1
|
Gong L, Chang L, Chen S, Wei X, Du H, Cheng J, Chen X, Yuan Z, Zhao P, Geng M, Yang H, Cai K, Dai L. Multifunctional injectable hydrogel with self-supplied H 2S release and bacterial inhibition for the wound healing with enhanced macrophages polarization via interfering with PI3K/Akt pathway. Biomaterials 2025; 318:123144. [PMID: 39892016 DOI: 10.1016/j.biomaterials.2025.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Hydrogen sulfide (H2S) gas therapy is beneficial for accelerating wound healing and alleviating the inflammatory process, but is seriously hindered by insufficient delivery and unsustainable release in vivo. This study presents a multifunctional injectable hydrogel, OC@ε-PL-SATO, composed of oxidized hyaluronic acid and N-acetylcysteine (NAC) as an initiator, carboxymethyl chitosan and S-aroylthiooxime modified ε-Poly-(l-lysine) (ε-PL-SATO). ε-PL-SATO is a NAC-responsive H2S donor. OC@ε-PL-SATO hydrogel is designed for the desired wound healing process, with rapid gelation (<30 s) and a sustained H2S release. After mixing and gelling, H2S could be long-term released from the hydrogel and effectively drives macrophages toward M2 polarization, thereby ameliorating the inflammatory response. Revealed by transcriptome analysis, the underlying mechanism is that OC@ε-PL-SATO hydrogel releasing H2S inhibits LPS-mediated inflammatory responses in RAW264.7 cells by interfering with phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling and NF-κB activation. Furthermore, the OC@ε-PL-SATO hydrogel effectively eliminates the bacterial burden and alleviates the accompanying inflammation in a rat model of cutaneous wound infection. Importantly, the sustained generation of H2S gas significantly promotes angiogenesis and collagen deposition, ultimately accelerating the wound repair. In conclusion, this study provides a multifunctional injectable hydrogel with rapid gelatinization and continuous H2S release for accelerating the infected wound healing.
Collapse
Affiliation(s)
- Liyang Gong
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518063, Shenzhen, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068, Xi'an, China
| | - Siyu Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xuan Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huiping Du
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiamin Cheng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoxuan Chen
- First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Zhang Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518063, Shenzhen, China.
| | - Pan Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Meijuan Geng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518063, Shenzhen, China
| |
Collapse
|
2
|
Khademi R, Hosseini MA, Kharaziha M. An injectable gelatin methacrylate containing surface-imprinted chitosan-modified bioglass microspheres for potential periodontitis treatment. Int J Biol Macromol 2025; 302:140561. [PMID: 39894129 DOI: 10.1016/j.ijbiomac.2025.140561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Periodontitis, a chronic inflammatory condition triggered by bacterial infection, leads to the gradual breakdown of the structures supporting teeth. Effective nonsurgical management of this disease necessitates advanced technologies that counter bacterial presence and stimulate bone repair. The purpose of this study is to create a multifunctional composite hydrogel by combining gelatin methacrylate (GelMA) with surface-imprinted chitosan-modified bioglass (MIP) particles for the controlled release of doxycycline (DOX). Findings indicate that incorporating MIP particles plays a key role in modulating the swelling ratio, degradability, wettability, rheological behavior, and mechanical performances of composite hydrogels. Additionally, these injectable hydrogels are bioactive, promoting in vitro formation of bone-like apatite while providing rapid in vitro localized hemostasis, along with antioxidant and antibacterial effects against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, depending on MIP particle concentration. Notably, the MIP particles could improve cellular responses, supporting better spreading and osteogenic differentiation of human dental pulp stem cells (hDPSCs) in both basic and osteogenic media, driven by optimal bioglass ion release and DOX. Overall, these injectable composite hydrogels show promising features as a nonsurgical therapeutic strategy for periodontal disease.
Collapse
Affiliation(s)
- Reihaneh Khademi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
3
|
Ma DJ, Li TH, Yang SY, Yu JJ, Li ST, Yu Y, Liu Y, Zang J, Kong L, Li XT. Self-assembling Bletilla polysaccharide nanogels facilitate healing of acute and infected wounds via inflammation control and antibacterial activity. Int J Biol Macromol 2025; 299:140125. [PMID: 39842574 DOI: 10.1016/j.ijbiomac.2025.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Wound healing is one of the fundamental problems faced by the medical profession. Thus, there is a need for the development of biomaterials that are safe, economically viable, possess anti-inflammatory and antibacterial characteristics, and enhance wound healing. In this study, we designed a nanomicelle of Bletilla striata polysaccharide (BSP) self-loaded with Azithromycin (AZI). The properties are improved by physically blending Carbomer 940 (CBM) with Gelatin (GEL) to serve as the hydrogel matrix. The preparation was made by combining the nanomicelle, used as the precursor solution, with the gel matrix. It was designed to treat wound infections and promote healing. Relevant experiments indicate its excellent biocompatibility. The hydrogel not only promotes cell migration, proliferation, angiogenesis, and collagen deposition associated with skin healing, but also regulates the polarization of macrophages from the M1 to M2 phenotype, as well as the expression of related factors. Additionally, in vitro experiments demonstrate its good antibacterial activity. In addition, we demonstrated the gel's anti-inflammatory, antibacterial, and pro-healing effects in acute wounds and methicillin-resistant Staphylococcus aureus (MRSA) wounds. Therefore, the nanomicellar gel enhances antibacterial activity and related immune regulation, offering a new direction in the treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- De-Jin Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Tian-Hua Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Su-Yu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Jun-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Shu-Tong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| |
Collapse
|
4
|
Hou B, Cai W, Zhang S, Xu A, Wen Y, Wang Y, Zhu X, Wang F, Pan L, Qiu L, Sun H. Sustained-Release H 2S Nanospheres Regulate the Inflammatory Microenvironment of Wounds, Promote Angiogenesis and Collagen Deposition, and Accelerate Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2519-2534. [PMID: 39966083 DOI: 10.1021/acsabm.4c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diabetic wounds are blocked in the inflammatory stage, growth factors are degraded, and blood vessels are difficult to regenerate, leading to continuous necrosis and nonhealing of the wound. Hydrogen sulfide (H2S) plays an important role in the pathophysiological process of wound healing and has a long history of treating skin diseases. Although the sulfide salt solution is the preferred donor of exogenous H2S, its rapid release rate, excess production, and difficulty in accurately controlling the dose limit its use. Herein, we developed H2S sustained-release nanospheres NaHS@MS@LP for the treatment of diabetic wounds. NaHS@MS@LP nanosphere was composed of a NaHS-loaded mesoporous silicon core and a DSPE-PEG liposome outer membrane. When NaHS@MS@LP nanospheres were used to treat the wound of diabetic rats, mesoporous silicon was delivered into the cells and the loaded NaHS slowly released H2S through hydrolysis, participating in all stages of wound healing. In conclusion, NaHS@MS@LP nanospheres regulated the inflammatory microenvironment of wound skin by inducing the transformation of macrophages into M2 type and promoted angiogenesis and collagen deposition to accelerate wound healing in diabetic rats. Our findings provide strategies for the treatment of chronic wounds, including but not limited to diabetic wounds.
Collapse
Affiliation(s)
- Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Anjing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yutong Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Fangming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214125, China
| | - Lin Pan
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
5
|
Camacho-Cardenosa M, Pulido-Escribano V, Estrella-Guisado G, Dorado G, Herrera-Martínez AD, Gálvez-Moreno MÁ, Casado-Díaz A. Bioprinted Hydrogels as Vehicles for the Application of Extracellular Vesicles in Regenerative Medicine. Gels 2025; 11:191. [PMID: 40136896 PMCID: PMC11941778 DOI: 10.3390/gels11030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Three-dimensional bioprinting is a new advance in tissue engineering and regenerative medicine. Bioprinting allows manufacturing three-dimensional (3D) structures that mimic tissues or organs. The bioinks used are mainly made of natural or synthetic polymers that must be biocompatible, printable, and biodegradable. These bioinks may incorporate progenitor cells, favoring graft implantation and regeneration of injured tissues. However, the natures of biomaterials, bioprinting processes, a lack of vascularization, and immune responses are factors that limit the viability and functionality of implanted cells and the regeneration of damaged tissues. These limitations can be addressed by incorporating extracellular vesicles (EV) into bioinks. Indeed, EV from progenitor cells may have regenerative capacities, being similar to those of their source cells. Therefore, their combinations with biomaterials can be used in cell-free therapies. Likewise, they can complement the manufacture of bioinks by increasing the viability, differentiation, and regenerative ability of incorporated cells. Thus, the main objective of this review is to show how the use of 3D bioprinting technology can be used for the application of EV in regenerative medicine by incorporating these nanovesicles into hydrogels used as bioinks. To this end, the latest advances derived from in vitro and in vivo studies have been described. Together, these studies show the high therapeutic potential of this strategy in regenerative medicine.
Collapse
Affiliation(s)
- Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Guadalupe Estrella-Guisado
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - Aura D. Herrera-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.C.-C.); (V.P.-E.); (G.E.-G.); (A.D.H.-M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
6
|
Kang J, Tong Y. Novel formulation of curcumin-loaded chlorhexidine drug combined with gold nanoparticles for effective therapeutic agent against urinary tract infections. J Microencapsul 2025; 42:177-190. [PMID: 39945019 DOI: 10.1080/02652048.2025.2457667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025]
Abstract
AIM This study investigates a novel treatment for urinary tract infections (UTIs) caused by Staphylococcus aureus, Escherichia coli, and Klebsiella pathogenic bacterial strains. METHODS The Cur/Chx/Au composite matrix was synthesised in one pot by solution reduction and examined for functional groups and surface morphology by FT-IR, UV-DRS, HR-TEM, and TGA. In vitro, microbial growth inhibition evaluation and pathogen biofilm studies assessed the composite's antibacterial capacity. RESULTS Cur/Chx/Au exhibit mean diameter from 30 ± 5.2 nm, PDI 0.50 ± 0.05, and a zeta potential of -9.56 ± 1.84. The inhibition zones for S. aureus and E. coli were 16 ± 1.2 mm and 14 ± 0.8 mm, respectively, with an anti-inflammatory inhibition rate of 89.96%. The composite material's biocompatibility was further tested utilising in-vitro MTT, cell proliferation, and wound scratch assays in NHI 3T3 cells. CONCLUSION Our findings demonstrate that the combination of Cur/Chx/Au composite matrix is a promising formulation for UTI treatment.
Collapse
Affiliation(s)
- Jian Kang
- Department of Nephrology, Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanqing Tong
- Department of Nephrology, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
de Mello L, Castelletto V, Cavalcanti L, Seitsonen J, Hamley I. Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly. J Pept Sci 2025; 31:e70002. [PMID: 39904960 PMCID: PMC11794677 DOI: 10.1002/psc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Lipoic acid is a biocompatible compound with antioxidant activity that is of considerable interest in cosmetic formulations, and the disulfide group in the N-terminal ring confers redox activity. Here, we study the self-assembly and aspects of the bioactivity of a lipopeptide (peptide amphiphile) comprising the KTTKS collagen-stimulating pentapeptide sequence conjugated to an N-terminal lipoic acid chain, lipoyl-KTTKS. Using SAXS, SANS and cryo-TEM, lipoyl-KTTKS is found to form a population of curly fibrils (wormlike micelles) above a critical aggregation concentration. Upon chemical reduction, the fibrils (and β-sheet structure) are disrupted because of the breaking of the disulfide bond, which produces dihydrolipoic acid. Lipoyl-KTTKS also undergoes photo-degradation in the presence of UV radiation. Through cell assays using fibroblasts, we found that lipoyl-KTTKS has excellent cytocompatibility across a wide concentration range, stimulates collagen production, and enhances the rate of cell coverage in a simple in vitro scratch assay of 'wound healing'. Lipoyl-KTTKS thus has several notable properties that may be useful for the development of cosmetics, cell scaffolds or tissue engineering materials.
Collapse
Affiliation(s)
- Lucas R. de Mello
- School of Chemistry, Food Biosciences and PharmacyUniversity of Reading, WhiteknightsReadingUK
| | - Valeria Castelletto
- School of Chemistry, Food Biosciences and PharmacyUniversity of Reading, WhiteknightsReadingUK
| | - Leide Cavalcanti
- ISIS Neutron & Muon Source, Science and Technology Facilities CouncilRutherford Appleton LaboratoryHarwellUK
| | | | - Ian W. Hamley
- School of Chemistry, Food Biosciences and PharmacyUniversity of Reading, WhiteknightsReadingUK
| |
Collapse
|
8
|
Dong M, Ma X, Li F. Dedifferentiated fat cells-derived exosomes (DFATs-Exos) loaded in GelMA accelerated diabetic wound healing through Wnt/β-catenin pathway. Stem Cell Res Ther 2025; 16:103. [PMID: 40022232 PMCID: PMC11871660 DOI: 10.1186/s13287-025-04205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Diabetic foot ulcers pose significant challenges for clinicians worldwide. Cell-free exosome therapy holds great potential for wound healing. Dedifferentiated fat cells (DFATs) have been used in tissue engineering and regeneration, but there are no reports on the use of DFATs-derived exosomes in diabetic wound repair. OBJECTIVES This study aims to investigate whether DFATs-Exos accelerated diabetic wound healing and explore its potential mechanism. METHODS In vitro, DFATs-Exos were harvested from adipose tissue and used to treat endothelial cells (ECs) and fibroblasts. XAV939 was used as a Wnt/β-catenin pathway inhibitor. The biocompatibility of gelatin methacryloyl (GelMA) hydrogel was assessed. In vivo, DFAT-derived exosomes were encapsulated in 10% GelMA hydrogel and applied to a diabetic wound model. Histological analysis and wound closure rates were evaluated. RESULTS DFATs-Exos promoted angiogenesis in ECs and significantly alleviated the high glucose-induced inhibition of cell proliferation and migration by activating the Wnt/β-catenin pathway. In vivo, compared to DFAT-Exos or GelMA alone, the DFAT-Exos/GelMA combination accelerated wound closure and enhanced collagen maturity. CONCLUSION The DFAT-Exos/GelMA hydrogel significantly promoted wound healing in a diabetic animal model through activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Miao Dong
- Department of Body Contouring and Fat grafting Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Xuan Ma
- Department of Body Contouring and Fat grafting Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Facheng Li
- Department of Body Contouring and Fat grafting Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
9
|
Hou Q, He X, Guo M, Li X, Zhang Z, Xu X, Xu Y, Shi Q, Han Y. Enhanced hemostatic efficacy of cryogel with copper ion-loaded mesoporous bioactive glasses for acute and persistent bleeding. J Nanobiotechnology 2025; 23:102. [PMID: 39939976 PMCID: PMC11823261 DOI: 10.1186/s12951-025-03142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025] Open
Abstract
Uncontrolled acute and persistent bleeding, as well as with infection, is a great challenge because of the high mortality during treating the patients with injuries, complex surgery or bone marrow failure. Here, we develop an external form of natural components which is based on phosphorylated methacrylated gelatin (GelMA, G) cryogel (GP) loaded with tannic acid (TA)-mixed copper ion (Cu2+) mesoporous bioactive glasses (MBG), named after GP@MBG-Cu-TA cryogel, to address the goals of reduce persistent bleeding and enhance antibacterial activity. Structurally, GP@MBG-Cu-TA cryogel is based on GP, MBG loaded with TA and Cu2+ adheres to GP via hydrogen bonding. In vitro, GP@MBG-Cu-TA cryogel displays a good biocompatibility, hemostatic and antimicrobial capability. In vivo studies, GP@MBG-Cu-TA cryogel can enhance the hemostatic effect in the liver injury in SD rats for the acute bleeding, as well as in the aplastic anemia and hemophilia A mice with tail amputation for the persistent bleeding. In addition, GP@MBG-Cu-TA cryogel accelerates the skin wound repair in the mice with the bacterial contamination at the injury site. In sum, GP@MBG-Cu-TA cryogel is not only endowed with dual function of hemostatic and antimicrobial capability, but also can stop bleeding of the objects with either normal or abnormal coagulation function. Thus, GP@MBG-Cu-TA cryogel provides a promising candidate dressing for managing bleeding and bacterial complications in clinic.
Collapse
Affiliation(s)
- Qixiu Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, 215031, China
| | - Mengting Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, 215031, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215000, China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, 215031, China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215500, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, 215000, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
10
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
11
|
Huang J, Li H, Mei Y, Yi P, Ren Y, Wang Y, Han L, Tang Q, Liu D, Chen W, An Y, Hu C. An Injectable Hydrogel Bioimplant Loaded with Engineered Exosomes and Triple Anti-Tuberculosis Drugs with Potential for Treating Bone and Joint Tuberculosis. Int J Nanomedicine 2025; 20:1285-1302. [PMID: 39911262 PMCID: PMC11794387 DOI: 10.2147/ijn.s480288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose Treatment for bone and joint tuberculosis (BJTB) is challenging due to its refractory and recurrent nature. This study aimed to develop a bioimplantable scaffold with osteoinductive and antituberculosis characteristics to treat BJTB. Methods This scaffold is built on oxidized hyaluronic acid and carboxymethyl chitosan hydrogel mixed with hydroxyapatite as a bone tissue engineered material. In order to make the scaffold have the biological activity of promoting tissue repair, the engineered exosomes (Exoeng) were added innovatively. In addition, drug-loaded liposomes equipped with an aldehyde group on the surface are cross-linked with the amine group of the hydrogel skeleton to participate in the Schiff base reaction. Results The designed scaffold has characteristics of self-healing and injectability exhibit excellent anti-tuberculosis and promoting bone repair activities. Exoeng strongly stimulates cellular angiogenesis and osteogenic differentiation. The liposomes coated in hydrogel can release three kinds of anti-tuberculosis drugs smoothly and slowly, achieving a long term anti-tuberculosis. Conclusion The composite bio-scaffold shows good tissue repair and long-term anti-tuberculosis abilities, which expected to provide a viable treatment plan for bone-related BJTB.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Han Li
- Department of Pharmacy, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuting Mei
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Pengcheng Yi
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunyao Ren
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunjuan Wang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Limei Han
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wei Chen
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanli An
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhong da Hospital, Southeast University, Nanjing, JiangsuPeople’s Republic of China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Li H, Li D, Wang X, Zeng Z, Pahlavan S, Zhang W, Wang X, Wang K. Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties. ACS Biomater Sci Eng 2025; 11:33-54. [PMID: 39615049 DOI: 10.1021/acsbiomaterials.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Sufficient vascular system and adequate blood perfusion is crucial for ensuring nutrient and oxygen supply within biomaterials. Actively exploring the optimal physical properties of biomaterials in various application scenarios has provided clues for enhancing vascularization within materials, leading to improved outcomes in tissue engineering and clinical translation. Here we focus on reviewing the physical properties of biomaterials, including pore structure, surface topography, and stiffness, and their effects on promoting vascularization. This angiogenic capability has the potential to provide better standardized research models and personalized treatment strategies for bone regeneration, wound healing, islet transplantation and cardiac repair.
Collapse
Affiliation(s)
- Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ziyuan Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Han Q, Zhao D, Wang X, Shang M, Zhou W, Li Q, Song H. Composite barrier membrane for bone regeneration: advancing biomaterial strategies in defect repair. RSC Adv 2025; 15:1290-1299. [PMID: 39816171 PMCID: PMC11733738 DOI: 10.1039/d4ra07623k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
Bone defects represent a significant challenge in clinical practice, driving the need for innovative solutions that effectively support bone regeneration. Barrier membranes, due to playing a critical role in creating an environment conducive to bone regeneration by preventing the infiltration of non-osteogenic tissues, are widely applied to bone repair. However, inadequate spatial stability and osteogenesis-promoting ability often limit current barrier membranes. In response to these challenges, we have developed an advanced gelatin methacrylate/hydroxyapatite/hydroxyapatite membrane (GelMA/HAp/HAM) composite biomaterial designed as a barrier membrane with superior spatial stability and optimal degradation properties. The GelMA/HAp/HAM composite features a bilayer structure, with each layer possessing distinct properties: the dense hydroxyapatite membrane (HAM) acts as a barrier to prevent connective tissue infiltration. In contrast, the porous gelatin methacrylate/hydroxyapatite (GelMA/HAp) hydrogel layer promotes osteogenesis. Studies have demonstrated the composite's excellent biocompatibility and its significant osteogenic differentiation enhancement. This composite membrane holds great promise for clinical applications in bone defect repair, providing a new avenue for improving patient outcomes in regenerative medicine.
Collapse
Affiliation(s)
- Qingbin Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
- Department of Oral and Maxillofacial Surgery, Linyi People's Hospital Lin'yi 276000 China
| | - Delu Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
| | - Xiaohong Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
| | - Mengyao Shang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
| | - Wenbin Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
| | - Qing Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
| | - Hui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
| |
Collapse
|
14
|
Pulat G, Çelebi NN, Bilgiç E. The Effect of Immobilization Methods of P9-4 Antimicrobial Peptide Onto Gelatin Methacrylate on Multidrug-Resistant Bacteria: A Comparative Study. Macromol Biosci 2025; 25:e2400324. [PMID: 39230389 PMCID: PMC11727820 DOI: 10.1002/mabi.202400324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Wound dressings play a crucial role in wound management by providing a protective barrier and creating an optimal environment for healing. Photocrosslinkable hydrogels, such as gelatin methacrylate (GelMA), have gained attention for their unique properties but often lack antimicrobial activity. To enhance their effectiveness, researchers are exploring methods to incorporate antimicrobial agents into photocrosslinkable hydrogel dressings. Immobilization of antimicrobial peptides (AMPs) onto hydrogel matrices may be achieved through physical or chemical methods. Although, chemical immobilization, using techniques like EDC/NHS chemistry, has shown promise in enhancing antimicrobial properties of hydrogels, the capacity for immobilization may be limited by the structure of hydrogel. Physical methods, such as immersing, offer alternatives but may have different efficacy and biocompatibility. The study aims to chemically immobilize GelMA with P9-4 AMP by photoinduced conjugation and EDC/NHS chemistry and compare its antimicrobial efficacy with a physical immobilization method. Chemical immobilization by EDC/NHS chemistry significantly enhances the antimicrobial effect of GelMA hydrogels against multi-drug resistant Psuedomonas aeruginosa (MDR P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) while maintaining favorable biocompatibility. Study highlights the potential of AMP-functionalized GelMA as advanced wound dressings for reducing infections caused by antibiotic-resistant bacteria and offers a promising approach for future research in wound management.
Collapse
Affiliation(s)
- Günnur Pulat
- Department of Biomedical Engineeringİzmir Katip Çelebi Universityİzmir35620Turkey
| | - Nisa Nilsu Çelebi
- Department of Biomedical Engineeringİzmir Katip Çelebi Universityİzmir35620Turkey
| | - Eda Bilgiç
- Department of Biomedical Engineeringİzmir Katip Çelebi Universityİzmir35620Turkey
| |
Collapse
|
15
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Li Q, Xiao X, Yan T, Song D, Li L, Chen Z, Zhong Y, Deng W, Liu X, Song Y, Wang L, Wang Y. Heterojunction Nanozyme Hydrogels Containing Cu-O-Zn Bonds with Strong Charge Transfer for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68950-68966. [PMID: 39632402 DOI: 10.1021/acsami.4c15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The complex microenvironment of persistent inflammation and bacterial infection is a major challenge in chronic diabetic wounds. The development of nanozymes capable of efficiently scavenging reactive oxygen species (ROS) is a promising method to promote diabetic wound healing. However, many nanozymes show rather limited antioxidant activity and ROS-dependent antibacterial effects under certain circumstances, further weakening their ability to scavenge ROS. To meet these challenges, electronically regulated bioheterojunction (E-bio-HJ) nanozyme hydrogels derived from metal-organic frameworks (MOFs) were designed and prepared via an interface engineering strategy. Owing to the electron transfer and redistribution effects of the abundant and highly dispersed Cu-O-Zn sites at the heterogeneous interface, the E-bio-HJ nanozymes exhibited catalase (CAT)-like activity with ultrahigh hydrogen peroxide affinity (Km = 25.76 mM) and sustained ROS consumption. In addition, owing to the enhanced interfacial effect of E-bio-HJ and the good biocompatibility and cell adhesion of the methacryloylated gelatin (Gel) hydrogel, the E-bio-HJ gelatin hydrogel (E-bio-HJ/Gel) further reduced inflammation by inducing macrophage transformation to the M2 phenotype, accompanied by excellent antimicrobial properties and enhanced cell migration, angiogenesis, and collagen deposition, which synergistically promoted diabetic wound healing. This highly effective and comprehensive strategy offers a new approach for the rapid healing of diabetic wounds.
Collapse
Affiliation(s)
- Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuanyu Xiao
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyou Yan
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Song
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyu Chen
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuting Zhong
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Deng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu 611730, China
| | - Xiaoyan Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610065, China
| | - Yueming Song
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Anuradha U, Bhavana V, Chary PS, Rajana N, Parida KK, Kalia NP, Khatri DK, Mehra NK. Thymoquinone loaded nanoemulgel in streptozotocin induced diabetic wound. Nanomedicine (Lond) 2024; 19:2577-2604. [PMID: 39569618 DOI: 10.1080/17435889.2024.2422805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: To treat diabetic wound healing with a novel Thymoquinone (TQ) loaded nanoformulation by using combination of essentials oils.Methods: TQ nanoemulsion (NE) was developed with seabuckthorn & lavender essential oils by phase inversion method and mixture design. Further, DIAGEL is obtained by incorporating NE into 1% carbopol®934. Furthermore, particle size, polydispersity index, thermodynamic stability studies, rheology, spreadability, drug content, in-vitro drug release, ex-vivo permeation, anti-oxidant assay, antimicrobial studies, angioirritance, HAT-CAM assay, in-vitro and in-vivo studies were determined.Results: NE has a particle size of 17.79 ± 0.61 nm, 0.206 ± 0.012 PDI & found to be thermodynamically stable. DIAGEL exhibited pseudoplastic behavior, sustained drug release, better permeation of TQ and a drug content of 98.54 ± 0.08%. DIAGEL stored for 6 months at room temperature and 2-8°C showed no degradation. Further, an improved angiogenesis, absence of angio-irritancy, remarkable antioxidant and antimicrobial activities against Candida albicans & S. aureus were observed. Cytotoxicity analysis revealed nearly 2.28 -folds higher IC50 value than drug solution. Furthermore, inflammatory mediators were reduced in DIAGEL treated animal groups. The histopathological studies confirmed skin healing with regeneration and granulation of tissue.Conclusion: The novel formulation has strong anti-inflammatory, angiogenesis, antioxidant and appreciable diabetic wound healing properties.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kishan Kumar Parida
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
18
|
Jiang Q, Sun Y, Si X, Cui H, Li J, Bao Y, Wang L, Li B. Anthocyanin-loaded milk-derived extracellular vesicles nano-delivery system: Stability, mucus layer penetration, and pro-oxidant effect on HepG2 cells. Food Chem 2024; 458:140152. [PMID: 38944922 DOI: 10.1016/j.foodchem.2024.140152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Anthocyanin (ACN) has attracted considerable attention due to its wide range of physiological effects. However, challenges such as poor stability and limited bioavailability have hindered its utilization in functional foods. To address these issues, this research utilized milk-derived extracellular vesicles (MEV) as carriers for encapsulating and binding ACN through various techniques, including ultrasonic, electroporation, saponin treatment, incubation, and freeze-thaw cycles. The objective of these approaches was to enhance the stability of ACN and improve its oral delivery. Notably, the ACN-loaded MEV (MEV-ACN) prepared through ultrasonic exhibited small particle sizes and good stability under processing, storage, and simulated digestion conditions. Cellular studies revealed that MEV-ACN exhibited pro-oxidant properties and induced oxidative stress, leading to cell apoptosis with greater efficacy compared to free ACN. These findings suggest that encapsulating ACN within MEV can significantly enhance its processing and oral stability, as well as strengthening its dietary defense capabilities in anti-tumor applications.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang 110001, China..
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Li Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| |
Collapse
|
19
|
Zhang W, Li Y, Wei Y, Jiang Y, Hu Z, Wei Q. Antibacterial carboxymethyl chitosan hydrogel loaded with antioxidant cascade enzymatic system for immunoregulating the diabetic wound microenvironment. Int J Biol Macromol 2024; 282:137539. [PMID: 39537053 DOI: 10.1016/j.ijbiomac.2024.137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Diabetic wound healing faces several complex challenges, such as hypoxia, oxidative stress, and bacterial infections, which severely inhibit the wound-healing process. Herein, a quaternary ammonium salt-crosslinked carboxymethyl chitosan hydrogel (TPC) with excellent antioxidant and antibacterial properties was developed to immunoregulate the diabetic wound microenvironment. The TPC hydrogel was prepared by first mixing carboxymethyl chitosan (CMCS) and protocatechualdehyde (PA), followed by the addition of a quaternary ammonium cross-linker (TSPBA) and a superoxide dismutase (SOD)-catalase (CAT) cascade system. The immobilized SOD and CAT retained their activity, continuously converting endogenous ·O2- and H2O2 to O2 and H2O. PA also provided the TPC hydrogel excellent oxygen and nitrogen radical scavenging capacity. The quaternary ammonium groups in TSPBA significantly enhanced the inherent antibacterial ability of CMCS-based hydrogels. In diabetic wound-healing experiments, this porous and adhesive TPC hydrogel effectively closed wounds and regenerated skin tissue, resulting in shorter wound edges, thicker granulation, and higher collagen deposition levels compared with other groups. The TPC hydrogel also promoted macrophage polarization toward the M2 phenotype, accelerating wound healing by upregulating IL-10 expression, downregulating IL-6 expression, and enhancing angiogenesis. These results demonstrate the great potential of TPC hydrogel as a promising therapeutic dressing for treating diabetic wounds.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuxi Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yixing Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
Zhang S, Jiang T, Li M, Sun H, Wu H, Wu W, Li Y, Jiang H. Graphene-Based Wound Dressings for Wound Healing: Mechanism, Technical Analysis, and Application Status. ACS Biomater Sci Eng 2024; 10:6790-6813. [PMID: 39467733 DOI: 10.1021/acsbiomaterials.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The development of novel wound dressings is critical in medical care. Graphene and its derivatives possess excellent biomedical properties, making them highly suitable for various applications in medical dressings. This review provides a comprehensive technical analysis and the current application status of graphene-based medical dressings. Initially, we discuss the chemical structure and the fabrication method of graphene and its derivatives. We then provide a detailed summary of the mechanisms by which graphene materials promote wound repair across the four stages of wound healing. Subsequently, we categorize the types of graphene-based wound dressings and analyze corresponding characteristics. Finally, we analyze the challenges encountered at present and propose solutions regarding future development trends. This paper aims to serve as a reference for further research in skin tissue engineering and the development of innovative graphene-based medical dressings.
Collapse
Affiliation(s)
- Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No. 157 Health Road, Harbin 150001, People's Republic of China
| | - Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| |
Collapse
|
21
|
Chen S, Liao T, Zhao S, Wang B, Yu L, Jiang T, Hao T, Wu W, Li C, Shen F, Zhang Q. High strength "breathable" glycosilicone/Aloe vera polysaccharide-based gel dressing for efficient wound repair. Int J Biol Macromol 2024; 281:136293. [PMID: 39393727 DOI: 10.1016/j.ijbiomac.2024.136293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Medical wound dressings are effective in protecting wounds, maintaining moisture, creating an optimal healing environment and accelerating wound healing. However, their deficiencies in mechanical properties, adhesion and prevention of adhesion to the wound bed have been identified as limiting factors for their therapeutic efficacy in wound healing. To address these issues, we prepared glycosilicone gel dressings consisting of hydrophobic polysiloxanes and highly hydrophilic polysaccharides via ester exchange and silicone hydrogen addition reactions. Silicone gel dressings exhibit skin-like "respiratory" properties, with good permeability to O2 and CO2. Additionally, elongation and other important parameters are similar to those of the skin, which provides a foundation for the application of silicone gels in the field of wound dressings. The introduction of Aloe vera polysaccharide (AP) results in the glycosilicone gel exhibiting certain mechanical properties, including a tensile strength of 0.35 MPa and an adhesion force of 10 N/m. Furthermore, a mouse model of total skin defect demonstrated that the wound healing rate of the mice on the 12th day was 98 %, which effectively promotes wound healing. Consequently, the glycosilicone gel is anticipated to be an optimal wound dressing.
Collapse
Affiliation(s)
- Shan Chen
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liao
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Simo Zhao
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Bin Wang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Liang Yu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tonghui Hao
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wu
- Engineering Center for Superlubricity, Jihua Laboratory, Foshan 528200, China
| | - Cao Li
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Qunchao Zhang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
22
|
Ye J, Yin X, Xie S, Hua Q, Zhu J, Chen J, Zheng W, Cai L. Methacrylated hyaluronic acid/laponite photosensitive, sustained-release hydrogel loaded with bilobalide for enhancing random flap survival through mitigation of endoplasmic reticulum stress. Int J Biol Macromol 2024; 281:136277. [PMID: 39370062 DOI: 10.1016/j.ijbiomac.2024.136277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Random flaps are extensively utilized in plastic surgery due to their flexibility compared to traditional axial vascular system arrangements and their resemblance to injured skin in color, thickness, and texture. Despite these advantages, they are susceptible to ischemia-reperfusion injuries and subsequent necrosis post-transplantation. Bilobalide (BB), a sesquiterpene compound derived from Ginkgo biloba, exhibits notable antioxidant and anti-inflammatory properties and is commonly used to treat ischemiareperfusion injuries. However, its short half-life restricts its sustained efficacy in random flaps. In this study, we synthesized a multi-crosslinked, photosensitive methacryloyl hyaluronic acid(HAMA)/laponite(Lap)/bilobalide (BB) hydrogel. This dualcrosslinked hydrogel demonstrates superior mechanical properties and biocompatibility while providing a stable release of bilobalide. In vitro experiments showed that it significantly reduces edema, promotes angiogenesis, and enhances the survival of random flaps. Further network pharmacology analysis and recovery experiments suggested that the hydrogel's beneficial effects are mediated by the regulation of endoplasmic reticulum stress and specifically identified the regulation of the PERK/TXNIP/NLRP3 signaling pathway as crucial to its anti-inflammatory effects. Therefore, this HAMA/Lap/BB hydrogel promotes the survival of random flaps in rats by alleviating endoplasmic reticulum stress, providing a novel intervention strategy for the treatment of random flaps injuries.
Collapse
Affiliation(s)
- Jiangtian Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China
| | - Xinghao Yin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China
| | - Shangjing Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qianqian Hua
- The First School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jinrong Zhu
- The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China
| | - Leyi Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China.
| |
Collapse
|
23
|
Yang J, Liu Y, Deng G, Feng J, Yu H, Cen X, Li H, Huang Q, Zhang H. Thermosensitive and injectable chitosan-based hydrogel embedding umbilical cord mesenchymal stem cells for β-cell repairing in type 2 diabetes mellitus. Int J Biol Macromol 2024; 279:135546. [PMID: 39265905 DOI: 10.1016/j.ijbiomac.2024.135546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
A thermosensitive and injectable hydrogel composed of chitosan (CS), chitosan biguanide hydrochloride (CSG) and collagen (CO) could embed umbilical cord mesenchymal stem cells (UC-MSCs), then was applied for the type 2 diabetes mellitus (T2DM) treatment in vivo. UC-MSCs could adhere well on CS/CSG/CO hydrogel surface and cell division could be clearly observed. Especially, UC-MSCs maintained alive till they grew in CS/CSG/CO hydrogel for 8 days, while the amount of UC-MSCs was limited due to the steric hindrance in hydrogel. To T2DM mice contrastive treatment by intraperitoneal injection for thirteen weeks, UC-MSCs + Hydrogel group could improve the impaired glucose tolerance, maintain glucose homeostasis in vivo, and restore islet morphology for T2DM mice. The immunofluorescence staining and western blot experiments further displayed that both the nuclear antigen Ki67 for cell proliferation and pancreatic duodenal homeobox-1 (Pdx1) expression in UC-MSCs + Hydrogel group were significantly higher than the expressions in untreated T2DM group and treated UC-MSCs + PBS group, which indicated that UC-MSCs + Hydrogel elevated β cell transcriptional activity. Moreover, the positivity rates of iNOS and CD163 in UC-MSCs + Hydrogel group were generally decreased and increased, respectively, compared to those in untreated T2DM group and treated UC-MSCs + PBS group. It displayed that UC-MSCs + Hydrogel could reduce M1 macrophage expression and increase M2 macrophage polarization in T2DM mice.
Collapse
Affiliation(s)
- Jia Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China..
| | - Guodong Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jiawei Feng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Xiaoyang Cen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Haolun Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qiming Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Huiwen Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
24
|
Vijayaraghavan R, Loganathan S, Valapa RB. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Macromol Biosci 2024; 24:e2400136. [PMID: 39096155 DOI: 10.1002/mabi.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 08/05/2024]
Abstract
The complex anatomy of the cornea and the subsequent keratocyte-fibroblast transition have always made corneal stromal regeneration difficult. Recently, 3D printing has received considerable attention in terms of fabrication of scaffolds with precise dimension and pattern. In the current work, 3D printable polymer hydrogels made of GelMA/agarose are formulated and its rheological properties are evaluated. Despite the variation in agarose content, both the hydrogels exhibited G'>G'' modulus. A prototype for 3D stromal model is created using Solid Works software, mimicking the anatomy of an adult cornea. The fabrication of 3D-printed hydrogels is performed using pneumatic extrusion. The FTIR analysis speculated that the hydrogel is well crosslinked and established strong hydrogen bonding with each other, thus contributing to improved thermal and structural stability. The MTT analysis revealed a higher rate of cell proliferation on the hydrogels. The optical analysis carried out on the 14th day of incubation revealed that the hydrogels exhibit transparency matching with natural corneal stromal tissue. Specific protein marker expression confirmed the keratocyte phenotype and showed that the cells do not undergo terminal differentiation into stromal fibroblasts. The findings of this work point to the potential of GelMA/A hydrogels as a novel biomaterial for corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
25
|
Elshahawy MF, Mohamed RD, Ali AEH, Raafat AI, Ahmed NA. Electron beam irradiation developed cinnamon oil- (polyvinyl alcohol/gum tragacanth)/graphene oxide dressing hydrogels: Antimicrobial and healing assessments. Int J Biol Macromol 2024; 277:134384. [PMID: 39098683 DOI: 10.1016/j.ijbiomac.2024.134384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
This study aimed to develop hydrogel dressings for wound healing composed of gum tragacanth (TG) and polyvinyl alcohol (PVA) loaded with Graphene oxide (GO) and Cinnamon oil (CMO) using electron beam irradiation. The impact of the preparation conditions and the incorporation of GO and CMO on the characteristic properties of the prepared CMO-(PVA/TG)-GO wound dressings was evaluated. The healing-related characteristics were assessed, including fluid absorption and retention, water vapor transmission rate (WVTR), hemolytic assay, and antimicrobial potential. Wound healing efficacy was evaluated using a scratch wound healing assay. FTIR analysis verified the chemical structure, whereas scanning electron microscopy demonstrated an appropriate porosity structure necessary for optimal wound healing. The gel content increases with the initial total polymer concentration and the irradiation dose increases. Higher GO and CMO content improve the gel content and decreases swelling. WVTR decreases with the rise in CMO content. In vitro, cytotoxicity and hemolytic potency assessments confirmed their biocompatibility. The incorporation of GO and CMO enhances the antimicrobial activity and wound-healing capability. Based on the above findings, CMO-(PVA/TG)-GO dressings show promising potential as candidates for wound care.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Randa D Mohamed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
26
|
Li Y, Xia Y, Liu X, Wang J, Sun Y, Huang J, Guo Z, Jia S, Chen Y, Wang J, Wang L, Li J, Feng J, Wang L, Li X. Rational design of bioengineered recombinant collagen-like protein enhances GelMA hydrogel for diabetic wound healing. Int J Biol Macromol 2024; 280:136012. [PMID: 39326607 DOI: 10.1016/j.ijbiomac.2024.136012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Gelatin methacryloyl (GelMA) holds significant potential in tissue engineering; however, its clinical applications are often constrained by its lack of functional groups. To overcome this limitation, recombinant proteins with multiple biofunctional domains present a promising strategy for GelMA functionalization, enhancing its biological properties. In this study, we developed a rationally designed recombinant collagen-like protein (RC) engineered with multiple biofunctional domains, which demonstrated the ability to upregulate collagen 1α (COL-1α) expression in NIH-3 T3 cells. By utilizing EDC/NHS chemistry, the purified RC was conjugated to GelMA, resulting in GelMA-RC hydrogels that significantly improved cell viability and migration compared to unmodified GelMA. Subsequent in vivo studies showed that RC-modified GelMA exhibited superior wound healing efficacy, largely attributed to enhanced expression of cytokeratin-14 (CK-14) and COL-1α. These findings underscore the potential of RC-functionalized GelMA in promoting diabetic wound repair and suggest broader applicability for functionalizing other biomaterials.
Collapse
Affiliation(s)
- Yimiao Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yan Xia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xing Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Jieqi Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yinan Sun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Jinxia Huang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Zhao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Shuang Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yufang Chen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Jie Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Liping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Jiaqi Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Jian Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Liyao Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xinyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
27
|
Wang X, Yang X, Liu Z, Shen Z, Li M, Cheng R, Zhao L, Xi Y, Wang J, Sang S. 3D bioprinting of an in vitro hepatoma microenvironment model: Establishment, evaluation, and anticancer drug testing. Acta Biomater 2024; 185:173-189. [PMID: 39025391 DOI: 10.1016/j.actbio.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoning Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital of Chinese Academy of Medical Sciences Shanxi Hospital, Taiyuan 030024, China
| | | | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China.
| |
Collapse
|
28
|
Zhang Y, Wu Z, Wu J, Li T, Jiang F, Yang B. Current multi-scale biomaterials for tissue regeneration following spinal cord injury. Neurochem Int 2024; 178:105801. [PMID: 38971503 DOI: 10.1016/j.neuint.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Zhonghuan Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Junfeng Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Tingdong Li
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Fugui Jiang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Biao Yang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China.
| |
Collapse
|
29
|
Han J, Meng Q, Liu T, Lv M, Su W, Liu B, Wu J. Immunomodulatory Antibacterial Hydrogel for Wound Infection Management. Int J Nanomedicine 2024; 19:8159-8174. [PMID: 39139505 PMCID: PMC11321346 DOI: 10.2147/ijn.s472107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background Wound healing has always been a focal point in clinical work. Bacterial infections and immune microenvironment disorders can both hinder normal wound healing. Current wound dressings only serve a covering function. Developing wound dressings with antibacterial and immunomodulatory functions is crucial for aiding wound healing. To address this issue, we have developed a hydrogel with antibacterial and immunomodulatory functions for managing infected wounds. Methods The present study describes a photo-crosslinked antibacterial hydrogel composed of curcumin, silver nanoparticles-loaded reduced graphene oxide, and silk fibroin methacryloyl for the treatment of infected wounds. The study assessed its antibacterial properties and its capacity to induce macrophage M2 polarization through in vitro and in vivo experiments. Results The hydrogel demonstrates robust antibacterial properties and enhances macrophage M2 polarization in both in vitro and in vivo settings. Moreover, it accelerates the healing of infected wounds in vivo by stimulating collagen deposition and angiogenesis. Conclusion Overall, this hydrogel shows great potential in managing wound infections.
Collapse
Affiliation(s)
- Jing Han
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Qingxun Meng
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Taicheng Liu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Mengru Lv
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Wenxuan Su
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Beibei Liu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Jiannan Wu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| |
Collapse
|
30
|
Shakiba M, Pourmadadi M, Hosseini SM, Bigham A, Rahmani E, Sheikhi M, Pahnavar Z, Foroozandeh A, Tajiki A, Jouybar S, Abdouss M. A bi-functional nanofibrous composite membrane for wound healing applications. Arch Pharm (Weinheim) 2024; 357:e2400001. [PMID: 38747690 DOI: 10.1002/ardp.202400001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyede M Hosseini
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Han S, Zhang X, Li Z, Cui G, Xue B, Yu Y, Guo J, Zhang H, Yang J, Teng L. A ginsenoside G-Rg3 PEGylated long-circulating liposome for hyperglycemia and insulin resistance therapy in streptozotocin-induced type 2 diabetes mice. Eur J Pharm Biopharm 2024; 201:114350. [PMID: 38848783 DOI: 10.1016/j.ejpb.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Ginsenoside (GS), one of the main active components in ginseng, can enhance insulin sensitivity, improve the function of islet β cells, and reduce cell apoptosis in the treatment of diabetes. However, the drawbacks of high lipid solubility, poor water solubility, and low oral availability in Ginsenoside Rg3 (G-Rg3) seriously limit further application of GS. In this work, a G-Rg3 PEGylated long-circulating liposome (PEG-L-Rg3) is designed and developed to improve symptoms in type 2 diabetic mice. The as-prepared PEG-L-Rg3 with a spherical structure shows a particle size of ∼ 140.5 ± 1.4 nm, the zeta potential of -0.10 ± 0.05 mV, and a high encapsulation rate of 99.8 %. Notably, in vivo experimental results demonstrate that PEG-L-Rg3 exhibits efficient ability to improve body weight and food intake in streptozotocin-induced type 2 diabetic mice. Moreover, PEG-L-Rg3 also enhances fasting insulin (FINS) and insulin sensitivity index (ISI). In addition, the glucose tolerance of mice is significantly improved after the treatment of PEG-L-Rg3, indicating that PEG-L-Rg3 can be a potential drug for the treatment of type 2 diabetes, which provides a new way for the treatment of type 2 diabetes using ginsenosides.
Collapse
Affiliation(s)
- Songren Han
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ziwei Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guilin Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Beilin Xue
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yang Yu
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiaqing Guo
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Huan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
32
|
Kurian AG, Mandakhbayar N, Singh RK, Lee JH, Kim HW. Multifunctional Molybdenum-Based Nanoclusters Engineered Gelatin Methacryloyl as In Situ Photo-Cross-Linkable Hybrid Hydrogel Dressings for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34641-34655. [PMID: 38934374 DOI: 10.1021/acsami.4c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Skin injuries and wounds present significant clinical challenges, necessitating the development of advanced wound dressings for efficient wound healing and tissue regeneration. In this context, the advancement of hydrogels capable of counteracting the adverse effects arising from undesirable reactive oxygen species (ROS) is of significant importance. This study introduces a hybrid hydrogel with rapid photocuring and excellent conformability, tailored to ameliorate the hostile microenvironment of damaged skin tissues. The hybrid hydrogel, composed of photoresponsive Gelatin Methacryloyl (GelMA) and Molybdenum-based nanoclusters (MNC), exhibits physicochemical characteristics conductive to skin regeneration. In vitro studies demonstrated the cytocompatibility and ROS-responsive behavior of the MNC/GelMA hybrid hydrogels, confirming their ability to promote human dermal fibroblasts (HDF) functions. The incorporation of MNC into GelMA not only enhances HDF adhesion, proliferation, and migration but also shields against oxidative damage induced by hydrogen peroxide (H2O2). Notably, in vivo evaluation in murine full-thickness skin defects revealed that the application of hybrid hydrogel dressings led to reduced inflammation, accelerated wound closure, and enhanced collagen deposition in comparison to control groups. Significantly, this study introduced a convenient approach to develop in situ ROS-scavenging hydrogel dressings to accelerate the wound healing process without the need for exogenous cytokines or medications. We consider that the nanoengineering approach proposed herein offers potential possibilities for the development of therapeutic hydrogel dressings addressing various skin-related conditions.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
33
|
Wang Q, Ge L, Guo J, Zhang H, Chen T, Lian F, Li L, Xu Y, Xu J, Chen N, Zhang Y, Ruan Z, Xiao J, Zhang H, Yang L. Acid Neutralization by Composite Lysine Nanoparticles for Spinal Cord Injury Recovery through Mitigating Mitochondrial Dysfunction. ACS Biomater Sci Eng 2024; 10:4480-4495. [PMID: 38885615 DOI: 10.1021/acsbiomaterials.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
After spinal cord injury (SCI), significant alterations in the tissue microenvironment lead to mitochondrial dysfunction, inducing apoptosis and inhibiting the remodeling of neural circuits, thereby impeding recovery. Although previous studies have demonstrated a marked decrease in pH at the injury site, creating an acidic microenvironment, the impact of improving this acidic microenvironment on SCI recovery has not been investigated. This study prepared a lysine@hollow mesoporous silica nanoparticle/gelatin methacrylate (GelMA) (L@H/G) composite hydrogel. The L@H/G composite hydrogel was demonstrated to release lysine and efficiently improve the acidic microenvironment slowly. Significantly, the composite hydrogel reduced cell apoptosis, promoted nerve regeneration, inhibited glial scar formation, and ultimately enhanced motor function recovery in mice with SCI. Mechanistically, the L@H/G hydrogel improved the mitochondrial tricarboxylic acid (TCA) cycle and fatty acid metabolism, restoring energy supply and facilitating mitochondrial function recovery. To the best of our knowledge, this is the first report confirming that improving the acidic microenvironment could promote SCI repair, providing a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Qiuchen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiali Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haijuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianling Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feifei Lian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Li
- Science and Teaching Affairs Section, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhanwei Ruan
- Department of Emergency, The Third Affiliated Hospital, Wenzhou Medical University, No. 108 Wansong Road, Ruian, Wenzhou, Zhejiang 325200, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
- Central Laboratory, Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315302, China
| |
Collapse
|
34
|
Kim EJ, Kim KH, Kim HY, Lee DJ, Li S, Ngoc Han M, Jung HS. Harnessing the dental cells derived from human induced pluripotent stem cells for hard tissue engineering. J Adv Res 2024; 61:119-131. [PMID: 37619933 PMCID: PMC11258659 DOI: 10.1016/j.jare.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non-cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell-based therapies. OBJECTIVES We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal-derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues. METHODS For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix. RESULTS These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth. CONCLUSION Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | | | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Mai Ngoc Han
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
35
|
Krukiewicz K, Contessotto P, Nedjari S, Martino MM, Redenski I, Gabet Y, Speranza G, O'Brien T, Altankov G, Awaja F. Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models. BIOMATERIALS ADVANCES 2024; 161:213867. [PMID: 38669824 DOI: 10.1016/j.bioadv.2024.213867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the pro-osteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| | - Paolo Contessotto
- Department of Molecular Medicine, Università degli Studi di Padova, Padua, Italy.
| | - Salima Nedjari
- Molecular Dynamics at Cell-Biomaterial Interface, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| | - Idan Redenski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | | | - Timothy O'Brien
- Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| | - George Altankov
- ICREA & Institute for Bioengineering of Catalonia, Barcelona, Spain; Medical University Pleven, Bulgaria
| | - Firas Awaja
- Department of Medicine, University of Galway, Galway, Ireland; Engmat Ltd., Clybaun Road, Galway, Ireland.
| |
Collapse
|
36
|
Sahm BD, Ferreira I, Carvalho-Silva JM, Vilela Teixeira AB, Uchôa Teixeira JV, Lisboa-Filho PN, Alves OL, Cândido dos Reis A. Structure-properties correlation of acrylic resins modified with silver vanadate and graphene. Heliyon 2024; 10:e32029. [PMID: 38868038 PMCID: PMC11168394 DOI: 10.1016/j.heliyon.2024.e32029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
This study aimed to incorporate β-AgVO3 and rGO into self-curing (SC) and heat-curing (HC) acrylic resins and to evaluate their physicochemical, mechanical, and antimicrobial properties while correlating them with the characterized material structure. Acrylic resin samples were prepared at 0 % (control), 0.5 %, 1 %, and 3 % for both nanoparticles. The microstructural characterization was assessed by scanning electron microscopy (SEM) (n = 1) and energy dispersive X-ray spectroscopy (EDS) (n = 1). The physicochemical and mechanical tests included flexural strength (n = 10), Knoop hardness (n = 10), roughness (n = 10), wettability (n = 10), sorption (n = 10), solubility (n = 10), porosity (n = 10), and color evaluation (n = 10). The microbiological evaluation was performed by counting colony-forming units (CFU/mL) and cell viability (n = 8). The results showed that the β-AgVO3 samples showed lower counts of Candida albicans, Pseudomonas aeruginosa, and Streptococcus mutans due to their promising physicochemical properties. The mechanical properties were maintained with the addition of β-AgVO3. The rGO samples showed higher counts of microorganisms due to the increase in physicochemical properties. It can be concluded that the incorporation of β-AgVO3 into acrylic resins could be an alternative to improve the antimicrobial efficacy and performance of the material.
Collapse
Affiliation(s)
- Beatriz Danieletto Sahm
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Izabela Ferreira
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - João Marcos Carvalho-Silva
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Vilela Teixeira
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | - Oswaldo Luiz Alves
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andréa Cândido dos Reis
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
37
|
Chen X, Zou M, Liu S, Cheng W, Guo W, Feng X. Applications of Graphene Family Nanomaterials in Regenerative Medicine: Recent Advances, Challenges, and Future Perspectives. Int J Nanomedicine 2024; 19:5459-5478. [PMID: 38863648 PMCID: PMC11166159 DOI: 10.2147/ijn.s464025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Graphene family nanomaterials (GFNs) have attracted considerable attention in diverse fields from engineering and electronics to biomedical applications because of their distinctive physicochemical properties such as large specific surface area, high mechanical strength, and favorable hydrophilic nature. Moreover, GFNs have demonstrated the ability to create an anti-inflammatory environment and exhibit antibacterial effects. Consequently, these materials hold immense potential in facilitating cell adhesion, proliferation, and differentiation, further promoting the repair and regeneration of various tissues, including bone, nerve, oral, myocardial, and vascular tissues. Note that challenges still persist in current applications, including concerns regarding biosecurity risks, inadequate adhesion performance, and unsuitable degradability as matrix materials. This review provides a comprehensive overview of current advancements in the utilization of GFNs in regenerative medicine, as well as their molecular mechanism and signaling targets in facilitating tissue repair and regeneration. Future research prospects for GFNs, such as potential in promoting ocular tissue regeneration, are also discussed in details. We hope to offer a valuable reference for the clinical application of GFNs in the treatment of bone defects, nerve damage, periodontitis, and atherosclerosis.
Collapse
Affiliation(s)
- Xiuwen Chen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Meiyan Zou
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siquan Liu
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weilin Cheng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Feng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
38
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
39
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
40
|
Lima ISD, Silva AS, Nascimento AMSS, de Oliveira LH, Morais AÍS, Barreto HM, Peña-Garcia R, Cuevas MDMO, Argôlo Neto NM, Osajima JA, Muniz EC, da Silva-Filho EC. Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity. Macromol Biosci 2024; 24:e2300507. [PMID: 38332467 DOI: 10.1002/mabi.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Indexed: 02/10/2024]
Abstract
Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X-ray diffraction, and a shift in the 1000 cm-1 band in the Fourier-transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.
Collapse
Affiliation(s)
- Idglan Sá de Lima
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Albert Santos Silva
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Ariane Maria Silva Santos Nascimento
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Luís Humberto de Oliveira
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Alan Ícaro Sousa Morais
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | | | - Ramón Peña-Garcia
- Federal Rural University of Pernambuco, Academic Unit of Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Maria Del Mar Orta Cuevas
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sevilla, Sevilla, ES, 41012, Spain
| | - Napoleão Martins Argôlo Neto
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Postgraduate Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Josy Anteveli Osajima
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Edvani Curti Muniz
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Edson Cavalcanti da Silva-Filho
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| |
Collapse
|
41
|
Kandhasamy S, Wu B, Wang J, Zhang X, Gao H, Yang DP, Zeng Y. Tracheal regeneration and mesenchymal stem cell augmenting potential of natural polyphenol-loaded gelatinmethacryloyl bioadhesive. Int J Biol Macromol 2024; 271:132506. [PMID: 38772466 DOI: 10.1016/j.ijbiomac.2024.132506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Hydrogels incorporating natural biopolymer and adhesive substances have extensively been used to develop bioactive drugs and to design cells encapsulating sturdy structure for biomedical applications. However, the conjugation of the adhesive in most hydrogels is insufficient to maintain long-lasting biocompatibility inadequate to accelerate internal organ tissue repair in the essential native cellular microenvironment. The current work elaborates the synthesis of charged choline-catechol ionic liquid (BIL) adhesive and a hydrogel with an electronegative atom rich polyphenol (PU)-laden gelatinmethacryloyl (GelMA) to improve the structural bioactivities for in vivo tracheal repair by inducing swift crosslinking along with durable mechanical and tissue adhesive properties. It was observed that bioactive BIL and PU exhibited potent antioxidant (IC 50 % of 7.91 μg/mL and 24.55 μg/mL) and antibacterial activity against E. coli, P. aeruginosa and S. aureus. The novel integration of photocurable GelMA-BIL-PU revealed outstanding mechanical strength, biodegradability and sustained drug release. The in vitro study showed exceptional cell migration and proliferation in HBECs, while in vivo investigation of the GelMA-BIL-PU hydrogel on a rat's tracheal model revealed remarkable tracheal reconstruction, concurrently reducing tissue inflammation. Furthermore, the optimized GelMA-BIL-PU injectable adhesive bioink blend demonstrated superior MSCs migration and proliferation, which could be a strong candidate for developing stem cell-rich biomaterials to address multiple organ defects.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| | - Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaojing Zhang
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China..
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China.
| |
Collapse
|
42
|
Chen LJ, Yu TC, Huang BH, Tso KC, Song YF, Yin GC, Yang JS, Wu PW. Synthesis of novel chitosan/sodium hyaluronate/iridium hydrogel nanocomposite for wound healing application. Int J Biol Macromol 2024; 270:132351. [PMID: 38754679 DOI: 10.1016/j.ijbiomac.2024.132351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
A novel chitosan/sodium hyaluronate/iridium (CHI/SH/Ir) hydrogel nanocomposite with a unique microstructure containing vertically aligned pores is fabricated via an electrophoresis technique. The formation of orderly vertical pores in CHI/SH/Ir hydrogel nanocomposite is due to the confinement of hydrogen bubbles produced from the water electrolysis during electrophoresis that limits their lateral movement and coalescence. In a wet state, the diameter for the vertical pores is 600-700 μm. With a thickness of 500 μm, the CHI/SH/Ir hydrogel nanocomposite exhibits a porosity of 76.7 % and a water uptake of 350 %. Its tensile strength is almost doubled to 8.7 MPa, as compared to that of counterpart without the addition of iridium. In CHI/SH/Ir hydrogel nanocomposite, the iridium nanoparticles are homogeneously distributed with an average size of 3 nm. The CHI/SH/Ir electrophoresis suspension exhibits a negligible cytotoxicity. In cell migration test using the human keratinocytes HaCaT cells, the CHI/SH/Ir hydrogel nanocomposite reveals a relative migration of 122.15 ± 9.02 % (p < 0.001) as compared to the blank sample. The presence of vertically aligned pores with the use of SH and iridium nanoparticles indicates a promising opportunity in wound healing application.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Chun Yu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Bo-Han Huang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuang-Chih Tso
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yen-Fang Song
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
43
|
Mendoza-Cerezo L, Rodríguez-Rego JM, Macías-García A, Callejas-Marín A, Sánchez-Guardado L, Marcos-Romero AC. Three-Dimensional Bioprinting of GelMA Hydrogels with Culture Medium: Balancing Printability, Rheology and Cell Viability for Tissue Regeneration. Polymers (Basel) 2024; 16:1437. [PMID: 38794630 PMCID: PMC11124935 DOI: 10.3390/polym16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Three-dimensional extrusion bioprinting technology aims to become a fundamental tool for tissue regeneration using cell-loaded hydrogels. These biomaterials must have highly specific mechanical and biological properties that allow them to generate biosimilar structures by successive layering of material while maintaining cell viability. The rheological properties of hydrogels used as bioinks are critical to their printability. Correct printability of hydrogels allows the replication of biomimetic structures, which are of great use in medicine, tissue engineering and other fields of study that require the three-dimensional replication of different tissues. When bioprinting cell-loaded hydrogels, a small amount of culture medium can be added to ensure adequate survival, which can modify the rheological properties of the hydrogels. GelMA is a hydrogel used in bioprinting, with very interesting properties and rheological parameters that have been studied and defined for its basic formulation. However, the changes that occur in its rheological parameters and therefore in its printability, when it is mixed with the culture medium necessary to house the cells inside, are unknown. Therefore, in this work, a comparative study of GelMA 100% and GelMA in the proportions 3:1 (GelMA 75%) and 1:1 (GelMA 50%) with culture medium was carried out to determine the printability of the gel (using a device of our own invention), its main rheological parameters and its toxicity after the addition of the medium and to observe whether significant differences in cell viability occur. This raises the possibility of its use in regenerative medicine using a 3D extrusion bioprinter.
Collapse
Affiliation(s)
- Laura Mendoza-Cerezo
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; (L.M.-C.); (A.C.M.-R.)
| | - Jesús M. Rodríguez-Rego
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; (L.M.-C.); (A.C.M.-R.)
| | - Antonio Macías-García
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain;
| | - Antuca Callejas-Marín
- Department of Anatomy, Cell Biology and Zoology, Faculty of Science, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; (A.C.-M.); (L.S.-G.)
| | - Luís Sánchez-Guardado
- Department of Anatomy, Cell Biology and Zoology, Faculty of Science, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; (A.C.-M.); (L.S.-G.)
| | - Alfonso C. Marcos-Romero
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain; (L.M.-C.); (A.C.M.-R.)
| |
Collapse
|
44
|
Wang Z, Li S, Wu Z, Kang Y, Xie S, Cai Z, Shan X, Li Q. Pulsed electromagnetic field-assisted reduced graphene oxide composite 3D printed nerve scaffold promotes sciatic nerve regeneration in rats. Biofabrication 2024; 16:035013. [PMID: 38604162 DOI: 10.1088/1758-5090/ad3d8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Peripheral nerve injuries can lead to sensory or motor deficits that have a serious impact on a patient's mental health and quality of life. Nevertheless, it remains a major clinical challenge to develop functional nerve conduits as an alternative to autologous grafts. We applied reduced graphene oxide (rGO) as a bioactive conductive material to impart electrophysiological properties to a 3D printed scaffold and the application of a pulsed magnetic field to excite the formation of microcurrents and induce nerve regeneration.In vitrostudies showed that the nerve scaffold and the pulsed magnetic field made no effect on cell survival, increased S-100βprotein expression, enhanced cell adhesion, and increased the expression level of nerve regeneration-related mRNAs.In vivoexperiments suggested that the protocol was effective in promoting nerve regeneration, resulting in functional recovery of sciatic nerves in rats, when they were damaged close to that of the autologous nerve graft, and increased expression of S-100β, NF200, and GAP43. These results indicate that rGO composite nerve scaffolds combined with pulsed magnetic field stimulation have great potential for peripheral nerve rehabilitation.
Collapse
Affiliation(s)
- Zichao Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shijun Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zongxi Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510030, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510030, People's Republic of China
| | - Yifan Kang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Zhigang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Xiaofeng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| | - Qing Li
- National Center for Stomatology, Beijing 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing 100081, People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, People's Republic of China
- Center of Digital Dentistry, Second Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology and NHC Key Laboratory of Digital Stomatology and NMPA Key Laboratory for Dental Materials, Beijing 100081, People's Republic of China
| |
Collapse
|
45
|
Liu M, You J, Zhang Y, Zhang L, Quni S, Wang H, Zhou Y. Glucose-Responsive Self-Healing Bilayer Drug Microneedles Promote Diabetic Wound Healing Via a Trojan-Horse Strategy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38690969 DOI: 10.1021/acsami.4c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing. This SDDMN can realize transdermal drug delivery and broad-spectrum sterilization without drug resistance and meets the multiple needs of the diabetic wound healing process. Quaternary ammonium chitosan cografted with dihydrocaffeic acid (Da) and l-arginine and oxidized hyaluronic acid-dopamine are the main parts of the self-healing hydrogel patch. Methacrylated poly(vinyl alcohol) (methacrylated PVA) and phenylboronic acid (PBA) were used as the main part of the MN, and gallium porphyrin modified with 3-amino-1,2 propanediol (POGa) and insulin were encapsulated at its tip. Under hyperglycaemic conditions, the PBA moiety in the MN reversibly formed a glucose-boronic acid complex that promoted the rapid release of POGa and insulin. POGa is disguised as hemoglobin through a Trojan-horse strategy, which is then taken up by bacteria, allowing it to target bacteria and infected lesions. Based on the synergistic properties of these components, SDDMN-POGa patches exhibited an excellent biocompatibility, slow drug release, and antimicrobial properties. Thus, these patches provide a potential therapeutic approach for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China
| |
Collapse
|
46
|
Eskandarinia A, Morowvat MH, Niknezhad SV, Baghbadorani MA, Michálek M, Chen S, Nemati MM, Negahdaripour M, Heidari R, Azadi A, Ghasemi Y. A photocrosslinkable and hemostatic bilayer wound dressing based on gelatin methacrylate hydrogel and polyvinyl alcohol foam for skin regeneration. Int J Biol Macromol 2024; 266:131231. [PMID: 38554918 DOI: 10.1016/j.ijbiomac.2024.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.
Collapse
Affiliation(s)
- Asghar Eskandarinia
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-54361, Iran
| | | | - Martin Michálek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Si Chen
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Mohammad Mahdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Cao Y, Yang M, Zhang R, Ning X, Zong M, Liu X, Li J, Jing X, Li B, Wu X. Carbon Dot-Based Photo-Cross-Linked Gelatin Methacryloyl Hydrogel Enables Dental Pulp Regeneration: A Preliminary Study. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657655 DOI: 10.1021/acsami.4c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An essential factor in tooth nutritional deficits and aberrant root growth is pulp necrosis. Removing inflammatory or necrotic pulp tissue and replacing it with an inert material are the most widely used therapeutic concepts of endodontic treatment. However, pulp loss can lead to discoloration, increased fracture risk, and the reinfection of the damaged tooth. It is now anticipated that the pulp-dentin complex will regenerate through a variety of application methods based on human dental pulp stem cells (hDPSC). In order to create a photo-cross-linked gelatinized methacrylate hydrogel, GelMA/EUO-CDs-E (ECE), that is biodegradable and injectable for application, we created a novel nanoassembly of ECE based on eucommia carbon dots (EUO-CDs) and epigallocatechin gallate (EGCG). We then loaded it onto gelatin methacryloyl (GelMA) hydrogel. We have evaluated the material and examined its in vivo and in vitro angiogenesis-promoting potential as well as its dentin differentiation-enabling characteristics. The outcomes of the experiment demonstrated that GelMA/ECE was favorable to cell proliferation and enhanced hDPSC's capacity for angiogenesis and dentin differentiation. The regeneration of vascular-rich pulp-like tissues was found to occur in vivo when hDPSC-containing GelMA/ECE was injected into cleaned human root segments (RS) for subcutaneous implantation in nude mice. This suggests that the injectable bioscaffold is appropriate for clinical use in pulp regenerative medicine.
Collapse
Affiliation(s)
- Yuxin Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Mengqi Yang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiao Ning
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Mingrui Zong
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaoming Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiadi Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xuan Jing
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
48
|
Han Y, Yin Z, Wang Y, Jiang Y, Chen J, Miao Z, He F, Cheng R, Tan L, Li K. Photopolymerizable and Antibacterial Hydrogels Loaded with Metabolites from Lacticaseibacillus rhamnosus GG for Infected Wound Healing. Biomacromolecules 2024; 25:2587-2596. [PMID: 38527924 DOI: 10.1021/acs.biomac.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-β, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.
Collapse
Affiliation(s)
- Yanting Han
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Zhe Yin
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
- Department of Gastroenterology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China
| | - Yilin Wang
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, Sichuan University, Chengdu 610065, China
| | - Jianming Chen
- Research Institute for Intelligent Wearable Systems and Research Centre of Textiles for Future Fashion, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhonghua Miao
- Department of Clinical Nutrition, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, Sichuan University, Chengdu 610065, China
- Sate Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ka Li
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Vijayaraghavan R, Loganathan S, Valapa RB. 3D bioprinted photo crosslinkable GelMA/methylcellulose hydrogel mimicking native corneal model with enhanced in vitro cytocompatibility and sustained keratocyte phenotype for stromal regeneration. Int J Biol Macromol 2024; 264:130472. [PMID: 38428773 DOI: 10.1016/j.ijbiomac.2024.130472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Corneal transplantation serves as the standard clinical therapy for serious corneal disorders. However, rejection of grafts, significant expenditures, and most crucially, the global donor shortage, may affect the outcome. Recently, 3D bioprinting using biodegradable polymeric materials has become a suitable method for creating tissue replicas with identical architecture. One such most renowned material is GelMA, for its scaffold's three-dimensional structure, biocompatibility, robust mechanics, and favourable optical transmittance. However, GelMA's inadequate viscosity to print at body temperature with better form integrity remains an obstacle. The aim of this work is to create 3D printed GelMA/MC hydrogels for corneal stroma tissue engineering using MC's printability at room temperature and GelMA's irreversible photo cross-linking with UV irradiation. The print speed and pressure conditions for 3D GelMA/MC hydrogels were tuned. Thermal, morphological and physicochemical characteristics were studied for two distinct concentrations of GelMA/MC hydrogels. The hydrogels achieved a transparency of ~78 % (at 700 nm), which was on par with that of the normal cornea (80 %). The in vitro studies conducted using goat corneal stromal cells demonstrated the ability of both hydrogels to promote cell adhesion and proliferation. Expression of Vimentin and keratan sulphate validated the phenotype of keratocytes in the hydrogel. This 3D printed GelMA/MC hydrogel model mimics biophysical characteristics of the native corneal stroma, which may hold promise for clinical corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
50
|
Zhang Z, Xu C, Xu L, Wan J, Cao G, Liu Z, Ji P, Jin Q, Fu Y, Le Y, Ju J, Hou R, Zhang G. Bioprinted dermis with human adipose tissue-derived microvascular fragments promotes wound healing. Biotechnol Bioeng 2024; 121:1407-1421. [PMID: 37876343 DOI: 10.1002/bit.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Tissue-engineered skin is an effective material for treating large skin defects in a clinical setting. However, its use is limited owing to vascular complications. Human adipose tissue-derived microvascular fragments (HaMVFs) are vascularized units that form vascular networks by rapid reassembly. In this study, we designed a vascularized bionic skin tissue using a three-dimensional (3D) bioprinter of HaMVFs and human fibroblasts encapsulated in a hybrid hydrogel composed of GelMA, HAMA, and fibrinogen. Tissues incorporating HaMVFs showed good in vitro vascularization and mechanical properties after UV crosslinking and thrombin exposure. Thus, the tissue could be sutured appropriately to the wound. In vivo, the vascularized 3D bioprinted skin promoted epidermal regeneration, collagen maturation in the dermal tissue, and vascularization of the skin tissue to accelerate wound healing. Overall, vascularized 3D bioprinted skin with HaMVFs is an effective material for treating skin defects and may be clinically applicable to reduce the necrosis rate of skin grafts.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Jiaming Wan
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
- Department of Orthopaedics, Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Pengxiang Ji
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|