1
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
2
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
3
|
Li Y, Moein Moghimi S, Simberg D. Complement-dependent uptake of nanoparticles by blood phagocytes: brief overview and perspective. Curr Opin Biotechnol 2024; 85:103044. [PMID: 38091875 PMCID: PMC11214757 DOI: 10.1016/j.copbio.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Immune recognition and uptake of nanoparticles remain the hot topic in nanomedicine research. Complement is the central player in the immune recognition of engineered nanoparticles. Here, we summarize the accumulated knowledge on the role of complement in the interactions of nanomaterials with blood phagocytes. We describe the interplay between surface properties, complement opsonization, and immune uptake, primarily of iron oxide nanoparticles. We discuss the rigor of the published research and further identify the following knowledge gaps: 1) the role of complement in the variability of uptake of nanomaterials in healthy and diseased subjects, and 2) modulation of complement interactions to improve the performance of nanomaterials. Addressing these gaps is critical to improving translational chances of nanomaterials for drug delivery and imaging applications.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Giambelluca M, Markova E, Louet C, Steinkjer B, Sundset R, Škalko-Basnet N, Hak S. Liposomes - Human phagocytes interplay in whole blood: effect of liposome design. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102712. [PMID: 37838100 DOI: 10.1016/j.nano.2023.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
Nanomedicine holds immense potential for therapeutic manipulation of phagocytic immune cells. However, in vitro studies often fail to accurately translate to the complex in vivo environment. To address this gap, we employed an ex vivo human whole-blood assay to evaluate liposome interactions with immune cells. We systematically varied liposome size, PEG-surface densities and sphingomyelin and ganglioside content. We observed differential uptake patterns of the assessed liposomes by neutrophils and monocytes, emphasizing the importance of liposome design. Interestingly, our results aligned closely with published in vivo observations in mice and patients. Moreover, liposome exposure induced changes in cytokine release and cellular responses, highlighting the potential modulation of immune system. Our study highlights the utility of human whole-blood models in assessing nanoparticle-immune cell interactions and provides insights into liposome design for modulating immune responses.
Collapse
Affiliation(s)
- Miriam Giambelluca
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Elena Markova
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørg Steinkjer
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rune Sundset
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sjoerd Hak
- Department of Biotechnology and Nanomedicine, SINTEF Industry and Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Turrina C, Schoenen M, Milani D, Klassen A, Rojas Gonzaléz DM, Cvirn G, Mela P, Berensmeier S, Slabu I, Schwaminger SP. Application of magnetic iron oxide nanoparticles: Thrombotic activity, imaging and cytocompatibility of silica-coated and carboxymethyl dextrane-coated particles. Colloids Surf B Biointerfaces 2023; 228:113428. [PMID: 37379701 DOI: 10.1016/j.colsurfb.2023.113428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.
Collapse
Affiliation(s)
- Chiara Turrina
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Max Schoenen
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Davide Milani
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna Klassen
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Diana M Rojas Gonzaléz
- Chair of Medical Materials and Implants, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Petra Mela
- Chair of Medical Materials and Implants, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Sebastian P Schwaminger
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
6
|
Gerogianni A, Bal M, Mohlin C, Woodruff TM, Lambris JD, Mollnes TE, Sjöström DJ, Nilsson PH. In vitro evaluation of iron oxide nanoparticle-induced thromboinflammatory response using a combined human whole blood and endothelial cell model. Front Immunol 2023; 14:1101387. [PMID: 37081885 PMCID: PMC10111002 DOI: 10.3389/fimmu.2023.1101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) are widely used in diagnostic and therapeutic settings. Upon systemic administration, however, they are rapidly recognized by components of innate immunity, which limit their therapeutic capacity and can potentially lead to adverse side effects. IONPs were previously found to induce the inflammatory response in human whole blood, including activation of the complement system and increased secretion of cytokines. Here, we investigated the thromboinflammatory response of 10-30 nm IONPs in lepirudin anticoagulated whole blood in interplay with endothelial cells and evaluated the therapeutic effect of applying complement inhibitors to limit adverse effects related to thromboinflammation. We found that IONPs induced complement activation, primarily at the C3-level, in whole blood incubated for up to four hours at 37°C with and without human microvascular endothelial cells. Furthermore, IONPs mediated a strong thromboinflammatory response, as seen by the significantly increased release of 21 of the 27 analyzed cytokines (p<0.05). IONPs also significantly increased cell-activation markers of endothelial cells [ICAM-1 (p<0.0001), P/E-selectin (p<0.05)], monocytes, and granulocytes [CD11b (p<0.001)], and platelets [CD62P (p<0.05), CD63 (p<0.05), NAP-2 (p<0.01), PF4 (p<0.05)], and showed cytotoxic effects, as seen by increased LDH (p<0.001) and heme (p<0.0001) levels. We found that inflammation and endothelial cell activation were partly complement-dependent and inhibition of complement at the level of C3 by compstatin Cp40 significantly attenuated expression of ICAM-1 (p<0.01) and selectins (p<0.05). We show that complement activation plays an important role in the IONPs-induced thromboinflammatory response and that complement inhibition is promising in improving IONPs biocompatibility.
Collapse
Affiliation(s)
- Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Melissa Bal
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Research Laboratory, Nordland Hospital, Bodo, Norway
| | - Dick J. Sjöström
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- *Correspondence: Per H. Nilsson,
| |
Collapse
|
7
|
Johnson C, Quach HQ, Lau C, Ekholt K, Espevik T, Woodruff TM, Pischke SE, Mollnes TE, Nilsson PH. Thrombin Differentially Modulates the Acute Inflammatory Response to Escherichia coli and Staphylococcus aureus in Human Whole Blood. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2771-2778. [PMID: 35675954 DOI: 10.4049/jimmunol.2101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Thrombin plays a central role in thromboinflammatory responses, but its activity is blocked in the common ex vivo human whole blood models, making an ex vivo study of thrombin effects on thromboinflammatory responses unfeasible. In this study, we exploited the anticoagulant peptide Gly-Pro-Arg-Pro (GPRP) that blocks fibrin polymerization to study the effects of thrombin on acute inflammation in response to Escherichia coli and Staphylococcus aureus Human blood was anticoagulated with either GPRP or the thrombin inhibitor lepirudin and incubated with either E. coli or S. aureus for up to 4 h at 37°C. In GPRP-anticoagulated blood, there were spontaneous elevations in thrombin levels and platelet activation, which further increased in the presence of bacteria. Complement activation and the expression of activation markers on monocytes and granulocytes increased to the same extent in both blood models in response to bacteria. Most cytokines were not elevated in response to thrombin alone, but thrombin presence substantially and heterogeneously modulated several cytokines that increased in response to bacterial incubations. Bacterial-induced releases of IL-8, MIP-1α, and MIP-1β were potentiated in the thrombin-active GPRP model, whereas the levels of IP-10, TNF, IL-6, and IL-1β were elevated in the thrombin-inactive lepirudin model. Complement C5-blockade, combined with CD14 inhibition, reduced the overall cytokine release significantly, both in thrombin-active and thrombin-inactive models. Our data support that thrombin itself marginally induces leukocyte-dependent cytokine release in this isolated human whole blood but is a significant modulator of bacteria-induced inflammation by a differential effect on cytokine patterns.
Collapse
Affiliation(s)
- Christina Johnson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Huy Quang Quach
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Karin Ekholt
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Søren Erik Pischke
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Clinic for Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; and
| | - Per H Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Department of Chemistry and Biomedicine, Linnaeus Centre for Biomaterials Chemistry Linnaeus University, Kalmar, Sweden
| |
Collapse
|
8
|
Pavlin M, Lojk J, Strojan K, Hafner-Bratkovič I, Jerala R, Leonardi A, Križaj I, Drnovšek N, Novak S, Veranič P, Bregar VB. The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity-In Vitro Correlation Analysis on THP-1 Macrophages. Int J Mol Sci 2022; 23:6197. [PMID: 35682872 PMCID: PMC9181693 DOI: 10.3390/ijms23116197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alongside physiochemical properties (PCP), it has been suggested that the protein corona of nanoparticles (NPs) plays a crucial role in the response of immune cells to NPs. However, due to the great variety of NPs, target cells, and exposure protocols, there is still no clear relationship between PCP, protein corona composition, and the immunotoxicity of NPs. In this study, we correlated PCP and the protein corona composition of NPs to the THP-1 macrophage response, focusing on selected toxicological endpoints: cell viability, reactive oxygen species (ROS), and cytokine secretion. We analyzed seven commonly used engineered NPs (SiO2, silver, and TiO2) and magnetic NPs. We show that with the exception of silver NPs, all of the tested TiO2 types and SiO2 exhibited moderate toxicities and a transient inflammatory response that was observed as an increase in ROS, IL-8, and/or IL-1β cytokine secretion. We observed a strong correlation between the size of the NPs in media and IL-1β secretion. The induction of IL-1β secretion was completely blunted in NLR family pyrin domain containing 3 (NLRP3) knockout THP-1 cells, indicating activation of the inflammasome. The correlations analysis also implicated the association of specific NP corona proteins with the induction of cytokine secretion. This study provides new insights toward a better understanding of the relationships between PCP, protein corona, and the inflammatory response of macrophages for different engineered NPs, to which we are exposed on a daily basis.
Collapse
Grants
- J7-7424, J2-6758, J3-1746, J3-6794, J3-7494, Z4-8229, P1-0055, P3-0108, P1-0207, P4-0220, P2-0087, P4-0176, young researchers program and MRIC UL IP-0510 Infrastructure program Slovenian Research Agency
- ISO-FOOD (FP7-REGPOT) European Commission
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Jasna Lojk
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Klemen Strojan
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Nataša Drnovšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Saša Novak
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| |
Collapse
|
9
|
Mekonnen TW, Darge HF, Tsai HC, Birhan YS, Hanurry EY, Gebrie HT, Chou HY, Lai JY, Lin SZ, Harn HJ, Chen YS. Combination of ovalbumin-coated iron oxide nanoparticles and poly(amidoamine) dendrimer-cisplatin nanocomplex for enhanced anticancer efficacy. Colloids Surf B Biointerfaces 2022; 213:112391. [PMID: 35158218 DOI: 10.1016/j.colsurfb.2022.112391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR)-based tumor targeted 4.5 generation poly(amidoamine) dendrimer(4.5GDP)-cisplatin (Cis-pt) nanocomplex (NC) (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs were examined via FTIR spectroscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The conjugation of Cis-pt with 4.5GDP was confirmed using carbon NMR spectroscopy. The tumor-specific 4.5GDP-Cis-pt NC provided 45%and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed for the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NPs were biocompatible with different cell lines, even at a high concentration (200 µg mL-1). However, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL-1) significantly increased the cytotoxicity against the cancer cells in a dose-dependent manner with the increasing AC-IO-Ova NPs concentrations. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, AC-IO-Ova NPs might assist the efficiency of anticancer cells, inducing an innate immune response via M1 macrophage polarization. We provide a novel synergistic chemoimmunotherapeutic strategy to enhance the anticancer efficacy of cisplatin via a chemotherapeutic agent 4.5GDP-Cis-pt NC and induce proinflammatory cytokines stimulating innate immunity through AC-IO-Ova NPs against tumors.
Collapse
Affiliation(s)
- Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Horng-Jyh Harn
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, ROC; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Tzu Chi University of Science and Technology, Taiwan, ROC.
| |
Collapse
|
10
|
Ying H, Ruan Y, Zeng Z, Bai Y, Xu J, Chen S. Iron oxide nanoparticles size-dependently activate mouse primary macrophages via oxidative stress and endoplasmic reticulum stress. Int Immunopharmacol 2022; 105:108533. [DOI: 10.1016/j.intimp.2022.108533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
|
11
|
Mollnes TE, Storm BS, Brekke OL, Nilsson PH, Lambris JD. Application of the C3 inhibitor compstatin in a human whole blood model designed for complement research - 20 years of experience and future perspectives. Semin Immunol 2022; 59:101604. [PMID: 35570131 DOI: 10.1016/j.smim.2022.101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 01/15/2023]
Abstract
The complex molecular and cellular biological systems that maintain host homeostasis undergo continuous crosstalk. Complement, a component of innate immunity, is one such system. Initially regarded as a system to protect the host from infection, complement has more recently been shown to have numerous other functions, including involvement in embryonic development, tissue modeling, and repair. Furthermore, the complement system plays a major role in the pathophysiology of many diseases. Through interactions with other plasma cascades, including hemostasis, complement activation leads to the broad host-protective response known as thromboinflammation. Most complement research has been limited to reductionistic models of purified components and cells and their interactions in vitro. However, to study the pathophysiology of complement-driven diseases, including the interaction between the complement system and other inflammatory systems, holistic models demonstrating only minimal interference with complement activity are needed. Here we describe two such models; whole blood anticoagulated with either the thrombin inhibitor lepirudin or the fibrin polymerization peptide blocker GPRP, both of which retain complement activity and preserve the ability of complement to be mutually reactive with other inflammatory systems. For instance, to examine the relative roles of C3 and C5 in complement activation, it is possible to compare the effects of the C3 inhibitor compstatin effects to those of inhibitors of C5 and C5aR1. We also discuss how complement is activated by both pathogen-associated molecular patterns, inducing infectious inflammation caused by organisms such as Gram-negative and Gram-positive bacteria, and by sterile damage-associated molecular patterns, including cholesterol crystals and artificial materials used in clinical medicine. When C3 is inhibited, it is important to determine the mechanism by which inflammation is attenuated, i.e., whether the attenuation derives directly from C3 activation products or via downstream activation of C5, since the mechanism involved may determine the appropriate choice of inhibitor under various conditions. With some exceptions, most inflammatory responses are dependent on C5 and C5aR1; one exception is venous air embolism, in which air bubbles enter the blood circulation and trigger a mainly C3-dependent thromboembolism, with the formation of an active C3 convertase, without a corresponding C5 activation. Under such conditions, an inhibitor of C3 is needed to attenuate the inflammation. Our holistic blood models will be useful for further studies of the inhibition of any complement target, not just C3 or C5. The focus here will be on targeting the critical complement component, activation product, or receptor that is important for the pathophysiology in a variety of disease conditions.
Collapse
Affiliation(s)
- Tom E Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Benjamin S Storm
- Research Laboratory, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Ole L Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 39182 Kalmar, Sweden; Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Toropova YG, Zelinskaya IA, Gorshkova MN, Motorina DS, Korolev DV, Velikonivtsev FS, Gareev KG. Albumin covering maintains endothelial function upon magnetic iron oxide nanoparticles intravenous injection in rats. J Biomed Mater Res A 2021; 109:2017-2026. [PMID: 33811797 DOI: 10.1002/jbm.a.37193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023]
Abstract
Magnetic iron oxide nanoparticles (IONP) present the promising instrument for broad-spectrum of clinical applications, for example, targeted drug delivery. Reactivity of nanoparticles depends on their surface area and material. In the blood plasma IONP are getting covered with an albumin crown, so it was decided to test this shell for biocompatibility. Male Wistar rats were anesthetized and underwent laparotomy. Abdominal aorta was connected to external hemodynamic loop with regulated blood flow. Hind body quarter got step-like blood flow changing from 30 to 150 mmHg and back. This was followed with i.v. injection of IONP, albumin solution or albumin-covered IONP and consequent similar flow changes. Central hemodynamics-heart rate and mean arterial pressure were registered throughout the experiment and no significant changes in these parameters were observed. Hind paw microcirculation level had the same dynamic in all groups under changing blood flow conditions. At the end, venous blood was collected for endothelin-1 and NO evaluation that showed similar changes and no endothelial damage. Mesenteric arteries and femoral artery reactivity were evaluated with wire myography. Mesenteric arteries had the most relaxing function preservation after albumin-covered IONP injection. Given data reveal advantage of albumin-coated IONP so this can be used for further investigations as a vascular-safe vehicle.
Collapse
Affiliation(s)
- Yana G Toropova
- Bioprosthetics and Cardioprotection Research Lab, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russian Federation
| | - Irina A Zelinskaya
- Bioprosthetics and Cardioprotection Research Lab, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russian Federation
| | - Mariya N Gorshkova
- Bioprosthetics and Cardioprotection Research Lab, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russian Federation
| | - Daria S Motorina
- Bioprosthetics and Cardioprotection Research Lab, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russian Federation
| | - Dmitriy V Korolev
- Bioprosthetics and Cardioprotection Research Lab, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russian Federation
- Laboratory of Blood circulation biophysics, First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russian Federation
| | - Fedor S Velikonivtsev
- Institute of Medical Education, V.A. Almazov National Medical Research Center, Saint-Petersburg, Russian Federation
| | - Kamil G Gareev
- Micro and Nanoelectronics Department, Saint-Petersburg Electrotechnical University, Saint-Petersburg, Russian Federation
| |
Collapse
|
13
|
Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F. In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2021; 22:1469-1488. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Collapse
Affiliation(s)
- Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| | - Markus Aswendt
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Jean-Luc Boulland
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia
| | - Stefan Stamenković
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Fabrizio Fiori
- Department of Applied Physics, Università Politecnica delle Marche - Di.S.C.O., Via Brecce Bianche, 60131, Ancona, Italy
| | - Mathias Hoehn
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
14
|
Gaikwad H, Li Y, Gifford G, Groman E, Banda NK, Saba L, Scheinman R, Wang G, Simberg D. Complement Inhibitors Block Complement C3 Opsonization and Improve Targeting Selectivity of Nanoparticles in Blood. Bioconjug Chem 2020; 31:1844-1856. [PMID: 32598839 DOI: 10.1021/acs.bioconjchem.0c00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complement is one of the critical branches of innate immunity that determines the recognition of engineered nanoparticles by immune cells. Antibody-targeted iron oxide nanoparticles are a popular platform for magnetic separations, in vitro diagnostics, and molecular imaging. We used 60 nm cross-linked iron oxide nanoworms (CLIO NWs) modified with antibodies against Her2/neu and EpCAM, which are common markers of blood-borne cancer cells, to understand the role of complement in the selectivity of targeting of tumor cells in whole blood. CLIO NWs showed highly efficient targeting and magnetic isolation of tumor cells spiked in lepirudin-anticoagulated blood, but specificity was low due to high uptake by neutrophils, monocytes, and lymphocytes. Complement C3 opsonization in plasma was predominantly via the alternative pathway regardless of the presence of antibody, PEG, or fluorescent tag, but was higher for antibody-conjugated CLIO NWs. Addition of various soluble inhibitors of complement convertase (compstatin, soluble CD35, and soluble CD55) to whole human blood blocked up to 99% of the uptake of targeted CLIO NWs by leukocytes, which resulted in a more selective magnetic isolation of tumor cells. Using well-characterized nanomaterials, we demonstrate here that complement therapeutics can be used to improve targeting selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | | | | | |
Collapse
|
15
|
A novel Approach for Non-Invasive Lung Imaging and Targeting Lung Immune Cells. Int J Mol Sci 2020; 21:ijms21051613. [PMID: 32120819 PMCID: PMC7084491 DOI: 10.3390/ijms21051613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
Despite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation. Complex carbohydrate and polymer-based coatings have been used, but simpler compounds may provide additional benefits. Herein, we designed and generated super-paramagnetic iron oxide nanoparticles coated with the neutral natural dietary amino acid glycine (GSPIONs), to support non-invasive lung imaging and determined particle biodistribution, as well as understanding the impact of the interaction of these nanoparticles with lung immune cells. These GSPIONs were characterized to be crystalline, colloidally stable, with a size of 12 ± 5 nm and a hydrodynamic diameter of 84.19 ± 18 nm. Carbon, Hydrogen, Nitrogen (CHN) elemental analysis estimated approximately 20.2 × 103 glycine molecules present per nanoparticle. We demonstrated that it is possible to determine the biodistribution of the GSPIONs in the lung using three-dimensional (3D) ultra-short echo time magnetic resonance imaging. The GSPIONs were found to be taken up selectively by alveolar macrophages and neutrophils in the lung. In addition, the GSPIONs did not cause changes to airway resistance or induce inflammatory cytokines. Alveolar macrophages and neutrophils are critical regulators of pulmonary inflammatory diseases, including allergies, infections, asthma and chronic obstructive pulmonary disease (COPD). Therefore, pulmonary Magnetic Resonance (MR) imaging and preferential targeting of these lung resident cells by our nanoparticles offer precise imaging tools, which can be utilized to develop precision targeted radiotherapy as well as diagnostic tools for lung cancer, thereby having the potential to reduce the pulmonary complications of radiation.
Collapse
|
16
|
Simberg D, Moghimi SM. Complement Activation by Nanomaterials. INTERACTION OF NANOMATERIALS WITH THE IMMUNE SYSTEM 2020. [DOI: 10.1007/978-3-030-33962-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Askri D, Cunin V, Ouni S, Béal D, Rachidi W, Sakly M, Amara S, Lehmann SG, Sève M. Effects of Iron Oxide Nanoparticles (γ-Fe 2O 3) on Liver, Lung and Brain Proteomes following Sub-Acute Intranasal Exposure: A New Toxicological Assessment in Rat Model Using iTRAQ-Based Quantitative Proteomics. Int J Mol Sci 2019; 20:E5186. [PMID: 31635106 PMCID: PMC6829235 DOI: 10.3390/ijms20205186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Iron Oxide Nanoparticles (IONPs) present unique properties making them one of the most used NPs in the biomedical field. Nevertheless, for many years, growing production and use of IONPs are associated with risks that can affect human and the environment. Thus, it is essential to study the effects of these nanoparticles to better understand their mechanism of action and the molecular perturbations induced in the organism. In the present study, we investigated the toxicological effects of IONPs (γ-Fe2O3) on liver, lung and brain proteomes in Wistar rats. Exposed rats received IONP solution during 7 consecutive days by intranasal instillation at a dose of 10 mg/kg body weight. An iTRAQ-based quantitative proteomics was used to study proteomic variations at the level of the three organs. Using this proteomic approach, we identified 1565; 1135 and 1161 proteins respectively in the brain, liver and lung. Amon them, we quantified 1541; 1125 and 1128 proteins respectively in the brain, liver and lung. Several proteins were dysregulated comparing treated samples to controls, particularly, proteins involved in cytoskeleton remodeling, cellular metabolism, immune system stimulation, inflammation process, response to oxidative stress, angiogenesis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalel Askri
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
| | - Valérie Cunin
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
| | - Souhir Ouni
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
| | - David Béal
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, 38000 Grenoble, France.
| | - Walid Rachidi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, 38000 Grenoble, France.
| | - Mohsen Sakly
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
| | - Salem Amara
- Carthage University, College of Sciences of Bizerte, Unit of Research in Integrated Physiology, 7021, Bizerte, Tunisia.
- Shaqra University, Faculty of Sciences and Humanities, Department of Natural and Applied Sciences in Afif, 11921 Afif, Saudi Arabia.
| | - Sylvia G Lehmann
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France.
| | - Michel Sève
- University Grenoble Alpes, PROMETHEE Proteomic Platform, BEeSy, 38000 Grenoble, France.
- LBFA Inserm U1055, PROMETHEE Proteomic Platform, 38000 Grenoble, France.
- Institut de Biologie et Pathologie, PROMETHEE Proteomic Platform, CHU Grenoble Alpes, 38000, Grenoble, France.
| |
Collapse
|
18
|
Bolandparvaz A, Harriman R, Alvarez K, Lilova K, Zang Z, Lam A, Edmiston E, Navrotsky A, Vapniarsky N, Van De Water J, Lewis JS. Towards a nanoparticle-based prophylactic for maternal autoantibody-related autism. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102067. [PMID: 31349087 PMCID: PMC7197945 DOI: 10.1016/j.nano.2019.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Recently, the causative agents of Maternal Autoantibody-Related (MAR) autism, pathological autoantibodies and their epitopic targets (e.g. lactate dehydrogenase B [LDH B] peptide), have been identified. Herein, we report on the development of Systems for Nanoparticle-based Autoantibody Reception and Entrapment (SNAREs), which we hypothesized could scavenge disease-propagating MAR autoantibodies from the maternal blood. To demonstrate this functionality, we synthesized 15 nm dextran iron oxide nanoparticles surface-modified with citric acid, methoxy PEG(10 kDa) amine, and LDH B peptide (33.8 μg peptide/cm2). In vitro, we demonstrated significantly lower macrophage uptake for SNAREs compared to control NPs. The hallmark result of this study was the efficacy of the SNAREs to remove 90% of LDH B autoantibody from patient-derived serum. Further, in vitro cytotoxicity testing and a maximal tolerated dose study in mice demonstrated the safety of the SNARE formulation. This work establishes the feasibility of SNAREs as the first-ever prophylactic against MAR autism.
Collapse
Affiliation(s)
- Amir Bolandparvaz
- University of California, Davis, Department of Biomedical Engineering, Davis, CA, USA
| | - Rian Harriman
- University of California, Davis, Department of Biomedical Engineering, Davis, CA, USA
| | - Kenneth Alvarez
- University of California, Davis, Department of Biomedical Engineering, Davis, CA, USA
| | - Kristina Lilova
- University of California, Davis, Peter A. Rock Thermochemistry Laboratory and NEAT, Davis, CA, USA
| | - Zexi Zang
- University of California, Davis, Department of Biomedical Engineering, Davis, CA, USA
| | - Andy Lam
- University of California, Davis, Peter A. Rock Thermochemistry Laboratory and NEAT, Davis, CA, USA
| | - Elizabeth Edmiston
- University of California, Davis, Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, Davis, CA, USA
| | - Alexandra Navrotsky
- University of California, Davis, Peter A. Rock Thermochemistry Laboratory and NEAT, Davis, CA, USA
| | - Natalia Vapniarsky
- University of California, Davis, Department of Pathology Microbiology and Immunology, Davis, CA, USA
| | - Judy Van De Water
- University of California, Davis, Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, Davis, CA, USA; University of California, Davis, M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders), Davis, CA, USA
| | - Jamal S Lewis
- University of California, Davis, Department of Biomedical Engineering, Davis, CA, USA.
| |
Collapse
|
19
|
Submicron-Sized Nanocomposite Magnetic-Sensitive Carriers: Controllable Organ Distribution and Biological Effects. Polymers (Basel) 2019; 11:polym11061082. [PMID: 31242626 PMCID: PMC6630964 DOI: 10.3390/polym11061082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn’t cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.
Collapse
|
20
|
Escamilla-Rivera V, Solorio-Rodríguez A, Uribe-Ramírez M, Lozano O, Lucas S, Chagolla-López A, Winkler R, De Vizcaya-Ruiz A. Plasma protein adsorption on Fe 3O 4-PEG nanoparticles activates the complement system and induces an inflammatory response. Int J Nanomedicine 2019; 14:2055-2067. [PMID: 30988608 PMCID: PMC6438142 DOI: 10.2147/ijn.s192214] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Understanding of iron oxide nanoparticles (IONP) interaction with the body milieu is crucial to guarantee their efficiency and biocompatibility in nanomedicine. Polymer coating to IONP, with polyethyleneglycol (PEG) and polyvinylpyrrolidone (PVP), is an accepted strategy to prevent toxicity and excessive protein binding. AIM The aim of this study was to investigate the feature of IONP adsorption of complement proteins, their activation and consequent inflammatory response as a strategy to further elucidate their biocompatibility. METHODS Three types of IONP with different surface characteristics were used: bare (IONP-bare), coated with PVP (IONP-PVP) and PEG-coated (IONP-PEG). IONPs were incubated with human plasma and adsorbed proteins were identified. BALB/c mice were intravenously exposed to IONP to evaluate complement activation and proinflammatory response. RESULTS Protein corona fingerprinting showed that PEG surface around IONP promoted a selective adsorption of complement recognition molecules which would be responsible for the complement system activation. Furthermore, IONP-PEG activated in vitro, the complement system and induced a substantial increment of C3a and C4a anaphylatoxins while IONP-bare and IONP-PVP did not. In vivo IONP-PEG induced an increment in complement activation markers (C5a and C5b-9), and proinflammatory cytokines (IL-1β, IL-6, TNF-α). CONCLUSION The engineering of nanoparticles must incorporate the association between complement proteins and nanomedicines, which will regulate the immunostimulatory effects through a selective adsorption of plasma proteins and will enable a safer application of IONP in human therapy.
Collapse
Affiliation(s)
- V Escamilla-Rivera
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| | - A Solorio-Rodríguez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| | - M Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| | - O Lozano
- Namur Nanosafety Centre, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
- Research Centre for the Physics of Matter and Radiation, University of Namur, Namur, Belgium
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, México
| | - S Lucas
- Namur Nanosafety Centre, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
- Research Centre for the Physics of Matter and Radiation, University of Namur, Namur, Belgium
| | - A Chagolla-López
- Departmento de Biotecnología y Bioquímica, CINVESTAV-IPN, Unidad Irapuato, Irapuato, México
| | - R Winkler
- Departmento de Biotecnología y Bioquímica, CINVESTAV-IPN, Unidad Irapuato, Irapuato, México
- Max Planck Institute for Chemical Ecology, Mass Spectrometry Group, Beutenberg Campus, Jena, Germany
| | - A De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| |
Collapse
|
21
|
Nordli HR, Pukstad B, Chinga-Carrasco G, Rokstad AM. Ultrapure Wood Nanocellulose—Assessments of Coagulation and Initial Inflammation Potential. ACS APPLIED BIO MATERIALS 2019; 2:1107-1118. [DOI: 10.1021/acsabm.8b00711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Henriette R. Nordli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Brita Pukstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | | | - Anne M. Rokstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Centre of Molecular Inflammation Research, NO-7491 Trondheim, Norway
- Clinic of Surgery, Centre for Obesity, St. Olavs University Hospital, NO-2006 Trondheim, Norway
| |
Collapse
|
22
|
Liu L, Sha R, Yang L, Zhao X, Zhu Y, Gao J, Zhang Y, Wen LP. Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41197-41206. [PMID: 30398340 DOI: 10.1021/acsami.8b17474] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inflammasomes, a critical component of the innate immune system, mediate much of the inflammatory response manifested by engineered nanomaterials. Iron oxide nanoparticles (IONPs), a type of nanoparticles that have gained widespread acceptance in preclinical and clinical settings, are known to induce inflammasome activation, but how morphology affects the inflammasome-activating property of IONPs has not been addressed. In this report, we have synthesized four morphologically distinct IONPs having the same aspect ratio and similar surface charge, thus offering an ideal system to assess the impact of morphology on nanoparticle-elicited biological effect. We show that morphology was a critical determinant for IONP-induced IL-1β release and pyroptosis, with the octapod and plate IONPs exhibiting significantly higher activity than the cube and sphere IONPs. The inflammasome-activating capacity of different IONPs correlated with their respective ability to elicit intracellular reactive oxygen species generation, lysosomal damage, and potassium efflux, three well-known mechanisms for nanoparticle-facilitated inflammasome activation. Furthermore, we demonstrate that the release of IL-1β induced by IONPs was only partly mediated by NLRP3, suggesting that inflammasomes other than NLRP3 are also involved in IONP-induced inflammasome activation. Our results may have implications for designing safer nanoparticles for in vivo applications.
Collapse
Affiliation(s)
- Liu Liu
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Rui Sha
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Lijiao Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiaomin Zhao
- Department of Colorectal & Anal Surgery, Guangzhou First People's Hospital, School of Medicine , South China University of Technology , Guangzhou , Guangdong 510180 , China
- Nanobio Laboratory, Institute of Life Sciences , South China University of Technology , Guangzhou , Guangdong 510006 , China
| | - Yangyang Zhu
- Department of Colorectal & Anal Surgery, Guangzhou First People's Hospital, School of Medicine , South China University of Technology , Guangzhou , Guangdong 510180 , China
- Nanobio Laboratory, Institute of Life Sciences , South China University of Technology , Guangzhou , Guangdong 510006 , China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yunjiao Zhang
- Department of Colorectal & Anal Surgery, Guangzhou First People's Hospital, School of Medicine , South China University of Technology , Guangzhou , Guangdong 510180 , China
- Nanobio Laboratory, Institute of Life Sciences , South China University of Technology , Guangzhou , Guangdong 510006 , China
| | - Long-Ping Wen
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| |
Collapse
|
23
|
Wolf-Grosse S, Mollnes TE, Ali S, Stenvik J, Nilsen AM. Iron oxide nanoparticles enhance Toll-like receptor-induced cytokines in a particle size- and actin-dependent manner in human blood. Nanomedicine (Lond) 2018; 13:1773-1785. [PMID: 30084726 DOI: 10.2217/nnm-2017-0362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: To assess the effects of different-sized iron oxide nanoparticles (IONPs) on inflammatory responses in human whole blood. Materials & methods: Human whole blood with and without 10 and 30 nm IONPs was incubated with Toll-like receptor (TLR) ligands. Cytokine levels, complement activation, reactive oxygen species and viability were determined. Results: The 10 nm IONPs enhanced the TLR2/6, TLR4 and partly TLR8-mediated cytokine production, whereas the 30 nm IONPs partly enhanced TLR2/6 and decreased TLR8-mediated cytokine production. Particle-mediated enhancement of TLR4-induced cytokines could not be explained by complement activation, but was dependent on TLR4/MD2 and CD14, as well as actin polymerization. Conclusion: The IONPs differentially affected the TLR ligand-induced cytokines, which has important implications for biomedical applications of IONPs.
Collapse
Affiliation(s)
- Susann Wolf-Grosse
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science & Technology, 7491 Trondheim, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodø, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research & Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Syed Ali
- Division of Neurotoxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 501, USA
| | - Jørgen Stenvik
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science & Technology, 7491 Trondheim, Norway
| | - Asbjørn M Nilsen
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway
| |
Collapse
|
24
|
Chen S, Chen S, Zeng Y, Lin L, Wu C, Ke Y, Liu G. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages. J Appl Toxicol 2018; 38:978-986. [DOI: 10.1002/jat.3606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shuzhen Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Suyun Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Yun Zeng
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Lin Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Chuang Wu
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Yanyan Ke
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Microbiology and Immunology; Xiamen Medical College; Xiamen 361023 China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health; Xiamen University; Xiamen 361102 China
| |
Collapse
|
25
|
Nanoparticle effect on neutrophil produced myeloperoxidase. PLoS One 2018; 13:e0191445. [PMID: 29346422 PMCID: PMC5773199 DOI: 10.1371/journal.pone.0191445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles affect the immune system as they may interact directly with immune cells and activate them. However, it is possible that nanoparticles also interact with released cytokines and immunologically active enzymes. To test this hypothesis, the activity of myeloperoxidase released from activated neutrophils was measured in the presence of nanoparticles with different chemistry and size. In high concentrations of nanoparticles, myeloperoxidase activity is decreased whereas in low concentrations of nanoparticles the activity is increased. The effect of the nanoparticles on myeloperoxidase is dependent on the total protein concentration as low concentrations of bovine serum albumin together with nanoparticles further increase the myeloperoxidase activity. The results herein show that nanoparticles affect the immune response not only at the cellular level but also on released immune effectors. In particular, they show that the nanoparticle effect on myeloperoxidase activity in the neutrophil degranulation environment is the result of an intricate interplay between the enzyme and protein concentrations in the environment and the available surface area on the nanoparticle.
Collapse
|