1
|
Mahapatra C, Jadhav S, Kumar P, Roy DN, Kumar A, Paul MK. Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis coinfection. Expert Rev Anti Infect Ther 2024:1-13. [PMID: 39466600 DOI: 10.1080/14787210.2024.2423359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, including the excision of infected tissue, remain a standard treatment option. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach. AREAS COVERED We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported. EXPERT OPINION The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Sakshi Jadhav
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Prasoon Kumar
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
2
|
Martín V, de la Haba RR, López-Cornejo P, López-López M, Antonio Lebrón J, Bernal E, Baeza N, Ruiz S, José Ostos F, Merino-Bohorquez V, Chevalier S, Lesouhaitier O, Tahrioui A, José Montes F, Sánchez-Carrasco T, Luisa Moyá M. Synergistic antifungal activity against Candida albicans between voriconazole and cyclosporine a loaded in polymeric nanoparticles. Int J Pharm 2024; 664:124593. [PMID: 39168289 DOI: 10.1016/j.ijpharm.2024.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The goal of this work is to investigate if the synergistic antifungal activity between cyclosporine A, CsA, and voriconazole, VRZ, increases when both drugs are encapsulated in a nanocarrier as compared when they are free. The preparation and characterization of blank and VRZ and CsA loaded polymeric based PLGA nanoparticles (PLGA, PLGA-PEG, and PLGA+PEG) was a necessary previous step. Using the more suitable NPs, those of PLGA, the antifungal susceptibility tests performed with VRZ-loaded PLGA NPs, show no significant increase of the antifungal activity in comparison to that of free VRZ. However, the synergistic behavior found for the (VRZ+CsA)-loaded PLGA NPs was fourfold stronger than that observed for the two free drugs together. On the other hand, the investigation into the suppression of C. albicans biofilm formation showed that blank PLGA NPs inhibit the biofilm formation at high NPs concentrations. However, a minor effect or even a slight biofilm increase formation was observed at low and moderate NPs concentrations. Therefore, the enhancement of the biofilm inhibition found for the three tested treatments (CsA alone, VRZ alone, and VRZ+CsA) when comparing free and encapsulated drugs, within the therapeutic window, can be attributed to the drug encapsulation approach. Indeed, polymeric PLGA NPs loaded with CsA, VRZ, or VRZ+CsA are more effective at inhibiting the C. albicans biofilm growth than their free counterparts.
Collapse
Affiliation(s)
- Victoria Martín
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Rafael R de la Haba
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/Profesor García González 2, Seville 41012, Spain
| | - Pilar López-Cornejo
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - José Antonio Lebrón
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Eva Bernal
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Natalia Baeza
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Sara Ruiz
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Francisco José Ostos
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Vicente Merino-Bohorquez
- Department of Pharmacology, University of Seville, C/Profesor García González 2, Seville 41012, Spain
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Rouen F-76000, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Rouen F-76000, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Rouen F-76000, France
| | - Francisco José Montes
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Teresa Sánchez-Carrasco
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - María Luisa Moyá
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain.
| |
Collapse
|
3
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
4
|
Kitaya S, Nakano M, Katori Y, Yasuda S, Kanamori H. QTc Interval Prolongation as an Adverse Event of Azole Antifungal Drugs: Case Report and Literature Review. Microorganisms 2024; 12:1619. [PMID: 39203461 PMCID: PMC11356777 DOI: 10.3390/microorganisms12081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
QTc prolongation and torsade de pointes (TdP) are significant adverse events linked to azole antifungals. Reports on QTc interval prolongation caused by these agents are limited. In this study, we report a case of a 77-year-old male with cardiovascular disease who experienced QTc prolongation and subsequent TdP while being treated with fluconazole for Candida albicans-induced knee arthritis. Additionally, a literature review was conducted on cases where QTc prolongation and TdP were triggered as adverse events of azole antifungal drugs. The case study detailed the patient's experience, whereas the literature review analyzed cases from May 1997 to February 2023, focusing on patient demographics, underlying diseases, antifungal regimens, concurrent medications, QTc changes, and outcomes. The review identified 16 cases, mainly in younger individuals (median age of 29) and women (75%). Fluconazole (63%) and voriconazole (37%) were the most common agents. Concurrent medications were present in 75% of cases, and TdP occurred in 81%. Management typically involved discontinuing or switching antifungals and correcting electrolytes, with all patients surviving. Risk assessment and concurrent medication review are essential before starting azole therapy. High-risk patients require careful electrocardiogram monitoring to prevent arrhythmias. Remote monitoring may enhance safety for patients with implanted devices. Further studies are needed to understand risk factors and management strategies.
Collapse
Affiliation(s)
- Shiori Kitaya
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
- Laboratory Medicine, Department of Infectious Diseases, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Makoto Nakano
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (M.N.); (S.Y.)
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (M.N.); (S.Y.)
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Laboratory Medicine, Department of Infectious Diseases, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| |
Collapse
|
5
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
6
|
Sultana T, Malik K, Raja NI, Mashwani ZUR, Hameed A, Ullah R, Alqahtani AS, Sohail. Aflatoxins in Peanut ( Arachis hypogaea): Prevalence, Global Health Concern, and Management from an Innovative Nanotechnology Approach: A Mechanistic Repertoire and Future Direction. ACS OMEGA 2024; 9:25555-25574. [PMID: 38911815 PMCID: PMC11190918 DOI: 10.1021/acsomega.4c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".
Collapse
Affiliation(s)
- Tahira Sultana
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Khafsa Malik
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Asma Hameed
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Riaz Ullah
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Sohail
- College
of Bioscience and Biotechnology, Yangzhou
University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
7
|
Coksu I, Bozkurt Y, Akmayan I, Demirci H, Ozbek T, Acar S. Ketoconazole-loading strategy to improve antifungal activity and overcome cytotoxicity on human renal proximal tubular epithelial cells. NANOTECHNOLOGY 2023; 35:115702. [PMID: 38081071 DOI: 10.1088/1361-6528/ad1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Ketoconazole (KTZ), an antifungal agent used to treat localized or systemic fungal infections by inhibiting ergosterol synthesis, exhibits restricted efficacy within eukaryotic cells owing to its elevated toxicity and limited solubility in water. This study aims to improve the biological activity and overcome cytotoxic effects in the renal system of the hydrophobic KTZ by incorporating it into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) utilizing biomaterial nano-engineering techniques. KTZ-loaded PLGA NPs (KTZ-NPs) were prepared by single emulsion solvent evaporation method and characterized by using dynamic light scattering (DLS), electrophoretic light scattering (ELS), Fourier transform-infrared (FT-IR) spectroscopy and scanning light microscopy (SEM). Particle size and zeta potential of KTZ-NPs were determined as 182.0 ± 3.27 nm and -27.4 ± 0.56 mV, respectively. Antifungal activity was analyzed with the time-kill and top agar dilution methods onCandida albicans(C. albicans) andAspergillus flavus(A. flavus). Both KTZ and KTZ-NPs caused a significant decrease inA. flavuscell growth; however, the same effect was only observed in time-killing analysis onC. albicans, indicating a methodological difference in the antifungal analysis. According to the top agar method, the MIC value of KTZ-NPs againstA. flavuswas 9.1μg ml-1, while the minimum inhibition concentration (MIC) value of KTZ was 18.2μg ml-1. The twofold increased antifungal activity indicates that nanoparticular drug delivery systems enhance the water solubility of hydrophobic drugs. In addition, KTZ-NPs were not cytotoxic on human renal proximal tubular epithelial cells (HRPTEpCs) at fungistatic concentration, thus reducing fungal colonization without cytotoxic on renal excretion system cells.
Collapse
Affiliation(s)
- Irem Coksu
- Yildiz Technical University, Faculty of Chemical and Metallurgical, Department of Bioengineering, Istanbul, Turkey
| | - Yagmur Bozkurt
- Yildiz Technical University, Faculty of Chemical and Metallurgical, Department of Bioengineering, Istanbul, Turkey
- National University of Ireland Galway, Mechanical and Biomedical Engineering, Galway, Ireland
| | - Ilkgul Akmayan
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Hasan Demirci
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tulin Ozbek
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Serap Acar
- Yildiz Technical University, Faculty of Chemical and Metallurgical, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
8
|
Valdez AF, Zamith-Miranda D, Nimrichter L, Nosanchuk JD. Micro- and nanoparticles as platforms for the treatment of fungal infections: present and future perspectives. Future Microbiol 2023; 18:1007-1011. [PMID: 37721209 PMCID: PMC10718170 DOI: 10.2217/fmb-2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Alessandro F Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro – RJ, 21941-902, Brazil
- Departments of Medicine (Division of Infectious Diseases) & Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) & Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro – RJ, 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro – RJ, 21941-902, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) & Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
9
|
Valdez AF, de Souza TN, Bonilla JJA, Zamith-Miranda D, Piffer AC, Araujo GRS, Guimarães AJ, Frases S, Pereira AK, Fill TP, Estevao IL, Torres A, Almeida IC, Nosanchuk JD, Nimrichter L. Traversing the Cell Wall: The Chitinolytic Activity of Histoplasma capsulatum Extracellular Vesicles Facilitates Their Release. J Fungi (Basel) 2023; 9:1052. [PMID: 37998859 PMCID: PMC10672645 DOI: 10.3390/jof9111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Histoplasma capsulatum is the causative agent of histoplasmosis. Treating this fungal infection conventionally has significant limitations, prompting the search for alternative therapies. In this context, fungal extracellular vesicles (EVs) hold relevant potential as both therapeutic agents and targets for the treatment of fungal infections. To explore this further, we conducted a study using pharmacological inhibitors of chitinase (methylxanthines) to investigate their potential to reduce EV release and its subsequent impact on fungal virulence in an in vivo invertebrate model. Our findings revealed that a subinhibitory concentration of the methylxanthine, caffeine, effectively reduces EV release, leading to a modulation of H. capsulatum virulence. To the best of our knowledge, this is the first reported instance of a pharmacological inhibitor that reduces fungal EV release without any observed fungicidal effects.
Collapse
Affiliation(s)
- Alessandro F. Valdez
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.F.V.); (T.N.d.S.); (J.J.A.B.); (A.C.P.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Taiane Nascimento de Souza
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.F.V.); (T.N.d.S.); (J.J.A.B.); (A.C.P.)
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jhon Jhamilton Artunduaga Bonilla
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.F.V.); (T.N.d.S.); (J.J.A.B.); (A.C.P.)
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alicia Corbellini Piffer
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.F.V.); (T.N.d.S.); (J.J.A.B.); (A.C.P.)
- Unité Biologie des ARN des Pathogènes Fongiques, Départament de Mycologie, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Glauber R. S. Araujo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.R.S.A.); (S.F.)
| | - Allan J. Guimarães
- Instituto Biomédico, Departamento de Microbiologia e Parasitologia—MIP, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil;
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro 21941-902, RJ, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.R.S.A.); (S.F.)
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alana Kelyene Pereira
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, SP, Brazil; (A.K.P.); (T.P.F.)
| | - Taicia Pacheco Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, SP, Brazil; (A.K.P.); (T.P.F.)
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas El Paso, El Paso, TX 79902, USA; (I.L.E.); (A.T.); (I.C.A.)
| | - Angel Torres
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas El Paso, El Paso, TX 79902, USA; (I.L.E.); (A.T.); (I.C.A.)
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas El Paso, El Paso, TX 79902, USA; (I.L.E.); (A.T.); (I.C.A.)
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.F.V.); (T.N.d.S.); (J.J.A.B.); (A.C.P.)
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
10
|
Boudier A, Mammari N, Lamouroux E, Duval RE. Inorganic Nanoparticles: Tools to Emphasize the Janus Face of Amphotericin B. Antibiotics (Basel) 2023; 12:1543. [PMID: 37887244 PMCID: PMC10604816 DOI: 10.3390/antibiotics12101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Amphotericin B is the oldest antifungal molecule which is still currently widely used in clinical practice, in particular for the treatment of invasive diseases, even though it is not devoid of side effects (particularly nephrotoxicity). Recently, its redox properties (i.e., both prooxidant and antioxidant) have been highlighted in the literature as mechanisms involved in both its activity and its toxicity. Interestingly, similar properties can be described for inorganic nanoparticles. In the first part of the present review, the redox properties of Amphotericin B and inorganic nanoparticles are discussed. Then, in the second part, inorganic nanoparticles as carriers of the drug are described. A special emphasis is given to their combined redox properties acting either as a prooxidant or as an antioxidant and their connection to the activity against pathogens (i.e., fungi, parasites, and yeasts) and to their toxicity. In a majority of the published studies, inorganic nanoparticles carrying Amphotericin B are described as having a synergistic activity directly related to the rupture of the redox homeostasis of the pathogen. Due to the unique properties of inorganic nanoparticles (e.g., magnetism, intrinsic anti-infectious properties, stimuli-triggered responses, etc.), these nanomaterials may represent a new generation of medicine that can synergistically enhance the antimicrobial properties of Amphotericin B.
Collapse
Affiliation(s)
| | - Nour Mammari
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
| | - Emmanuel Lamouroux
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
- ABC Platform, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
11
|
Chen L, Zhang L, Xie Y, Wang Y, Tian X, Fang W, Xue X, Wang L. Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Adv Drug Deliv Rev 2023; 200:115007. [PMID: 37437715 DOI: 10.1016/j.addr.2023.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Human pathogenic fungi pose a serious threat to human health and safety. Unfortunately, the limited number of antifungal options is exacerbated by the continuous emergence of drug-resistant variants, leading to frequent drug treatment failures. Recent studies have also highlighted the clinical importance of other modes of fungal survival of antifungal treatment, including drug tolerance and persistence, pointing to the complexity of the fungal response to antifungal drugs. A lack of understanding of the fungal drug response has hampered the identification of new targets, the development of alternative antifungal strategies and the design of appropriate delivery systems. In this review we summarize recent advances in the study of antifungal resistance, tolerance and persistence, with an emphasis on promising drug targets and drug delivery systems that may yield important insights into the development of new or improved antifungal therapies against fungal infections.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Wang
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University; Peking University Ninth School of Clinical Medicine, Beijing 100038, China; Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, Shandong, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Xin Y, Quan L, Zhang H, Ao Q. Emerging Polymer-Based Nanosystem Strategies in the Delivery of Antifungal Drugs. Pharmaceutics 2023; 15:1866. [PMID: 37514052 PMCID: PMC10386574 DOI: 10.3390/pharmaceutics15071866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Nanosystems-based antifungal agents have emerged as an effective strategy to address issues related to drug resistance, drug release, and toxicity. Among the diverse materials employed for antifungal drug delivery, polymers, including polysaccharides, proteins, and polyesters, have gained significant attention due to their versatility. Considering the complex nature of fungal infections and their varying sites, it is crucial for researchers to carefully select appropriate polymers based on specific scenarios when designing antifungal agent delivery nanosystems. This review provides an overview of the various types of nanoparticles used in antifungal drug delivery systems, with a particular emphasis on the types of polymers used. The review focuses on the application of drug delivery systems and the release behavior of these systems. Furthermore, the review summarizes the critical physical properties and relevant information utilized in antifungal polymer nanomedicine delivery systems and briefly discusses the application prospects of these systems.
Collapse
Affiliation(s)
- Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Qiao L, Niño‐Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:854-865. [PMID: 36601704 PMCID: PMC10037145 DOI: 10.1111/pbi.14001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection.
Collapse
Affiliation(s)
- Lulu Qiao
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaLos AngelesCAUSA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jonatan Niño‐Sánchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaLos AngelesCAUSA
- Department of Plant Production and Forest ResourcesUniversity of ValladolidPalenciaSpain
- Sustainable Forest Management Research Institute (iuFOR)University of ValladolidPalenciaSpain
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Luca Capriotti
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Angela Chen
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
14
|
Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res 2023; 10:8. [PMID: 36829246 PMCID: PMC9951506 DOI: 10.1186/s40779-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Italy. .,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | | | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Wei-Xi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng-Zhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
16
|
Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H. Artificial nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522662. [PMID: 36711993 PMCID: PMC9882009 DOI: 10.1101/2023.01.03.522662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spray-Induced Gene Silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of dsRNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for dsRNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP, and DODMA, and examined for their ability to protect and deliver dsRNA. All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome dsRNA instability in SIGS for crop protection.
Collapse
Affiliation(s)
- Lulu Qiao
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jonatan Niño-Sánchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia 34004, Spain
- Sustainable Forest Management Research Institute (iuFOR). University of Valladolid, Palencia 34004, Spain
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Luca Capriotti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Angela Chen
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
17
|
Gurunathan S, Lee AR, Kim JH. Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. Int J Mol Sci 2022; 23:12526. [PMID: 36293381 PMCID: PMC9604067 DOI: 10.3390/ijms232012526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
18
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG, Patel SK, Acharya N. Vaccines against candidiasis: Status, challenges and emerging opportunity. Front Cell Infect Microbiol 2022; 12:1002406. [PMID: 36061876 PMCID: PMC9433539 DOI: 10.3389/fcimb.2022.1002406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candidiasis is a mycosis caused by opportunistic Candida species. The occurrence of fungal infections has considerably increased in the last few years primarily due to an increase in the number of immune-suppressed individuals. Alarming bloodstream infections due to Candida sp. are associated with a higher rate of morbidity and mortality, and are emerged as major healthcare concerns worldwide. Currently, chemotherapy is the sole available option for combating fungal diseases. Moreover, the emergence of resistance to these limited available anti-fungal drugs has further accentuated the concern and highlighted the need for early detection of fungal infections, identification of novel antifungal drug targets, and development of effective therapeutics and prophylactics. Thus, there is an increasing interest in developing safe and potent immune-based therapeutics to tackle fungal diseases. In this context, vaccine design and its development have a priority. Nonetheless, despite significant advances in immune and vaccine biology over time, a viable commercialized vaccine remains awaited against fungal infections. In this minireview, we enumerate various concerted efforts made till date towards the development of anti-Candida vaccines, an option with pan-fugal vaccine, vaccines in the clinical trial, challenges, and future opportunities.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Manish Singh
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Narottam Acharya, ;
| |
Collapse
|
20
|
Rajesh S, Gangadoo S, Nguyen H, Zhai J, Dekiwadia C, Drummond CJ, Chapman J, Truong VK, Tran N. Application of Fluconazole-Loaded pH-Sensitive Lipid Nanoparticles for Enhanced Antifungal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32845-32854. [PMID: 35850116 DOI: 10.1021/acsami.2c05165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryptococcus neoformans is a yeast-like fungus that can cause the life-threatening disease cryptococcal meningitis. Numerous reports have shown increased resistance of this fungus against antifungal treatments, such as fluconazole (Fluc), contributing to an 80% global mortality rate. This work presents a novel approach to improve the delivery of the antifungal agent Fluc and increase the drug's targetability and availability at the infection site. Exploiting the acidic environment surrounding a C. neoformans infected site, we have developed pH-sensitive lipid nanoparticles (LNP) encapsulating Fluc to inhibit the growth of resistant C. neoformans. The LNP-Fluc delivery system consists of a neutral lipid monoolein (MO) and a novel synthetic ionizable lipid 2-morpholinoethyl oleate (O2ME). At neutral pH, because of the presence of O2ME, the nanoparticles are neutral and exhibit a liquid crystalline hexagonal nanostructure (hexosomes). At an acidic pH, they are positively charged with a cubic nanostructure (cubosomes), which facilitates the interaction with the negatively charged fungal cell wall. This interaction results in the MIC50 and MIC90 values of the LNP-Fluc being significantly lower than that of the free-Fluc control. Confocal laser scanning microscopy and scanning electron microscopy further support the MIC values, showing fungal cells exposed to LNP-Fluc at acidic pH were heavily distorted, demonstrating efflux of cytoplasmic molecules. In contrast, fungal cells exposed to Fluc alone showed cell walls mostly intact. This current study represents a significant advancement in delivering targeted antifungal therapy to combat fungal antimicrobial resistance.
Collapse
Affiliation(s)
- Sarigama Rajesh
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Sheeana Gangadoo
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Han Nguyen
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Chaitali Dekiwadia
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - James Chapman
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
- Biomedical Nanoengineering Lab, College of Medicine and Public Health, Flinders University, Bedford Park 5043, South Australia
| | - Nhiem Tran
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| |
Collapse
|
21
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
22
|
Bharti S, Zakir F, Mirza MA, Aggarwal G. Antifungal biofilm strategies: a less explored area in wound management. Curr Pharm Biotechnol 2022; 23:1497-1513. [PMID: 35410595 DOI: 10.2174/1389201023666220411100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Background- The treatment of wound associated infections has always remained a challenge for clinicians with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance against antimicrobials. Fungal biofilms are formed by a wide variety of fungal pathogens namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with increase in the number of surgical procedures, transplantation and the exponential use of medical devices, fungal bioburden is on the rise. Objectives- The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are highlighted. Further, the prospects of nanotechnology based medical devices to combat fungal biofilm resistance have also been explored. Some of the clinical trials and up-to-date patent technologies to eradicate the biofilms are also mentioned. Conclusion- Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have been able to make it to the market. Fungal biofilms are a fragmentary area which needs further exploration.
Collapse
Affiliation(s)
- Shilpa Bharti
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Foziyah Zakir
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
23
|
Madkhali OA. Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems. Molecules 2022; 27:1543. [PMID: 35268643 PMCID: PMC8911793 DOI: 10.3390/molecules27051543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Combating multiple drug resistance necessitates the delivery of drug molecules at the cellular level. Novel drug delivery formulations have made it possible to improve the therapeutic effects of drugs and have opened up new possibilities for research. Solid lipid nanoparticles (SLNs), a class of colloidal drug carriers made of lipids, have emerged as potentially effective drug delivery systems. The use of SLNs is associated with numerous advantages such as low toxicity, high bioavailability of drugs, versatility in the incorporation of hydrophilic and lipophilic drugs, and the potential for production of large quantities of the carrier systems. The SLNs and nanostructured lipid carriers (NLCs) are the two most frequently used types of nanoparticles. These types of nanoparticles can be adjusted to deliver medications in specific dosages to specific tissues, while minimizing leakage and binding to non-target tissues.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
24
|
Özok H, Allahverdiyeva S, Yardım Y, Şentürk Z. First report for the electrooxidation of antifungal anidulafungin: Application to its voltammetric determination in parenteral lyophilized formulation using a boron‐doped diamond electrode in the presence of anionic surfactant. ELECTROANAL 2022. [DOI: 10.1002/elan.202100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Zühre Şentürk
- Yüzüncü Yıl University Faculty of Science&Letters TURKEY
| |
Collapse
|
25
|
Singulani JL, Scorzoni L, da Silva PB, Nazaré AC, Polaquini CR, Baveloni FG, Chorilli M, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJ. Antifungal activity and toxicity of an octyl gallate-loaded nanostructured lipid system on cells and nonmammalian animals. Future Microbiol 2022; 17:281-291. [PMID: 35152707 DOI: 10.2217/fmb-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Octyl gallate (OG) loaded into a nanostructured lipid system (NLS) was tested for antifungal activity and in vitro and in vivo toxicity. Methods & Results: The features of NLS-OG were analyzed by dynamic light scattering and showed adequate size (132.1 nm) and homogeneity (polydispersity index = 0.200). OG was active against Paraccoccidioides spp., and NLS-OG did not affect antifungal activity. NLS-OG demonstrated reduced toxicity to lung cells and zebrafish embryos compared with OG, whereas NLS was toxic to hepatic cells. OG and NLS-OG did not show toxicity in a Galleria mellonella model at 20 mg/kg. All toxic concentrations were superior to MIC (antifungal activity). Conclusion: These results indicate good anti-Paracoccidioides activity and low toxicity of NLS-OG.
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Programa de Pós-Graduação em Enfermagem, Guarulhos University, Guarulhos, São Paulo, 07023-070, Brazil
| | - Patricia B da Silva
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana C Nazaré
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos R Polaquini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Franciele G Baveloni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Luis O Regasini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Ana M Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Maria Js Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
26
|
Dogra S, Arora A, Aggarwal A, Passi G, Sharma A, Singh G, Barnwal RP. Mucormycosis Amid COVID-19 Crisis: Pathogenesis, Diagnosis, and Novel Treatment Strategies to Combat the Spread. Front Microbiol 2022; 12:794176. [PMID: 35058909 PMCID: PMC8763841 DOI: 10.3389/fmicb.2021.794176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The havoc unleashed by COVID-19 pandemic has paved way for secondary ominous fungal infections like Mucormycosis. It is caused by a class of opportunistic pathogens from the order Mucorales. Fatality rates due to this contagious infection are extremely high. Numerous clinical manifestations result in damage to multiple organs subject to the patient's underlying condition. Lack of a proper detection method and reliable treatment has made the management of this infection troublesome. Several reports studying the behavior pattern of Mucorales inside the host by modulation of its defense mechanisms have helped in understanding the pathogenesis of this angio-invasive infection. Many recent advances in diagnosis and treatment of this fungal infection have not been much beneficial. Therefore, there is a need to foster more viable strategies. This article summarizes current and imminent approaches that could aid effective management of these secondary infections in these times of global pandemic. It is foreseen that the development of newer antifungal drugs, antimicrobial peptides, and nanotechnology-based approaches for drug delivery would help combat this infection and curb its spread.
Collapse
Affiliation(s)
- Shreya Dogra
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Arora
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Aashni Aggarwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ravi P. Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2021; 168:106052. [PMID: 34740786 DOI: 10.1016/j.ejps.2021.106052] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Various diseases remain untreated due to lack of suitable therapeutic moiety or a suitable drug delivery device, especially where toxicities and side effects are the primary reason for concern. Cancer and fungal infections are diseases where treatment schedules are not completed due to severe side effects or lengthy treatment protocols. Advanced treatment approaches such as active targeting and inhibition of angiogenesis may be preferred method for the treatment for malignancy over the conventional method. Niosomes may be a better alternative drug delivery carrier for various therapeutic moieties (either hydrophilic or hydrophobic) and also due to ease of surface modification, non-immunogenicity and economical. Active targeting approach may be done by targeting the receptors through coupling of suitable ligand on niosomal surface. Moreover, various receptors (CD44, folate, epidermal growth factor receptor (EGFR) & Vascular growth factor receptor (VGFR)) expressed by malignant cells have also been reviewed. The preparation of suitable niosomal formulation also requires considerable attention, and its formulation depends upon various factors such as selection of non-ionic surfactant, method of fabrication, and fabrication parameters. A combination therapy (dual drug and immunotherapy) has been proposed for the treatment of fungal infection with special consideration for surface modification with suitable ligand on niosomal surface to sensitize the receptors (C-type lectin receptors, Toll-like receptors & Nucleotide-binding oligomerization domain-like receptors) present on immune cells involved in fungal immunity. Certain gene silencing concept has also been discussed as an advanced alternative treatment for cancer by silencing the mRNA at molecular level using short interfering RNA (si-RNA).
Collapse
|
28
|
León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 2021; 10:pathogens10101303. [PMID: 34684252 PMCID: PMC8539376 DOI: 10.3390/pathogens10101303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/23/2022] Open
Abstract
Over the last years, invasive infections caused by filamentous fungi have constituted a serious threat to public health worldwide. Aspergillus, Coccidioides, Mucorales (the most common filamentous fungi), and Candida auris (non-filamentous fungus) can cause infections in humans. They are able to cause critical life-threatening illnesses in immunosuppressed individuals, patients with HIV/AIDS, uncontrolled diabetes, hematological diseases, transplantation, and chemotherapy. In this review, we describe the available nanoformulations (both metallic and polymers-based nanoparticles) developed to increase efficacy and reduce the number of adverse effects after the administration of conventional antifungals. To treat aspergillosis and infections caused by Candida, multiple strategies have been used to develop new therapeutic alternatives, such as incorporating coating materials, complexes synthesized by green chemistry, or coupled with polymers. However, the therapeutic options for coccidioidomycosis and mucormycosis are limited; most of them are in the early stages of development. Therefore, more research needs to be performed to develop new therapeutic alternatives that contribute to the progress of this field.
Collapse
Affiliation(s)
- Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - Javier A. Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - Diana Y. Gallegos-Alvarado
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
| | - Macario Osorio-Concepción
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - José Ruben Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
- Correspondence:
| |
Collapse
|
29
|
R. M. Machado G, Inácio LAM, Berlitz SJ, Pippi B, Kulkamp‐Guerreiro IC, Lavorato SN, Alves RJ, Andrade SF, Fuentefria AM. A Film‐Forming System Hybridized with a Nanostructured Chloroacetamide Derivative for Dermatophytosis Treatment. ChemistrySelect 2021. [DOI: 10.1002/slct.202101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gabriella R. M. Machado
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Luiz A. M. Inácio
- Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Simone J. Berlitz
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Bruna Pippi
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Irene C. Kulkamp‐Guerreiro
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica e Programa de Pós Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Stefânia N. Lavorato
- Centro das Ciências Biológicas e da Saúde Universidade Federal do Oeste da Bahia Barreiras Brazil
| | - Ricardo J. Alves
- Departamento de Produtos Farmacêuticos Faculdade de Farmácia Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Saulo F. Andrade
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente e Programa de Pós-Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Alexandre M. Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente e Programa de Pós Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
30
|
Sahu RK, Salem-Bekhit MM, Bhattacharjee B, Almoshari Y, Ikbal AMA, Alshamrani M, Bharali A, Salawi A, Widyowati R, Alshammari A, Elbagory I. Mucormycosis in Indian COVID-19 Patients: Insight into Its Patho-Genesis, Clinical Manifestation, and Management Strategies. Antibiotics (Basel) 2021; 10:1079. [PMID: 34572661 PMCID: PMC8468123 DOI: 10.3390/antibiotics10091079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Mucormycosis in patients who have COVID-19 or who are otherwise immunocompromised has become a global problem, causing significant morbidity and mortality. Infection is debilitating and fatal, leading to loss of organs and emotional trauma. Radiographic manifestations are not specific, but diagnosis can be made through microscopic examination of materials collected from necrotic lesions. Treatment requires multidisciplinary expertise, as the fungus enters through the eyes and nose and may even reach the brain. Use of the many antifungal drugs available is limited by considerations of resistance and toxicity, but nanoparticles can overcome such limitations by reducing toxicity and increasing bioavailability. The lipid formulation of amphotericin-B (liposomal Am-B) is the first-line treatment for mucormycosis in COVID-19 patients, but its high cost and low availability have prompted a shift toward surgery, so that surgical debridement to remove all necrotic lesions remains the hallmark of effective treatment of mucormycosis in COVID-19. This review highlights the pathogenesis, clinical manifestation, and management of mucormycosis in patients who have COVID-19.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, India;
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, India
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Alakesh Bharali
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Hatkhowapara, Guwahati 781017, India;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
31
|
Macroporous zwitterionic composite cryogel based on chitosan oligosaccharide for antifungal application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112327. [PMID: 34474878 DOI: 10.1016/j.msec.2021.112327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
Chitosan oligosaccharide (COS), a time-dependent antimicrobial carbohydrate, is found antifungal active with a short duration of action due to excessive solubility. We attempted to address this issue by employing a hydrogel as a COS carrier. In this research, macroporous zwitterionic composite cryogels composed of COS and poly(N-methacryl arginine) (PMarg) were fabricated, serving as long-term antifungal dressings. Firstly, Marg was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Then, the COS/PMarg cryogels were prepared by redox initiation cryopolymerization. The macroporous morphology of the cryogels was confirmed by scanning electron microscope (SEM) with pore size varying from 20.86 to 50.87 μm. FTIR indicated that hydrogen bonding formed between COS and PMarg, and the interaction elevated thermal stability of the cryogels as evidenced by thermal-gravimetric analysis (TGA). Swelling capacity, mechanical properties, and COS release behavior of the COS/PMarg cryogels were investigated. With the release of COS, the antifouling activity of the cryogel increased. Antimicrobial tests indicated the COS/PMarg cryogel could effectively inhibit the proliferation of Candida albicans. It demonstrated that the macroporous zwitterionic COS/PMarg composite cryogel might be a potential antifungal dressing with sequential "sterilization-release" capacity.
Collapse
|
32
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
33
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
34
|
Development and Characterization of Monoolein-Based Liposomes of Carvacrol, Cinnamaldehyde, Citral, or Thymol with Anti- Candida Activities. Antimicrob Agents Chemother 2021; 65:AAC.01628-20. [PMID: 33468460 DOI: 10.1128/aac.01628-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
There is an increasing need for novel drugs and new strategies for the therapy of invasive candidiasis. This study aimed to develop and characterize liposome-based nanoparticles of carvacrol, cinnamaldehyde, citral, and thymol with anti-Candida activities. Dioctadecyldimethylammonium bromide- and monoolein-based liposomes in a 1:2 molar ratio were prepared using a lipid-film hydration method. Liposomes were assembled with equal volumes of liposomal stock dispersion and stock solutions of carvacrol, cinnamaldehyde, citral, or thymol in dimethyl sulfoxide. Cytotoxicity was tested on RAW 264.7 macrophages. In vitro antifungal activity of liposomes with phytocompounds was evaluated according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology using clinical isolates of Candida albicans, Candida auris, Candida dubliniensis, and Candida tropicalis Finally, the ability of macrophage cells to kill Candida isolates after addition of phytocompounds and their nanoparticles was determined. Nanoparticles with 64 μg/ml of cinnamaldehyde, 256 μg/ml of citral, and 128 μg/ml of thymol had the best characteristics among the formulations tested. The highest encapsulation efficiencies were achieved with citral (78% to 83%) and carvacrol (66% to 71%) liposomes. Carvacrol and thymol in liposome-based nanoparticles were nontoxic regardless of the concentration. Moreover, carvacrol and thymol maintained their antifungal activity after encapsulation, and there was a significant reduction (∼41%) of yeast survival when macrophages were incubated with carvacrol or thymol liposomes. In conclusion, carvacrol and thymol liposomes possess high stability, low cytotoxicity, and antifungal activity that act synergistically with macrophages.
Collapse
|
35
|
Albayaty YN, Thomas N, Ramírez-García PD, Davis TP, Quinn JF, Whittaker MR, Prestidge CA. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm. Drug Deliv Transl Res 2021; 11:1586-1597. [PMID: 33713317 DOI: 10.1007/s13346-021-00943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Infections caused by fungal biofilms with rapidly evolving resistance against the available antifungal agents are difficult to manage. These difficulties demand new strategies for effective eradication of biofilms from both biological and inert surfaces. In this study, polymeric micelles comprised of di-block polymer, poly-(ethylene glycol) methyl ether methacrylate and poly 2-(N,N-diethylamino) ethyl methacrylate polymer, P(PEGMA-b-DEAEMA), were observed to exhibit remarkable inhibitory effects on hyphal growth of Candida albicans (C. albicans) and C. tropicalis, thus preventing biofilm formation and removing existing biofilms. P(PEGMA-b-DEAEMA) micelles showed biofilm removal efficacy of > 40% and a 1.4-log reduction in cell viability of C. albicans in its single-species biofilms. In addition, micelles alone promoted high removal percentage in a mixed biofilm of C. albicans and C. tropicalis (~ 70%) and remarkably reduced cell viability of both strains. Co-delivery of fluconazole (Flu) and amphotericin B (AmB) with micelles showed synergistic effects on C. albicans biofilms (3-log reduction for AmB and 2.2-log reduction for Flu). Similar effects were noted on C. albicans planktonic cells when treated with the micellar system combined with AmB but not with Flu. Moreover, micelle-drug combinations showed an enhancement in the antibiofilm activity of Flu and AmB against dual-species biofilms. Furthermore, in vivo studies using Caenorhabditis elegans nematodes revealed no obvious toxicity of the micelles. Targeting morphologic transitions provides a new strategy for defeating fungal biofilms of polymorphic resistance strains and can be potentially used in counteracting Candida virulence.
Collapse
Affiliation(s)
- Yassamin N Albayaty
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville South, Woodville, SA, 5011, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville South, Woodville, SA, 5011, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
| | - Paulina D Ramírez-García
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Australia.
| |
Collapse
|
36
|
Abid S, Uzair B, Niazi MBK, Fasim F, Bano SA, Jamil N, Batool R, Sajjad S. Bursting the Virulence Traits of MDR Strain of Candida albicans Using Sodium Alginate-based Microspheres Containing Nystatin-loaded MgO/CuO Nanocomposites. Int J Nanomedicine 2021; 16:1157-1174. [PMID: 33623380 PMCID: PMC7896044 DOI: 10.2147/ijn.s282305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Candida albicans is a major opportunistic pathogen that causes a wide range of human infections. Currently available therapeutic agents are limited for treating these fungal infections due to multidrug resistance as well as their nonbiodegradability, poor biocompatibility and toxicity. In order to battle these limitations, we have synthesized a polymeric system as microcarriers to deliver the antifungal drug. The objective of the present study was to immobilize MgO/CuO nanocomposite and nystatin-loaded MgO/CuO nanocomposites in nontoxic, nonimmunogenic, biodegradable and biocompatible sodium alginate microspheres for the first time. MATERIALS AND METHODS Nanoparticle-loaded sodium alginate microspheres were prepared by ionotropic gelation technique using calcium chloride as a cross-linker. Synthesized microspheres were characterized using standard characterization techniques and were evaluated for biological activity against MDR strain of C. albicans. RESULTS Characterization of microspheres by Fourier-transform infrared spectroscopy confirmed loading of Nys-MgO/CuO NPs, scanning electron microscopy (SEM) revealed rough spherical beads with a highly porous surface having an average size in the range of 8-10 µm. X-ray diffraction (XRD) analyzed its semicrystalline structure. Entrapment efficiency of Nys-MgO/CuO NPs was 80% and release kinetic study revealed sustained and prolonged release of drug in pH 5.5. Flow cytometry analysis showed yeast cell death caused by Nys-MgO/CuO MS exhibits late apoptotic features. In cytotoxicity assay 5-14 mg of microspheres did not cause hemolysis. Microspheres reduced virulence traits of C. albicans such as germ tube and biofilm formation were compromised at concentration of 5 mg/mL. Antimicrobial assessment results revealed a pronounced inhibitory effect against C. albicans. CONCLUSION The in vitro experiments have shown promising results based on good stability, Nys-MgO/CuO NP-encapsulated microspheres can be used as a prolonged controlled release system against MDR pathogenic C. albicans.
Collapse
Affiliation(s)
- Sadia Abid
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Muhammad Bilal Khan Niazi
- School of Chemical & Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fehmida Fasim
- Discipline of Biomedical Science, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Haripur, Pakistan
| | - Nazia Jamil
- Department of Microbiology & Molecular Genetics, Punjab University, Lahore, Pakistan
| | - Rida Batool
- Department of Microbiology & Molecular Genetics, Punjab University, Lahore, Pakistan
| | - Shamaila Sajjad
- Department of Physics, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
37
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
38
|
Ghose A, Nabi B, Rehman S, Md S, Alhakamy NA, Ahmad OAA, Baboota S, Ali J. Development and Evaluation of Polymeric Nanosponge Hydrogel for Terbinafine Hydrochloride: Statistical Optimization, In Vitro and In Vivo Studies. Polymers (Basel) 2020; 12:polym12122903. [PMID: 33287406 PMCID: PMC7761813 DOI: 10.3390/polym12122903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Terbinafine hydrochloride, although one of the prominent antifungal agents, suffers from low drug permeation owing to its hydrophobic nature. The approach of nanosponge formulation may thus help to resolve this concern. Thus, the present research was envisioned to fabricate the nanosponge hydrogel of terbinafine hydrochloride for topical delivery since nanosponge augments the skin retentivity of the drug. The optimized formulation was obtained using Box Behnken Design. The dependent and independent process parameters were also determined wherein polyvinyl alcohol (%), ethylcellulose (%), and tween 80 (%) were taken as independent process parameters and particle size, polydispersity index (PDI), and entrapment efficiency (EE) were the dependent parameters. The nanosponge was then incorporated into the hydrogel and characterized. In-vitro drug release from the hydrogel was 90.20 ± 0.1% which was higher than the drug suspension and marketed formulation. In vitro permeation potential of the developed formulation through rat skin showed a flux of 0.594 ± 0.22 µg/cm2/h while the permeability coefficient was 0.059 ± 0.022 cm/s. Nanosponge hydrogel was evaluated for non-irritancy and antifungal activity against C. albicans and T. rubrum confirming the substantial outcome. Tape stripping studies exhibited ten times stripping off the skin quantified 85.6 ± 0.21 μg/cm2. The confocal analysis justified the permeation potential of the prepared hydrogel. The mean erythemal score was 0.0, confirming that the prepared hydrogel did not cause erythema or oedema. Therefore, based on results obtained, nanosponge hydrogel formulation is a potential carrier for efficient topical delivery of terbinafine hydrochloride.
Collapse
Affiliation(s)
- Aditee Ghose
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (O.A.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (O.A.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (O.A.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
- Correspondence: or ; Tel.: +91-9811312247; Fax: +91-11-2605-9663
| |
Collapse
|
39
|
Santos KLM, Barros RM, da Silva Lima DP, Nunes AMA, Sato MR, Faccio R, de Lima Damasceno BPG, Oshiro-Junior JA. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis Photodyn Ther 2020; 32:102032. [DOI: 10.1016/j.pdpdt.2020.102032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
|
40
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Arpa MD, Yoltaş A, Onay Tarlan E, Şenyüz CŞ, Sipahi H, Aydın A, Üstündağ Okur N. New therapeutic system based on hydrogels for vaginal candidiasis management: formulation–characterization and in vitro evaluation based on vaginal irritation and direct contact test. Pharm Dev Technol 2020; 25:1238-1248. [DOI: 10.1080/10837450.2020.1809457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Ayşegül Yoltaş
- Fundamental and Industrial Microbiology Division, Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ecehan Onay Tarlan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Cemre Şahin Şenyüz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ahmet Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
42
|
Stauber RH, Westmeier D, Wandrey M, Becker S, Docter D, Ding GB, Thines E, Knauer SK, Siemer S. Mechanisms of nanotoxicity - biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology 2020; 14:1157-1174. [PMID: 32835557 DOI: 10.1080/17435390.2020.1808251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen Aspergillus fumigatus as well as common plant pests, such as Botrytis cinerea or Penicillum expansum. Employing a selection of the model and antimicrobial nanoparticles, we found that nanoparticle-spore complex formation is influenced by the NM's physicochemical properties, such as size, identified as a key determinant for our silica model particles. Biomolecule coronas acquired in pathophysiologically and ecologically relevant environments, protected fungi against nanoparticle-induced toxicity as shown by employing antimicrobial ZnO, Ag, or CuO nanoparticles as well as dissolution-resistant quantum dots. Mechanistically, dose-dependent corona-mediated resistance was conferred via reducing the physical adsorption of nanoparticles to fungi. The inhibitory effect of biomolecules on nano-based toxicity of Ag NPs was further verified in vivo, using the invertebrate Galleria mellonella as an alternative non-mammalian infection model. We provide the first evidence that biomolecule coronas are not only relevant in mammalian systems but also for nanomaterial designs as future antifungals for human health, biotechnology, and agriculture.
Collapse
Affiliation(s)
| | - Dana Westmeier
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Madita Wandrey
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Sven Becker
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Dominic Docter
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, Shanxi, China
| | - Eckhard Thines
- Institute for Microbiology, Johannes Gutenberg University, Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen, Germany
| | - Svenja Siemer
- ENT Department, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
43
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
44
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
45
|
Endo EH, Makimori RY, Companhoni MVP, Ueda-Nakamura T, Nakamura CV, Dias Filho BP. Ketoconazole-loaded poly-(lactic acid) nanoparticles: Characterization and improvement of antifungal efficacy in vitro against Candida and dermatophytes. J Mycol Med 2020; 30:101003. [PMID: 32586733 DOI: 10.1016/j.mycmed.2020.101003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/28/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In order to improve the effect of ketoconazole, poly-lactic acid (PLA) nanoparticles containing ketoconazole were prepared, characterized and tested against dermatophytes and Candida spp planktonic and biofilm cells. METHODS The ketoconazole-PLA nanoparticles obtained by nanoprecipitation were characterized using dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. In addition, quantification of encapsulated ketoconazole and the in vitro release profile were determined. Antifungal susceptibility tests against dermatophytes Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum and yeasts Candida albicans, C. dubliniensis, C. krusei, C. parapsilosis, and C. tropicalis were performed. RESULTS Spherical nanoparticles, with a mean diameter of 188.5nm and an encapsulation efficiency of 45% ketoconazole, were obtained. The nanoparticles containing ketoconazole had superior antifungal activity against all tested fungi strains than free ketoconazole. Inhibition of yeast biofilm formation was also achieved. CONCLUSION Ketoconazole-PLA nanoparticles resulted in better antifungal activity of ketoconazole nanoparticles than free drug against dermatophytes and Candida species, indicating a promising tool for the development of therapeutic strategies.
Collapse
Affiliation(s)
- E H Endo
- Post-Graduate Program in Pharmaceutical Science, State University of Maringá, avenue Colombo, 5790, Maringá 87020-900, Paraná, Brazil.
| | - R Y Makimori
- Post-Graduate Program in Pharmaceutical Science, State University of Maringá, avenue Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - M V P Companhoni
- Post-Graduate Program in Pharmaceutical Science, State University of Maringá, avenue Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - T Ueda-Nakamura
- Department of Basic Health Sciences, State University of Maringá, avenue Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - C V Nakamura
- Department of Basic Health Sciences, State University of Maringá, avenue Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | - B P Dias Filho
- Department of Basic Health Sciences, State University of Maringá, avenue Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| |
Collapse
|
46
|
Vera‐González N, Bailey‐Hytholt CM, Langlois L, Camargo Ribeiro F, Souza Santos EL, Junqueira JC, Shukla A. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm
Candida albicans. J Biomed Mater Res A 2020; 108:2263-2276. [DOI: 10.1002/jbm.a.36984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Noel Vera‐González
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Christina M. Bailey‐Hytholt
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Luc Langlois
- Department of Chemistry Brown University Providence Rhode Island USA
| | - Felipe Camargo Ribeiro
- Institute of Science and Technology, São Paulo State University (UNESP) São Paulo Brazil
| | | | | | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| |
Collapse
|
47
|
Costa-Orlandi CB, Serafim-Pinto A, da Silva PB, Bila NM, Bonatti JLDC, Scorzoni L, Singulani JDL, Dos Santos CT, Nazaré AC, Chorilli M, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJS. Incorporation of Nonyl 3,4-Dihydroxybenzoate Into Nanostructured Lipid Systems: Effective Alternative for Maintaining Anti-Dermatophytic and Antibiofilm Activities and Reducing Toxicity at High Concentrations. Front Microbiol 2020; 11:1154. [PMID: 32582096 PMCID: PMC7290161 DOI: 10.3389/fmicb.2020.01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Dermatophytosis is the most common mycosis worldwide, affecting approximately 20 to 25% of the population, regardless of gender, race, color, and age. Most antifungal agents used for the treatment of dermatophytosis belong to the azole and allylamine classes. Dermatophytes are reported to be resistant to most commercial drugs, especially microbial biofilms, in addition to their considerable toxicity. It should be emphasized the importance of looking for new molecules with reduced toxicity, as well as new targets and mechanisms of action. This work aims to incorporate nonyl 3,4-dihydroxybenzoate, a potent fungicide compound against planktonic cells and dermatophyte biofilms in nanostructured lipid systems (NLS), in order to reduce toxicity in high concentrations, improve its solubility and maintain its effectiveness. The compound was incorporated into NLS constituted by cholesterol, mixture of polyoxyethylene (23) lauryl ether (Brij®98) and soybean phosphatidylcholine (Epikuron® 200)], 2: 1 ratio and PBS (phosphate-buffered saline). The characterization of the incorporation was performed. Susceptibility tests were conducted according to document M38-A2 by CLSI (2008). The toxicity of the NLS compound was evaluated in HaCaT cell lines by the sulforhodamine B method and in alternative models Caenorhabditis elegans and zebrafish. Finally, its efficacy was evaluated against the mature Trichophyton rubrum and Trichophyton mentagrophytes biofilms. NLS and nonyl 3,4-dihydroxybenzoate loaded into NLS displayed sizes ranging from 137.8 ± 1.815 to 167.9 ± 4.070 nm; the polydispersity index (PDI) varying from 0.331 ± 0.020 to 0.377 ± 0.004 and zeta potential ranging from −1.46 ± 0.157 to −4.63 ± 0.398 mV, respectively. Polarized light microscopy results confirmed the formation of NLS of the microemulsion type. Nonyl incorporated into NLS showed minimum inhibitory concentration (MIC) values, ranging from 2 to 15.6 mg/L. The toxicity tests presented cell viability higher than 80% in all tested concentrations, as well as, a significantly increased of the survival of Caenorhabditis elegans and zebrafish models. Anti-biofilm tests proved the efficacy of the incorporation. These findings contribute significantly to the search for new antifungals and allow the systemic administration of the compound, since the incorporation can increase the solubility of non-polar compounds, improve bioavailability, effectiveness and reduce toxicity.
Collapse
Affiliation(s)
- Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Aline Serafim-Pinto
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Patrícia Bento da Silva
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Níura Madalena Bila
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil.,Universidade Eduardo Mondlane, School of Veterinary, Maputo, Mozambique
| | - Jean Lucas de Carvalho Bonatti
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Ana Carolina Nazaré
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Luis Octávio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | | |
Collapse
|
48
|
Xu L, Yu H, Sun H, Yu X, Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Deliv 2020; 26:1222-1234. [PMID: 31747793 PMCID: PMC6882443 DOI: 10.1080/10717544.2019.1682718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid with potent anti-oxidative and anti-inflammatory potency against chronic diseases. In this study, we suspended AST in different nonionic emulsifiers to produce nanodispersions. The basic physicochemical properties of the produced AST nanodispersions were verified to select the optimized nonionic emulsifier. Among the tested emulsifiers, Polysorbate 20 produced the AST nanoemulsions with smaller particle diameters, narrower size distributions, and higher AST contents among these emulsifiers. The N-methyl-N-nitrosourea (MNU) administered mouse is a chemically induced retinal degeneration (RD) model with rapid progress rate. AST suspended in Polysorbate 20 was demonstrated to ameliorate the dramatic consequences of MNU on retina architectures and function in several different tests encompassing from electrophysiology to histology and molecular tests. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. We found that AST nanodispersions could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of visual signal pathway in degenerative retinas. The MEA assay provided an appropriate example to evaluate the potency of pharmacological compounds on retinal plasticity. In summary, emulsifier type affects the basic physicochemical characteristic of AST nanodispersions. Polysorbate 20 acts as an optimized nonionic emulsifier for the efficient delivery of AST nanodispersions to retina. AST nanodispersions can alleviate the photoreceptor loss and rectify the abnormities in visual signal transmission.
Collapse
Affiliation(s)
- Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Yu
- Department of Otorhinolaryngology, Jinling Hospital, Clinical Hospital of Medical College, Nanjing University, Nanjing, China
| | - Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Carbone C, Fuochi V, Zielińska A, Musumeci T, Souto E, Bonaccorso A, Puglia C, Petronio Petronio G, Furneri P. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf B Biointerfaces 2020; 186:110705. [DOI: 10.1016/j.colsurfb.2019.110705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023]
|
50
|
Utilizing Liposomal Quercetin and Gallic Acid in Localized Treatment of Vaginal Candida Infections. Pharmaceutics 2019; 12:pharmaceutics12010009. [PMID: 31861805 PMCID: PMC7023398 DOI: 10.3390/pharmaceutics12010009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a widely spread fungal infection that causes itching, pain and inflammation at the vaginal site. Although common, currently available treatment suffers from limited efficacy and high recurrence. In addition, the growing problem of resistance to azole drugs used in current treatments emphasizes the need for superior treatment options. Antimicrobial polyphenols are an attractive approach offering multitargeting therapy. We aimed to develop novel liposomes for simultaneous delivery of two polyphenols (quercetin, Q, and gallic acid, GA) that, when released within the vaginal cavity, act in synergy to eradicate infection while alleviating the symptoms of VVC. Q was selected for its anti-itching and anti-inflammatory properties, while GA for its reported activity against Candida. Novel liposomes containing only Q (LP-Q), only GA (LP-GA) or both polyphenols (LP-Q+GA) were in the size range around 200 nm. Q was efficiently entrapped in both LP-Q and in LP-Q+GA (85%) while the entrapment of GA was higher in LP-Q+GA (30%) than in LP-GA (25%). Liposomes, especially LP-Q+GA, promoted sustained release of both polyphenols. Q and GA acted in synergy, increasing the antioxidant activities of a single polyphenol. Polyphenol-liposomes were not cytotoxic and displayed stronger anti-inflammatory effects than free polyphenols. Finally, LP-GA and LP-Q+GA considerably reduced C. albicans growth.
Collapse
|