1
|
Kotyńska J, Naumowicz M. Monitoring changes in the zeta potential and the surface charge of human glioblastoma cells and phosphatidylcholine liposomes induced by curcumin as a function of pH. Chem Biol Interact 2024; 402:111215. [PMID: 39197812 DOI: 10.1016/j.cbi.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Curcumin (CUR) has received worldwide attention for its beneficial effects on human health. Research report possible cytotoxic activity against various cancers, including glioblastoma. So far, little attention has been given to the binding properties of CUR to lipid membranes, which influences their electrical characteristics and can provide insight into their membrane-permeation abilities. Biophysical interactions between the polyphenol and in vitro models (liposomes and LN-18 human glioblastoma cells) were investigated by monitoring zeta potential and the membrane's surface charge as a function of pH. We focused on practical measurements and undertook a theoretical analysis of interactions in the natural cell membrane. We used the MTT assay to evaluate the viability of CUR-treated cells. Measurements performed using the Electrophoretic Light Scattering method demonstrated the dose-dependent effect of CUR on both membrane surface charge and zeta potential analyzed in vitro models. We determined theoretical parameters characterizing the cell membrane based on a quantitative description of the adsorption equilibria formed due to the binding of solution ions to the membrane of glioblastoma cells. The interaction of CUR with liposomes and human cancer cells is pH-dependent.
Collapse
Affiliation(s)
- Joanna Kotyńska
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
2
|
Zingue S, Fotsing Fongang YS, Ossomba ER, Tatsinda V, Silihe KK, Mbou WD, Fogang B, Essomba R, Chouna JR, Njamen D, Ayong L. Oligandrin from Croton oligandrus (Euphorbiaceae) exhibits anti-breast cancer activity through immune-boosting mechanisms: In vitro and in vivo study. Heliyon 2024; 10:e35000. [PMID: 39166076 PMCID: PMC11334813 DOI: 10.1016/j.heliyon.2024.e35000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Aim Recent developments in cancer research indicate that cancer is a manifestation of immune system dysfunction. Many natural anticancer agents developed recently possess immune-modulatory properties. In our ongoing pursuit of anticancer alternatives, we evaluated the immune-modulatory potential of oligandrin, an ent-pimarane type diterpenoid from Croton oligatrus. Methods we assessed on Breast cancer patients' peripheral blood mononuclear cells (PBMCs) were isolated to assess the effect of oligandrin (0.5, 1, 10, 100, 200 mg/mL) in vitro using the Ficoll-histopaque density centrifugation method. The parameters that were assessed included, PBMC viability and cytokine (IL-6, IL-12, IL-10, EGF, TNF-α, INF-γ) production. In vivo, we chemically induced breast cancer using DMBA (50 mg/kg BW) in Wistar rats, then treated them with oligandrin (1 mg/kg BW) or standards (tamoxifen 3.3 mg/kg; letrozole 1 mg/kg) for 20 weeks. The parameters that were evaluated included, tumor burden, volume, incidence, histopathology, antioxidant, and inflammatory status. Results Oligandrin (1, 10, 100 and 200 μg/mL) significantly increased (p < 0.05) PBMC cell number 24 h after incubation. In vivo, it induced 62.5 % tumor incidence reduction compared to DMBA rats (100 %). Oligandrin significantly protected (p < 0.001) rats against increased tumor burden, mass and volume, which was accompanied by a significant antioxidant effect [increment of GSH (p < 0.01) and SOD (p < 0.001)]. Oligandrin prevented high-grade adenocarcinomas according to SBR stratification and significantly reduced pro-inflammatory cytokine levels (IL-6, IL-12) while increasing anti-inflammatory cytokine levels (INF-γ). Conclusion Oligandrin is reported for the first time to protect against breast cancer onset and this effect seems to be at least in part attributable to its immune-boosting capacity.
Collapse
Affiliation(s)
- Stéphane Zingue
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
| | | | - Eric Roger Ossomba
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
| | - Vanneck Tatsinda
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Kevine Kamga Silihe
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - William Defo Mbou
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - Balotin Fogang
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
- Malaria Research Unit, Centre Pasteur, Yaoundé, Cameroon
| | - René Essomba
- Department of Microbiology, Parasitology, Hematology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaounde, 1, P.O. Box 1364, Yaounde, Cameroon
| | - Jean Rodolphe Chouna
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé, 1, P.O. Box 812, Yaoundé, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur, Yaoundé, Cameroon
| |
Collapse
|
3
|
Kreczmer B, Dyba B, Barbasz A, Rudolphi-Szydło E. Curcumin's membrane localization and disruptive effects on cellular processes - insights from neuroblastoma, leukemic cells, and Langmuir monolayers. Sci Rep 2024; 14:16636. [PMID: 39025941 PMCID: PMC11258145 DOI: 10.1038/s41598-024-67713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
In therapies, curcumin is now commonly formulated in liposomal form, administered through injections or creams. This enhances its concentration at the cellular level compared to its natural form ingestion. Due to its hydrophobic nature, curcumin is situated in the lipid part of the membrane, thereby modifying its properties and influencing processes The aim of the research was to investigate whether the toxicity of specific concentrations of curcumin, assessed through biochemical tests for the SK-N-SH and H-60 cell lines, is related to structural changes in the membranes of these cells, caused by the localization of curcumin in their hydrophobic regions. Biochemical tests were performed using spectrophotometric methods. Langmuir technique were used to evaluate the interaction of the curcumin with the studied lipids. Direct introduction of curcumin into the membranes alters their physicochemical parameters. The extent of these changes depends on the initial properties of the membrane. In the conducted research, it has been demonstrated that curcumin may exhibit toxicity to human cells. The mechanism of this toxicity is related to its localization in cell membranes, leading to their dysfunction. The sensitivity of cells to curcumin presence depends on the saturation level of their membranes; the more rigid the membrane, the lower the concentration of curcumin causes its disruption.
Collapse
Affiliation(s)
- Barbara Kreczmer
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland.
| | - Barbara Dyba
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland
| | - Elżbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Cracow, Poland
| |
Collapse
|
4
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Afroz M, Bhuia MS, Rahman MA, Hasan R, Islam T, Islam MR, Chowdhury R, Khan MA, Antas E Silva D, Melo Coutinho HD, Islam MT. Anti-diarrheal effect of piperine possibly through the interaction with inflammation inducing enzymes: In vivo and in silico studies. Eur J Pharmacol 2024; 965:176289. [PMID: 38158111 DOI: 10.1016/j.ejphar.2023.176289] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Piperine is a natural alkaloid that possesses a variety of therapeutic properties, including anti-inflammatory, antioxidant, antibacterial, and anticarcinogenic activities. The present study aims to assess the medicinal benefits of piperine as an anti-diarrheal agent in a chick model by utilizing in vivo and in silico techniques. For this, castor oil was administered orally to 2-day-old chicks to cause diarrhea. Bismuth subsalicylate (10 mg/kg), loperamide (3 mg/kg), and nifedipine (2.5 mg/kg) were used as positive controls, while the vehicle was utilized as a negative control. Two different doses (25 and 50 mg/kg b.w.) of the test sample (piperine) were administered orally, and the highest dose was tested with standards to investigate the synergistic activity of the test sample. In our findings, piperine prolonged the latent period while reducing the number of diarrheal feces in the experimental chicks during the monitoring period (4 h). At higher doses, piperine appears to reduce diarrheal secretion while increasing latency in chicks. Throughout the combined pharmacotherapy, piperine outperformed bismuth subsalicylate and nifedipine in terms of anti-diarrheal effects with loperamide. In molecular docking, piperine exhibited higher binding affinities towards different inflammatory enzymes such as cyclooxygenase 1 (-7.9 kcal/mol), cyclooxygenase 2 (-8.4 kcal/mol), nitric oxide synthases (-8.9 kcal/mol), and L-type calcium channel (-8.8 kcal/mol), indicating better interaction of PP with these proteins. In conclusion, piperine showed a potent anti-diarrheal effect in castor oil-induced diarrheal chicks by suppressing the inflammation and calcium ion influx induced by castor oil.
Collapse
Affiliation(s)
- Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh.
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Rakibul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
6
|
Rezaie H, Alipanah-Moghadam R, Jeddi F, Clark CCT, Aghamohammadi V, Nemati A. Combined dandelion extract and all-trans retinoic acid induces cytotoxicity in human breast cancer cells. Sci Rep 2023; 13:15074. [PMID: 37700002 PMCID: PMC10497591 DOI: 10.1038/s41598-023-42177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Breast cancer is one of the most prevalent and deadly cancers among women worldwide. Recently, natural compounds have been widely used for the treatment of breast cancer. Present study evaluated antiproliferative and anti-metastasis activities of two natural compounds of dandelion and all-trans-retinoic acid (ATRA) in human MCF-7 and MDA-MB231 breast cancer cells. We also evaluated the expression of MMP-2, MMP-9, IL-1β, p53, NM23 and KAI1 genes. Data showed a clear additive cytotoxic effect in concentrations of 40 μM ATRA with 1.5 and 4 mg/ml of dandelion extract in MCF-7 and MDA-MB231 cells, respectively. In both cell lines, compared with the untreated cells, the expression levels of MMP-9 and IL-1β were significantly decreased while p53 and KAI1 expression levels were increased. Besides, MMP-2 and NM23 had different expressions in the two studied cell lines. In conclusion, dandelion/ATRA co-treatment, in addition to having strong cytotoxic effects, has putative effects on the expression of anti-metastatic genes in both breast cancer cells.
Collapse
Affiliation(s)
- Hamed Rezaie
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | | | - Ali Nemati
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Wang Y, Huang X, Chen H, Wu Q, Zhao Q, Fu D, Liu Q, Wang Y. The Antitumour Activity of a Curcumin and Piperine Loaded iRGD-Modified Liposome: In Vitro and In Vivo Evaluation. Molecules 2023; 28:6532. [PMID: 37764308 PMCID: PMC10535349 DOI: 10.3390/molecules28186532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer is one of the most common cancers around the world, with a high mortality rate. Despite substantial advancements in diagnoses and therapies, the outlook and survival of patients with lung cancer remains dismal due to drug tolerance and malignant reactions. New interventional treatments urgently need to be explored if natural compounds are to be used to reduce toxicity and adverse effects to meet the needs of lung cancer clinical treatment. An internalizing arginine-glycine-aspartic acid (iRGD) modified by a tumour-piercing peptide liposome (iRGD-LP-CUR-PIP) was developed via co-delivery of curcumin (CUR) and piperine (PIP). Its antitumour efficacy was evaluated and validated via in vivo and in vitro experiments. iRGD-LP-CUR-PIP enhanced tumour targeting and cellular internalisation effectively. In vitro, iRGD-LP-CUR-PIP exhibited enhanced cellular uptake, suppression of tumour cell multiplication and invasion and energy-independent cellular uptake. In vivo, iRGD-LP-CUR-PIP showed high antitumour efficacy, mainly in terms of significant tumour volume reduction and increased weight and spleen index. Data showed that iRGD peptide has active tumour targeting and it significantly improves the penetration and cellular internalisation of tumours in the liposomal system. The use of CUR in combination with PIP can exert synergistic antitumour activity. This study provides a targeted therapeutic system based on natural components to improve antitumour efficacy in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinghua Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.W.); (X.H.); (H.C.); (Q.W.); (Q.Z.); (D.F.)
| | - Yinghao Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.W.); (X.H.); (H.C.); (Q.W.); (Q.Z.); (D.F.)
| |
Collapse
|
8
|
Mukherjee D, Krishnan A. Therapeutic potential of curcumin and its nanoformulations for treating oral cancer. World J Methodol 2023; 13:29-45. [PMID: 37456978 PMCID: PMC10348080 DOI: 10.5662/wjm.v13.i3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 06/14/2023] Open
Abstract
The global incidence of oral cancer has steadily increased in recent years and is associated with high morbidity and mortality. Oral cancer is the most common cancer in the head and neck region, and is predominantly of epithelial origin (i.e. squamous cell carcinoma). Oral cancer treatment modalities mainly include surgery with or without radiotherapy and chemotherapy. Though proven effective, chemotherapy has significant adverse effects with possibilities of tumor resistance to anticancer drugs and recurrence. Thus, there is an imperative need to identify suitable anticancer therapies that are highly precise with minimal side effects and to make oral cancer treatment effective and safer. Among the available adjuvant therapies is curcumin, a plant polyphenol isolated from the rhizome of the turmeric plant Curcuma longa. Curcumin has been demonstrated to have anti-infectious, antioxidant, anti-inflammatory, and anticarcinogenic properties. Curcumin has poor bioavailability, which has been overcome by its various analogues and nanoformulations, such as nanoparticles, liposome complexes, micelles, and phospholipid complexes. Studies have shown that the anticancer effects of curcumin are mediated by its action on multiple molecular targets, including activator protein 1, protein kinase B (Akt), nuclear factor κ-light-chain-enhancer of activated B cells, mitogen-activated protein kinase, epidermal growth factor receptor (EGFR) expression, and EGFR downstream signaling pathways. These targets play important roles in oral cancer pathogenesis, thereby making curcumin a promising adjuvant treatment modality. This review aims to summarize the different novel formulations of curcumin and their role in the treatment of oral cancer.
Collapse
Affiliation(s)
- Diptasree Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| | - Arunkumar Krishnan
- Department of Medicine Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| |
Collapse
|
9
|
Majrashi TA, Alshehri SA, Alsayari A, Muhsinah AB, Alrouji M, Alshahrani AM, Shamsi A, Atiya A. Insight into the Biological Roles and Mechanisms of Phytochemicals in Different Types of Cancer: Targeting Cancer Therapeutics. Nutrients 2023; 15:nu15071704. [PMID: 37049544 PMCID: PMC10097354 DOI: 10.3390/nu15071704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is a hard-to-treat disease with a high reoccurrence rate that affects health and lives globally. The condition has a high occurrence rate and is the second leading cause of mortality after cardiovascular disorders. Increased research and more profound knowledge of the mechanisms contributing to the disease’s onset and progression have led to drug discovery and development. Various drugs are on the market against cancer; however, the drugs face challenges of chemoresistance. The other major problem is the side effects of these drugs. Therefore, using complementary and additional medicines from natural sources is the best strategy to overcome these issues. The naturally occurring phytochemicals are a vast source of novel drugs against various ailments. The modes of action by which phytochemicals show their anti-cancer effects can be the induction of apoptosis, the onset of cell cycle arrest, kinase inhibition, and the blocking of carcinogens. This review aims to describe different phytochemicals, their classification, the role of phytochemicals as anti-cancer agents, the mode of action of phytochemicals, and their role in various types of cancer.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Mohammad Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Asma M. Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| |
Collapse
|
10
|
Mirza Z, Karim S. Structure-Based Profiling of Potential Phytomolecules with AKT1 a Key Cancer Drug Target. Molecules 2023; 28:molecules28062597. [PMID: 36985568 PMCID: PMC10051420 DOI: 10.3390/molecules28062597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Identifying cancer biomarkers is imperative, as upregulated genes offer a better microenvironment for the tumor; hence, targeted inhibition is preferred. The theme of our study is to predict molecular interactions between cancer biomarker proteins and selected natural compounds. We identified an overexpressed potential molecular target (AKT1) and computationally evaluated its inhibition by four dietary ligands (isoliquiritigenin, shogaol, tehranolide, and theophylline). The three-dimensional structures of protein and phytochemicals were retrieved from the RCSB PDB database (4EKL) and NCBI’s PubChem, respectively. Rational structure-based docking studies were performed using AutoDock. Results were analyzed based primarily on the estimated free binding energy (kcal/mol), hydrogen bonds, and inhibition constant, Ki, to identify the most effective anti-cancer phytomolecule. Toxicity and drug-likeliness prediction were performed using OSIRIS and SwissADME. Amongst the four phytocompounds, tehranolide has better potential to suppress the expression of AKT1 and could be used for anti-cancer drug development, as inhibition of AKT1 is directly associated with the inhibition of growth, progression, and metastasis of the tumor. Docking analyses reveal that tehranolide has the most efficiency in inhibiting AKT1 and has the potential to be used for the therapeutic management of cancer. Natural compounds targeting cancer biomarkers offer less rejection, minimal toxicity, and fewer side effects.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| | - Sajjad Karim
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Ghobadi N, Asoodeh A. Co-administration of curcumin with other phytochemicals improves anticancer activity by regulating multiple molecular targets. Phytother Res 2023; 37:1688-1702. [PMID: 36883534 DOI: 10.1002/ptr.7794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Natural plant phytochemicals are effective against different types of diseases, including cancer. Curcumin, a powerful herbal polyphenol, exerts inhibitory effects on cancer cell proliferation, angiogenesis, invasion, and metastasis through interaction with different molecular targets. However, the clinical use of curcumin is limited due to poor solubility in water and metabolism in the liver and intestine. The synergistic effects of curcumin with some phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and piperine can improve its clinical efficacy in cancer treatment. The present review specifically focuses on anticancer mechanisms related to the co-administration of curcumin with other phytochemicals, including resveratrol, quercetin, epigallocatechin-3-gallate, and piperine. According to the molecular evidence, the phytochemical combinations exert synergistic effects on suppressing cell proliferation, reducing cellular invasion, and inducing apoptosis and cell cycle arrest. This review also emphasizes the significance of the co-delivery vehicles-based nanoparticles of such bioactive phytochemicals that could improve their bioavailability and reduce their systemic dose. Further high-quality studies are needed to firmly establish the clinical efficacy of the phytochemical combinations.
Collapse
Affiliation(s)
- Niloofar Ghobadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Kour S, Biswas I, Sheoran S, Arora S, Sheela P, Duppala SK, Murthy DK, Pawar SC, Singh H, Kumar D, Prabhu D, Vuree S, Kumar R. Artificial intelligence and nanotechnology for cervical cancer treatment: Current status and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Bhavnagari H, Raval A, Shah F. Deciphering Potential Role of Hippo Signaling Pathway in Breast Cancer: A Comprehensive Review. Curr Pharm Des 2023; 29:3505-3518. [PMID: 38141194 DOI: 10.2174/0113816128274418231215054210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer is a heterogeneous disease and a leading malignancy around the world. It is a vital cause of untimely mortality among women. Drug resistance is the major challenge for effective cancer therapeutics. In contrast, cancer stem cells (CSCs) are one of the reasons for drug resistance, tumor progression, and metastasis. The small population of CSCs present in each tumor has the ability of self-renewal, differentiation, and tumorigenicity. CSCs are often identified and enriched using a variety of cell surface markers (CD44, CD24, CD133, ABCG2, CD49f, LGR5, SSEA-3, CD70) that exert their functions by different regulatory networks, i.e., Notch, Wnt/β-catenin, hedgehog (Hh), and Hippo signaling pathways. Particularly the Hippo signaling pathway is the emerging and very less explored cancer stem cell pathway. Here, in this review, the Hippo signaling molecules are elaborated with respect to their ability of stemness as epigenetic modulators and how these molecules can be targeted for better cancer treatment and to overcome drug resistance.
Collapse
Affiliation(s)
- Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Raval
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Boretti A. Natural Products as Cancer Chemo Preventive Agents: Where We Stand. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221144579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This work briefly reviews cancer chemoprevention. This is a very challenging field, as products with a high level of toxicity such as chemotherapeutic agents may be proposed and accepted only under life-threatening conditions. Cancer chemoprevention is otherwise limited to completely safe substances, preferably having neither toxic nor side effects, administered in relatively low amounts. Phases of clinical trials, therapeutic end-points, and biomarkers of chemoprevention are difficult to be defined. The clinical trials needed to prove the efficacy of chemopreventive agents must be very long and extremely widespread to achieve significance, with many variables difficult to control, and therefore subjected to many confounding factors. This makes them almost impossible. It is, therefore, no surprise, if the progress of chemoprevention has been so far very limited. There are only a few examples of direct use of chemopreventive agents, under investigation, but with anything but established protocols, in addition to indirect uses such as general supplementation with antioxidant, anti-inflammatory, and immune-supportive agents. Cancer chemoprevention remains a potentially very rewarding approach, certainly worth further study, but extremely difficult to pursue, in need of different methodological approaches to producing valuable chemopreventive compounds of clear dosages and benefits.
Collapse
|
15
|
Li K, Pi C, Wen J, He Y, Yuan J, Shen H, Zhao W, Zeng M, Song X, Lee RJ, Wei Y, Zhao L. Formulation of the novel structure curcumin derivative-loaded solid lipid nanoparticles: synthesis, optimization, characterization and anti-tumor activity screening in vitro. Drug Deliv 2022; 29:2044-2057. [PMID: 35775475 PMCID: PMC9255223 DOI: 10.1080/10717544.2022.2092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study investigated the effect of structural modification of Curcumin (CU) combined with the solid lipid nanoparticles (SLN) drug delivery system on anti-tumor activity in vitro. A new structure of Curcumin derivative (CU1) was successfully synthesized by modifying the phenolic hydroxyl group of CU. CU1 was two times more stable than CU at 45 °C or constant light. The SLN containing CU1 (CU1-SLN) was prepared, and the particle size, polydispersity index, entrapment efficiency, drug loading, and zeta potential of CU1-SLN were (104.1 ± 2.43) nm, 0.22 ± 0.008, (95.1 ± 0.38) %, (4.28 ± 0.02) %, and (28.3 ± 1.60) mV, respectively. X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) showed that CU1 is amorphous in SLN. CU1-SLN released the drug slowly for 48 h, while CU and CU1 were released rapidly within 8 h. In terms of cytotoxicity, CU1 exhibited a 1.5-fold higher inhibition than CU against A549 and SMMC-7721 cells, while CU1-SLN showed 2-fold higher inhibition than CU1. Both CU1 and CU1-SLN reduced the toxicity in normal hepatocytes compared with CU (2.6-fold and 12.9-fold, respectively). CU1-SLN showed a significant apoptotic effect (p < 0.05). In summary, CU1 retained the inhibitory effect of CU against tumor cells, while improving stability and safety. Additionally, CU1-SLN presents a promising strategy for the treatment of liver and lung cancer.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China.,Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
16
|
In Vitro Combination of Ascorbic and Ellagic Acids in Sperm Oxidative Damage Inhibition. Int J Mol Sci 2022; 23:ijms232314751. [PMID: 36499078 PMCID: PMC9740292 DOI: 10.3390/ijms232314751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
It is known that an altered redox balance interferes with normal spermatic functions. Exposure to genotoxic substances capable of producing oxidative stress (OS) can cause infertility in humans. The use of antioxidants to reduce oxidative stress contributes to the improvement in reproductive function. This study focused on an antigenotoxic evaluation of ellagic acid (EA) and ascorbic acid (AA) in combination against benzene genotoxic action on human spermatozoa in vitro. In addition to the evaluation of sperm parameters, damage in sperm genetic material and intracellular ROS quantification were assessed after AA, EA and benzene co-exposure using the TUNEL technique and DCF assay. The results showed that the combination of the two antioxidants generates a greater time-dependent antigenotoxic action, reducing both the sperm DNA fragmentation index and the oxidative stress. The genoprotective effect of AA and EA association in sperm cells lays the foundations for a more in-depth clinical study on the use of antioxidants as a therapy for male infertility.
Collapse
|
17
|
Formulation development and in vitro–in vivo anticancer potential of novel nanoliposomal fluorinated curcuminoids. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Velur G, Kusanur R. Herbal Drugs in Cancer Treatment. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
21
|
The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7838583. [PMID: 36193062 PMCID: PMC9526628 DOI: 10.1155/2022/7838583] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
The permeability of glioblastoma, as well as its escaping the immune system, makes them one of the most deadly human malignancies. By avoiding programmed cell death (apoptosis), unlimited cell growth and metastatic ability could dramatically affect the immune system. Genetic mutations, epigenetic changes, and overexpression of oncogenes can cause this process. On the other hand, the blood-brain barrier (BBB) and intratumor heterogeneity are important factors causing resistance to therapy. Several signaling pathways have been identified in this field, including the Janus tyrosine kinase (JAK) converter and signal transducer and activator of transcription (STAT) activator pathways, which are closely related. In addition, the JAK/STAT signaling pathway contributes to a wide array of tumorigenesis functions, including replication, anti-apoptosis, angiogenesis, and immune suppression. Introducing this pathway as the main tumorigenesis and treatment resistance center can give a better understanding of how it operates. In light of this, it is an important goal in treating many disorders, particularly cancer. The inhibition of this signaling pathway is being considered an approach to the treatment of glioblastoma. The use of natural products alternatively to conventional therapies is another area of research interest among researchers. Some natural products that originate from plants or natural sources can interfere with JAK/STAT signaling in human malignant cells, also by stopping the progression and phosphorylation of JAK/STAT, inducing apoptosis, and stopping the cell cycle. Natural products are a viable alternative to conventional chemotherapy because of their cost-effectiveness, wide availability, and almost no side effects.
Collapse
|
22
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
23
|
Luiz MT, Dutra JAP, Ribeiro TDC, Carvalho GC, Sábio RM, Marchetti JM, Chorilli M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Yang FR, Li SY, Hu XW, Li XR, Li HJ. Identifying the Antitumor Effects of Curcumin on Lung Adenocarcinoma Using Comprehensive Bioinformatics Analysis. Drug Des Devel Ther 2022; 16:2365-2382. [PMID: 35910781 PMCID: PMC9329682 DOI: 10.2147/dddt.s371420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background As the main component of turmeric (Curcuma longa L.), curcumin is widely used in the treatment of various diseases. Previous studies have demonstrated that curcumin has great potential as a therapeutic agent, but the lack of understanding of the functional mechanism of the drug has hindered the widespread use of the natural product. In the present study, we used comprehensive bioinformatics analysis and in vitro experiments to explore the anti-tumor mechanism of curcumin. Materials and Methods LUAD mRNA expression data were obtained from TCGA database and differentially expressed genes (DEGs) were identified using R software. Functional enrichment analysis was conducted to further clarify its biological properties and hub genes were identified by a protein–protein interaction (PPI) network analysis. Survival analysis and molecular docking were used to analyze the effectiveness of the hub genes. By an in vitro study, we evaluated whether curcumin could influence the proliferation, migration, and invasion activities of LUAD cells. Results In this study, 1783 DEGs from LUAD tissue samples compared to normal samples were evaluated. Functional enrichment analysis and the PPI network revealed the characteristics of the DEGs. We performed a topological analysis and identified 10 hub genes. Of these, six genes (INS, GCG, SST, F2, AHSG, and NPY) were identified as potentially effective biomarkers of LUAD. The molecular docking results indicated that curcumin targets in regulating lung cancer may be INS and GCG. We found that curcumin significantly inhibited the proliferation, migration, and invasion of LUAD cells and significantly decreased the expression of the INS and GCG genes. Conclusion The results of this study suggest that the therapeutic effects of curcumin on LUAD may be achieved through the intervention of INS and GCG, which may act as potential biomarkers for LUAD prevention and treatment.
Collapse
Affiliation(s)
- Fei-Ran Yang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Si-Yi Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xi-Wen Hu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiu-Rong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hui-Jie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Correspondence: Hui-Jie Li; Xiu-Rong Li, Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road, Jinan, Shandong, 250014, People’s Republic of China, Email ;
| |
Collapse
|
25
|
Nanoformulation of Polyphenol Curcumin Enhances Cisplatin-Induced Apoptosis in Drug-Resistant MDA-MB-231 Breast Cancer Cells. Molecules 2022; 27:molecules27092917. [PMID: 35566271 PMCID: PMC9104165 DOI: 10.3390/molecules27092917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the aggressive and lethal type of breast malignancy that develops resistance to current therapies. Combination therapy has proven to be an effective strategy on TNBC. We aimed to study whether the nano-formulation of polyphenolic curcumin (Gemini-Cur) would affect the cisplatin-induced toxicity in MDA-MB-231 breast cancer cells. MDA-MB-231 cells were treated with Gemini-Cur, cisplatin and combination of Gemini-Cur/Cisplatin in a time- and dose-dependent manner. Cell viability was studied by using MTT, fluorescence microscopy and cell cycle assays. The mode of death was also determined by Hoechst staining and annexin V-FITC. Real-time PCR and western blotting were employed to detect the expression of BAX and BCL-2 genes. Our data demonstrated that Gemini-Cur significantly sensitizes cancer cells to cisplatin (combination index ≤ 1) and decreases IC50 values in comparison with Gemini-cur or cisplatin. Further studies confirmed that Gemini-Cur/Cisplatin suppresses cancer cell growth through induction of apoptosis (p < 0.001). In conclusion, the data confirm the synergistic effect of polyphenolic curcumin on cisplatin toxicity and provide attractive strategy to attain its apoptotic effect on TNBC.
Collapse
|
26
|
Mukherjee D, Dash P, Ramadass B, Mangaraj M. Nanocurcumin in Oral Squamous Cancer Cells and Its Efficacy as a Chemo-Adjuvant. Cureus 2022; 14:e24678. [PMID: 35663647 PMCID: PMC9162890 DOI: 10.7759/cureus.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
|
27
|
Functional stratification of cancer drugs through integrated network similarity. NPJ Syst Biol Appl 2022; 8:11. [PMID: 35440787 PMCID: PMC9018743 DOI: 10.1038/s41540-022-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Drugs not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored networks modulated by several drugs across multiple cancer cell lines by integrating their targets with transcriptomic and phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks. Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing a similar mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations based on the topological separation and found literature evidence for a set of drug pairs. Overall, network-level exploration of drug-modulated pathways and their deep comparison may potentially help optimize treatment strategies and suggest new drug combinations.
Collapse
|
28
|
Riaz S, Javed MA, Nawaz I, Javed T. Biochemical characterization, cytotoxic, antimutagenic, anticancer and molecular docking studies on Tecomella undulata. Saudi J Biol Sci 2022; 29:2421-2431. [PMID: 35531249 PMCID: PMC9072898 DOI: 10.1016/j.sjbs.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In this study bioassay-guided screening of Tecomella undulate was performed for its cytotoxic, antimutagenic and anticancer potential. The ariel parts were extracted on a polarity basis (methanol, dichloromethane and hexane). The in vivo toxicity was assessed on Caenorhabditis elegans, and its locomotion was affected by Tecomella undulata hexane (TUAH) the most. Ames test for antimutagenicity showed Tecomella undulata methanol (TUAM) exhibited against mutagen 2AA showed inhibition of 71.03% and 26.32% 2AA in TA98 while in in vitro MTT assay on carcinoma cell lines TUAM showed 68.1% cytotoxicity. Moreover, In resazurin assay on fibroblast cells African green monkey kidney VERO and on the panel of carcinoma cell lines, the most effective extract was TUAM on liver HepG-2 with CC50 value 117.37 ± 4.73 µg/ml followed by on lungs A549 with 142.01 ± 5.3. Furthermore, for the bioassay-guided screening, the selectivity index was calculated for TUAM CC50 ratio on HepG-2 and VERO which showed a decent 2.77 score. After column chromatography, the fraction TU-63 should remarkable cytotoxic effect in dose-response manner assay as (Hep-G2) CC50 value 11. 67 ± 1.37 µg/ml followed by (A549) CC50 value 17.23 ± 0.58 µg/ml. For qualitative analysis of anticancer potential LC-ESI-MS/MS the potential phytochemicals were identified. In silico molecular modelling against selected carcinogenic proteins. The results suggest Tecomella undulate the substantial anticancer potential which supports potential natural anticancer therapeutic drug candidate development for combating cancer.
Collapse
Affiliation(s)
- Sana Riaz
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- Departments of Microbiology and Molecular Genetics, the Women University, Multan, Pakistan
- Section Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Belgium
| | | | - Iqra Nawaz
- Bahawal Victoria hospital, Bahawalpur, Pakistan
| | - Tariq Javed
- Lahore Pharmacy College, (LMDC) University of Health Sciences, Lahore, Pakistan
- Ruth Pfau College of Life Sciences (LMDC) Government College University, Lahore, Pakistan
| |
Collapse
|
29
|
Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072086. [PMID: 35408483 PMCID: PMC9000713 DOI: 10.3390/molecules27072086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures and favorable pharmacology and toxicology profiles. Deoxyelephantopin and isodeoxyelephantopin, sesquiterpene lactone compounds, are major components of Elephantopus scaber and Elephantopus carolinianus, which have long been used as traditional medicines to treat multiple ailments, including liver diseases, diabetes, bronchitis, fever, diarrhea, dysentery, cancer, renal disorders, and inflammation-associated diseases. Recently, deoxyelephantopin and isodeoxyelephantopin have been extensively explored for their anti-cancer activities. This review summarizes and discusses the anti-cancer activities of deoxyelephantopin and isodeoxyelephantopin, with an emphasis on their modes of action and molecular targets. Both compounds disrupt several processes involved in cancer progression by targeting multiple signaling pathways deregulated in cancers, including cell cycle and proliferation, cell survival, autophagy, and invasion pathways. Future directions of research on these two compounds towards anti-cancer drug development are discussed.
Collapse
|
30
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
31
|
Turna O, Baykal A, Sozen Kucukkara E, Deveci Ozkan A, Guney Eskiler G, Yıldırım F. Evaluation of Curcumin Therapeutic Effects on Histological Subtypes of Canine Mammary Gland Tumours. Nutr Cancer 2022; 74:3015-3025. [PMID: 35089107 DOI: 10.1080/01635581.2022.2032216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Canine mammary gland tumors (CMGTs) are the most frequent types of cancer in bitches and proposed as a model of human breast cancer. The anticancer effect of curcumin on human breast cancer has been extensively studied. The aim of this study was to evaluate the therapeutic effect of curcumin in two different histologies (simple carcinoma [SC] and squamous cell carcinoma [SCC]) of CMGTs. Primary canine mammary cells were isolated from the tumoral tissues surgically resected from two bitches (Case 1 and Case 2). Cell viability, apoptotic percentage, cell cycle progression and the changes in the cell morphology were evaluated. Curcumin inhibited the growth of both SC (Case 1) and SCC (Case 2) cells. However, Case 1 cells (43.48% ± 3.87% at 0.5 µM) were more sensitive to curcumin than Case 2 cells (59.36% ± 2.09% at 0.5 µM). Curcumin induced total apoptotic cell death through G0/G1 arrest, and this effect was more profound in Case 1 cells. Furthermore, cytoplasmic vacuolization, apoptotic bodies and membrane blebbing were observed in both cells following curcumin treatment. Our findings provide a novel approach for the effects of curcumin as a natural compound on CMGTs. Further investigations should be performed to investigate the molecular mechanisms of the differences in curcumin efficacy for different histological subtypes.
Collapse
Affiliation(s)
- Ozge Turna
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aslihan Baykal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Sozen Kucukkara
- Department of Medical Biochemistry, Institute of Health Science, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Funda Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
32
|
Upadhyay A, Kundu P, Ramu V, Kondaiah P, Chakravarty AR. BODIPY-Tagged Platinum(II) Curcumin Complexes for Endoplasmic Reticulum-Targeted Red Light PDT. Inorg Chem 2022; 61:1335-1348. [PMID: 34990135 DOI: 10.1021/acs.inorgchem.1c02745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Pt(RB)(Cur)]NO3 (RBC), [Pt(IRB)(Cur)]NO3 (IRBC), and [Pt(L)(Cur)]NO3 (PBC), where HCur is curcumin, L is 1-benzyl-2-(2-pyridyl)benzimidazole, and RB and IRB are red-light-active non-iodo and diiodo-BODIPY tagged to L, respectively, were synthesized and characterized, and their anticancer activities were studied (BODIPY, boron-dipyrromethene). RBC and IRBC displayed BODIPY-centered absorption bands within 615-635 nm along with the respective curcumin bands at 445 and 492 nm in 10% dimethyl sulfoxide (DMSO)-Dulbecco's phosphate-buffered saline (DPBS). Emission bands were observed at 723 and 845 nm for RBC and IRBC, respectively, in 10% DMSO-DPBS. RBC (ΦΔ, 0.27) and IRBC (ΦΔ, 0.40) generated singlet oxygen in red light (λ = 642 nm) as evidenced from 1,3-diphenylisobenzofuran (DPBF) titrations. The formation of 1O2 from BODIPY and HO• from the curcumin was evidenced from the mechanistic pUC19 DNA photocleavage studies. The BODIPY complexes showed photocytotoxicity in A549, HeLa, and MDA-MB-231 cells while being less toxic in the dark [IC50: 1.3-6.9 μM, red light; 7.2-12.8 μM, 400-700 nm visible light]. The emissive RBC displayed localization in the endoplasmic reticulum (ER). Apoptotic cell death was evidenced from the Annexin-V/fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay and green fluorescence in red light in the Fluo-4 AM assay due to ER stress, and mitochondrial dysfunction was evidenced from the 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) assay in A549 cells.
Collapse
|
33
|
Peter K, Kar SK, Gothalwal R, Gandhi P. Curcumin in Combination with Other Adjunct Therapies for Brain Tumor Treatment: Existing Knowledge and Blueprint for Future Research. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 10:163-181. [PMID: 35178355 PMCID: PMC8800460 DOI: 10.22088/ijmcm.bums.10.3.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Malignant brain tumors proliferate aggressively and have a debilitating outcome. Surgery followed by chemo-radiotherapy has been the standard procedure of care since 2005 but issues of therapeutic toxicity and relapse still remain unaddressed. Repurposing of drugs to develop novel combinations that can augment existing treatment regimens for brain tumors is the need of the hour. Herein, we discuss studies documenting the use of curcumin as an adjuvant to conventional and alternative therapies for brain tumors. Comprehensive analysis of data suggests that curcumin together with available therapies can generate a synergistic action achieved through multiple molecular targeting, which results in simultaneous inhibition of tumor growth, and reduced treatment-induced toxicity as well as resistance. The review also highlights approaches to increase bioavailability and bioaccumulation of drugs when co-delivered with curcumin using nano-cargos. Despite substantial preclinical work on radio-chemo sensitizing effects of curcumin, to date, there is only a single clinical report on brain tumors. Based on available lab evidence, it is proposed that antibody-conjugated nano-curcumin in combination with sub-toxic doses of conventional or repurposed therapeutics should be designed and tested in clinical studies. This will increase tumor targeting, the bioavailability of the drug combination, reduce therapy resistance, and tumor recurrence through modulation of aberrant signaling cascades; thus improving clinical outcomes in brain malignancies.
Collapse
Affiliation(s)
- Kavita Peter
- Department of Biotechnology, Barkatullah University, Bhopal, M.P, India
| | | | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Bhopal, M.P, India
| |
Collapse
|
34
|
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, Kandasamy G, Vasudevan R, Ali MS, Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122751. [PMID: 34961221 PMCID: PMC8703329 DOI: 10.3390/plants10122751] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
There are more than 30 species of Glycyrrhiza genus extensively spread worldwide. It was the most prescribed herb in Ancient Egyptian, Roman, Greek, East China, and the West from the Former Han era. There are various beneficial effects of licorice root extracts, such as treating throat infections, tuberculosis, respiratory, liver diseases, antibacterial, anti-inflammatory, and immunodeficiency. On the other hand, traditional medicines are getting the attraction to treat many diseases. Therefore, it is vital to screen the medicinal plants to find the potential of new compounds to treat chronic diseases such as respiratory, cardiovascular, anticancer, hepatoprotective, etc. This work comprehensively reviews ethnopharmacological uses, phytochemistry, biological activities, clinical evidence, and the toxicology of licorice, which will serve as a resource for future clinical and fundamental studies. An attempt has been made to establish the pharmacological effect of licorice in different diseases. In addition, the focus of this review article is on the molecular mechanism of licorice extracts and their four flavonoids (isoliquiritigenin, liquiritigenin, lichalocone, and glabridin) pharmacologic activities. Licorice could be a natural alternative for current therapy to exterminate new emerging disorders with mild side effects. This review will provide systematic insights into this ancient drug for further development and clinical use.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
- Correspondence:
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
35
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
36
|
Guo Y, Liang J, Liu B, Jin Y. Molecular Mechanism of Food-Derived Polyphenols on PD-L1 Dimerization: A Molecular Dynamics Simulation Study. Int J Mol Sci 2021; 22:ijms222010924. [PMID: 34681584 PMCID: PMC8535905 DOI: 10.3390/ijms222010924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/18/2023] Open
Abstract
In cancer immunotherapy, an emerging approach is to block the interactions of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) using small-molecule inhibitors. The food-derived polyphenols curcumin (CC), resveratrol (RSV) and epigallocatechin gallate (EGCG) have anticancer immunologic functions, which, recently, have been proposed to act via the downregulation of PD-L1 expression. However, it remains unclear whether they can directly target PD-L1 dimerization and, thus, interrupt the PD-1/PD-L1 pathway. To elucidate the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and nanosecond molecular dynamics simulations were performed. Binding free energy calculations show that the affinities of CC, RSV and EGCG to the PD-L1 dimer follow a trend of CC > RSV > EGCG. Hence, CC is the most effective inhibitor of the PD-1/PD-L1 pathway. Analysis on contact numbers, nonbonded interactions and residue energy decomposition indicate that such compounds mainly interact with the C-, F- and G-sheet fragments of the PD-L1 dimer, which are involved in interactions with PD-1. More importantly, nonpolar interactions between these compounds and the key residues Ile54, Tyr56, Met115, Ala121 and Tyr123 play a dominant role in binding. Free energy landscape and secondary structure analyses further demonstrate that such compounds can stably interact with the binding domain of the PD-L1 dimer. The results provide evidence that CC, RSV and EGCG can inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. This provides a novel approach to discovering food-derived small-molecule inhibitors of the PD-1/PD-L1 pathway with potential applications in cancer immunotherapy.
Collapse
|
37
|
Anti-Genotoxicity Evaluation of Ellagic Acid and Curcumin—An In Vitro Study on Zebrafish Blood Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genotoxicity is the ability of specific substances to cause DNA damage, affecting development, physiology, and reproduction. This is often mediated by induction of oxidative stress. This in vitro study aims to test the ability of two antioxidants, ellagic acid (EA, 100 µM) and curcumin (Cur, 40 µM) to protect zebrafish blood cells from the genotoxic action of benzene (10 µL/mL). Cells were treated for 30, 60, and 90 min with EA or Cur alone and in combination with benzene. The antigenotoxic role of antioxidants was evaluated in terms of cytotoxicity by trypan blue dye, genome stability by RAPD-PCR technique, DNA fragmentation and percentage of apoptotic cells using Comet and Diffusion assay, respectively. The results did not show statistical differences in terms of cell viability, genome stability, DNA damage and apoptosis between cells treated with antioxidants. When zebrafish blood cells were co-incubated with individual antioxidants and benzene, a significant improvement of these parameters was observed in comparison with cells incubated in benzene. Our results suggested that EA and Cur are able to protect zebrafish blood cells against DNA damage and apoptosis caused by mutagenic substance, and laid the foundation for future studies investigating their antigenotoxic potential in DNA oxidative damage therapy.
Collapse
|
38
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
39
|
Paul S, Sa G. Curcumin as an Adjuvant to Cancer Immunotherapy. Front Oncol 2021; 11:675923. [PMID: 34485117 PMCID: PMC8415504 DOI: 10.3389/fonc.2021.675923] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The components of the immune system play a very sincere and crucial role in combating tumors. However, despite their firm efforts of elimination, tumor cells cleverly escape the surveillance process by adopting several immune evasion mechanisms. The conversion of immunogenicity of tumor microenvironment into tolerogenic is considered as a prime reason for tumor immune escape. Therapeutically, different immunotherapies have been adopted to block such immune escaping routes along with better clinical outcomes. Still, the therapies are haunted by several drawbacks. Over time, curcumin has been considered as a potential anti-cancer molecule. Its potentialities have been recorded against the standard hallmarks of cancer such as continuous proliferation, escaping apoptosis, continuous angiogenesis, insensitivity to growth inhibitors, tissue invasion, and metastasis. Hence, the diversity of curcumin functioning has already been established and exploration of its application with immunotherapies might open up a new avenue for scientists and clinicians. In this review, we briefly discuss the tumor's way of immune escaping, followed by various modern immunotherapies that have been used to encounter the escaping paths and their minute flaws. Finally, the conclusion has been drawn with the application of curcumin as a potential immune-adjuvant, which fearlessly could be used with immunotherapies for best outcomes.
Collapse
Affiliation(s)
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
40
|
Skrajnowska D, Tokarz A, Makowska J, Bobrowska-Korczak B. Changes in the Mineral Composition of Rat Tissues Induced by Breast Cancer and Dietary Supplementation. In Vivo 2021; 35:259-266. [PMID: 33402472 DOI: 10.21873/invivo.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The aim of the study was to determine the effect of various diets with zinc or zinc in combination with resveratrol or genistein on mineral contents of the serum, urine, liver, kidney and heart in rats with chemically-induced mammary carcinoma. MATERIALS AND METHODS The manuscript presents the tissues and body fluids content of iron, calcium, zinc, magnesium and copper in control rats or rats treated with 7,12-dimethyl-1,2-benz[a]anthracene to induce mammary carcinogenesis, under four dietary conditions: standard feed, Zn supplemented feed (6.9 mg Zn/ml), Zn and resveratrol (0.2 mg/kg body) supplemented feed, or Zn and genistein (0.2 mg/kg body) supplemented feed. RESULTS The content of calcium and copper highly varied depending on the tissue and the type of dietary supplement (no change for zinc and magnesium). Irrespective of the diet used, the chemical induction of mammary cancer caused a decrease in iron concentration in most samples analysed. Only supplementation of the rats' diet with zinc and genistein induced no changes in iron distribution in the serum, urine, liver, kidney and heart. CONCLUSION Further research using various levels of zinc and genistein in the diet should be conducted to determine how the development and progression of cancer is linked to iron content in cells and its ability to accumulate in tumour tissue.
Collapse
Affiliation(s)
| | - Andrzej Tokarz
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Makowska
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
41
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
42
|
Arantes DAC, Silva ACGD, Lima EM, Alonso ECP, Marreto RN, Mendonça EF, Valadares MC, Batista AC. Biological effects of formulation containing curcuminoids and Bidens Pilosa L. in oral carcinoma cell line. Braz Oral Res 2021; 35:e063. [PMID: 34076188 DOI: 10.1590/1807-3107bor-2021.vol35.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
FITOPROT, which contains curcuminoids and Bidens pilosa L. extract, is an innovative mucoadhesive formulation indicated for the topical treatment of chemoradiotherapy-induced oral mucositis (OM) in patients with advanced and visible oral squamous cell carcinoma. The formulation is used as a mouthwash directly on tumor tissue of patients with advanced neoplasms, without triggering cancer cell proliferation or tumor invasiveness. Thus, the aim of this study was to evaluate the biological effects of FITOPROT on an oral squamous cell carcinoma cell line (SCC-4). The viability of SCC-4 cells was assessed after exposure to FITOPROT using MTT reduction assay. The effects of the mucoadhesive formulation on cell cycle progression and cell death parameters were evaluated using flow cytometry. In addition, the inflammatory profile of the tumor cells was evaluated using the cytometric bead array (CBA) assay. FITOPROT promoted a concentration-dependent decrease in cell viability and cell cycle arrest at the G2/M phase (p < 0.05). Mitochondrial membrane potential was also altered after exposure to the formulation (p < 0.05), in parallel with a reduction in VEGF and IL-8 production (p = 0.01 and p = 0.05, respectively). In summary, the results indicate that FITOPROT reduces SCC-4 cell viability, promotes cell cycle arrest, modulates mitochondrial membrane potential, and exhibits antiangiogenic and anti-inflammatory properties, thus indicating its potential for topical use in patients with OM and visible tumors in the mouth.
Collapse
Affiliation(s)
- Diego Antonio Costa Arantes
- Universidade Federal de Goiás - UFG, Dental School, Department of Stomatology (Oral Pathology), Goiânia, Brazil
| | - Artur Christian Garcia da Silva
- Universidade Federal de Goiás - UFG, Pharmacy Faculty, Laboratory of Education and Research in Toxicology in Vitro, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Universidade Federal de Goiás - UFG, Pharmacy Faculty, Laboratory of Pharmaceutical Technology, Goiânia, GO, Brazil
| | - Ellen Cristine Pineze Alonso
- Universidade Federal de Goiás - UFG, Pharmacy Faculty, Laboratory of Nanosystems and Modified-Release Drugs Devices, Goiânia, GO, Brazil
| | - Ricardo Neves Marreto
- Universidade Federal de Goiás - UFG, Pharmacy Faculty, Laboratory of Nanosystems and Modified-Release Drugs Devices, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Universidade Federal de Goiás - UFG, Pharmacy Faculty, Laboratory of Pharmacology and Cellular Toxicology, Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Universidade Federal de Goiás - UFG, Dental School, Department of Stomatology (Oral Pathology), Goiânia, Brazil
| |
Collapse
|
43
|
de Souza N, de Oliveira ÉA, Faião-Flores F, Pimenta LA, Quincoces JAP, Sampaio SC, Maria-Engler SS. Metalloproteinases Suppression Driven by the Curcumin Analog DM-1 Modulates Invasion in BRAF-Resistant Melanomas. Anticancer Agents Med Chem 2021; 20:1038-1050. [PMID: 32067622 DOI: 10.2174/1871520620666200218111422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Melanoma is the most aggressive skin cancer, and BRAF (V600E) is the most frequent mutation that led to the development of BRAF inhibitors (BRAFi). However, patients treated with BRAFi usually present recidivism after 6-9 months. Curcumin is a turmeric substance, and it has been deeply investigated due to its anti-inflammatory and antitumoral effects. Still, the low bioavailability and biodisponibility encouraged the investigation of different analogs. DM-1 is a curcumin analog and has shown an antitumoral impact in previous studies. METHODS Evaluated DM-1 stability and cytotoxic effects for BRAFi-sensitive and resistant melanomas, as well as the role in the metalloproteinases modulation. RESULTS DM-1 showed growth inhibitory potential for melanoma cells, demonstrated by reduction of colony formation, migration and endothelial tube formation, and cell cycle arrest. Subtoxic doses were able to downregulate important Metalloproteinases (MMPs) related to invasiveness, such as MMP-1, -2 and -9. Negative modulations of TIMP-2 and MMP-14 reduced MMP-2 and -9 activity; however, the reverse effect is seen when increased TIMP-2 and MMP-14 resulted in raised MMP-2. CONCLUSION These findings provide essential details into the functional role of DM-1 in melanomas, encouraging further studies in the development of combinatorial treatments for melanomas.
Collapse
Affiliation(s)
- Nayane de Souza
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Érica Aparecida de Oliveira
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Fernanda Faião-Flores
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | | | - José A P Quincoces
- Laboratory of Organic Synthesis, Anhanguera University of São Paulo, UNIAN, Sao Paulo, Brazil
| | - Sandra C Sampaio
- Butantan Institute, Pathophysiology Laboratory, Sao Paulo, Brazil
| | - Silvya S Maria-Engler
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| |
Collapse
|
44
|
Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New Insights Toward Nanostructured Drug Delivery of Plant-Derived Polyphenol Compounds: Cancer Treatment and Gene Expression Profiles. Curr Cancer Drug Targets 2021; 21:689-701. [PMID: 34036921 DOI: 10.2174/1568009621666210525152802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of cancer has led to the expansion of traditional medicine objectives for developing novel drug delivery systems. A wide range of plant-derived polyphenol bioactive substances have been investigated in order to explore anti-cancer effects of these natural compounds and to promote effective treatment of cancer through apoptosis induction. In this regard, plant-derived polyphenol compounds including curcumin, silibinin, quercetin, and resveratrol have been the subject of intense interest for anti-cancer applications due to their ability in regulating apoptotic genes. However, some limitations of pure polyphenol compounds, such as poor bioavailability, short-term stability, low-cellular uptake, and insufficient solubility, have restricted their efficiency. Nanoscale formulations of bioactive agents have provided a novel platform to address these limitations. This paper reviews recent advances in nanoformulation approaches of polyphenolic drugs, and their effects on improving the delivery of chemotherapy agents to cancer cells.
Collapse
Affiliation(s)
- Keyvan Khazei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology Faculty of Medicine, Istanbul Aydin University, Istanbul. Turkey
| | - Zeynep Turk
- Center for Applied and Theoretical Research on Higher Education, İstanbul Aydın University, Istanbul. Turkey
| | - Nosratollah Zarghami
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Aman LO, Kartasasmita RE, Tjahjono DH. Virtual screening of curcumin analogues as DYRK2 inhibitor: Pharmacophore analysis, molecular docking and dynamics, and ADME prediction. F1000Res 2021; 10:394. [DOI: 10.12688/f1000research.28040.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Curcumin reduces the proliferation of cancer cells through inhibition of the DYRK2 enzyme, which is a positive regulator of the 26S proteasome. Methods: In the present work, curcumin analogues have been screened from the MolPort database using a pharmacophore model that comprised a ligand-based approach. The result of the screening was then evaluated by molecular docking and molecular dynamics based on binding the free energy of the interaction between each compound with the binding pocket of DYRK2. The hit compounds were then confirmed by absorption, distribution, metabolism, and excretion (ADME) prediction. Results: Screening of 7.4 million molecules from the MolPort database afforded six selected hit compounds. By considering the ADME prediction, three prospective curcumin analogues have been selected. These are: 2‐[2‐(1‐methylpyrazol‐4‐yl)ethyl]‐1H,5H,6H,7H,8H‐imidazo[4,5‐c]azepin‐4‐one (Molport-035-369-361), methyl 4‐(3‐hydroxy‐1,2‐oxazol‐5‐yl)piperidine‐1‐carboxylate (Molport-000-004-273) and (1S)‐1‐[5‐(furan‐3‐carbonyl)‐4H,6H,7H‐pyrazolo[1,5‐a]pyrazin‐2‐yl]ethanol (MolPort-035-585-822). Conclusion: Pharmacophore modelling, combined with molecular docking and molecular dynamics simulation, as well as ADME prediction were successfully applied to screen curcumin analogues from the MolPort database as DYRK2 inhibitors. All selected compounds that have better predicted pharmacokinetic properties than that of curcumin are considered for further study.
Collapse
|
46
|
Zatorska-Płachta M, Łazarski G, Maziarz U, Foryś A, Trzebicka B, Wnuk D, Chołuj K, Karewicz A, Michalik M, Jamróz D, Kepczynski M. Encapsulation of Curcumin in Polystyrene-Based Nanoparticles-Drug Loading Capacity and Cytotoxicity. ACS OMEGA 2021; 6:12168-12178. [PMID: 34056370 PMCID: PMC8154162 DOI: 10.1021/acsomega.1c00867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 05/03/2023]
Abstract
Nanoparticles made of amphiphilic block copolymers are commonly used in the preparation of nano-sized drug delivery systems. Poly(styrene)-block -poly(acrylic acid) (PS-PAA) copolymers have been proposed for drug delivery purposes; however, the drug loading capacity and cytotoxicity of PS-PAA nanoparticles are still not fully recognized. Herein, we investigated the accumulation of a model hydrophobic drug, curcumin, and its spatial distribution inside the PS-PAA nanoparticles. Experimental methods and atomistic molecular dynamics simulations were used to understand the molecular structure of the PS core and how curcumin molecules interact and organize within the PS matrix. The hydrophobic core of the PS-PAA nanoparticles consists of adhering individually coiled polymeric chains and is compact enough to prevent post-incorporation of curcumin. However, the drug has a good affinity for the PS matrix and can be efficiently enclosed in the PS-PAA nanoparticles at the formation stage. At low concentrations, curcumin is evenly distributed in the PS core, while its aggregates were observed above ca. 2 wt %. The nanoparticles were found to have relatively low cytotoxicity to human skin fibroblasts, and the presence of curcumin further increased their biocompatibility. Our work provides a detailed description of the interactions between a hydrophobic drug and PS-PAA nanoparticles and information on the biocompatibility of these anionic nanostructures which may be relevant to the development of amphiphilic copolymer-based drug delivery systems.
Collapse
Affiliation(s)
| | - Grzegorz Łazarski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Urszula Maziarz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Aleksander Foryś
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Dawid Wnuk
- Department
of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Karolina Chołuj
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Anna Karewicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Marta Michalik
- Department
of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Dorota Jamróz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
- . Phone: +48 12 6862529
| | - Mariusz Kepczynski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
- . Phone: +48 12 6862532
| |
Collapse
|
47
|
Hemmati K, Ahmadi Nasab N, Hesaraki S, Nezafati N. In vitro evaluation of curcumin-loaded chitosan-coated hydroxyapatite nanocarriers as a potential system for effective treatment of cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1267-1287. [PMID: 33820489 DOI: 10.1080/09205063.2021.1910920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanotechnology has many potential applications in cancer treatment. For example, nano-drug delivery systems (NDDS) with high bioavailability, biodegradability, and biocompatibility have been developed, in order to increase the therapeutic effects of anticancer drugs. Among these NDDS, high-performance hydroxyapatite (HA) nanoparticles are rapidly advancing in the targeted cancer treatment due to their numerous benefits. Curcumin is an herbal metabolite that acts as a chemical inhibitor through the inhibition of tumor cells and the progression of many cancers. However, the poor bioavailability of curcumin is the most important challenge in using this substance. In this study, HA nanoparticles coated by chitosan were used as a pH-sensitive biopolymer to improve the efficiency and bioavailability of curcumin. For this purpose, HA nanoparticles were first synthesized by the sol-gel method. Then, a layer of chitosan was coated on it, and the curcumin drug was encapsulated in the nanocarrier, under controlled conditions. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the nanocarriers. In the second part, nano-drugs prepared by various bioassays were examined. For this purpose, the rate of cytotoxicity by the methyl-thiazol-tetrazolium (MTT) assay and the rate of apoptosis induction by the acridine orange and ethidium bromide (AO/EB) staining method on the brain carcinoma U87MG cell line were investigated.
Collapse
Affiliation(s)
- Katayon Hemmati
- Hormoz Research Center, University of Hormozgan, Bandar Abbas, Iran.,Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | | | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Nader Nezafati
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
48
|
Darwesh R, Elbialy NS. Iron oxide nanoparticles conjugated curcumin to promote high therapeutic efficacy of curcumin against hepatocellular carcinoma. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
El Feky SE, Ghany Megahed MA, Abd El Moneim NA, Zaher ER, Khamis SA, Ali LMA. Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system. Exp Ther Med 2021; 21:506. [PMID: 33791015 DOI: 10.3892/etm.2021.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting the thioredoxin/thioredoxin reductase (Trx/TrxR) system is a promising strategy to overcome cancer resistance to conventional therapy. The present study investigated the effect of curcumin on the Trx/TrxR system either alone or in combination with chemotherapy, or radiotherapy in human MCF-7 breast cancer cells seeded in 2 and 3D culture systems. Cell viability, thioredoxin reductase 1 (TrxR1) activity, and the genetic expression of Trx, TrxR1, Bcl2 and BAX genes were studied. The findings showed that the mode of culture significantly affected the response of cancer cells to different treatment modalities, as well as their gene expression patterns. Curcumin treatment resulted in a reduction of breast cancer cell proliferation and induction of apoptosis, an effect that may be mediated by manipulating Trx system components, mainly Trx expression, and to a lesser extent TrxR1 expression and concentration. Furthermore, curcumin increased the sensitivity of breast cancer cells to chemotherapy and radiotherapy by reducing Trx and TrxR1 expression levels. Thus, curcumin may have a potential role as a dose-modifying agent that can be used either to sensitize resistant cells to therapy or to reduce the dose of these therapeutic agents.
Collapse
Affiliation(s)
- Shaymaa Essam El Feky
- Department of Radiation Sciences, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Magda Abdel Ghany Megahed
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Nadia Ahmed Abd El Moneim
- Department of Cancer Management and Research, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Ebtsam Rizq Zaher
- Department of Radiation Sciences, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Shadwa Ahmed Khamis
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Lamiaa Mohamed Ahmed Ali
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| |
Collapse
|
50
|
El-Far AH, Darwish NHE, Mousa SA. Senescent Colon and Breast Cancer Cells Induced by Doxorubicin Exhibit Enhanced Sensitivity to Curcumin, Caffeine, and Thymoquinone. Integr Cancer Ther 2021; 19:1534735419901160. [PMID: 32054357 PMCID: PMC7025418 DOI: 10.1177/1534735419901160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a process of physiological growth arrest that can be induced by intrinsic or extrinsic stress signals. Some cancer therapies are associated with senescence of cancer cells with a typical cell cycle arrest. Doxorubicin (Dox) induces senescence by a p53-dependent pathway and telomere dysfunction of numerous cancers. However, cellular senescence induces suppression in proliferation activity, and these cells will remain metabolically active and play an important role in tumor relapse and development of drug resistance. In the current study, we investigated the apoptotic effect of curcumin (Cur), caffeine (Caff), and thymoquinone (TQ) on senescent colon cancer HCT116 and breast cancer MCF7 cell lines treated with Dox. Results showed typical senescence markers including decreased bromodeoxyuridine incorporation, increased accumulation of senescence-associated β-galactosidase (SA-β-gal), cell cycle arrest, and upregulation of p53, P-p53, and p21 proteins. Annexin-V analysis by flow cytometry revealed 2- to 6-fold increases in annexin-V–positive cells in Dox-treated MCF7 and HCT116 cells by Cur (15 µM), Caff (10 mM), and TQ (50 µM; P < .001). In comparison between proliferative and senescent of either HCT116 or MCF7 cells, Caff at 15 mM and TQ at 25 µM induced significant increases in apoptosis of Dox-treated cells compared with proliferative cells (P < .001). Data revealed that Cur, Caff, and TQ potentially induced apoptosis of both proliferative and senescent HCT116 and MCF7 cells. In vivo and clinical trials are of great importance to validate this result.
Collapse
Affiliation(s)
- Ali H El-Far
- Damanhour University, Damanhour, El-Beheira, Egypt
| | - Noureldien H E Darwish
- Mansoura University, Mansoura, Egypt.,Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|