020; 17:53. [PMID: 33066795 PMCID: PMC7565835 DOI: 10.1186/s12989-020-00372-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Widespread biomedical applications of nanomaterials (NMs) bring about increased human exposure risk due to their unique physicochemical properties. Autophagy, which is of great importance for regulating the physiological or pathological activities of the body, has been reported to play a key role in NM-driven biological effects both in vivo and in vitro. The coexisting hazard and health benefits of NM-mediated autophagy in biomedicine are nonnegligible and require our particular concerns. MAIN BODY We collected research on the toxic effects related to NM-mediated autophagy both in vivo and in vitro. Generally, NMs can be delivered into animal models through different administration routes, or internalized by cells through different uptake pathways, exerting varying degrees of damage in tissues, organs, cells, and organelles, eventually being deposited in or excreted from the body. In addition, other biological effects of NMs, such as oxidative stress, inflammation, necroptosis, pyroptosis, and ferroptosis, have been associated with autophagy and cooperate to regulate body activities. We therefore highlight that NM-mediated autophagy serves as a double-edged sword, which could be utilized in the treatment of certain diseases related to autophagy dysfunction, such as cancer, neurodegenerative disease, and cardiovascular disease. Challenges and suggestions for further investigations of NM-mediated autophagy are proposed with the purpose to improve their biosafety evaluation and facilitate their wide application. Databases such as PubMed and Web of Science were utilized to search for relevant literature, which included all published, Epub ahead of print, in-process, and non-indexed citations. CONCLUSION In this review, we focus on the dual effect of NM-mediated autophagy in the biomedical field. It has become a trend to use the benefits of NM-mediated autophagy to treat clinical diseases such as cancer and neurodegenerative diseases. Understanding the regulatory mechanism of NM-mediated autophagy in biomedicine is also helpful for reducing the toxic effects of NMs as much as possible.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Yaqing Zhang
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Gadolinium Oxide Nanoparticles Induce Toxicity in Human Endothelial HUVECs via Lipid Peroxidation, Mitochondrial Dysfunction and Autophagy Modulation. NANOMATERIALS 2020; 10:nano10091675. [PMID: 32859033 PMCID: PMC7559735 DOI: 10.3390/nano10091675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
In spite of the potential preclinical advantage of Gd2O3 nanoparticles (designated here as GO NPs) over gadolinium-based compounds in MRI, recent concerns of gadolinium deposits in various tissues undergoing MRI demands a mechanistic investigation. Hence, we chose human to measure umbilical vein endothelial cells (HUVECs) that line the vasculature and relevant biomarkers due to GO NPs exposure in parallel with the NPs of ZnO as a positive control of toxicity. GO NPs, as measured by TEM, had an average length of 54.8 ± 29 nm and a diameter of 13.7 ± 6 nm suggesting a fiber-like appearance. With not as pronounced toxicity associated with a 24-h exposure, GO NPs induced a concentration-dependent cytotoxicity (IC50 = 304 ± 17 µg/mL) in HUVECs when exposed for 48 h. GO NPs emerged as significant inducer of lipid peroxidation (LPO), reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and autophagic vesicles in comparison to that caused by ZnO NPs at its IC50 for the same exposure time (48 h). While ZnO NPs clearly appeared to induce apoptosis, GO NPs revealed both apoptotic as well as necrotic potentials in HUVECs. Intriguingly, the exogenous antioxidant NAC (N-acetylcysteine) co-treatment significantly attenuated the oxidative imbalance due to NPs preventing cytotoxicity significantly.
Collapse
|
27
|
Poormoghadam D, Almasi A, Ashrafizadeh M, Sarem Vishkaei A, Rezayat SM, Tavakol S. The particle size of drug nanocarriers dictates the fate of neurons; critical points in neurological therapeutics. NANOTECHNOLOGY 2020; 31:335101. [PMID: 32479427 DOI: 10.1088/1361-6528/ab8d6b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neurological disorders and diseases are on the rise in the world, while pharmacists are being encouraged to encapsulate drugs into the nanocarriers. The critical key question is which size of nanocarrier has a promising neurotherapeutic effect. In the present study, FTY-720, an FDA approved drug, was encapsulated into O/W nanocarriers. SEM and DLS data indicated in ultrasonication and stirring methods resulted in spherical nanocarriers with a particle size of 60 and 195 nm (nF60 and nF195), respectively. Further to investigate the effect of particle size on neuronal cells, MTT assay, PI flow-cytometry, LDH release, and NO production examinations were performed. Results showed that small nanocarriers increased cell viability along with the decline of dead cells, while both nanocarriers decreased LDH release and NO production as compared to the conventional drug. Notably, qRT-PCR and western blotting data related to apoptotic markers indicated in the increase of cell mortality in cells treated by nF190 was not due to the increase of apoptosis and Bax/Bcl2 ratio. It is worth mentioning that integrin α5 as a cell surface receptor involves in neuritogenesis was over-expressed in neuronal cells treated by small nanocarriers. However, nF60 increased PTK2 over-expression along with neurite outgrowth, as well. In other words, nanocarriers at the size of 60 nm are preferred to 195 nm as a drug carrier in neurotherapy due to profound impacts on neural cells. Thanks to small nanocarrier broad positive action on neural viability and neurite outgrowth. The present study discloses a pharmaceutical strategy to design drugs based on their particle size efficiency.
Collapse
Affiliation(s)
- Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran
| | | | | | | | | | | |
Collapse
|
28
|
Qi Y, Ma R, Li X, Lv S, Liu X, Abulikemu A, Zhao X, Li Y, Guo C, Sun Z. Disturbed mitochondrial quality control involved in hepatocytotoxicity induced by silica nanoparticles. NANOSCALE 2020; 12:13034-13045. [PMID: 32538421 DOI: 10.1039/d0nr01893g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The extensive application of silica nanoparticles (SiNPs) brings about inevitable occupational, environmental, and even iatrogenic exposure for human beings. The liver, which is rich in mitochondria, is one of the target organs of SiNPs, but the underlying mechanisms by which these nanoparticles (NPs) interact with liver mitochondria and affect their functions still remain unclear. In the present study, we examined silicon nanoparticle (SiNP)-induced mitochondrial dysfunction, and further revealed its negative effects on mitochondrial quality control (MQC) in the human liver cell line L-02, including mitochondrial dynamics, mitophagy and biogenesis. Consequently, SiNPs induced cellular injury, accompanied by mitochondrial dysfunction, including mitochondrial reactive oxygen generation and mitochondrial membrane potential collapse. In line with the transmission electron microscopy (TEM)-observed abnormalities in the mitochondrial morphology and length distribution, a fission phenotype was manifested in the mitochondria of SiNP-exposed cells, and up-regulated DRP1 and FIS1, and down-regulated MFN1, were detected. Furthermore, the enhanced LC3II level, colocalization of the mitochondria and lysosomes, activated PINK1/Parkin signaling, and accumulated p62 in the SiNP-exposed cells suggested mitophagy disorder triggered by SiNPs. In addition, SiNPs inhibited mito-biogenesis, as evidenced by the reduced mitochondrial mass and mtDNA copy number, as well as the suppressed PGC1α-NRF1-TFAM signaling pathway. Overall, the study demonstrates that SiNPs trigger hepatocytotoxicity through interfering with the MQC process, bringing in excessive mitochondrial fission, mitophagy disorder and suppressed mito-biogenesis, leading to mitochondrial dysfunction and ensuing cell damage, and ultimately contributing to the occurrence and development of liver diseases. Our research could provide important experimental evidence related to safety assessments of SiNPs, especially in the field of biomedical applications.
Collapse
Affiliation(s)
- Yi Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. and Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. and Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. and Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. and Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. and Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
29
|
Plasmon-Enhanced Controlled Drug Release from Ag-PMA Capsules. Molecules 2020; 25:molecules25092267. [PMID: 32403460 PMCID: PMC7248805 DOI: 10.3390/molecules25092267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/05/2022] Open
Abstract
Silver (Ag)-grafted PMA (poly-methacrylic acid, sodium salt) nanocomposite loaded with sorafenib tosylate (SFT), an anticancer drug, showed good capability as a drug carrier allowing on-demand control of the dose, timing and duration of the drug release by laser irradiation stimuli. In this study, the preparation of Ag-PMA capsules loaded with SFT by using sacrificial silica microparticles as templates was reported. A high drug loading (DL%) of ∼13% and encapsulation efficiency (EE%) of about 76% were obtained. The photo-release profiles were regulated via the adjustment of light wavelength and power intensity. A significant improvement of SFT release (14% vs. 21%) by comparing SFT-Ag-PMA capsules with Ag-PMA colloids under the same experimental conditions was observed. Moreover, an increase of drug release by up to 35% was reached by tuning the laser irradiation wavelength near to Ag nanoparticles’ surface plasmon resonance (SPR). These experimental results together with more economical use of the active component suggest the potentiality of SFT-Ag-PMA capsules as a smart drug delivery system.
Collapse
|
30
|
Ali A, Ovais M, Cui X, Rui Y, Chen C. Safety Assessment of Nanomaterials for Antimicrobial Applications. Chem Res Toxicol 2020; 33:1082-1109. [DOI: 10.1021/acs.chemrestox.9b00519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - YuKui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
31
|
Wu H, Wang X, Liang H, Zheng J, Huang S, Zhang D. Enhanced efficacy of propranolol therapy for infantile hemangiomas based on a mesoporous silica nanoplatform through mediating autophagy dysfunction. Acta Biomater 2020; 107:272-285. [PMID: 32145394 DOI: 10.1016/j.actbio.2020.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Infantile hemangioma is one of the most common vascular tumors, which might result in morbidity and mortality without timely intervention. Propranolol is currently the first-line therapy for hemangiomas, but its potential side effects and high frequency of administration make it urgent to develop a suitable drug delivery system for propranolol. In the present study, we formulated a propranolol delivery system based on mesoporous silica nanoparticles (PRN@MSN) and investigated the interplay between autophagic activities mediated by nanoparticles and improved therapeutic efficacy of PRN@MSN. The results showed that PRN@MSN nanoparticles exhibited higher cytotoxicity compared with free propranolol in vitro and in vivo, which could induce excessive autophagosome accumulation through increased autophagosome formation and impaired autophagic degradation. Inhibition of autophagy in the early stage could attenuate the cytotoxicity of PRN@MSN. ROS generation was essential for nanoparticle-mediated autophagy and cytotoxicity, and PRN@MSN-induced autophagy dysfunction could enhance endoplasmic reticulum (ER) stress in hemangioma stem cells. Our study revealed a promising PRN delivery system based on a mesoporous silica nanoplatform that could induce autophagy dysfunction with excessive autophagosome accumulation to promote the therapeutic efficacy of PRN therapy. PRN@MSN drug delivery system combined with autophagy modulation may act as a promising treatment pattern in the treatment of hemangiomas.
Collapse
Affiliation(s)
- Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Hao Liang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Jiawei Zheng
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. NANOSCALE ADVANCES 2020; 2:563-582. [PMID: 36133244 PMCID: PMC9417621 DOI: 10.1039/c9na00537d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with biological fluids. This protein shell is called a corona. The composition of the corona has a strong influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake and signaling properties. For this reason, protein coronae are investigated frequently as an important part of particle characterization. Main body of the abstract: The protein corona can be analyzed by different methods, which have their individual advantages and challenges. The separation techniques to isolate corona-bound particles from the surrounding matrices include centrifugation, magnetism and chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different complex protein mixtures, are used and the approaches vary in parameters such as time, concentration and temperature. Depending on the investigated particle type, the choice of separation method can be crucial for the subsequent results. In addition, it is important to include suitable controls to avoid misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable protein corona analysis result. Conclusion: Protein corona studies are an important part of particle characterization in biological matrices. This review gives a comparative overview about separation techniques, experimental parameters and challenges which occur during the investigation of the protein coronae of different particle types.
Collapse
Affiliation(s)
- Linda Böhmert
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Linn Voß
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| |
Collapse
|
33
|
Rodríguez-Campuzano AG, Hernández-Kelly LC, Ortega A. Acute Exposure to SiO 2 Nanoparticles Affects Protein Synthesis in Bergmann Glia Cells. Neurotox Res 2019; 37:366-379. [PMID: 31292883 DOI: 10.1007/s12640-019-00084-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Attractive due to an alleged high biocompatibility, silica nanoparticles have been widely used in the field of nanomedicine; however, their proven capacity to induce the synthesis and release of pro-inflammatory cytokines in several cellular models has raised concern about their safety. Glutamate, the main excitatory amino acid transmitter triggers a wide variety of signal transduction cascades that regulate protein synthesis at transcriptional and translational levels. A stimulus-dependent dynamic change in the protein repertoire in neurons and glia cells is the molecular framework of higher brain functions. Within the cerebellum, Bergmann glia cells are the most abundant non-neuronal cells and span the entire molecular layer of the cerebellar cortex, wrapping the synapses in this structure. Taking into consideration the functional role of Bergmann glia in terms of the recycling of glutamate, lactate supply to neurons, and prevention of neurotoxic insults, we decided to investigate the possibility that silica nanoparticles affect Bergmann glia and by these means alter the major excitatory neurotransmitter system in the brain. To this end, we exposed cultured chick cerebellar Bergmann glia cells to silica nanoparticles and measured [35S]-methionine incorporation into newly synthesized polypeptides. Our results demonstrate that exposure of the cultured cells to silica nanoparticles exerts a time- and dose-dependent modulation of protein synthesis. Furthermore, altered patterns of eukaryotic initiation factor 2 alpha and eukaryotic elongation factor 2 phosphorylation were present upon nanoparticle exposure. These results demonstrate that glia cells respond to the presence of this nanomaterial modifying their proteome, presumably in an effort to overcome any plausible neurotoxic effect.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Apartado Postal 14-740, 07000, Mexico City, Mexico
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Apartado Postal 14-740, 07000, Mexico City, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Apartado Postal 14-740, 07000, Mexico City, Mexico.
| |
Collapse
|
34
|
Perioli L, Pagano C, Ceccarini MR. Current Highlights About the Safety of Inorganic Nanomaterials in Healthcare. Curr Med Chem 2019; 26:2147-2165. [DOI: 10.2174/0929867325666180723121804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
Abstract
:
In recent years inorganic materials are largely present in products intended for
health care. Literature gives many examples of inorganic materials used in many healthcare
products, mainly in pharmaceutical field.
:
Silver, zinc oxide, titanium oxide, iron oxide, gold, mesoporous silica, hydrotalcite-like compound
and nanoclays are the most common inorganic materials used in nanosized form for
different applications in the health field. Generally, these materials are employed to realize
formulations for systemic use, often with the aim to perform a specific targeting to the pathological
site. The nanometric dimensions are often preferred to obtain the cellular internalization
when the target is localized in the intracellular space.
:
Some materials are frequently used in topical formulations as rheological agents, adsorbents,
mattifying agents, physical sunscreen (e.g. zinc oxide, titanium dioxide), and others.
:
Recent studies highlighted that the use of nanosized inorganic materials can represent a risk
for health. The very small dimension (nanometric) until a few years ago represented a fundamental
requirement; however, it is currently held responsible for the inorganic material toxicity.
This aspect is very important to be considered as actually numerous inorganic materials
can be found in many products available in the market, often dedicated to infants and children.
These materials are used without taking into account their dimensional properties with
increased risk for the user/patient.
:
This review deals with a deep analysis of current researches documenting the toxicity of
nanometric inorganic materials especially those largely used in products available in the market.
Collapse
Affiliation(s)
- Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
35
|
Mitophagy and Oxidative Stress in Cancer and Aging: Focus on Sirtuins and Nanomaterials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6387357. [PMID: 31210843 PMCID: PMC6532280 DOI: 10.1155/2019/6387357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Mitochondria are the cellular center of energy production and of several important metabolic processes. Mitochondrion health is maintained with a substantial intervention of mitophagy, a process of macroautophagy that degrades selectively dysfunctional and irreversibly damaged organelles. Because of its crucial duty, alteration in mitophagy can cause functional and structural adjustment in the mitochondria, changes in energy production, loss of cellular adaptation, and cell death. In this review, we discuss the dual role that mitophagy plays in cancer and age-related pathologies, as a consequence of oxidative stress, evidencing the triggering stimuli and mechanisms and suggesting the molecular targets for its therapeutic control. Finally, a section has been dedicated to the interplay between mitophagy and therapies using nanoparticles that are the new frontier for a direct and less invasive strategy.
Collapse
|
36
|
Cordani M, Somoza Á. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 2019; 76:1215-1242. [PMID: 30483817 PMCID: PMC6420884 DOI: 10.1007/s00018-018-2973-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Despite the extensive genetic and phenotypic variations present in the different tumors, they frequently share common metabolic alterations, such as autophagy. Autophagy is a self-degradative process in response to stresses by which damaged macromolecules and organelles are targeted by autophagic vesicles to lysosomes and then eliminated. It is known that autophagy dysfunctions can promote tumorigenesis and cancer development, but, interestingly, its overstimulation by cytotoxic drugs may also induce cell death and chemosensitivity. For this reason, the possibility to modulate autophagy may represent a valid therapeutic approach to treat different types of cancers and a variety of clinical trials, using autophagy modulators, are currently employed. On the other hand, recent progress in nanotechnology offers plenty of tools to fight cancer with innovative and efficient therapeutic agents by overcoming obstacles usually encountered with traditional drugs. Interestingly, nanomaterials can modulate autophagy and have been exploited as therapeutic agents against cancer. In this article, we summarize the most recent advances in the application of metallic nanostructures as potent modulators of autophagy process through multiple mechanisms, stressing their therapeutic implications in cancer diseases. For this reason, we believe that autophagy modulation with nanoparticle-based strategies would acquire clinical relevance in the near future, as a complementary therapy for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
- Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
- Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
37
|
Vargas-Osorio Z, Da Silva-Candal A, Piñeiro Y, Iglesias-Rey R, Sobrino T, Campos F, Castillo J, Rivas J. Multifunctional Superparamagnetic Stiff Nanoreservoirs for Blood Brain Barrier Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E449. [PMID: 30884908 PMCID: PMC6474103 DOI: 10.3390/nano9030449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 02/08/2023]
Abstract
Neurological diseases (Alzheimer's disease, Parkinson's disease, and stroke) are becoming a major concern for health systems in developed countries due to the increment of ageing in the population, and many resources are devoted to the development of new therapies and contrast agents for selective imaging. However, the strong isolation of the brain by the brain blood barrier (BBB) prevents not only the crossing of pathogens, but also a large set of beneficial drugs. Therefore, an alternative strategy is arising based on the anchoring to vascular endothelial cells of nanoplatforms working as delivery reservoirs. In this work, novel injectable mesoporous nanorods, wrapped by a fluorescent magnetic nanoparticles envelope, are proposed as biocompatible reservoirs with an extremely high loading capacity, surface versatility, and optimal morphology for enhanced grafting to vessels during their diffusive flow. Wet chemistry techniques allow for the development of mesoporous silica nanostructures with tailored properties, such as a fluorescent response suitable for optical studies, superparamagnetic behavior for magnetic resonance imaging MRI contrast, and large range ordered porosity for controlled delivery. In this work, fluorescent magnetic mesoporous nanorods were physicochemical characterized and tested in preliminary biological in vitro and in vivo experiments, showing a transversal relaxivitiy of 324.68 mM-1 s-1, intense fluorescence, large specific surface area (300 m² g-1), and biocompatibility for endothelial cells' uptake up to 100 µg (in a 80% confluent 1.9 cm² culture well), with no liver and kidney disability. These magnetic fluorescent nanostructures allow for multimodal MRI/optical imaging, the allocation of therapeutic moieties, and targeting of tissues with specific damage.
Collapse
Affiliation(s)
- Zulema Vargas-Osorio
- NANOMAG Laboratory, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Andrés Da Silva-Candal
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Yolanda Piñeiro
- NANOMAG Laboratory, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Tomas Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - José Rivas
- NANOMAG Laboratory, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
38
|
Lee K, Lee J, Kwak M, Cho YL, Hwang B, Cho MJ, Lee NG, Park J, Lee SH, Park JG, Kim YG, Kim JS, Han TS, Cho HS, Park YJ, Lee SJ, Lee HG, Kim WK, Jeung IC, Song NW, Bae KH, Min JK. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J Nanobiotechnology 2019; 17:24. [PMID: 30722792 PMCID: PMC6362579 DOI: 10.1186/s12951-019-0456-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application. Methods To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity. Results Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects. Conclusion These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications. Electronic supplementary material The online version of this article (10.1186/s12951-019-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyungmin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minjeong Kwak
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Jun Park
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won Kon Kim
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul, 06591, Republic of Korea
| | - Nam Woong Song
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Breznan D, Das DD, MacKinnon-Roy C, Bernatchez S, Sayari A, Hill M, Vincent R, Kumarathasan P. Physicochemical Properties Can Be Key Determinants of Mesoporous Silica Nanoparticle Potency in Vitro. ACS NANO 2018; 12:12062-12079. [PMID: 30475590 DOI: 10.1021/acsnano.8b04910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoforms of mesoporous silica (mSiNPs) are increasingly applied in medicine, imaging, energy storage, catalysis, biosensors, and bioremediation. The impact of their physicochemical properties on health and the environment remain to be elucidated. In this work, newly synthesized mesoporous silica (sizes: 25, 70, 100, 170, and 600 nm; surface functionalization: pristine, C3-, and C11-COOH moieties) were assessed for cytotoxicity and induction of inflammatory responses in vitro (A549, THP-1, J774A.1 cells). All toxicity end points were integrated to obtain simple descriptors of biological potencies of these mSiNPs. The findings indicate that mSiNPs are less bioactive than the nonporous reference SiNP used in this study. The C3-COOH-modified mSiNPs were generally less cytotoxic than their pristine and C11-modified counterparts in the nanorange (≤100 nm). Carboxyl-modified mSiNPs affected inflammatory marker release across all sizes with cell-type specificity, suggesting a potential for immunomodulatory effects. Surface area, size, extent of agglomeration, ζ-potential, and surface modification appeared to be important determinants of cytotoxicity of mSiNPs based on association tests. Pathway analysis identified particle and cell-type-specific alteration of cellular pathways and functions by mSiNPs. The integration of exposure-related biological responses of multiple cell lines to mSiNPs allowed for a comprehensive evaluation of the impact of physicochemical factors on their toxicity characteristics. The integrated multilevel toxicity assessment approach can be valuable as a hazard screening tool for safety evaluations of emerging nanomaterials for regulatory purpose.
Collapse
Affiliation(s)
| | | | | | | | - Abdelhamid Sayari
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | | | | | | |
Collapse
|
40
|
Mosselhy DA, He W, Hynönen U, Meng Y, Mohammadi P, Palva A, Feng Q, Hannula SP, Nordström K, Linder MB. Silica-gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. Int J Nanomedicine 2018; 13:7939-7957. [PMID: 30568441 PMCID: PMC6276608 DOI: 10.2147/ijn.s182611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Antibiotic resistance is a growing concern in health care. Methicillin-resistant Staphylococcus aureus (MRSA), forming biofilms, is a common cause of resistant orthopedic implant infections. Gentamicin is a crucial antibiotic preventing orthopedic infections. Silica-gentamicin (SiO2-G) delivery systems have attracted significant interest in preventing the formation of biofilms. However, compelling scientific evidence addressing their efficacy against planktonic MRSA and MRSA biofilms is still lacking, and their safety has not extensively been studied. MATERIALS AND METHODS In this work, we have investigated the effects of SiO2-G nanohybrids against planktonic MRSA as well as MRSA and Escherichia coli biofilms and then evaluated their toxicity in zebrafish embryos, which are an excellent model for assessing the toxicity of nanotherapeutics. RESULTS SiO2-G nanohybrids inhibited the growth and killed planktonic MRSA at a minimum concentration of 500 µg/mL. SiO2-G nanohybrids entirely eradicated E. coli cells in biofilms at a minimum concentration of 250 µg/mL and utterly deformed their ultrastructure through the deterioration of bacterial shapes and wrinkling of their cell walls. Zebrafish embryos exposed to SiO2-G nanohybrids (500 and 1,000 µg/mL) showed a nonsignificant increase in mortality rates, 13.4±9.4 and 15%±7.1%, respectively, mainly detected 24 hours post fertilization (hpf). Frequencies of malformations were significantly different from the control group only 24 hpf at the higher exposure concentration. CONCLUSION Collectively, this work provides the first comprehensive in vivo assessment of SiO2-G nanohybrids as a biocompatible drug delivery system and describes the efficacy of SiO2-G nanohybrids in combating planktonic MRSA cells and eradicating E. coli biofilms.
Collapse
Affiliation(s)
- Dina A Mosselhy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland,
- Fish Diseases Department, Microbiological Unit, Animal Health Research Institute, Dokki, Giza 12618, Egypt,
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Division of Veterinary Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland
| | - Yaping Meng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, People's Republic of China
| | - Pezhman Mohammadi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Veterinary Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China,
| | - Simo-Pekka Hannula
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland,
| | - Katrina Nordström
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
| |
Collapse
|
41
|
Cox A, Andreozzi P, Dal Magro R, Fiordaliso F, Corbelli A, Talamini L, Chinello C, Raimondo F, Magni F, Tringali M, Krol S, Jacob Silva P, Stellacci F, Masserini M, Re F. Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. ACS NANO 2018; 12:7292-7300. [PMID: 29953205 DOI: 10.1021/acsnano.8b03500] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Engineered nanoparticles offer the chance to improve drug transport and delivery through biological barriers, exploiting the possibility to leave the blood circulation and traverse the endothelial vascular bed, blood-brain barrier (BBB) included, to reach their target. It is known that nanoparticles gather molecules on their surface upon contact with biological fluids, forming the "protein corona", which can affect their fate and therapeutic/diagnostic performance, yet no information on the corona's evolution across the barrier has been gathered so far. Using a cellular model of the BBB and gold nanoparticles, we show that the composition of the corona undergoes dramatic quantitative and qualitative molecular modifications during passage from the "blood" to the "brain" side, while it is stable once beyond the BBB. Thus, we demonstrate that the nanoparticle corona dynamically and drastically evolves upon crossing the BBB and that its initial composition is not predictive of nanoparticle fate and performance once beyond the barrier at the target organ.
Collapse
Affiliation(s)
- Alysia Cox
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Patrizia Andreozzi
- IFOM-FIRC Institute of Molecular Oncology , IFOM-IEO Campus , Milan 20139 , Italy
- CICbiomaGUNE, Soft Matter Nanotechnology Group , San Sebastian-Donostia , 20014 Guipuzcoa , Spain
| | - Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Fabio Fiordaliso
- IRCCS Institute of Pharmacological Research "Mario Negri″ , Milan 20139 , Italy
| | - Alessandro Corbelli
- IRCCS Institute of Pharmacological Research "Mario Negri″ , Milan 20139 , Italy
| | - Laura Talamini
- IRCCS Institute of Pharmacological Research "Mario Negri″ , Milan 20139 , Italy
| | - Clizia Chinello
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Francesca Raimondo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Fulvio Magni
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Maria Tringali
- Department of Environmental Sciences , University of Milano-Bicocca , Milan 20126 , Italy
| | - Silke Krol
- IRCCS Foundation Institute for Neurology "Carlo Besta" , IFOM-IEO Campus , Milan 20139 , Italy
- IRCCS Cancer Institute "Giovanni Paolo II" , Bari 70021 , Italy
| | - Paulo Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne , Lausanne 1000 , Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne , Lausanne 1000 , Switzerland
- Interfaculty Bioengineering Institute, École Polytechnique Fédérale de Lausanne , Lausanne 1000 , Switzerland
| | - Massimo Masserini
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB , University of Milano-Bicocca , Via Raoul Follereau 3 , 20854 Vedano al Lambro (MB) , Italy
| |
Collapse
|
42
|
Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine 2018; 13:2767-2776. [PMID: 29780247 PMCID: PMC5951135 DOI: 10.2147/ijn.s165675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have enormous applications in textiles, cosmetics, electronics, and pharmaceuticals. But due to their exceptional physical and chemical properties, particularly antimicrobial, anticancer, antibacterial, anti-inflammatory properties, nanoparticles have many potential applications in diagnosis as well as in the treatment of various diseases. Over the past few years, nanoparticles have been extensively used to investigate their response on the neuronal cells. These nanoparticles cause stem cells to differentiate into neuronal cells and promote neuronal cell survivability and neuronal cell growth and expansion. The nanoparticles have been tested both in in vitro and in vivo models. The nanoparticles with various shapes, sizes, and chemical compositions mostly produced stimulatory effects on neuronal cells, but there are few that can cause inhibitory effects on the neuronal cells. In this review, we discuss stimulatory and inhibitory effects of various nanoparticles on the neuronal cells. The aim of this review was to summarize different effects of nanoparticles on the neuronal cells and try to understand the differential response of various nanoparticles. This review provides a bird's eye view approach on the effects of various nanoparticles on neuronal differentiation, neuronal survivability, neuronal growth, neuronal cell adhesion, and functional and behavioral recovery. Finally, this review helps the researchers to understand the different roles of nanoparticles (stimulatory and inhibitory) in neuronal cells to develop effective therapeutic and diagnostic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Kim KA, Shin D, Kim JH, Shin YJ, Rajanikant GK, Majid A, Baek SH, Bae ON. Role of Autophagy in Endothelial Damage and Blood-Brain Barrier Disruption in Ischemic Stroke. Stroke 2018; 49:1571-1579. [PMID: 29724893 DOI: 10.1161/strokeaha.117.017287] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kyeong-A Kim
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Donggeun Shin
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Jeong-Hyeon Kim
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - Young-Jun Shin
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Kerala, India (G.K.R.)
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, England (A.M.)
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Republic of Korea (S.-H.B.)
| | - Ok-Nam Bae
- From the College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (K.-A.K., D.S., J.-H.K., Y.-J.S., O.-N.B.)
| |
Collapse
|
44
|
Shen Y, Wu L, Qin D, Xia Y, Zhou Z, Zhang X, Wu X. Carbon black suppresses the osteogenesis of mesenchymal stem cells: the role of mitochondria. Part Fibre Toxicol 2018; 15:16. [PMID: 29650039 PMCID: PMC5897950 DOI: 10.1186/s12989-018-0253-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The rapid increase in carbon black poses threats to human health. We evaluated the effect of CB (Printex 90) on the osteogenesis of bone-marrow-derived mesenchymal stem cells (MSCs). Mitochondria play an important role in the osteogenesis of MSCs and are potential targets of nanomaterials, so we studied the role of mitochondria in the CB Printex 90-induced effects on osteogenesis. RESULTS Low doses of Printex 90 (3 ng/mL and 30 ng/mL) that did not cause deleterious effects on MSCs' viability significantly inhibited osteogenesis of MSCs. Printex 90 caused down-regulation of osteoblastic markers, reduced activity of alkaline phosphatase (ALP), and poor mineralization of osteogenically induced MSCs. Cellular ATP production was decreased, mitochondrial respiration was impaired with reduced expression of ATPase, and the mitochondrial membrane was depolarized. The quantity and quality of mitochondria are tightly controlled by mitochondrial biogenesis, mitochondrial dynamics and mitophagy. The transcriptional co-activator and transcription factors for mitochondrial biogenesis, PGC-1α, Nrf1 and TFAM, were suppressed by Printex 90 treatment, suggesting that decreased biogenesis was caused by Printex 90 treatment during osteogenesis. Mitochondrial fusion and fission were significantly inhibited by Printex 90 treatment. PINK1 accumulated in Printex 90-treated cells, and more Parkin was recruited to mitochondria, indicating that mitophagy increased to remove the damaged mitochondria. CONCLUSIONS This is the first report of the inhibitory effects of CB on the osteogenesis of MSCs and the involvement of mitochondria in CB Printex 90-induced suppression of MSC osteogenesis.
Collapse
Affiliation(s)
- Yulai Shen
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Lu Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Zhu Zhou
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, 95211, USA
| | - Xuemei Zhang
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| |
Collapse
|
45
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Meshtcheryakova EY. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. Int J Mol Sci 2018. [PMID: 29534019 PMCID: PMC5877698 DOI: 10.3390/ijms19030837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism’s status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism’s response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism’s antitoxic resistance.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Renata R Sakhautdinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|