1
|
Nabawi HMS, Abdelazem AZ, El Rouby WMA, El-Shahawy AAG. A potent formula against triple-negative breast cancer-sorafenib-carbon nanotubes-folic acid: Targeting, apoptosis triggering, and bioavailability enhancing. Biotechnol Appl Biochem 2024. [PMID: 39099309 DOI: 10.1002/bab.2649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Triple-negative breast cancer (TNBC) has short survival rates. This study aimed to prepare a novel formula of sorafenib, carbon nanotubes (CNTs), and folic acid to be tested as a drug delivery system targeting versus TNBC compared with free sorafenib and to evaluate the formula stability, in vitro pharmacodynamic, and in vivo pharmacokinetic properties. The formula preparation was done by the synthesis of polyethylene glycol bis amine linker, CNT PEGylation, folic acid attachment, and sorafenib loading. The prepared formula has been characterized using X-ray diffraction, Flourier-transform infrared, 1HNMR, UV, high resolution-transmission electron microscope, field emission scanning electron microscopy, and Zeta potential. In vitro studies included drug release determination, MTT assay, flow cytometry to determine the apoptotic stage with percent, cell cycle analysis, and apoptotic marker assays for caspase-3, 8, 9, cytochrome c, and BCL-2. The in vivo study was performed to determine bioavailability and half-life in rats. The in vitro MTT antiproliferative assay revealed that the formula was threefold more cytotoxic toward TNBC cells than free sorafenib, and the flow cytometry showed a significant increase in apoptosis and necrosis. The formula has a greater inhibitory effect on BCL-2 and a lessening effect on cytochrome c and caspases 3, 8, and 9 than free sorafenib. In vivo experiments proved that our novel formula was superior to free sorafenib by increasing bioavailability by eight times and prolonging the half-life by three times. These results confirmed the successful preparation of the desired formula with better pharmacodynamic and pharmacokinetic properties. These promising results may show a novel therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Hossam M S Nabawi
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Z Abdelazem
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A G El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Fan QQ, Tian H, Cheng JX, Zou JB, Luan F, Qiao JX, Zhang D, Tian Y, Zhai BT, Guo DY. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother 2024; 177:117118. [PMID: 39002440 DOI: 10.1016/j.biopha.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.
Collapse
Affiliation(s)
- Qiang-Qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, 710021, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jia-Xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
3
|
Khanuja HK, Awasthi R, Dureja H. Sorafenib tosylate-loaded nanosuspension: preparation, optimization, and in vitro cytotoxicity study against human HepG2 carcinoma cells. J Chemother 2024; 36:299-318. [PMID: 37881008 DOI: 10.1080/1120009x.2023.2273095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to optimize nanosuspension of sorafenib tosylate (an anticancer hydrophobic drug molecule) using a central composite design. Nanosuspension was prepared using a nanoprecipitation-ultrasonication approach. FTIR and DSC analyses demonstrated that the drug and excipients were physicochemically compatible. X-ray powder diffraction analysis confirmed amorphous form of the payload in the formulation. The optimized formulation (batch NSS6) had a zeta potential of -18.1 mV, a polydispersity of 0.302, and a particle size of 97.11 nm. SEM analysis confirmed formation of rod-shaped particles. After 24 h, about 64.45% and 86.37% of the sorafenib tosylate was released in pH 6.8 and pH 1.2, respectively. The MTT assay was performed on HepG2 cell lines. IC50 value of the optimized batch was 39.4 µg/mL. The study concluded that sorafenib tosylate nanosuspension could be a promising approach in the treatment of hepatocellular cancer.
Collapse
Affiliation(s)
- Harpreet Kaur Khanuja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
4
|
Ramadan AEH, Elsayed MM, Elsayed A, Fouad MA, Mohamed MS, Lee S, Mahmoud RA, Sabry SA, Ghoneim MM, Hassan AH, Abd Elkarim RA, Belal A, El-Shenawy AA. Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy. Int J Pharm X 2024; 7:100232. [PMID: 38357578 PMCID: PMC10864762 DOI: 10.1016/j.ijpx.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Diabetes mellitus (DM) is the most prevalent cause of diabetic retinopathy (DRP). DRP has been recognized for a long time as a microvascular disease. Many drugs were used to treat DRP, including vildagliptin (VLD). In addition to its hypoglycemic effect, VLD minimizes ocular inflammation and improves retinal blood flow for individuals with type 2 diabetes mellitus. Nevertheless, VLD can cause upper respiratory tract infections, diarrhea, nausea, hypoglycemia, and poor tolerability when taken orally regularly due to its high water solubility and permeability. Effective ocular administration of VLD is achieved using solid lipid nanoparticles (SLNPs), which improve corneal absorption, prolonged retention, and extended drug release. Ocuserts (OCUs) are sterile, long-acting ocular dosage forms that diminish the need for frequent dosing while improving residence time and stability. Therefore, this study intends to develop VLD solid lipid nanoparticle OCUs (VLD-SLNPs-OCUs) to circumvent the issues commonly associated with VLD. SLNPs were prepared using the double-emulsion/melt dispersion technique. The optimal formula has been implemented in OCUs. Optimization and development of VLD-SLNPs-OCUs were performed using a Box-Behnken Design (BBD). VLD-SLNPs-OCUs loading efficiency was 95.28 ± 2.87%, and differential scanning calorimetry data (DSC) showed the full transformation of VLD to an amorphous state and the excellent distribution in the prepared OCUs matrices. The in vivo release of VLD from the optimized OCUs after 24 h was 35.12 ± 2.47%, consistent with in vitro drug release data of 36.89 ± 3.11. The optimized OCUs are safe to use in the eye, as shown by the ocular irritation test. VLD-SLNPs-OCUs provide extended VLD release, an advantageous alternative to conventional oral dose forms, resulting in fewer systemic adverse effects and less variation in plasma drug levels. VLD-SLNPs-OCUs might benefit retinal microvascular blood flow beyond blood glucose control and may be considered a promising approach to treating diabetic retinopathy.
Collapse
Affiliation(s)
- Abd El hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mahmoud M.A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Amani Elsayed
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif, University, Taif, Saudi Arabia
| | - Marwa A. Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of pharmacy, Deraya University, Minia, Egypt
| | - Mohamed S. Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Al-Azhar Centre of Nano Sciences and Applications, Al-Azhar University, Assiut, Egypt
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Reda A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Al-Azhar Centre of Nano Sciences and Applications, Al-Azhar University, Assiut, Egypt
| | - Shereen A. Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | | | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed A. El-Shenawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Al-Azhar Centre of Nano Sciences and Applications, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Liu S, Liu Y, Chang Q, Celia C, Deng X, Xie Y. pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy. Biomacromolecules 2024; 25:522-531. [PMID: 38087829 DOI: 10.1021/acs.biomac.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Khan MZ, Tahir D, Asim M, Israr M, Haider A, Xu DD. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment. Cureus 2024; 16:e52511. [PMID: 38371088 PMCID: PMC10874252 DOI: 10.7759/cureus.52511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer involves intricate pathological mechanisms marked by complexities such as cytotoxicity, drug resistance, stem cell proliferation, and inadequate specificity in current chemotherapy approaches. Cancer therapy has embraced diverse nanomaterials renowned for their unique magnetic, electrical, and optical properties to address these challenges. Despite the expanding corpus of knowledge in this area, there has been less advancement in approving nano drugs for use in clinical settings. Nanotechnology, and more especially the development of intelligent nanomaterials, has had a profound impact on cancer research and treatment in recent years. Due to their large surface area, nanoparticles can adeptly encapsulate diverse compounds. Furthermore, the modification of nanoparticles is achievable through a broad spectrum of bio-based substrates, including DNA, aptamers, RNA, and antibodies. This functionalization substantially enhances their theranostic capabilities. Nanomaterials originating from biological sources outperform their conventionally created counterparts, offering advantages such as reduced toxicity, lower manufacturing costs, and enhanced efficiency. This review uses carbon nanomaterials, including graphene-based materials, carbon nanotubes (CNTs) based nanomaterials, and carbon quantum dots (CQDs), to give a complete overview of various methods used in cancer theranostics. We also discussed their advantages and limitations in cancer diagnosis and treatment settings. Carbon nanomaterials might significantly improve cancer theranostics and pave the way for fresh tumor diagnosis and treatment approaches. More study is needed to determine whether using nano-carriers for targeted medicine delivery may increase material utilization. More insight is required to explore the correlation between heightened cytotoxicity and retention resulting from increased permeability.
Collapse
Affiliation(s)
| | - Danial Tahir
- Internal Medicine, Nazareth Hospital, Philadelphia, USA
| | - Muhammad Asim
- Internal Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, GBR
| | | | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Dan Dan Xu
- Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, CHN
| |
Collapse
|
7
|
Lan H, Jamil M, Ke G, Dong N. The role of nanoparticles and nanomaterials in cancer diagnosis and treatment: a comprehensive review. Am J Cancer Res 2023; 13:5751-5784. [PMID: 38187049 PMCID: PMC10767363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer's pathological processes are complex and present several challenges for current chemotherapy methods. These challenges include cytotoxicity, multidrug resistance, the proliferation of cancer stem cells, and a lack of specificity. To address these issues, researchers have turned to nanomaterials, which possess distinct optical, magnetic, and electrical properties due to their size range of 1-100 nm. Nanomaterials have been engineered to improve cancer treatment by mitigating cytotoxicity, enhancing specificity, increasing drug payload capacity, and improving drug bioavailability. Despite a growing corpus of research on this subject, there has been limited progress in permitting nanodrugs for medical use. The advent of nanotechnology, particularly advances in intelligent nanomaterials, has transformed the field of cancer diagnosis and therapy. Nanoparticles' large surface area allows them to successfully encapsulate a large number of molecules. Nanoparticles can be functionalized with various bio-based substrates like RNA, DNA, aptamers, and antibodies, enhancing their theranostic capabilities. Biologically derived nanomaterials offer economical, easily producible, and less toxic alternatives to conventionally manufactured ones. This review offers a comprehensive overview of cancer theranostics methodologies, focusing on intelligent nanomaterials such as metal, polymeric, and carbon-based nanoparticles. I have also critically discussed their benefits and challenges in cancer therapy and diagnostics. Utilizing intelligent nanomaterials holds promise for advancing cancer theranostics, and improving tumor detection and treatment. Further research should optimize nanocarriers for targeted drug delivery and explore enhanced permeability, cytotoxicity, and retention effects.
Collapse
Affiliation(s)
- Hongwen Lan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
8
|
Fang Z, Song M, Lai K, Cui M, Yin M, Liu K. Kiwi-derived extracellular vesicles for oral delivery of sorafenib. Eur J Pharm Sci 2023; 191:106604. [PMID: 37821012 DOI: 10.1016/j.ejps.2023.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Sorafenib is an oral treatment for hepatocellular carcinoma (HCC). However, poor water solubility, harsh gastrointestinal environment and off-target effects contribute to the low bioavailability of oral sorafenib. Plant-derived extracellular vesicles (PDEVs) are biological nanovesicles with various bioactive functions that offer significant advantages in the field of oral drug delivery: protection from degradation by gastrointestinal fluids; crossing the intestinal epithelial barrier; specific targeting; safety; and abundant yield. However, there are fewer studies applying PDEVs for anti-tumor drug delivery to extra-digestive tissues. In this study, kiwifruit-derived extracellular vesicles (KEVs) were isolated and purified from kiwifruit, and their natural hepatic accumulation properties were exploited for targeted delivery of sorafenib (KEVs-SFB). Evidence showed that encapsulation of KEVs reduced the leakage of sorafenib in the gastrointestinal environment and enhanced the ability to cross the intestinal epithelium; KEVs-SFB was able to achieve liver accumulation and was predominantly taken up by HepG2 cells; KEVs-SFB was effective in inhibiting 4T1 cell proliferation; in the orthotopic liver cancer model, oral administration of KEVs-SFB inhibited tumor growth and improved the side effects of SFB. This PDEVs-based oral drug delivery platform is important for improving oral bioavailability and reducing drug side effects.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Mengdi Song
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Keqiang Lai
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingyu Yin
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
9
|
Shu J, Ren X, Cheng H, Wang S, Yue L, Li X, Yin M, Chen X, Zhang T, Hui Z, Bao X, Song W, Yu H, Dang L, Zhang C, Wang J, Zhao Q, Li Z. Beneficial or detrimental: Recruiting more types of benign cases for cancer diagnosis based on salivary glycopatterns. Int J Biol Macromol 2023; 252:126354. [PMID: 37591435 DOI: 10.1016/j.ijbiomac.2023.126354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
With the advantages of convenient, painless and non-invasive collection, saliva holds great promise as a valuable biomarker source for cancer detection, pathological assessment and therapeutic monitoring. Salivary glycopatterns have shown significant potential for cancer screening in recent years. However, the understanding of benign lesions at non-cancerous sites in cancer diagnosis has been overlooked. Clarifying the influence of benign lesions on salivary glycopatterns and cancer screening is crucial for advancing the development of salivary glycopattern-based diagnostics. In this study, 2885 samples were analyzed using lectin microarrays to identify variations in salivary glycopatterns according to the number, location, and type of lesions. By utilizing our previously published data of tumor-associated salivary glycopatterns, the performance of machine learning algorithm for cancer screening was investigated to evaluate the effect of adding benign disease cases to the control group. The results demonstrated that both the location and number of lesions had discernible effects on salivary glycopatterns. And it was also revealed that incorporating a broad range of benign diseases into the controls improved the classifier's performance in distinguishing cancer cases from controls. This finding holds guiding significance for enhancing salivary glycopattern-based cancer screening and facilitates their practical implementation in clinical settings.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China; School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Hongwei Cheng
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Shiyi Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lixin Yue
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Mengqi Yin
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Tiantian Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ziye Hui
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jun Wang
- University Hospital, Northwest University, Xi'an, China
| | - Qi Zhao
- University Hospital, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
10
|
Yadav KS, Raut HC, Nijhawan HP. Inhalable spray-dried polycaprolactone-based microparticles of Sorafenib Tosylate with promising efficacy on A549 cells. Pharm Dev Technol 2023; 28:755-767. [PMID: 37665569 DOI: 10.1080/10837450.2023.2251148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The study developed and evaluated Sorafenib Tosylate (SRT)-loaded polymeric microparticles (MPs) using biodegradable polymer polycaprolactone (PCL) as a potential inhalable carrier for NSCLC. MPs were prepared by spray-drying an oil-in-water (o/w) emulsion. The optimized MPs demonstrated excellent flowability, particle size of 2.84 ± 0.5 μm, zeta potential of -14.0 ± 1.5 mV, and 85.08 ± 5.43% entrapment efficiency. ATR-FTIR/DSC studies revealed a lack of characteristic peaks of the crystalline drug signifying good entrapment of the drug. MPs were spherical and uniform in SEM pictures. The MPs showed a biphasic release pattern up to 72h. The Anderson cascade impactor (ACI) investigation demonstrated the highest drug deposition at stage 4, which revealed that the MPs can reach the lungs' secondary and terminal bronchi. Inhalable MPs had an efficient aerodynamic property with a mass median aerodynamic diameter (MMAD) of 2.63 ± 1.3 μm, a geometric standard deviation (GSD) of 1.93 ± 0.2 μm, and a fine particle fraction (FPF) of 87 ± 2.5%. Finally, in cytotoxicity studies on A549 cancer cells, MPs had an IC50 value of 0.6011 ± 0.8 μM, which was 85.68% lower than free drug. These findings suggest SRT-loaded inhalable PCL-based MPs as a novel NSCLC treatment.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Hrushikesh C Raut
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
11
|
Narmani A, Ganji S, Amirishoar M, Jahedi R, Kharazmi MS, Jafari SM. Smart chitosan-PLGA nanocarriers functionalized with surface folic acid ligands against lung cancer cells. Int J Biol Macromol 2023:125554. [PMID: 37356696 DOI: 10.1016/j.ijbiomac.2023.125554] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Lung cancer is the second most prevalent and first killer cancer worldwide, and conventional approaches do not have enough ability to suppress it. Therefore, a novel targeted chitosan (CS)-poly lactic-co-glycolic acid (PLGA)-folic acid (FA) nanocarrier was developed for delivery of sorafenib (Sor) to lung cancer cells. The nanocarrier (CPSF) had a size of 30-40 nm with globular shapes. Surface charge and drug content of CPSF were ascertained at about 1.1 mV and 15 %, respectively. Controlled (4 % within 2 h) and pH-sensitive (18 % within 2 h at pH = 5.0) Sor release were observed for the nanocarrier. The MTT assay demonstrated a cell viability of 13 % after 24 h treatment with 400 nM CPSF in A549 cancer cells while it was 78 % in MSC normal cells. The qRT-PCR revealed >8 folds and 11 folds increase for Caspase9 and P53 genes after 5 h treatment with 100 nM (IC50) CPSF; but a reduction of 5 folds was observed for the Bcl2 gene. Besides, 57 % and 20 % apoptosis were attained in cell cycle arrest and apoptosis assays for CPSF, respectively. CPF indicated about 88 % internalization in cancer cells. These data prove that CPSF is a promising nanodelivery system for lung cancer suppression.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Amirishoar
- Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
12
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
13
|
El-Shenawy AA, Elsayed MMA, Atwa GMK, Abourehab MAS, Mohamed MS, Ghoneim MM, Mahmoud RA, Sabry SA, Anwar W, El-Sherbiny M, Hassan YA, Belal A, Ramadan AEH. Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer. Pharmaceutics 2023; 15:pharmaceutics15020680. [PMID: 36840004 PMCID: PMC9960579 DOI: 10.3390/pharmaceutics15020680] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Gefitinib (GFT) is a tyrosine kinase inhibitor drug used as a first-line treatment for patients with advanced or metastatic non-small cell lung, colon, and breast cancer. GFT exhibits low solubility and hence low oral bioavailability, which restricts its clinical application. One of the most important trends in overcoming such problems is the use of a vesicular system. Cubosomes are considered one of the most important vesicular systems used to improve solubility and oral bioavailability. In this study, GFT cubosomal nanoparticles (GFT-CNPs) were prepared by the emulsification method. The selected formulation variables were analyzed and optimized by full factorial design and response surface methodology. Drug entrapment efficiency (EE%), transmission electron microscopy, particle size, polydispersity index, in vitro release and its kinetics, and the effect of storage studies were estimated. The chosen GFT-CNPs were subjected to further investigations as gene expression levels of tissue inhibitors of metalloproteinases-1 (TIMP-1) and matrix metalloproteinases-7 (MMP-7), colon biomarkers, and histopathological examination of colon tissues. The prepared GFT-CNPs were semi-cubic in shape, with high EE%, smaller vesicle size, and higher zeta potential values. The in vivo data showed a significant decrease in the serum level of embryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), and gene expression level of TIMP-1 and MMP-7. Histopathological examination showed enhancement in cancer tissue and highly decreased focal infiltration in the lamina propria after treatment with GFT-CNPs.
Collapse
Affiliation(s)
- Ahmed A. El-Shenawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
- Correspondence: ; Tel.: +20-122-766-0470
| | - Gamal M. K. Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed S. Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Reda A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Shereen A. Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Walid Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yasser A. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abd El hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| |
Collapse
|
14
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
15
|
A Novel C@Fe@Cu Nanocomposite Loaded with Doxorubicin Tailored for the Treatment of Hepatocellular Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14091845. [PMID: 36145592 PMCID: PMC9505246 DOI: 10.3390/pharmaceutics14091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
High mortality and morbidity rates are related to hepatocellular carcinoma (HCC), which is the most prevalent type of liver cancer. A new vision for cancer treatment and cancer cell targeting has emerged with the application of nanotechnology, which reduces the systemic toxicity and adverse effects of chemotherapy medications while increasing their effectiveness. It was the goal of the proposed work to create and investigate an anticancer C@Fe@Cu nanocomposite (NC) loaded with Doxorubicin (DOX) for the treatment of HCC. Scanning and transmission electron microscopes (SEM and TEM) were used to examine the morphology of the produced NC. The formulation variables (DOX content, C@Fe@Cu NC weight, and stirring speed) were analyzed and optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). Additionally, X-ray diffraction patterns (XRD) and Fourier Transform Infrared (FTIR) were investigated. Doxorubicin and DOX- loaded C@Fe@Cu NC (DOX-C@Fe@Cu NC) were also assessed against HEPG2 cells for anticancer efficacy (Hepatic cancer cell line). The results revealed the formation of C@Fe@Cu NC with a mean size of 7.8 nm. A D-R model with a mean size of 24.1 nm best fits the adsorption behavior of DOX onto the C@Fe@Cu NC surface. DOX-C@Fe@Cu NC has also been demonstrated to have a considerably lower IC50 and higher cytotoxicity than DOX alone in an in vitro investigation. Therefore, DOX-C@Fe@Cu NC is a promising DOX delivery vehicle for the full recovery of HCC.
Collapse
|
16
|
Ahmadian E, Janas D, Eftekhari A, Zare N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. CHEMOSPHERE 2022; 302:134826. [PMID: 35525455 DOI: 10.1016/j.chemosphere.2022.134826] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Liver and pancreatic tumors are among the third leading causes of cancer-associated death worldwide. In addition to poor prognosis, both cancer types are diagnosed at advanced and metastatic stages without typical prior symptoms. Unfortunately, the existing theranostic approaches are inefficient in cancer diagnosis and treatment. Carbon nanotubes (CNTs) have attracted increasing attention in this context due to their distinct properties, including variable functionalization capability, biocompatibility, and excellent thermodynamic and optical features. As a consequence, they are now regarded as one of the most promising materials for this application. The current review aims to summarize and discuss the role of CNT in pancreatic and liver cancer theranostics. Accordingly, the breakthroughs achieved so far are classified based on the cancer type and analyzed in detail. The most feasible tactics utilizing CNT-based solutions for both cancer diagnosis and treatment are presented from the biomedical point of view. Finally, a future outlook is provided, which anticipates how the R&D community can build on the already developed methodologies and the subsequent biological responses of the pancreatic and liver cancer cells to the directed procedures.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Aziz Eftekhari
- Department of Pharmacology & Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran; Health Innovation & Acceleration Centre, Tabriz University of Medical Sciences, Tabriz, 51664, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan.
| | - Najme Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
17
|
Elsayed MMA, Aboelez MO, Mohamed MS, Mahmoud RA, El-Shenawy AA, Mahmoud EA, Al-Karmalawy AA, Santali EY, Alshehri S, Elsadek MEM, El Hamd MA, Ramadan AEH. Tailoring of Rosuvastatin Calcium and Atenolol Bilayer Tablets for the Management of Hyperlipidemia Associated with Hypertension: A Preclinical Study. Pharmaceutics 2022; 14:pharmaceutics14081629. [PMID: 36015255 PMCID: PMC9412892 DOI: 10.3390/pharmaceutics14081629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 01/20/2023] Open
Abstract
Hyperlipidemia is still the leading cause of heart disease in patients with hypertension. The purpose of this study is to make rosuvastatin calcium (ROS) and atenolol (AT) bilayer tablets to treat coexisting dyslipidemia and hypertension with a single product. ROS was chosen for the immediate-release layer of the constructed tablets, whereas AT was chosen for the sustained-release layer. The solid dispersion of ROS with sorbitol (1:3 w/w) was utilized in the immediate-release layer while hydroxypropyl methylcellulose (HPMC), ethylcellulose (EC), and sodium bicarbonate were incorporated into the floating sustained-release layer. The concentrations of HPMC and EC were optimized by employing 32 full factorial designs to sustain AT release. The bilayer tablets were prepared by the direct compression method. The immediate-release layer revealed that 92.34 ± 2.27% of ROS was released within 60 min at a pH of 1.2. The second sustained-release layer of the bilayer tablets exhibited delayed release of AT (96.65 ± 3.36% within 12 h) under the same conditions. The release of ROS and AT from the prepared tablets was found to obey the non-Fickian diffusion and mixed models (zero-order, Higuchi and Korsmeyer–Peppas), respectively. Preclinical studies using rabbit models investigated the impact of ROS/AT tablets on lipid profiles and blood pressure. A high-fat diet was used to induce obesity in rabbits. Bilayer ROS/AT tablets had a remarkable effect on decreasing the lipid profiles, slowing weight gain, and lowering blood pressure to normal levels when compared to the control group.
Collapse
Affiliation(s)
- Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.M.A.E.); or (M.A.E.H.); Tel.: +20-1227-6604-70 (M.M.A.E.); +966-5541-17991 (M.A.E.H.)
| | - Moustafa O. Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Mohamed S. Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al Azhar University, Assiut 71524, Egypt
| | - Reda A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al Azhar University, Assiut 71524, Egypt
| | - Ahmed A. El-Shenawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al Azhar University, Assiut 71524, Egypt
| | - Essam A. Mahmoud
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
- Correspondence: (M.M.A.E.); or (M.A.E.H.); Tel.: +20-1227-6604-70 (M.M.A.E.); +966-5541-17991 (M.A.E.H.)
| | - Abd El hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| |
Collapse
|
18
|
Elsayed MMA, Aboelez MO, Elsadek BEM, Sarhan HA, Khaled KA, Belal A, Khames A, Hassan YA, Abdel-Rheem AA, Elkaeed EB, Raafat M, Elsadek MEM. Tolmetin Sodium Fast Dissolving Tablets for Rheumatoid Arthritis Treatment: Preparation and Optimization Using Box-Behnken Design and Response Surface Methodology. Pharmaceutics 2022; 14:pharmaceutics14040880. [PMID: 35456714 PMCID: PMC9027483 DOI: 10.3390/pharmaceutics14040880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Tolmetin sodium (TLM) is a non-steroidal anti-inflammatory drug (NSAIDs). TLM is used to treat inflammation, skeletal muscle injuries, and discomfort associated with bone disorders. Because of the delayed absorption from the gastro intestinal tract (GIT), the currently available TLM dosage forms have a rather protracted start to the effect, according to pharmacokinetic studies. The aim of this study was to create a combination for TLM fast dissolving tablets (TLM-FDT) that would boost the drug's bioavailability by increasing pre-gastric absorption. The TLM-FDTs were developed using a Box-Behnken experimental design with varied doses of crospovidone (CP), croscarmellose sodium (CCS) as super-disintegrants, and camphor as a sublimating agent. In addition, the current study used response surface approach to explore the influence of various formulation and process factors on tablet qualities in order to verify an optimized TLM-FDTs formulation. The optimized TLM-FDTs formula was subsequently evaluated for its in vivo anti-inflammatory activity. TLM-FDTs have good friability, disintegration time, drug release, and wetting time, as well as fast disintegration and dissolution behavior. Significant increase in drug bioavailability and reliable anti-inflammatory efficacy were also observed, as evidenced by considerable reductions in paw thickness in rats following carrageenan-induced rat paw edema. For optimizing and analyzing the effect of super-disintegrants and sublimating agents in the TLM-FDTs formula, the three-factor, three-level full factorial design is a suitable tool. TLM-FDTs are a possible drug delivery system for enhancing TLM bioavailability and could be used to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
- Correspondence: ; Tel.: +20-1227660470
| | - Moustafa O. Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Bakheet E. M. Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
| | - Hatem A. Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.S.); (K.A.K.)
| | - Khaled Ali Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.S.); (K.A.K.)
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Yasser A. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Amany A. Abdel-Rheem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Mohamed Raafat
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | |
Collapse
|
19
|
Saddik MS, Elsayed MMA, El-Mokhtar MA, Sedky H, Abdel-Aleem JA, Abu-Dief AM, Al-Hakkani MF, Hussein HL, Al-Shelkamy SA, Meligy FY, Khames A, Abou-Taleb HA. Tailoring of Novel Azithromycin-Loaded Zinc Oxide Nanoparticles for Wound Healing. Pharmaceutics 2022; 14:111. [PMID: 35057019 PMCID: PMC8780377 DOI: 10.3390/pharmaceutics14010111] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Skin is the largest mechanical barrier against invading pathogens. Following skin injury, the healing process immediately starts to regenerate the damaged tissues and to avoid complications that usually include colonization by pathogenic bacteria, leading to fever and sepsis, which further impairs and complicates the healing process. So, there is an urgent need to develop a novel pharmaceutical material that promotes the healing of infected wounds. The present work aimed to prepare and evaluate the efficacy of novel azithromycin-loaded zinc oxide nanoparticles (AZM-ZnONPs) in the treatment of infected wounds. The Box-Behnken design and response surface methodology were used to evaluate loading efficiency and release characteristics of the prepared NPs. The minimum inhibitory concentration (MIC) of the formulations was determined against Staphylococcus aureus and Escherichia coli. Moreover, the anti-bacterial and wound-healing activities of the AZM-loaded ZnONPs impregnated into hydroxyl propyl methylcellulose (HPMC) gel were evaluated in an excisional wound model in rats. The prepared ZnONPs were loaded with AZM by adsorption. The prepared ZnONPs were fully characterized by XRD, EDAX, SEM, TEM, and FT-IR analysis. Particle size distribution for the prepared ZnO and AZM-ZnONPs were determined and found to be 34 and 39 nm, respectively. The mechanism by which AZM adsorbed on the surface of ZnONPs was the best fit by the Freundlich model with a maximum load capacity of 160.4 mg/g. Anti-microbial studies showed that AZM-ZnONPs were more effective than other controls. Using an experimental infection model in rats, AZM-ZnONPs impregnated into HPMC gel enhanced bacterial clearance and epidermal regeneration, and stimulated tissue formation. In conclusion, AZM -loaded ZnONPs are a promising platform for effective and rapid healing of infected wounds.
Collapse
Affiliation(s)
- Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Haitham Sedky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Jelan A. Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71516, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mostafa F. Al-Hakkani
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Hazem L. Hussein
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| | - Samah A. Al-Shelkamy
- Department of Physics, Faculty of Science, New Valley University, El-Kharja 72511, Egypt;
| | - Fatma Y. Meligy
- Department Histology, Faculty of Medicine, Assiut University, Assiut 71524, Egypt;
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag 82755, Egypt;
| |
Collapse
|
20
|
Ye L, Chen W, Chen Y, Qiu Y, Yi J, Li X, Lin Q, Guo B. Functionalized multiwalled carbon nanotube-ethosomes for transdermal delivery of ketoprofen: Ex vivo and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Stăncioiu L, Gherman AMR, Brezeștean I, Dina NE. Vibrational spectral analysis of Sorafenib and its molecular docking study compared to other TKIs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Alnusaire TS, Sayed AM, Elmaidomy AH, Al-Sanea MM, Albogami S, Albqmi M, Alowaiesh BF, Mostafa EM, Musa A, Youssif KA, Refaat H, Othman EM, Dandekar T, Alaaeldin E, Ghoneim MM, Abdelmohsen UR. An In Vitro and In Silico Study of the Enhanced Antiproliferative and Pro-Oxidant Potential of Olea europaea L. cv. Arbosana Leaf Extract via Elastic Nanovesicles (Spanlastics). Antioxidants (Basel) 2021; 10:antiox10121860. [PMID: 34942963 PMCID: PMC8698813 DOI: 10.3390/antiox10121860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC50 values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC50 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC50 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential.
Collapse
Affiliation(s)
- Taghreed S. Alnusaire
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mha Albqmi
- Chemistry Department, College of Science and Arts, Jouf University, P.O. Box 756 Alqurayyat, Saudi Arabia;
| | - Bassam F. Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ehab M. Mostafa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
- Correspondence: (A.M.); (U.R.A.)
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Hesham Refaat
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.R.); (E.A.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.R.); (E.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence: (A.M.); (U.R.A.)
| |
Collapse
|
23
|
Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021; 9:4821-4842. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, liver cancer is the fourth leading cause of cancer associated with death worldwide. It demands effective treatment and diagnostic strategies to hinder its recurrence, complexities, aggressive metastasis and late diagnosis. With recent progress in nanotechnology, several nanoparticle-based diagnostic and therapeutic modalities have entered into clinical trials. With further developments in nanoparticle mediated liver cancer diagnosis and treatment, the approach holds promise for improved clinical liver cancer management. In this review, we discuss the key advances in nanoparticles that have potential for liver cancer diagnosis and treatment. We also discuss the potential of nanoparticles to overcome the limitations of existing therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed Mehadi Hassan Chowdhury
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurnponds, Vic-3216, Australia and Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79968, USA. and Biomedical Engineering, University of Texas at El Paso, TX 79968, USA and Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA and Border Biomedical Research Center, University of Texas at El Paso, TX 79968, USA
| |
Collapse
|
24
|
Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021; 9:669169. [PMID: 34109155 PMCID: PMC8181141 DOI: 10.3389/fchem.2021.669169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.
Collapse
Affiliation(s)
- Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
25
|
Singh A, Shafi S, Upadhyay T, Najmi AK, Kohli K, Pottoo FH. Insights into Nanotherapeutic Strategies as an Impending Approach to Liver Cancer Treatment. Curr Top Med Chem 2021; 20:1839-1854. [PMID: 32579503 DOI: 10.2174/1568026620666200624161801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer, being the utmost prevalent fatal malignancy worldwide, is ranked as the fifth leading cause of deaths associated with cancer. Patients with liver cancer are diagnosed often at an advanced stage, contributing to poor prognosis. Of all forms of liver cancer, hepatocellular carcinoma (HCC) contributes to 90% of cases, with chemotherapy being the treatment of choice. However, unfavorable toxicity of chemotherapy drugs and the vulnerability of nucleic acid-based drugs to degradation, have limited their application in clinical settings. So, in order to improvise their therapeutic efficacy in HCC treatment, various nanocarrier drug delivery systems have been explored. Furthermore, nanoparticle based imaging provides valuable means of accurately diagnosing HCC. Thus, in recent years, the advent of nanomedicine has shown great potential and progress in dramatically altering the approach to the diagnosis as well as treatment of liver cancer. Nanoparticles (NPs) are being explored as potential drug carriers for small molecules, miRNAs, and therapeutic genes used for liver cancer treatment. This review emphasizes on the current developments and applications of nanomedicine based therapeutic and diagnostic approaches in HCC.
Collapse
Affiliation(s)
- Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sadat Shafi
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Tanya Upadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh-201313, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul rahman Bin Faisal University, P.O.BOX 1982, Damman 31441, Saudi Arabia
| |
Collapse
|
26
|
Elsayed MMA, Okda TM, Atwa GMK, Omran GA, Abd Elbaky AE, Ramadan AEH. Design and Optimization of Orally Administered Luteolin Nanoethosomes to Enhance Its Anti-Tumor Activity against Hepatocellular Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13050648. [PMID: 34063274 PMCID: PMC8147467 DOI: 10.3390/pharmaceutics13050648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
Luteolin (LUT) is a natural flavonoid with low oral bioavailability with restricted clinical applications due to its low solubility. LUT shows significant anti-tumor activity in many cancer cells, including hepatocellular carcinoma (HCC). The most recent trend in pharmaceutical innovations is the application of phospholipid vesicles to improve the solubility of such hydrophobic drugs. Ethosomes are one of the most powerful phospholipid vesicles used to achieve that that target. In this study, LUT-loaded ethosomal nanoparticles (LUT-ENPs) were prepared by the cold method. Full factorial design and response surface methodology were used to analyze and optimize the selected formulation variables. Drug entrapment efficiency, vesicle size, zeta potential, Fourier transform infra-red spectroscopy, scanning electron microscopy, and cumulative percent drug released was estimated. The selected LUT-ENPs were subjected to further investigations as estimation of hepatic gene expression levels of GPC3, liver biomarkers, and oxidative stress biomarkers. The prepared LUT-ENPs were semi-spherical in shape with high entrapment efficiency. The prepared LUT-ENPs have a small particle size with high zeta potential values. The in vitro liver biomarkers assay revealed a significant decrease in the hepatic tissue nitric oxide (NO), malondialdehyde (MDA) content, and the expression of the GPC3 gene. Results showed a high increase in the hepatic tissue levels of glutathione (GSH) and superoxide dismutase (SOD). Histopathological examination showed a small number of hepatic adenomas and a significant decrease of neoplastic hepatic lesions after treatment with LUT-ENPs. Our results firmly suggest the distinctive anti-proliferative activity of LUT-ENPs as an oral drug delivery system for the treatment of HCC.
Collapse
Affiliation(s)
- Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt
- Correspondence: ; Tel.: +20-1226770470
| | - Tarek M. Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhur University, Damanhur 22516, Egypt; (T.M.O.); (G.A.O.)
| | - Gamal M. K. Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt; (G.M.K.A.); (A.E.A.E.)
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhur University, Damanhur 22516, Egypt; (T.M.O.); (G.A.O.)
| | - Atef E. Abd Elbaky
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt; (G.M.K.A.); (A.E.A.E.)
| | - Abd El hakim Ramadan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt;
| |
Collapse
|
27
|
Mary YS, Mary YS, Rad AS, Yadav R, Celik I, Sarala S. Theoretical investigation on the reactive and interaction properties of sorafenib – DFT, AIM, spectroscopic and Hirshfeld analysis, docking and dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Lai H, Zhong L, Huang Y, Zhao Y, Qian Z. Progress in Application of Nanotechnology in Sorafenib. J Biomed Nanotechnol 2021; 17:529-557. [DOI: 10.1166/jbn.2021.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dysregulation of the tyrosine kinase signaling pathway is closely related to tumor development, and tyrosine kinase inhibitors are important targets for potential anticancer strategies. In particular, sorafenib, as a representative drug of multitarget tyrosine kinase inhibitors, has
an important clinical status and is widely used for treating various solid tumors and diabetic complications. However, poor aqueous solubility of sorafenib, poor bioavailability of commonly used oral dose forms, poor accumulation at tumor sites, and severe off-target effects that tend to induce
intolerable systemic side effects in patients have greatly reduced its therapeutic efficiency and limited its extensive clinical application. To improve the properties of sorafenib, increase the efficiency of clinical treatment, and overcome the increasingly prominent phenomenon of sorafenib
resistance, multiple investigations have been conducted. Numerous studies have reported that the properties of nanomaterials, such as small particle size, large specific surface area, high surface activity and high adsorption capacity, make nanotechnology promising for the construction of
ideal sorafenib nanodelivery systems to achieve timed and targeted delivery of sorafenib to tumors, prolong the blood circulation time of the drug, improve the utilization efficiency of the drug and reduce systemic toxic side effects. This review summarizes the progress of research applications
in nanotechnology related to sorafenib, discusses the current problems, and expresses expectations for the prospect of clinical applications of sorafenib with improved performance.
Collapse
Affiliation(s)
- Huili Lai
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiyong Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
29
|
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, Wen Y, Zhang ZJ. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Am J Cancer Res 2021; 11:5464-5490. [PMID: 33859758 PMCID: PMC8039945 DOI: 10.7150/thno.54822] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. Sorafenib is an oral kinase inhibitor that inhibits tumor cell proliferation and angiogenesis and induces cancer cell apoptosis. It also improves the survival rates of patients with advanced liver cancer. However, due to its poor solubility, fast metabolism, and low bioavailability, clinical applications of sorafenib have been substantially restricted. In recent years, various studies have been conducted on the use of nanoparticles to improve drug targeting and therapeutic efficacy in HCC. Moreover, nanoparticles have been extensively explored to improve the therapeutic efficacy of sorafenib, and a variety of nanoparticles, such as polymer, lipid, silica, and metal nanoparticles, have been developed for treating liver cancer. All these new technologies have improved the targeted treatment of HCC by sorafenib and promoted nanomedicines as treatments for HCC. This review provides an overview of hot topics in tumor nanoscience and the latest status of treatments for HCC. It further introduces the current research status of nanoparticle drug delivery systems for treatment of HCC with sorafenib.
Collapse
|
30
|
Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells. NANOMATERIALS 2021; 11:nano11020497. [PMID: 33669332 PMCID: PMC7920308 DOI: 10.3390/nano11020497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The formation of two nanodelivery systems, Sorafenib (SF)-loaded chitosan (SF-CS) and their folate-coated (SF-CS-FA) nanoparticles (NPs), were developed to enhance SF drug delivery on human Hepatocellular Carcinoma (HepG2) and Colorectal Adenocarcinoma (HT29) cell lines. The ionic gelation method was adopted to synthesize the NPs. The characterizations were performed by DLS, FESEM, TEM, XRD, TGA, FTIR, and UV-visible spectroscopy. It was found that 83.7 ± 2.4% and 87.9 ± 1.1% of encapsulation efficiency; 18.2 ± 1.3% and 19.9 ± 1.4% of loading content; 76.3 ± 13.7 nm and 81.6 ± 12.9 nm of hydrodynamic size; 60–80 nm and 70–100 nm of TEM; and FESEM sizes of near-spherical shape were observed, respectively, for SF-CS and SF-CS-FA nanoparticles. The SF showed excellent release from the nanoparticles under pH 4.8 PBS solution, indicating a good delivery system for tumor cells. The cytotoxicity study revealed their better anticancer action towards HepG2 and HT29 cell lines compared to the free sorafenib. Moreover, both NPs systems showed negligible toxicity to normal Human Dermal Fibroblast adult cells (HDFa). This is towards an enhanced anticancer drug delivery system with sustained-release properties for better cancer management.
Collapse
|
31
|
Saddik MS, Elsayed MMA, Abdelkader MSA, El-Mokhtar MA, Abdel-Aleem JA, Abu-Dief AM, Al-Hakkani MF, Farghaly HS, Abou-Taleb HA. Novel Green Biosynthesis of 5-Fluorouracil Chromium Nanoparticles Using Harpullia pendula Extract for Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13020226. [PMID: 33562032 PMCID: PMC7915530 DOI: 10.3390/pharmaceutics13020226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third highest major cause of morbidity and mortality worldwide. Hence, many strategies and approaches have been widely developed for cancer treatment. This work prepared and evaluated the antitumor activity of 5-Fluorouracil (5-Fu) loaded chromium nanoparticles (5-FuCrNPs). The green biosynthesis approach using Harpullia (H) pendula aqueous extract was used for CrNPs preparation, which was further loaded with 5-Fu. The prepared NPs were characterized for morphology using scanning and transmission electron microscopes (SEM and TEM). The results revealed the formation of uniform, mono-dispersive, and highly stable CrNPs with a mean size of 23 nm. Encapsulation of 5-Fu over CrNPs, with a higher drug loading efficiency, was successful with a mean size of 29 nm being produced. In addition, Fourier transform infrared (FTIR) and X-ray diffraction pattern (XRD) were also used for the investigation. The drug 5-Fu was adsorbed on the surface of biosynthesized CrNPs in order to overcome its clinical resistance and increase its activity against CRC cells. Box–Behnken Design (BBD) and response surface methodology (RSM) were used to characterize and optimize the formulation factors (5-Fu concentration, CrNP weight, and temperature). Furthermore, the antitumor activity of the prepared 5-FuCrNPs was tested against CRC cells (CACO-2). This in vitro antitumor study demonstrated that 5-Fu-loaded CrNPs markedly decreased the IC50 of 5-Fu and exerted more cytotoxicity at nearly all concentrations than 5-Fu alone. In conclusion, 5-FuCrNPs is a promising drug delivery system for the effective treatment of CRC.
Collapse
Affiliation(s)
- Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
- Correspondence: ; Tel.: +20-1226770470
| | | | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71516, Egypt;
| | - Jelan A. Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71516, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mostafa F. Al-Hakkani
- Department of Chemistry, Faculty of Science, New Valley University, Al-Kharja 72511, Egypt;
| | - Hatem S. Farghaly
- Department of Biochemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Sueif 62511, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
32
|
Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical Nano-Vesicular Spanlastics of Celecoxib: Enhanced Anti-Inflammatory Effect and Down-Regulation of TNF-α, NF-кB and COX-2 in Complete Freund's Adjuvant-Induced Arthritis Model in Rats. Int J Nanomedicine 2021; 16:133-145. [PMID: 33447032 PMCID: PMC7802787 DOI: 10.2147/ijn.s289828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease that underlies chronic inflammation of the synovial membrane. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat RA. However, a long list of adverse events associated with long-term treatment regimens with NSAIDs negatively influences patient compliance and therapeutic outcomes. AIM The aim of this work was to achieve site-specific delivery of celecoxib-loaded spanlastic nano-vesicle-based delivery system to the inflamed joints, avoiding systemic administration of large doses. METHODOLOGY To develop spanlastic nanovesicles for transdermal delivery of celecoxib, modified injection method was adopted using Tween 80 or Brij as edge activators. Entrapment efficiency, vesicle size, ex vivo permeation, and morphology of the prepared nano-vesicles were characterized. Carbopol-based gels containing the selected formulations were prepared, and their clarity, pH, rheological performance, and ex vivo permeation were characterized. Celecoxib-loaded niosomes and noisome-containing gels were developed for comparison. The in vivo efficacy of the selected formulations was evaluated in a rat model of Freund's complete adjuvant-induced arthritis. Different inflammatory markers including TNF-α, NF-кB and COX-2 were assessed in paw tissue before and after treatment. RESULTS The size and entrapment efficiency of the selected spanlastic nano-vesicle formulation were 112.5 ± 3.6 nm, and 83.6 ± 2.3%, respectively. This formulation has shown the highest transdermal flux and permeability coefficient compared to the other investigated formulations. The spanlastics-containing gel of celecoxib has shown transdermal flux of 6.9 ± 0.25 µg/cm2/hr while the celecoxib niosomes-containing gel and unprocessed celecoxib-loaded gel have shown 5.2 ± 0.12 µg/cm2/hr and 0.64 ± 0.09 µg/cm2/hr, respectively. In the animal model of RA, the celecoxib-loaded spanlastics-containing gel significantly reduced edema circumference and significantly suppressed TNF-α, NF-кB and COX-2 levels compared to the niosomes-containing gel, the marketed diclofenac sodium gel, and unprocessed celecoxib-loaded gel. CONCLUSION The spanlastic nano-vesicle-containing gel represents a more efficient site-specific treatment for topical treatment of chronic inflammation like RA, compared to commercial and other conventional alternatives.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Celecoxib/pharmacology
- Celecoxib/therapeutic use
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Drug Delivery Systems/methods
- Freund's Adjuvant
- Gene Expression Regulation/drug effects
- Kinetics
- Liposomes
- Male
- Mice
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nanoparticles/chemistry
- Particle Size
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Rheology
- Skin Absorption/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen S Gaber
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
33
|
Babos G, Rydz J, Kawalec M, Klim M, Fodor-Kardos A, Trif L, Feczkó T. Poly(3-Hydroxybutyrate)-Based Nanoparticles for Sorafenib and Doxorubicin Anticancer Drug Delivery. Int J Mol Sci 2020; 21:E7312. [PMID: 33022990 PMCID: PMC7582498 DOI: 10.3390/ijms21197312] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Dual drug-loaded nanotherapeutics can play an important role against the drug resistance and side effects of the single drugs. Doxorubicin and sorafenib were efficiently co-encapsulated by tailor-made poly([R,S]-3-hydroxybutyrate) (PHB) using an emulsion-solvent evaporation method. Subsequent poly(ethylene glycol) (PEG) conjugation onto nanoparticles was applied to make the nanocarriers stealth and to improve their drug release characteristics. Monodisperse PHB-sorafenib-doxorubicin nanoparticles had an average size of 199.3 nm, which was increased to 250.5 nm after PEGylation. The nanoparticle yield and encapsulation efficiencies of drugs decreased slightly in consequence of PEG conjugation. The drug release of the doxorubicin was beneficial, since it was liberated faster in a tumor-specific acidic environment than in blood plasma. The PEG attachment decelerated the release of both the doxorubicin and the sorafenib, however, the release of the latter drug remained still significantly faster with increased initial burst compared to doxorubicin. Nevertheless, the PEG-PHB copolymer showed more beneficial drug release kinetics in vitro in comparison with our recently developed PEGylated poly(lactic-co-glycolic acid) nanoparticles loaded with the same drugs.
Collapse
Affiliation(s)
- György Babos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
| | - Michal Kawalec
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
| | - Magdalena Klim
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
- Department of Microbiology and Virology School of Pharmacy with the Division of Laboratory Medicine Medical University of Silesia, 4 Jagiellońska St., 41-200 Sosnowiec, Poland
| | - Andrea Fodor-Kardos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - László Trif
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
| | - Tivadar Feczkó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| |
Collapse
|
34
|
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. Int J Nanomedicine 2020; 15:1437-1456. [PMID: 32184597 PMCID: PMC7060777 DOI: 10.2147/ijn.s236927] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
Collapse
Affiliation(s)
- Umme Ruman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mas Jaffri Masarudin
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
35
|
Response Surface Methodology as a Useful Tool for Development and Optimization of Sustained Release Ketorolac Tromethamine Niosomal Organogels. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09421-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|