1
|
Li C, Zeng A, Li L, Zhao W. Emerging Roles of Plant-Derived Extracellular Vesicles in Biotherapeutics: Advances, Applications, and Future Perspectives. Adv Biol (Weinh) 2025:e2500008. [PMID: 40197701 DOI: 10.1002/adbi.202500008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles, which play an important role in intercellular communication through surface signaling and molecular cargo delivery (proteins, lipids, nucleic acids, etc.). Recently, plant-derived extracellular vesicles (PDVs) containing multiple biological activities have received increasing attention due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDVs are employed as cargo delivery vehicles, enabling diverse functionalities through engineering modification techniques. Nonetheless, there are certain issues with the study of PDVs, such as the lack of standardization in the identification and isolation criteria. This review provides a quick overview of the biogenesis, physicochemical properties, isolation techniques, and biomedical applications of PDVs in current studies, while critically analyzing the current challenges and opportunities. This paper is expected to provide some theoretical guidance for the development of PDVs and further biomedical applications.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Yang J, Ai X, Zhang C, Guo T, Feng N. Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review. Expert Opin Drug Deliv 2025:1-17. [PMID: 40159727 DOI: 10.1080/17425247.2025.2487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential. AREAS COVERED A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion. EXPERT OPINION Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.
Collapse
Affiliation(s)
- Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Xu M, Duan M, Chen M, Mahal A, Yang L, Meng C, Zhang Z, Ren J, Obaidullah AJ, Li S, Wang C. Study on the activity of targeted delivery of DOX against melanoma by exosome-like nanovesicles of Rhodiola rosea. Biochim Biophys Acta Gen Subj 2025; 1869:130776. [PMID: 39970993 DOI: 10.1016/j.bbagen.2025.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Melanoma is the main cause of death from skin cancer. The current treatment methods have prominent toxic side effects. In order to more effectively inhibit melanoma and reduce the toxic side effects during treatment, this paper constructs an engineering system using DSPE-PEG2000-pYEEIE(pYEEIE) molecules to modify exosome-like nanovesicles vesicles of Rhodiola rosea (RELNs) and load Doxorubicin (DOX). As a drug system, the aim is to achieve better targeting activity of the system towards melanoma cell A375. The results showed that the morphology and particle size of the prepared RELNs met the defined criteria for evaluating extracellular vesicles. The pYEEIE-RELNs-DOX drug delivery system has a better inhibitory effect on cell proliferation compared to DOX and RELNs-DOX. At the same time, the pYEEIE-RELN-DOX drug delivery system also showed better targeting towards tumor cells. In summary, this study proposes for the first time RELNs as a new generation of drug delivery carriers and uses them for drug delivery and inhibition of melanoma cell toxicity. This lays the foundation for subsequent animal and clinical experiments, and provides new ideas for the treatment of skin cancer caused by melanoma.
Collapse
Affiliation(s)
- Moxun Xu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Ming Chen
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Lin Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Chen Meng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shuxian Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China.
| | - Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
4
|
Yu Y, Xu Z, Xu L, Lu D, Tang Y, Mai H. Plant extracellular vesicles as emerging neuroprotective agents for central nervous system disorders. J Adv Res 2025:S2090-1232(25)00202-4. [PMID: 40139523 DOI: 10.1016/j.jare.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Plant extracellular vesicles (PEVs) have emerged important roles in central nervous system (CNS) disorders. PEVs are nanoscale vesicles (30-150 nm) that mediate intercellular communication and exhibit unique therapeutic potential due to their natural biocompatibility, minimal immunogenicity, and ability to cross the blood-brain barrier (BBB). With increasing interest in neurotherapeutics, PEVs offer promising applications for CNS disorders by overcoming delivery barriers and reducing adverse effects associated with synthetic nanoparticles. AIM OF REVIEW This review provides a comprehensive analysis of the role of PEVs in CNS disorders, focusing on their mechanisms of action, therapeutic potential, and advantages over mammalian extracellular vesicles (MEVs) and synthetic delivery systems. It also highlights emerging research, challenges, and future directions for their clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW PEVs, derived from fruits, vegetables, and medicinal plants, contain bioactive molecules such as proteins, lipids, microRNAs (miRNAs) and nucleic acids. These vesicles demonstrate the ability to traverse the BBB through receptor-mediated transport and membrane fusion, delivering therapeutic effects for CNS disorders, including neuroinflammation, ischemic stroke, and gliomas. Their pharmacological benefits stem from active metabolites, such as gingerols, alkaloids, and flavonoids, which modulate immune responses, maintain BBB integrity, and reduce neuronal apoptosis. Despite their advantages, challenges such as efficient extraction methods, standardization, and scalability remain obstacles to clinical application. Addressing these issues through advanced extraction techniques, improved characterization, and optimized drug loading strategies can enhance the clinical utility of PEVs.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhifeng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Le Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hongcheng Mai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Liu R, Zhang F, He X, Huang K. Plant Derived Exosome-Like Nanoparticles and Their Therapeutic Applications in Glucolipid Metabolism Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6385-6399. [PMID: 40048449 DOI: 10.1021/acs.jafc.4c12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plant derived exosome-like nanoparticles (PELNs) are membrane structures isolated from different plants, which encapsulate many active substances such as proteins, lipids, and nucleic acids, which exert a substantial influence on many physiological processes such as plant growth and development, self-defense, and tissue repair. Compared with synthetic nanoparticles and mammalian cell derived exosomes (MDEs), PELNs have lower toxicity and immunogenicity and possess excellent biocompatibility. The intrinsic properties of PELNs establish a robust basis for their applications in the therapeutic management of a diverse array of pathologies. It is worth mentioning that PELNs have good biological targeting, which promotes them to load and deliver drugs to specific tissues, offering a superior development pathway for the construction of a new drug delivery system (DDS). Glucose and lipid metabolism is a vital life process for the body's energy and material supply. The maintenance of homeostatic balance provides a fundamental basis for the body's ability to adjust to modifications in both its internal and external environment. Conversely, homeostatic imbalance can lead to a range of severe metabolic disorders. This work provides a comprehensive overview of the extraction and representation methods of PELNs, their transportation and storage characteristics, and their applications as therapeutic agents for direct treatment and as delivery vehicles to enhance nutrition and health. Additionally, it examines the therapeutic efficacy and practical applications of PELNs in addressing abnormalities in glucose and lipid metabolism. Finally, combined with the above contents, the paper summarizes and provides a conceptual framework for the better application of PELNs in clinical disease treatment.
Collapse
Affiliation(s)
- Ruolan Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
6
|
Han Y, Guo X, Ji Z, Guo Y, Ma W, Du H, Guo Y, Xiao H. Colon health benefits of plant-derived exosome-like nanoparticles via modulating gut microbiota and immunity. Crit Rev Food Sci Nutr 2025:1-21. [PMID: 40105379 DOI: 10.1080/10408398.2025.2479066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Exosomes are nanoscale particles with a lipid bilayer membrane that were first identified in mammalian cells. Plant-derived exosome-like nanoparticles (PELNs) share structural and molecular similarities with mammalian exosomes, including lipids, proteins, microRNA (miRNA), and plant-derived metabolites. Owing to their unique characteristics, such as outstanding stability, low immunogenicity, high biocompatibility, and sustainability, PELNs have emerged as promising natural bioactive agents with the capacity for cross-kingdom cellular regulation. Dietary supplementation with PELNs, particularly from fruits and vegetables, has demonstrated health benefits. An increasing number of studies have indicated the beneficial effects of PELNs on colon health. This review summarizes the isolation and characterization of PELNs, and their stability, uptake, and distribution after oral ingestion. Furthermore, this review emphasizes the interactions between PELNs, gut microbiota, and the gut immune system, including the uptake of PELNs by gut microbiota, modulation of gut bacteria metabolism, and immune responses by PELNs. Additionally, the applications of PELNs as bioactive components and drug carriers targeting the colon are reviewed. In summary, PELNs represent a versatile and natural approach to improve colon health, with potential applications in both therapeutic and preventive healthcare strategies.
Collapse
Affiliation(s)
- Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhengmei Ji
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenjun Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
An Y, Sun JX, Ma SY, Xu MY, Xu JZ, Liu CQ, Wang SG, Xia QD. From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future. Int J Nanomedicine 2025; 20:3471-3491. [PMID: 40125436 PMCID: PMC11927496 DOI: 10.2147/ijn.s499893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.
Collapse
Affiliation(s)
- Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Tang X, Wang K, Liu Z, Luo X, Wu M, Ding H, Liu G, Du Q. Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis. Carbohydr Polym 2025; 352:123206. [PMID: 39843107 DOI: 10.1016/j.carbpol.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity. The hydrogel's cross-linking network effectively encapsulates RNs, forming the Kae/CMCHD@RNs system. Rheology, SEM, TGA, degradation behavior, in vitro drug release, and a macrophage-targeted permeability test were performed. The results indicate that the hydrogel utilizes pH/enzyme sensitivity to ensure sustained release in the colon, while also facilitating targeted delivery to macrophages. In vivo imaging further reveals a prolonged local drug retention time in the colon. Moreover, both in vitro and in vivo studies demonstrate RNs and Kae exhibit synergistic therapeutic effects for UC, including inflammation reduction, oxidative stress alleviation, M1-to-M2 macrophage repolarization, and restoration of the intestinal barrier. Consequently, this study underscores the potential of Kae/CMCHD@RNs as a promising therapeutic approach for managing UC.
Collapse
Affiliation(s)
- Xiao Tang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Kun Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zihan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Luo
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Ding
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Gang Liu
- Department of Neonatology, Xuzhou Children's Hospital, Xuzhou 221004, China
| | - Qian Du
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
9
|
Li D, Yi G, Cao G, Midgley AC, Yang Y, Yang D, Liu W, He Y, Yao X, Li G. Dual-Carriers of Tartary Buckwheat-Derived Exosome-Like Nanovesicles Synergistically Regulate Glucose Metabolism in the Intestine-Liver Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410124. [PMID: 40079102 DOI: 10.1002/smll.202410124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/26/2025] [Indexed: 03/14/2025]
Abstract
The utilization of plant-derived exosome-like nanovesicles (ELNs) as nanocarriers for oral delivery of bioactives has garnered significant attention. However, their distinctive lipid membrane composition may result in elevated membrane permeability within the gastrointestinal environment, leading to the leakage of carried bioactives. Inspired by the concept of projectile design, Tartary buckwheat-derived ELNs (TB-ELNs) based dual-carriers are fabricated by loading chlorogenic acid (CGA) into the cores and bonding selenium nanoparticles (SeNPs) to the lipid membrane. The results indicate that SeNPs bond markedly augments the membrane rigidity, and therefore enhances the stability of TB-ELNs and the retention rate of the loaded CGA during gastrointestinal digestion. In vitro and in vivo studies indicates that the TB-ELNs based dual-carriers are internalized by epithelial cells and transcytosis via the endoplasmic reticulum, and show the synergistic regulatory effect on high-fat diet-induced hyperglycemia in the intestine-liver axis. These results may be attributed to the fact that SeNPs combination reduces the gastrointestinal degradation of the carried bioactives. Moreover, SeNPs with antioxidant property can protect ELNs and their carried bioactives from oxidative damage, thereby enhancing their biological activities. Collectively, this study offers a new strategy to develop highly efficient oral delivery systems for bioactives to alleviate hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Gaoyang Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yongli Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Dan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Wenguang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yujuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
10
|
Wang T, Zhao J, Li QY, Yang HQ, Li M, Duan R, Zhang M, Qi Y, Yu J, Yang XX. Poria cocos-Derived Exosome-like Nanovesicles Alleviate Metabolic Dysfunction-Associated Fatty Liver Disease by Promoting Mitophagy and Inhibiting NLRP3 Inflammasome Activation. Int J Mol Sci 2025; 26:2253. [PMID: 40076875 PMCID: PMC11899877 DOI: 10.3390/ijms26052253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects approximately one-quarter of the world's adult population, and no effective therapeutic drugs are available. Poria cocos is a fungus used as a herb and food nutrient for centuries as well as for MAFLD treatment. Exosome-like nanovesicles have many pharmacological activities; however, studies on the effects of Poria cocos-derived exosome-like nanovesicles (PCELNs) on MAFLD are lacking. Therefore, our study aimed at identifying the effects and mechanism of action of PCELNs on MAFLD. PCELNs were isolated by ultracentrifugation and their morphology was characterized, such as particle size, zeta potential, protein distributions, as well as lipid and miRNA compositions. Then, the absorption and distribution of PCELNs were observed in vivo and in vitro. Finally, L02 cell steatosis model induced by fat emulsion and MAFLD mouse model induced by high-fat diet (HFD) were used to evaluate the effect and mechanism of PCELNs on MAFLD. PCELNs were membrane structured vesicles, with a particle size of 161.4 ± 1.7 nm, a zeta potential of -3.20 ± 0.37 mV, and contained a range of proteins, lipids, and miRNAs. PCELNs were absorbed by L02 cells and targeted the liver and spleen after intraperitoneal injection. PCELNs inhibited body weight gain and improved the index of heart, liver, spleen, and various fats, as well as decreased lipid accumulation and lipid level. They also protected mitochondrial ultrastructure and regulated oxidative stress and energy metabolism disorder. Furthermore, PCELNs increased PTEN induced kinase 1 (PINK1), E3 ubiquitin ligase (Parkin) and microtubule associated protein light chain-3 (LC3) protein expression in the liver, reduced oxidized mitochondrial DNA (Ox-mtDNA) content in mitochondria and cytoplasm of the liver, reduced nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3), pro-cysteinyl aspartate specific proteinase-1 (caspase-1), cleared-caspase-1, and mature-interleukin-1β (IL-1β) protein expression in the liver, and reduced the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and interleukin-18 (IL-18) in serum and liver. In conclusion, we demonstrated that PCELNs may alleviate HFD-induced MAFLD by promoting mitochondrial autophagy and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jun Zhao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Qiu-Yi Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Hui-Qiong Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Min Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Rong Duan
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan Qi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China; (T.W.); (J.Z.); (Q.-Y.L.); (H.-Q.Y.); (M.L.); (R.D.); (M.Z.); (Y.Q.)
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
11
|
Patel B, Gaikwad S, Prasad S. Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools. CANCER PATHOGENESIS AND THERAPY 2025; 3:109-119. [PMID: 40182121 PMCID: PMC11963151 DOI: 10.1016/j.cpt.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/05/2025]
Abstract
Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Bhaumik Patel
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Jung D, Kim NE, Kim S, Bae JH, Jung IY, Doh KW, Lee B, Kim DK, Cho YE, Baek MC. Plant-derived nanovesicles and therapeutic application. Pharmacol Ther 2025:108832. [PMID: 40023319 DOI: 10.1016/j.pharmthera.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Plant-derived nanovesicles (PDNVs) are becoming more popular as promising therapeutic tools owing to their diversity, cost-effectiveness, and biocompatibility with very low toxicity. Therefore, this review aims to discuss the methods for isolating and characterizing PDNVs and emphasize their versatile roles in direct therapeutic applications and drug delivery systems. Their ability to effectively encapsulate and deliver large nucleic acids, proteins, and small-molecule drugs was highlighted. Moreover, advanced engineering strategies, such as surface modification and fusion with other vesicles, have been developed to enhance the therapeutic effects of PDNVs. Additionally, we describe key challenges related to this field, encouraging further research to optimize PDNVs for various clinical applications for prevention and therapeutic purposes. The distinctive properties and diverse applications of PDNVs could play a crucial role in the future of personalized medicine, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Eun Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sua Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Il-Young Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung-Won Doh
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
14
|
Mun JG, Song DH, Kee JY, Han Y. Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications. Curr Issues Mol Biol 2025; 47:144. [PMID: 40136398 PMCID: PMC11941663 DOI: 10.3390/cimb47030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Exosome-like nanovesicles (ELNs) derived from natural products are gaining attention as innovative therapeutic agents due to their biocompatibility, low immunogenicity, and capability to transport bioactive molecules such as proteins, lipids, and nucleic acids. These plant-derived ELNs exhibit structural similarities with mammalian exosomes, making them suitable for drug delivery, microbiome-targeted therapies, and regenerative medicine. Recent studies highlight their potential in treating cancer, inflammation, and metabolic disorders. Additionally, ELNs have applications in cosmetics, agriculture, and the food industry. This review combines the latest advancements in research on plant-derived ELNs, focusing on isolation techniques, pharmacological effects, and therapeutic applications. Although plant-derived ELNs offer promising opportunities, several challenges must be addressed, including standardization, large-scale production, and in vivo efficacy. By summarizing cutting-edge studies and suggesting future directions, we aim to inspire further development of plant-derived ELNs as next-generation therapeutic platforms.
Collapse
Affiliation(s)
- Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Dong-Ha Song
- Department of Microbiology, Wonkwang University School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Yohan Han
- Department of Microbiology, Wonkwang University School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea;
- Institute of Wonkwang Medical Science, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
15
|
Yao Y, Xu Z, Ding H, Yang S, Chen B, Zhou M, Zhu Y, Yang A, Yan X, Liang C, Kou X, Chen B, Huang W, Li Y. Carrier-free nanoparticles-new strategy of improving druggability of natural products. J Nanobiotechnology 2025; 23:108. [PMID: 39953594 PMCID: PMC11827262 DOI: 10.1186/s12951-025-03146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
There are abundant natural products resources and extensive clinical use experience in China. However, the active components of natural products generally have problems such as poor water solubility and low bioavailability, which limit their druggability. Carrier-free nanoparticles, such as nanocrystals, self-assembled nanoparticles, and extracellular vesicles derived from both animal and plant sources, have great application potential in improving the safety and efficacy of drugs due to their simple and flexible preparation methods, high drug loading capacity and delivery efficiency, as well as long half-life in blood circulation. It has been widely used in biomedical fields such as anti-tumor, anti-bacterial, anti-inflammatory and anti-oxidation. Therefore, based on the natural products that have been used in clinic, this review focuses on the advantages of carrier-free nanoparticles in delivering active compounds, in order to improve the delivery process of natural products in vivo and improve their draggability.
Collapse
Affiliation(s)
- Yaqi Yao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenna Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haoran Ding
- College of Pharmacy, Shandong Xiandai University, Jinan, 250104, China
| | - Shenshen Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bohan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengjiao Zhou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yehan Zhu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Aihong Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenrui Liang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yubo Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
16
|
Jin E, Yang Y, Cong S, Chen D, Chen R, Zhang J, Hu Y, Chen W. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J Nanobiotechnology 2025; 23:68. [PMID: 39891270 PMCID: PMC11783766 DOI: 10.1186/s12951-025-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025] Open
Abstract
The orderly regulation of immune inflammation and promotion of the regeneration of skin vessels and fibers are key to the treatment of diabetic skin injury (DSI). Although various traditional polypeptide biological dressings continue to be developed, their efficacy is not satisfactory. In recent years, plant-to-mammal regulation has provided an effective approach for chronic wound management, but the development of effective plant-based treatments remains challenging. The development of exosomes from Chinese herbs is promising for wound healing. In this study, plant exosomes derived from lemons (Citrus limon) were extracted, and their biological efficacy was verified. Lemon exosomes regulated the polarization reprogramming of macrophages, promoted the proliferation and migration of vascular endothelial cells and fibroblasts, and thus promoted the healing of diabetic wounds. To solve the problems of continuous drug delivery and penetration depth, Lemon Exosomes were loaded into a hydrogel constructed of Gelatin Methacryloyl (GelMA) and Dialdehyde Starch (DAS) that closely fits to the skin, absorbs water, swells, and is moist and breathable, effectively promoting the sustained and slow release of exosomes and resulting in excellent performance for diabetic wound healing. Our GelMA-DAS-Lemon Exosomes hydrogel (GelMA/DAS/Exo hydrogel) patch represents a potentially valuable option for repairing diabetic wounds in clinical applications.
Collapse
Affiliation(s)
- Enyou Jin
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
- School of Chinese Medicine, Macao University of Science and Technology Hospital, Zhuhai, Guangdong Province, 519000, China
| | - Yusheng Yang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shengjie Cong
- Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Dengke Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Ruixiong Chen
- Department of Orthopedics, The First People's Hospital of Huizhou, Guangdong, 516000, China
| | - Jun Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China.
- School of Chinese Medicine, Macao University of Science and Technology Hospital, Zhuhai, Guangdong Province, 519000, China.
| | - Yanjun Hu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Weini Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China.
- School of Chinese Medicine, Macao University of Science and Technology Hospital, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
17
|
Yang X, Zong Z, Niu B, Chen H, Wu W, Fang X, Liu R, Gao H, Mu H. Shiitake mushroom-derived extracellular nanovesicles: Preparation, characterization, and inhibition of Caco-2 cells. Food Chem 2025; 463:141339. [PMID: 39316905 DOI: 10.1016/j.foodchem.2024.141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
In this study, Shiitake mushroom-derived extracellular nanovesicles (SMDENVs) were isolated from fresh Shiitake mushrooms by ultracentrifugation and sucrose gradient ultracentrifugation. The morphological characteristics of SMDENVs were investigated via Transmission Electron Microscopy and Laser Scanning Confocal Microscopy. SMDENVs were spherical, hollow, and uniform in size, with an average diameter of 177.6 ± 51.4 nm. Based on the analysis of lipidomics and proteomics, 383 lipids species and 1290 proteins were identified in SMDENVs. Compared with the conventional liposomes, SMDENVs demonstrated higher stability in different environmental conditions. Furthermore, we observed that SMDENVs were cytocompatible and inhibited the proliferation of Caco-2 cells. SMDENVs could be phagocytized by Caco-2 cells in a time-dependent manner. Further, SMDENVs also inhibited the proliferation of Caco-2 cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC50) was 236.2 ± 3.2 μg/mL. Additionally, SMDENVs induced cellular apoptosis by increasing the levels of reactive oxygen species and decreasing the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xueli Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zihao Zong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Honglei Mu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
18
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
19
|
Yi C, Lu L, Li Z, Guo Q, Ou L, Wang R, Tian X. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res 2025; 15:84-101. [PMID: 38758499 DOI: 10.1007/s13346-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.
Collapse
Affiliation(s)
- Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Linzhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Zhaosheng Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Qianqian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Longyun Ou
- The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Ruoyu Wang
- Department of Infectious Diseases, Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Rd, Hunan, 410208, Changsha, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China.
- Hunan Province University Key Laboratory of Oncology of Tradional Chinese Medicine, 410208, Changsha, Hunan, China.
| |
Collapse
|
20
|
Yu J, Yang S, Zhang X, Liu X, Tang X, Wang L, Chen J, Luo H, Liu C, Song C. Integrating metagenomics and culturomics to uncover the soil bacterial community in Asparagus cochinchinensis cultivation. Front Microbiol 2024; 15:1467864. [PMID: 39697658 PMCID: PMC11652531 DOI: 10.3389/fmicb.2024.1467864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Asparagus cochinchinensis is a medicinal plant in China, which has gained attention owing its protective effect in human health. However, there are seldom studies to systematically reveal the rhizosphere bacterial community of A. cochinchinensis. In this study, we employed metagenomics and culturomics to analyze the bacterial community composition and diversity in continuous rhizosphere soil of A. cochinchinensis. Meanwhile, we assessed the effect of soil physicochemical properties on the bacterial community. Results showed that the most abundant TAXA is a taxon belonging to the family Streptomycetaceae, the genus Mycobacterium and the species Oligotropha carboxidovorans. The bacterial communities across various areas were similar. Significant differences of exchangeable magnesium and available phosphorus level were observed between three groups. Furthermore, bacterial community structure correlated closely with soil physicochemical properties. Additionally, a total of 103 strains were isolated and identified, representing 28 species. Based on this study, the rhizosphere bacterial community of A. cochinchinensis might influence its growth and development. The rhizosphere strains were isolated and their function request further investigation. This study firstly revealed the bacterial community in the A. cochinchinensis rhizosphere soil, providing valuable references for its quality improvement in practical cultivation process.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyong Zhang
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
- Neijiang Dongxing District Bureau of Health, Neijiang, China
| | - Xiongwei Liu
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
- Committee of Education, Science, Culture and Health of Dongxing District, Neijiang, China
| | - Xuebo Tang
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Liuyan Wang
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Jinglan Chen
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Huimin Luo
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Changmin Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
22
|
Luo Y, Ou X, Liu D, Shi H, Liao J, Yu R, Song L, Zhu J. A novel exosome-like nanovesicles from Cordyceps militaris potentiate immunomodulatory and anti-tumor effect by reprogramming macrophages. Life Sci 2024; 358:123163. [PMID: 39442867 DOI: 10.1016/j.lfs.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
AIMS Fungi-derived exosome-like nanovesicles (ENs) are emerging as a highly promising class of nanoparticles, particularly noted for their cost-effective production. However, their impact on immune regulation and their potential as anti-tumor agents need further exploration. Our study specifically focused on the investigation of the immunomodulatory and anti-tumor properties of ENs derived from Cordyceps militaris, an edible fungus that had achieved large-scale commercial production, referred to as CMDENs. MAIN METHODS The ENs of C. militaris were collected through ultra-high-speed centrifugation, followed by characterization of their physicochemical properties and contents. Subsequently, the biological distribution of these vesicles was investigated using in vivo fluorescence imaging experiments. Finally, the immune activation and polarization of macrophages were examined through both in vitro and in vivo experiments. KEY FINDINGS Herein, we presented the discovery of CMDENs that were rich in proteins, lipids, flavonoids and alkaloids. Immunomodulatory experiments conducted in vivo demonstrated that CMDENs exhibited protective effects against cyclophosphamide-induced immunosuppression in mice by significantly enhancing macrophage phagocytosis and peripheral blood immune cell counts. Moreover, CMDENs effectively induced the polarization of M0- and M2-like macrophages toward M1-like phenotype by activating MAPKs signaling pathway. Notably, CMDENs exhibited remarkable capabilities in inhibiting tumor growth by reprogramming tumor-associated macrophages and activating tumor-infiltrating T lymphocytes, without any observed toxicity in mice bearing tumors. SIGNIFICANCE Our research suggested that CMDENs possessed the potential to be explored as a nano-immunomodulatory agent for cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China; Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaozheng Ou
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - De Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - Hui Shi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiapei Liao
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China
| | - Rongmin Yu
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
23
|
Lv L, Li Z, Liu X, Zhang W, Zhang Y, Liang Y, Zhang Z, Li Y, Ding M, Li R, Lin J. Revolutionizing medicine: Harnessing plant-derived vesicles for therapy and drug transport. Heliyon 2024; 10:e40127. [PMID: 39634409 PMCID: PMC11615498 DOI: 10.1016/j.heliyon.2024.e40127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of extracellular vesicles (EVs), which are natural lipid bilayer membrane structures facilitating intercellular substance and information exchange, has sparked innovative approaches in drug development and carrier enhancement. Plant-derived EVs notably offer advantages including low preparation cost, low immunogenicity, flexible drug delivery, high stability, good tissue permeability, and high inherent medicinal value compared to their animal-derived counterparts. Despite these promising attributes, the research on plant-derived EVs remains fragmented and lacks comprehensive synthesis. This review aims to address this gap by summarizing the isolation methods, biological characteristics, and storage techniques of plant-derived EVs. Additionally, we explore the potential of plant-derived EVs as therapeutic agents and drug carriers for treating various diseases. Finally, we delineate the current impediments to plant-derived EV development and highlight future research directions. By providing a detailed overview, we hope to facilitate further research and application in this emerging field.
Collapse
Affiliation(s)
- Li Lv
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhenkun Li
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Xin Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yi Zhang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Ying Liang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhixian Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yueqiao Li
- Department of Medical Oncology, Yanjin Country People's Hospital, No. 87, Pingjie Street, Yanjin County, Zhaotong, 657500, Yunnan, China
| | - Mingxia Ding
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| |
Collapse
|
24
|
Li Y, Wang Y, Zhao H, Pan Q, Chen G. Engineering Strategies of Plant-Derived Exosome-Like Nanovesicles: Current Knowledge and Future Perspectives. Int J Nanomedicine 2024; 19:12793-12815. [PMID: 39640047 PMCID: PMC11618857 DOI: 10.2147/ijn.s496664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PELNs) from edible plants, isolated by ultracentrifugation, size exclusion chromatography or other methods, were proved to contain a variety of biologically active and therapeutically specific components. Recently, investigations in the field of PELN-based biomedicine have been conducted, which positioned those nanovesicles as promising tools for prevention and treatment of several diseases, with their natural origin potentially offering superior biocompatibility and bioavailability. However, the inadequate targeting and limited therapeutic effects constrain the utility and clinical translation of PELNs. Thus, strategies aiming at bridging the gap by engineering natural PELNs have been of great interest. Those approaches include membrane hybridization, physical and chemical surface functionalization and encapsulation of therapeutic payloads. Herein, we provide a comprehensive overview of the biogenesis and composition, isolation and purification methods and characterization of PELNs, as well as their therapeutic functions. Current knowledge on the construction strategies and biomedical application of engineered PELNs were reviewed. Additionally, future directions and perspectives in this field were discussed in order to further enrich and expand the prospects for the application of engineered PELNs.
Collapse
Affiliation(s)
- Yuhan Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hongrui Zhao
- Intensive Care Medicine Department, Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Qi Pan
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Guihao Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Zhang J, Tian S, Guo L, Zhao H, Mao Z, Miao M. Chinese herbal medicine-derived extracellular vesicles as novel biotherapeutic tools: present and future. J Transl Med 2024; 22:1059. [PMID: 39587576 PMCID: PMC11587639 DOI: 10.1186/s12967-024-05892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer-enclosed biological particles that are secreted by almost all living cells including animals, plants, and microorganisms. Chinese herbal medicines (CHM) have a long history of using plant-based remedies to treat and prevent human diseases. Chinese herbal medicine-derived extracellular vesicle (CHMEV) generic term refers to nanoscale membrane structures isolated from medicinal plants such as ginseng, ginger, and Panax notoginseng. In recent years, CHMEVs have garnered substantial attention as a novel class of functional components due to their high bioavailability, safety, easy accessibility, and diverse therapeutic effects, indicating their great potential for development as a new dosage form of CHM. Research on CHMEVs in traditional Chinese medicine (TCM) has become a prominent area of interest, opening new avenues for further exploration into the therapeutic effects and functional mechanisms of CHM. Nonetheless, as an emerging field, there is much unknown about these vesicles, and current research remains inconsistent. The review comprehensively summarizes the biogenesis, isolation methods, and physical, and biochemical characterizations of CHMEVs. Additionally, we highlight their biomedical applications as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, regenerative, and antiaging activities. Finally, we propose current challenges and future perspectives. By summarizing the existing literature, we aim to offer valuable clues and inspiration for future CHMEV research, thereby facilitating research standardization of CHMEVs in the treatment of human diseases and drug discovery.
Collapse
Affiliation(s)
- Jinying Zhang
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Shuo Tian
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu- Yao Affiliated to Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Lin Guo
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Hui Zhao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Zhiguo Mao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China.
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu- Yao Affiliated to Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, PR China.
| |
Collapse
|
26
|
Sha A, Luo Y, Xiao W, He J, Chen X, Xiong Z, Peng L, Zou L, Liu B, Li Q. Plant-Derived Exosome-like Nanoparticles: A Comprehensive Overview of Their Composition, Biogenesis, Isolation, and Biological Applications. Int J Mol Sci 2024; 25:12092. [PMID: 39596159 PMCID: PMC11593521 DOI: 10.3390/ijms252212092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are a type of membranous vesicle isolated from plant tissues. They contain proteins, lipids, nucleic acids, and other components. PELNs are involved in the defensive response to pathogen attacks by exerting anti-inflammatory, antiviral, antifibrotic, and antitumor effects through the substances they contain. Most PELNs are edible and can be used as carriers for delivering specific drugs without toxicity and side effects, making them a hot topic of research. Sources of PELNs are abundantly, and they can be produced in high yields, with a low risk of developing immunogenicity in vivo. This paper summarizes the formation, isolation, and purification methods; physical properties; and composition of PELNs through a comprehensive literature search. It also analyzes the biomedical applications of PELNs, as well as future research directions. This paper provides new ideas and methods for future research on PELNs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (A.S.); (Y.L.); (W.X.); (J.H.); (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (A.S.); (Y.L.); (W.X.); (J.H.); (X.C.); (Z.X.); (L.P.); (L.Z.)
| |
Collapse
|
27
|
Wu C, Li J, Huang K, Tian X, Guo Y, Skirtach AG, You M, Tan M, Su W. Advances in preparation and engineering of plant-derived extracellular vesicles for nutrition intervention. Food Chem 2024; 457:140199. [PMID: 38955121 DOI: 10.1016/j.foodchem.2024.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.
Collapse
Affiliation(s)
- Caiyun Wu
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Jiaxuan Li
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Kexin Huang
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Xueying Tian
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yaqiong Guo
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China.
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Mingliang You
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China
| | - Mingqian Tan
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
28
|
Ding L, Chang C, Liang M, Dong K, Li F. Plant‐Derived Extracellular Vesicles as Potential Emerging Tools for Cancer Therapeutics. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractExtracellular vesicles (EVs) are membranous structures secreted by cells that play important roles in intercellular communication and material transport. Due to its excellent biocompatibility, lipophilicity, and homing properties, EVs have been used as a new generation of drug delivery systems for the diagnosis and treatment of tumors. Despite the potential clinical benefits of animal‐derived extracellular vesicles (AEVs), their large‐scale production remains sluggish due to the exorbitant cost of cell culture, challenging quality control measures, and limited production capabilities. This constraint significantly hinders their widespread clinical application. Plant‐derived extracellular vesicles (PEVs) share similar functionalities with AEVs, yet they hold several advantages including a wide variety of source materials, cost‐effectiveness, ease of preparation, enhanced safety, more stable physicochemical properties, and notable efficacy. These merits position PEVs as promising contenders with broad potential in the biomedical sector. This review will elucidate the advantages of PEVs, delineating their therapeutic mechanisms in cancer treatment, and explore the prospective applications of engineered PEVs as targeted delivery nano‐system for drugs, microRNAs, small interfering RNAs, and beyond. The aim is to heighten researchers’ focus on PEVs and expedite the progression from fundamental research to the transformation of groundbreaking discoveries.
Collapse
Affiliation(s)
- Lin Ding
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Chih‐Jung Chang
- School of Medicine and Medical Research Center Xiamen Chang Gung Hospital Hua Qiao University Xiamen Fujian 362017 China
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Linkou Taoyuan 244330 Taiwan
| | - Min‐Li Liang
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Kang‐Mei Dong
- Xiamen Lifeint Technology Co., Ltd. Fujian 361000 China
| | - Fu‐Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| |
Collapse
|
29
|
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, Wen G, Ren H, Li P, Wang J. Applications of plant-derived extracellular vesicles in medicine. MedComm (Beijing) 2024; 5:e741. [PMID: 39309692 PMCID: PMC11413507 DOI: 10.1002/mco2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.
Collapse
Affiliation(s)
- Yawen Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Junqi Zhao
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haoran Ding
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Dongxue Ge
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Peng Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
30
|
Dong Z, Wang Y, Jin W. Liver cirrhosis: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e721. [PMID: 39290252 PMCID: PMC11406049 DOI: 10.1002/mco2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine‒biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Yeying Wang
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Weilin Jin
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| |
Collapse
|
31
|
Zeng M, Liu M, Tao X, Yin X, Shen C, Wang X. Emerging Trends in the Application of Extracellular Vesicles as Novel Oral Delivery Vehicles for Therapeutics in Inflammatory Diseases. Int J Nanomedicine 2024; 19:8573-8601. [PMID: 39185348 PMCID: PMC11345024 DOI: 10.2147/ijn.s475532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation involves complex immune responses where cytokines such as TNF-α, IL-1, and IL-6 promote vasodilation and increased vascular permeability to facilitate immune cell migration to inflammation sites. Persistent inflammation is linked to diseases like cancer, arthritis, and neurodegenerative disorders. Although oral anti-inflammatory drugs are favored for their non-invasiveness and cost-effectiveness, their efficacy is often compromised due to gastrointestinal degradation and limited bioavailability. Recent advancements highlight the potential of extracellular vesicles (EVs) as nanocarriers that enhance drug delivery by encapsulating therapeutic agents, ensuring targeted release and reduced toxicity. These EVs, derived from dietary sources and cell cultures, exhibit excellent biocompatibility and stability, presenting a novel approach in anti-inflammatory therapies. This review discusses the classification and advantages of orally administered EVs (O-EVs), their mechanism of action, and their emerging role in treating inflammatory conditions, positioning them as promising vectors in the development of innovative anti-inflammatory drug delivery systems.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
32
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
33
|
Chu K, Liu J, Zhang X, Wang M, Yu W, Chen Y, Xu L, Yang G, Zhang N, Zhao T. Herbal Medicine-Derived Exosome-Like Nanovesicles: A Rising Star in Cancer Therapy. Int J Nanomedicine 2024; 19:7585-7603. [PMID: 39081899 PMCID: PMC11287466 DOI: 10.2147/ijn.s477270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PDNVs) are small nanoscale vesicles containing lipids, RNAs, proteins and some plant natural products secreted by plant cells. Over the last decade, PDNVs have garnered significant interest due to its exceptional therapeutic benefits in the treatment of various diseases. Herbal medicine, as a medicinal plant, plays an important role in the treatment of diseases including cancer. Especially in recent years, the function of herbal medicine derived exosome-like nanovesicles (HMDNVs) in the treatment of cancer has been widely concerned, and has become a research hotspot of nanomedicine. In this review, the biological characteristics, functions and the therapeutic advantages of PDNVs are reviewed, as well as the recent achievements and research progress of HMDNVs in cancer treatment, demonstrating its enormous promise as a cancer therapy, and new insights are provided for future research and development of anti-tumor drugs.
Collapse
Affiliation(s)
- Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Minran Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Wanping Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Yuyue Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Lingling Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Geng Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Naru Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| |
Collapse
|
34
|
Qiang W, Li J, Ruan R, Li Q, Zhang X, Yan A, Zhu H. Plant-derived extracellular vesicles as a promising anti-tumor approach: A comprehensive assessment of effectiveness, safety, and mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155750. [PMID: 38797028 DOI: 10.1016/j.phymed.2024.155750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Plant-derived extracellular vesicles (PDEs) are expected to be a compelling alternative for cancer treatment due to their low cytotoxicity, low immunogenicity, high yield, and potential anti-tumor efficacy. Despite the significant advantages of PDEs, the reliable evidence for PDEs as promising anti-tumor approach remains unsystematic and insufficient. Some challenges remain for the clinical application and large-scale industrial production of PDEs. PURPOSE Through systematic evaluation and meta-analysis, the objective was to provide scientific, systematic and reliable preclinical evidence to support the clinical use of PDEs in cancer therapy. METHODS The search for relevant literature, conducted up to March 2024, encompassed various databases including Web of Science, the Cochrane Library, Embase, PubMed, CNKI, Wanfang Data, and the China Science and Technology Journal Database. The SYRCLE´s risk of bias tool was used to assess the methodological quality of the animal studies. For overall effect analysis and subgroup analysis, RevMan 5.4 and Stata 12.0 were utilized. RESULTS The analysis incorporated a total of 38 articles, comprising 29 in vivo studies and 9 in vitro studies. Meta-analysis indicated that PDEs significantly reduced cancer cell activity and induced apoptosis, reduced tumor volume and tumor weight when used as therapeutic agents, as well as exhibited synergistic anti-cancer via combination therapy. Additionally, PDEs-drugs exerted stronger inhibition of tumor volume compared to the free drug or commercial liposome-drugs. Their therapeutic effects were closely related to regulating tumor cell biological behavior and remodeling the tumor microenvironment. The safety was associated with administration route of PDEs, oral administration was currently preferred until more in-depth studies on the safety of other methods are conducted. CONCLUSIONS The meta-analysis revealed that PDEs have systematic and reliable preclinical evidence in preclinical studies of cancer therapy, and their efficacy and certain safety could support the clinical application of PDEs in cancer therapy. Of course, further researches are required for large-scale industrial production to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Wei Qiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, China
| | - Jing Li
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 116 Zhuodaoquan South Load, Hong-shan District, Wuhan 430079, China
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, China
| | - Qiaoxin Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, China
| | - Xinglong Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, China
| | - Aqin Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, China.
| |
Collapse
|
35
|
Wang Q, Liu K, Cao X, Rong W, Shi W, Yu Q, Deng W, Yu J, Xu X. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng Transl Med 2024; 9:e10646. [PMID: 39036078 PMCID: PMC11256167 DOI: 10.1002/btm2.10646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 07/23/2024] Open
Abstract
Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.
Collapse
Affiliation(s)
- Qilong Wang
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Kai Liu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Xia Cao
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wanjin Rong
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwan Shi
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Qintong Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwen Deng
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Jiangnan Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Ximing Xu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| |
Collapse
|
36
|
Wang T, Fu ZY, Li YJ, Zi L, Song CZ, Tao YX, Zhang M, Gu W, Yu J, Yang XX. Recognition on pharmacodynamic ingredients of natural products. Saudi Pharm J 2024; 32:102124. [PMID: 38933713 PMCID: PMC11201352 DOI: 10.1016/j.jsps.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Zhong-Yu Fu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Cheng-Zhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
37
|
Liu X, Lou K, Zhang Y, Li C, Wei S, Feng S. Unlocking the Medicinal Potential of Plant-Derived Extracellular Vesicles: current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:4877-4892. [PMID: 38828203 PMCID: PMC11141722 DOI: 10.2147/ijn.s463145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Botanical preparations for herbal medicine have received more and more attention from drug researchers, and the extraction of active ingredients and their successful clinical application have become an important direction of drug research in major pharmaceutical companies, but the complexity of extracts, multiple side effects, and significant individual differences have brought many difficulties to the clinical application of herbal preparations. It is noteworthy that extracellular vesicles as active biomolecules extracted from medicinal plants are believed to be useful for the treatment of a variety of diseases, including cancer, inflammation, regenerative-restorative and degenerative diseases, which may provide a new direction for the clinical utilization of herbal preparations. In this review, we sort out recent advances in medicinal plant extracellular vesicles and discuss their potential as disease therapeutics. Finally, future challenges and research directions for the clinical translation of medicinal plant extracellular vesicles are also discussed, and we expect that continued development based on medicinal plant extracellular vesicles will facilitate the clinical application of herbal preparations.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Chuanxiao Li
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Shenghong Wei
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, People’s Republic of China
| |
Collapse
|
38
|
Bai C, Liu J, Zhang X, Li Y, Qin Q, Song H, Yuan C, Huang Z. Research status and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother 2024; 174:116543. [PMID: 38608523 DOI: 10.1016/j.biopha.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.
Collapse
Affiliation(s)
- Chunmei Bai
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China.
| | - Xumin Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Haixia Song
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Caixia Yuan
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Ziwei Huang
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| |
Collapse
|
39
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
40
|
Wang X, Xin C, Zhou Y, Sun T. Plant-Derived Vesicle-like Nanoparticles: The Next-Generation Drug Delivery Nanoplatforms. Pharmaceutics 2024; 16:588. [PMID: 38794248 PMCID: PMC11125130 DOI: 10.3390/pharmaceutics16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
A wide variety of natural bioactive compounds derived from plants have demonstrated significant clinical relevance in the treatment of various diseases such as cancer, chronic disease, and inflammation. An increasing number of studies have surfaced that give credence to the potential of plant-derived vesicle-like nanoparticles (PDVLNs) as compelling candidates for a drug delivery system (DDS). PDVLNs are cost-effective production, non-toxicity and non-immunogenicity and fascinating bi-ocompatibility. In this review, we attempt to comprehensively review and consolidate the position of PDVLNs as next-generation drug delivery nanoplatforms. We aim to give a quick glance to readers of the current developments of PDVLNs, including their biogenesis, characteristic features, composition, administration routes, advantages, and application. Further, we discuss the advantages and limitations of PDVLNs. We expect that the role of PDVLNs in drug delivery will be significantly enhanced, thus positioning them as the next generation of therapeutic modalities in the foreseeable future.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Congling Xin
- Department of Gynecology, Fudan University Shanghai Cancer Center, Minhang District, Shanghai 200240, China
| | - Yu Zhou
- Department of Interventional Radiolagy, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
41
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
42
|
Yang LY, Li CQ, Zhang YL, Ma MW, Cheng W, Zhang GJ. Emerging Drug Delivery Vectors: Engineering of Plant-Derived Nanovesicles and Their Applications in Biomedicine. Int J Nanomedicine 2024; 19:2591-2610. [PMID: 38505167 PMCID: PMC10949304 DOI: 10.2147/ijn.s454794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular vesicles can transmit intercellular information and transport biomolecules to recipient cells during various pathophysiological processes in the organism. Animal cell exosomes have been identified as potential nanodrugs delivery vehicles, yet they have some shortcomings such as high immunogenicity, high cytotoxicity, and complicated preparation procedures. In addition to exosomes, plant-derived extracellular vesicles (PDVs), which carry a variety of active substances, are another promising nano-transport vehicles emerging in recent years due to their stable physicochemical properties, wide source, and low cost. This work briefly introduces the collection and characterization of PDVs, then focuses on the application of PDVs as natural or engineered drug carriers in biomedicine, and finally discusses the development and challenges of PDVs in future applications.
Collapse
Affiliation(s)
- Lu-Yao Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Chao-Qing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Yu-Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Wan Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| |
Collapse
|
43
|
Ma Y, Zhang F, Xie Y, An L, Zhang B, Yu B, Li R. Oligosaccharides from Asparagus cochinchinensis for ameliorating LPS-induced acute lung injury in mice. Food Funct 2024; 15:2693-2705. [PMID: 38376424 DOI: 10.1039/d3fo05628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asparagi radix is an edible herb with medicinal properties and is now widely used in clinical applications for improving pulmonary inflammation. However, the lung-protective effect and the active constituents of Asparagi radix are yet to be elucidated. Herein, the potential pulmonary protective effect of the oligosaccharides of Asparagi radix was investigated. We firstly identified eighteen oligosaccharides with different degrees of polymerization from Asparagi radix using HPLC-QTOF MS. Oligosaccharides were analysed for 20 samples of Asparagi radix collected from various regions in China using HILIC-ELSD and were found to stably exist in this herb. In this study, we found that AROS significantly reduced NO production and effectively down-regulated the mRNA expression of IL-6, IL-1β and TNF-α in RAW 264.7 cells, thereby reducing the inflammatory response induced by LPS. AROS also inhibited LPS-stimulated intracellular ROS production. A murine model of lipopolysaccharide (LPS)-induced acute lung injury was used to evaluate the in vivo anti-inflammatory and lung protective efficacies of AROS. AROS ameliorated the damage to the pulmonary cellular architecture pathological injury and lung edema. AROS significantly decreased the levels of cytokines IL-6, TNF-α and IL-1β; the levels of MPO and MDA; and superoxide dismutase consumption in vivo. This effect of oligosaccharides can explain the traditional usage of Asparagus cochinchinensis as a tonic medicine for respiratory problems, and oligosaccharides from Asparagi radix used as a natural ingredient can play an important role in protecting lung injury.
Collapse
Affiliation(s)
- Yajie Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Yujun Xie
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Luyao An
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| |
Collapse
|
44
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
45
|
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B 2024; 12:2236-2252. [PMID: 38351750 DOI: 10.1039/d3tb02752j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plant-derived exosomes (PDEs) are natural extracellular vesicles (EVs). In the current decade, they have been highlighted for cancer therapeutic development. Cancer is a global health crisis and it requires an effective, affordable, and less side effect-based treatment. Emerging research based on PDEs suggests that they have immense potential to be considered as a therapeutic option. Research evidences indicate that PDEs' internal molecular cargos show impressive cancer prevention activity with less toxicity. PDEs-based drug delivery systems overcome several limitations of traditional drug delivery tools. Extraction of PDEs from plant sources employ diverse methodologies, encompassing ultracentrifugation, immunoaffinity, size-based isolation, and precipitation, each with distinct advantages and limitations. The core constituents of PDEs comprise of lipids, proteins, DNA, and RNA. Worldwide, a few clinical trials on plant-derived exosomes are underway, and regulatory affairs for their use as therapeutic agents are still not understood with clarity. This review aims to comprehensively analyze the current state of research on plant-derived exosomes as a promising avenue for drug delivery, highlighting anticancer activity, challenges, and future orientation in effective cancer therapeutic development.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| |
Collapse
|
46
|
Wang Y, Wu Y, Shen S, Liu Y, Xia Y, Xia H, Xie Z, Xu Y. Engineered plant extracellular vesicles for natural delivery across physiological barriers. Food Funct 2024; 15:1737-1757. [PMID: 38284549 DOI: 10.1039/d3fo03503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles that participate in the information transfer of proteins, nucleic acids, and lipids between cells, thereby playing a role in the treatment of diseases and the delivery of nutrients. In recent years, plant-derived EVs (PDEVs) containing bioactive compounds have attracted increasing interest due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDEVs have been used as cargo carriers to achieve various functions through engineering modification techniques. This review focuses on the biogenesis, isolation, and identification of PDEVs. We discuss the surface functionalization of PDEVs to enhance therapeutic efficacy, thereby improving their efficiency as a next-generation drug delivery vehicle and their feasibility to treat diseases across the physiological barriers, while critically analyzing the current challenges and opportunities.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd, Hefei 230088, China
| |
Collapse
|
47
|
Lo KJ, Wang MH, Ho CT, Pan MH. Plant-Derived Extracellular Vesicles: A New Revolutionization of Modern Healthy Diets and Biomedical Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2853-2878. [PMID: 38300835 DOI: 10.1021/acs.jafc.3c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Plant-derived extracellular vesicles (PDEVs) have recently emerged as a promising area of research due to their potential health benefits and biomedical applications. Produced by various plant species, these EVs contain diverse bioactive molecules, including proteins, lipids, and nucleic acids. Increasing in vitro and in vivo studies have shown that PDEVs have inherent pharmacological activities that affect cellular processes, exerting anti-inflammatory, antioxidant, and anticancer activities, which can potentially contribute to disease therapy and improve human health. Additionally, PDEVs have shown potential as efficient and biocompatible drug delivery vehicles in treating various diseases. However, while PDEVs serve as a potential rising star in modern healthy diets and biomedical applications, further research is needed to address their underlying knowledge gaps, especially the lack of standardized protocols for their isolation, identification, and large-scale production. Furthermore, the safety and efficacy of PDEVs in clinical applications must be thoroughly evaluated. In this review, we concisely discuss current knowledge in the PDEV field, including their characteristics, biomedical applications, and isolation methods, to provide an overview of the current state of PDEV research. Finally, we discuss the challenges regarding the current and prospective issues for PDEVs. This review is expected to provide new insights into healthy diets and biomedical applications of vegetables and fruits, inspiring new advances in natural food-based science and technology.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mu-Hui Wang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
48
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Feng H, Yue Y, Zhang Y, Liang J, Liu L, Wang Q, Feng Q, Zhao H. Plant-Derived Exosome-Like Nanoparticles: Emerging Nanosystems for Enhanced Tissue Engineering. Int J Nanomedicine 2024; 19:1189-1204. [PMID: 38344437 PMCID: PMC10859124 DOI: 10.2147/ijn.s448905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Tissue engineering holds great potential for tissue repair and rejuvenation. Plant-derived exosome-like nanoparticles (ELNs) have recently emerged as a promising avenue in tissue engineering. However, there is an urgent need to understand how plant ELNs can be therapeutically applied in clinical disease management, especially for tissue regeneration. In this review, we comprehensively examine the properties, characteristics, and isolation techniques of plant ELNs. We also discuss their impact on the immune system, compatibility with the human body, and their role in tissue regeneration. To ensure the suitability of plant ELNs for tissue engineering, we explore various engineering and modification strategies. Additionally, we provide insights into the progress of commercialization and industrial perspectives on plant ELNs. This review aims to highlight the potential of plant ELNs in regenerative medicine by exploring the current research landscape and key findings.
Collapse
Affiliation(s)
- Hui Feng
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Yang Yue
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| |
Collapse
|
50
|
Hao S, Yang H, Hu J, Luo L, Yuan Y, Liu L. Bioactive compounds and biological functions of medicinal plant-derived extracellular vesicles. Pharmacol Res 2024; 200:107062. [PMID: 38211637 DOI: 10.1016/j.phrs.2024.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Extracellular vesicles (EVs) are tiny lipid bilayer-enclosed membrane particles released from a variety of cell types into the surrounding environment. These EVs have massive participated in cell-to-cell communication and interspecies communication. In recent years, plant-derived extracellular vesicles (PDEVs) and "exosome-like" EVs populations found in distinct plants have attracted widespread attention. Especially, research on medicinal plant-derived extracellular vesicles (MPDEVs) are increasing, which are considered a kind of promising natural compound. This review summarizes current knowledge on MPDEVs in terms of bioactive compounds, including small RNA, protein, lipid, and metabolite, have been found on the surface and/or in the lumen of MPDEVs. Moreover, both in vitro and in vivo experiments have shown that MPDEVs exert broad biomedical functions, such as anti-inflammatory, anticancer, antioxidant, modulate microbiota, etc. MPDEVs may be a better substitute than animal-derived extracellular vesicles (ADEVs) because of safety and biocompatibility in the future.
Collapse
Affiliation(s)
- Siyu Hao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyu Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Guangxi University of Chinese Medicine, School of Pharmacy, Nanning, China
| | - Jiaojiao Hu
- China Agricultural University, Department of Nutrition and Health, Beijing, China; Guangxi University of Chinese Medicine, School of Pharmacy, Nanning, China
| | - Lili Luo
- China Agricultural University, Department of Nutrition and Health, Beijing, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Libing Liu
- China Agricultural University, Department of Nutrition and Health, Beijing, China.
| |
Collapse
|