1
|
Smeijer JD, Kohan DE, Dhaun N, Noronha IL, Liew A, Heerspink HJL. Endothelin receptor antagonists in chronic kidney disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00908-z. [PMID: 39643698 DOI: 10.1038/s41581-024-00908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/09/2024]
Abstract
Endothelin-1 is a potent vasoconstrictor that has diverse physiological functions in the kidney, including in the regulation of blood flow and glomerular filtration, electrolyte homeostasis and endothelial function. Overexpression of endothelin-1 contributes to the pathophysiology of both diabetic and non-diabetic chronic kidney disease (CKD). Selective endothelin receptor antagonists (ERAs) that target the endothelin A (ETA) receptor have demonstrated benefits in animal models of kidney disease and in clinical trials. In patients with type 2 diabetes and CKD, the selective ETA ERA, atrasentan, reduced albuminuria and kidney function decline. Concerns about the increased risks of fluid retention and heart failure with ERA use have led to the design of further trials to optimize dosing and patient selection. More recent studies have shown that the dual ETA receptor and angiotensin receptor blocker, sparsentan, preserved kidney function with minimal fluid retention in patients with IgA nephropathy. Moreover, combined administration of a low dose of the ETA-selective ERA, zibotentan, with the sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, enhanced albuminuria reduction and mitigated fluid retention in patients with CKD. Notably, sparsentan and aprocitentan have received FDA approval for the treatment of IgA nephropathy and treatment-resistant hypertension, respectively. This Review describes our current understanding of the use of ERAs in patients with CKD to guide their optimal safe and effective use in clinical practice.
Collapse
Affiliation(s)
- J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Irene L Noronha
- Division of Nephrology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- George Institute for Global Health, Sydney, New South Wales, Australia
| | - Adrian Liew
- George Institute for Global Health, Sydney, New South Wales, Australia
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- George Institute for Global Health, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Yıldırım Uslu E, Gülkesen A, Akgol G, Alkan G, Poyraz AK, İlhan N. Serum Endothelin-1 Level Can Reflect the Degree of Lumbar Degeneration: A Cross-Sectional Study. Cureus 2024; 16:e59966. [PMID: 38854285 PMCID: PMC11162144 DOI: 10.7759/cureus.59966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Endothelin-1 (ET-1) is an agent closely associated with inflammation and has recently been recognized as a significant factor in degenerative processes. This study aimed to investigate the correlation between serum ET-1 level and radiological and clinical manifestations of lumbar disc herniation (LDH) and intervertebral disc degeneration (IDD) pathologies. Methodology The study was conducted with 50 healthy controls and 50 LDH patients. The pain level of the patients was analyzed with the Visual Analog Scale (VAS), and their functionality was analyzed with the Oswestry Disability Index (ODI). The disc degeneration and disc herniation grades were determined using magnetic resonance imaging. Serum ET-1 levels of the participants were measured using the enzyme-linked immunosorbent assay method. Results ET-1 level was significantly higher in the patient group compared to the controls (p < 0.01). A positive correlation was determined between serum ET-1 level and Pfirrmann grade in the patient group (p < 0.01). No correlation was determined between the MacNab grade, VAS, and ODI scores and ET-1 (p = 0.397, p = 0.137, and p = 0.208, respectively). There was no significant difference between the serum ET-1 levels of the patients with or without neurological deficits (p = 0.312). Conclusions The correlation between the serum ET-1 levels and IDD grade suggested that the former could serve as a biomarker to determine the degree of degeneration in the future. However, further research is required to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Emine Yıldırım Uslu
- Physical Medicine and Rehabilitation, Elazığ Fethi Sekin City Hospital, Elazig, TUR
| | - Arif Gülkesen
- Physical Medicine and Rehabilitation, Firat University, Elazig, TUR
| | - Gurkan Akgol
- Physical Medicine and Rehabilitation, Firat University Hospital, Elazig, TUR
| | - Gökhan Alkan
- Physical Medicine and Rehabilitation, Firat University, Elazig, TUR
| | | | | |
Collapse
|
3
|
Rosa Teixeira-Alves L, Guimarães-Nobre CC, Mendonça-Reis E, Miranda-Alves L, Berto-Junior C. Bosentan attenuates sickle cell disease erythrocyte HbS polymerization and impaired deformability induced by endothelin-1. Can J Physiol Pharmacol 2023; 101:642-651. [PMID: 36821840 DOI: 10.1139/cjpp-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The effects of endothelin-1 (ET-1) on erythrocytes from sickle cell disease (SCD) patients have been described, but mechanisms of ET-1 regarding primary erythrocyte functions remain unknown. ET-1 is a vasoconstrictor peptide produced by endothelial cells, and the expression of ET-1 is increased in SCD. The present study used ex vivo experiments with sickle cell erythrocytes, ET-1, and bosentan, a dual antagonist of ETA and ETB receptors. We performed a hemoglobin S (HbS) polymerization assay with three concentrations of ET-1 (1, 20, and 50 pg/mL) and bosentan (100 nmol/L). ET-1 increased HbS polymerization at all concentrations, and this effect was suppressed by bosentan. For the deformability assay, red blood cells (RBCs) were incubated on a Sephacryl column with the same concentrations of ET-1 and bosentan. ET-1 decreased deformability, and this effect was reversed by bosentan. To observe erythrocyte adhesion, ET-1 and bosentan were incubated with RBCs in thrombospondin-coated 96-well plate, which demonstrated that ET-1 decreased adhesion but that bosentan enhanced adhesion. We also assessed erythrocyte apoptosis and observed decreased eryptosis induced by ET-1, and these effects were inhibited bosentan. Thus, these findings demonstrated that ET-1 modulates HbS polymerization, erythrocyte deformability, adhesion to thrombospondin, and eryptosis, and these effects were suppressed or enhanced by bosentan.
Collapse
Affiliation(s)
- Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
| |
Collapse
|
4
|
Chan KW, Smeijer JD, Schechter M, Jongs N, Vart P, Kohan DE, Gansevoort RT, Liew A, Tang SCW, Wanner C, de Zeeuw D, Heerspink HJL. Post hoc analysis of the SONAR trial indicates that the endothelin receptor antagonist atrasentan is associated with less pain in patients with type 2 diabetes and chronic kidney disease. Kidney Int 2023; 104:1219-1226. [PMID: 37657768 DOI: 10.1016/j.kint.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Pain is prevalent among patients with diabetes and chronic kidney disease (CKD). The management of chronic pain in these patients is limited by nephrotoxicity of commonly used drugs including non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. Since previous studies implicated endothelin-1 in pain nociception, our post hoc analysis of the SONAR trial assessed the association between the endothelin receptor antagonist atrasentan and pain and prescription of analgesics. SONAR was a randomized, double-blind, placebo-controlled clinical trial that recruited participants with type 2 diabetes and CKD (estimated glomerular filtration rate 25-75 ml/min/1.73 m2; urinary albumin-to-creatinine ratio 300-5000 mg/g). Participants were randomized to receive atrasentan or placebo (1834 each arm). The main outcome was pain-related adverse events (AEs) reported by investigators. We applied Cox regression to assess the effect of atrasentan compared to placebo on the risk of the first reported pain-related AE and, secondly, first prescription of analgesics. We used the Anderson-Gill method to assess effects on all (first and subsequent) pain-related AEs. During 2.2-year median follow-up, 1183 pain-related AEs occurred. Rates for the first pain-related event were 138.2 and 170.2 per 1000 person-years in the atrasentan and placebo group respectively (hazard ratio 0.82 [95% confidence interval 0.72-0.93]). Atrasentan also reduced the rate of all (first and subsequent) pain-related AEs (rate ratio 0.80 [0.70-0.91]). These findings were similar after accounting for competing risk of death (sub-hazard ratio 0.81 [0.71-0.92]). Patients treated with atrasentan initiated fewer analgesics including NSAIDs and opioids compared to placebo during follow-up (hazard ratio = 0.72 [0.60-0.88]). Thus, atrasentan was associated with reduced pain-related events and pain-related use of analgesics in carefully selected patients with type 2 diabetes and CKD.
Collapse
Affiliation(s)
- Kam Wa Chan
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR
| | - J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Meir Schechter
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Niels Jongs
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Priya Vart
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - Ron T Gansevoort
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Christoph Wanner
- Department of Medicine, Division of Nephrology, Würzburg University Clinic, Würzburg, Germany; Department of Clinical Research and Epidemiology, Renal Research Unit, Comprehensive Heart Failure Center, Würzburg University, Würzburg, Germany
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; The George Institute for Global Health, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Zhu Y, Saint-Pol J, Nguyen V, Rubinstein E, Boucheix C, Greco C. The Tetraspanin Tspan8 Associates with Endothelin Converting Enzyme ECE1 and Regulates Its Activity. Cancers (Basel) 2023; 15:4751. [PMID: 37835445 PMCID: PMC10571763 DOI: 10.3390/cancers15194751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tspan8 is a member of the tetraspanins family of cell surface molecules. The ability of tetraspanins to organize membrane microdomains with other membrane molecules and interfere with their function suggests that they could act as surface integrators of external or internal signals. Among the first identified tetraspanins, Tspan8 promotes tumor progression and metastasis, presumably by stimulating angiogenesis and cell motility. In patients, its expression on digestive tract tumors seems to be associated with a bad prognosis. We showed previously that Tspan8 associates with E-cadherin and EGFR and modulates their effects on cell motility. Using Mass spectrometry and western blot, we found a new partner, the endothelin converting enzyme ECE1, and showed that Tspan8 amplifies its activity of conversion of the endothelin-1 precursor bigET1 to endothelin. This was observed by transduction of the colon carcinoma cell line Isreco1, which does not express Tspan8, and on ileum tissue fragments of tspan8ko mice versus wild type mice. Given these results, Tspan8 appears to be a modulator of the endothelin axis, which could possibly be targeted in case of over-activity of endothelins in biological processes of tissues expressing Tspan8.
Collapse
Affiliation(s)
- Yingying Zhu
- UMR-S 1004, SFR André Lwoff, Inserm, 94800 Villejuif, France; (Y.Z.); (J.S.-P.); (E.R.)
- Université Paris Saclay, 91190 Gif-sur-Yvette, France;
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Julien Saint-Pol
- UMR-S 1004, SFR André Lwoff, Inserm, 94800 Villejuif, France; (Y.Z.); (J.S.-P.); (E.R.)
- Université Artois, UR 2465, Blood-Brain Barrier Laboratory (LBHE), 62300 Lens, France
| | - Viet Nguyen
- Université Paris Saclay, 91190 Gif-sur-Yvette, France;
- Plateforme Spectrométrie de Masse, Laboratoire Biochimie-Hormonologie, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris (APHP), 75610 Paris, France
| | - Eric Rubinstein
- UMR-S 1004, SFR André Lwoff, Inserm, 94800 Villejuif, France; (Y.Z.); (J.S.-P.); (E.R.)
- Centre d’Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, 75013 Paris, France
| | - Claude Boucheix
- Université Paris Saclay, 91190 Gif-sur-Yvette, France;
- UMR-S 1197, SFR André Lwoff, Inserm, 94800 Villejuif, France
| | - Céline Greco
- Department of Pain and Palliative Care, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), 75610 Paris, France
- U1163, IMAGINE Institute, Université de Paris Cité, Inserm, 75014 Paris, France
| |
Collapse
|
6
|
Becker BK, Grady CM, Markl AE, Torres Rodriguez AA, Pollock DM. Elevated renal afferent nerve activity in a rat model of endothelin B receptor deficiency. Am J Physiol Renal Physiol 2023; 325:F235-F247. [PMID: 37348026 PMCID: PMC10396274 DOI: 10.1152/ajprenal.00064.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Renal nerves have been an attractive target for interventions aimed at lowering blood pressure; however, the specific roles of renal afferent (sensory) versus efferent sympathetic nerves in mediating hypertension are poorly characterized. A number of studies have suggested that a sympathoexcitatory signal conveyed by renal afferents elicits increases in blood pressure, whereas other studies identified sympathoinhibitory afferent pathways. These sympathoinhibitory pathways have been identified as protective against salt-sensitive increases in blood pressure through endothelin B (ETB) receptor activation. We hypothesized that ETB-deficient (ETB-def) rats, which are devoid of functional ETB receptors except in adrenergic tissues, lack appropriate sympathoinhibition and have lower renal afferent nerve activity following a high-salt diet compared with transgenic controls. We found that isolated renal pelvises from high salt-fed ETB-def animals lack a response to a physiological stimulus, prostaglandin E2, compared with transgenic controls but respond equally to a noxious stimulus, capsaicin. Surprisingly, we observed elevated renal afferent nerve activity in intact ETB-def rats compared with transgenic controls under both normal- and high-salt diets. ETB-def rats have been previously shown to have heightened global sympathetic tone, and we also observed higher total renal sympathetic nerve activity in ETB-def rats compared with transgenic controls under both normal- and high-salt diets. These data indicate that ETB receptors are integral mediators of the sympathoinhibitory renal afferent reflex (renorenal reflex), and, in a genetic rat model of ETB deficiency, the preponderance of sympathoexcitatory renal afferent nerve activity prevails and may contribute to hypertension.NEW & NOTEWORTHY Here, we found that endothelin B receptors are an important contributor to renal afferent nerve responsiveness to a high-salt diet. Rats lacking endothelin B receptors have increased afferent nerve activity that is not responsive to a high-salt diet.
Collapse
Affiliation(s)
- Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Caroline M Grady
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alexa E Markl
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alfredo A Torres Rodriguez
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Eglin CM, Wright J, Shepherd AI, Massey H, Hollis S, Towse J, Young JS, Maley MJ, Bailey SJ, Wilkinson C, Montgomery H, Tipton MJ. Plasma biomarkers of endothelial function, inflammation and oxidative stress in individuals with non-freezing cold injury. Exp Physiol 2023; 108:448-464. [PMID: 36808666 PMCID: PMC10988512 DOI: 10.1113/ep090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are biomarkers of endothelial function, oxidative stress and inflammation altered by non-freezing cold injury (NFCI)? What is the main finding and its importance? Baseline plasma [interleukin-10] and [syndecan-1] were elevated in individuals with NFCI and cold-exposed control participants. Increased [endothelin-1] following thermal challenges might explain, in part, the increased pain/discomfort experienced with NFCI. Mild to moderate chronic NFCI does not appear to be associated with either oxidative stress or a pro-inflammatory state. Baseline [interleukin-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosis of NFCI. ABSTRACT Plasma biomarkers of inflammation, oxidative stress, endothelial function and damage were examined in 16 individuals with chronic NFCI (NFCI) and matched control participants with (COLD, n = 17) or without (CON, n = 14) previous cold exposure. Venous blood samples were collected at baseline to assess plasma biomarkers of endothelial function (nitrate, nitrite and endothelin-1), inflammation [interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor alpha and E-selectin], oxidative stress [protein carbonyl, 4-hydroxy-2-nonenal (4-HNE), superoxide dismutase and nitrotyrosine) and endothelial damage [von Willebrand factor, syndecan-1 and tissue type plasminogen activator (TTPA)]. Immediately after whole-body heating and separately, foot cooling, blood samples were taken for measurement of plasma [nitrate], [nitrite], [endothelin-1], [IL-6], [4-HNE] and [TTPA]. At baseline, [IL-10] and [syndecan-1] were increased in NFCI (P < 0.001 and P = 0.015, respectively) and COLD (P = 0.033 and P = 0.030, respectively) compared with CON participants. The [4-HNE] was elevated in CON compared with both NFCI (P = 0.002) and COLD (P < 0.001). [Endothelin-1] was elevated in NFCI compared with COLD (P < 0.001) post-heating. The [4-HNE] was lower in NFCI compared with CON post-heating (P = 0.032) and lower than both COLD (P = 0.02) and CON (P = 0.015) post-cooling. No between-group differences were seen for the other biomarkers. Mild to moderate chronic NFCI does not appear to be associated with a pro-inflammatory state or oxidative stress. Baseline [IL-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosing NFCI, but it is likely that a combination of tests will be required.
Collapse
Affiliation(s)
- Clare M. Eglin
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Jennifer Wright
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Anthony I. Shepherd
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Jonathan Towse
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - John S. Young
- National Horizons CentreTeesside UniversityMiddlesbroughUK
| | - Matthew J. Maley
- Environmental Ergonomics Research CentreLoughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- National Centre for Sport and Exercise MedicineSchool of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Chris Wilkinson
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | | | - Michael J. Tipton
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
9
|
Southey BR, Rodriguez-Zas SL. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 2022; 10:biomedicines10040877. [PMID: 35453627 PMCID: PMC9031102 DOI: 10.3390/biomedicines10040877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Migraine is often accompanied by exacerbated sensitivity to stimuli and pain associated with alternative splicing of genes in signaling pathways. Complementary analyses of alternative splicing of neuropeptide prohormone and receptor genes involved in cell–cell communication in the trigeminal ganglia and nucleus accumbens regions of mice presenting nitroglycerin-elicited hypersensitivity and control mice were conducted. De novo sequence assembly detected 540 isoforms from 168 neuropeptide prohormone and receptor genes. A zero-inflated negative binomial model that accommodates for potential excess of zero isoform counts enabled the detection of 27, 202, and 12 differentially expressed isoforms associated with hypersensitivity, regions, and the interaction between hypersensitivity and regions, respectively. Skipped exons and alternative 3′ splice sites were the most frequent splicing events detected in the genes studied. Significant differential splicing associated with hypersensitivity was identified in CALCA and VGF neuropeptide prohormone genes and ADCYAP1R1, CRHR2, and IGF1R neuropeptide receptor genes. The prevalent region effect on differential isoform levels (202 isoforms) and alternative splicing (82 events) were consistent with the distinct splicing known to differentiate central nervous structures. Our findings highlight the changes in alternative splicing in neuropeptide prohormone and receptor genes associated with hypersensitivity to pain and the necessity to target isoform profiles for enhanced understanding and treatment of associated disorders such as migraine.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Correspondence:
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
11
|
Greco C, Basso L, Désormeaux C, Fournel A, Demuynck B, Lafendi L, Chapiro S, Lemoine A, Zhu YY, Knauf C, Cenac N, Boucheix C, Dietrich G. Endothelin-1 Exhibiting Pro-Nociceptive and Pro-Peristaltic Activities Is Increased in Peritoneal Carcinomatosis. FRONTIERS IN PAIN RESEARCH 2022; 2:613187. [PMID: 35295482 PMCID: PMC8915553 DOI: 10.3389/fpain.2021.613187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Peritoneal carcinomatosis often results in alterations in intestinal peristalsis and recurrent abdominal pain. Pain management in these patients is often unsatisfactory. This study aimed to investigate whether endothelin-1 (EDN1) was involved in pain mediation in peritoneal carcinomatosis, and thus whether the EDN1 pathway could be a new therapeutic target for peritoneal carcinomatosis-associated pain. Methods: EDN1 plasma levels and abdominal pain severity were assessed in patients with abdominal tumors, with or without peritoneal carcinomatosis, and in healthy donors. The effects of EDN1 on the visceromotor response to colorectal distension, and on colonic contractions were then examined in mice, and the mechanism of action of EDN1 was then investigated by measuring the impact of EDN1 exposure on calcium mobilization in cultured neurons. Inhibition studies were also performed to determine if the effects of EDN1 exposure could be reversed by EDN1-specific receptor antagonists. Results: A positive correlation between EDN1 plasma levels and abdominal pain was identified in patients with peritoneal carcinomatosis. EDN1 exposure increased visceral sensitivity and the amplitude of colonic contractions in mice and induced calcium mobilization by direct binding to its receptors on sensory neurons. The effects of EDN1 were inhibited by antagonists of the EDN1 receptors. Conclusions: This preliminary study, using data from patients with peritoneal carcinomatosis combined with data from experiments performed in mice, suggests that EDN1 may play a key role mediating pain in peritoneal carcinomatosis. Our findings suggest that antagonists of the EDN1 receptors might be beneficial in the management of pain in patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Céline Greco
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Cléo Désormeaux
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audren Fournel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Benedicte Demuynck
- Department of Oncology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Leila Lafendi
- Department of Medical Biology and Physiology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Sylvie Chapiro
- Department of Palliative Care, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Antoinette Lemoine
- UMR-S1093, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Biochemistry, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Ying-Ying Zhu
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Claude Boucheix
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
12
|
Qin C, Wang Y, Li S, Tang Y, Gao Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents. J Inflamm Res 2022; 15:1209-1226. [PMID: 35228812 PMCID: PMC8882030 DOI: 10.2147/jir.s346855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introductions Interstitial cystitis/bladder pain syndrome (IC/BPS) is a poorly understood chronic disorder characterized by bladder-related pain. Chronic psychological stress plays a key role in the exacerbation and development of IC/BPS via unclear mechanisms. This study aimed to investigate the role of endothelin 1 (ET-1) and its receptors in the development of chronic stress-induced bladder dysfunction. Methods Wistar‐Kyoto rats were exposed to chronic (10 days) water avoidance stress (WAS) or sham stress, with subgroups receiving capsaicin pretreatment to desensitize C-fiber afferents. Thereafter, cystometrograms (CMG) were obtained with visceromotor response (VMR) simultaneously during intravesical saline or ET-1 infusion. CMG recordings were analyzed for the first and the continuous voiding cycles, respectively. Endothelin receptor type A (ETAR) expression was examined in the bladder tissues and L6-S1 dorsal root ganglions (DRGs). Toluidine blue staining was to check the bladder inflammation and double-labeling immunofluorescence (IF) staining was to identify the locations of ETAR, respectively. Results During saline infusion, WAS rats elicited significant decreases in pressure threshold (PT) and in the ratio of VMR threshold/maximum intravesical pressure (IVPmax), and a significant increase in VMR duration and area under the curve (AUC). ET-1 infusion induced similar alternations in WAS rats, but further significantly diminished the pressure to trigger PT and VMR, together with a more forceful and longer VMR. The sole effect of WAS exposure or ET-1 administration on the micturition reflex could be suppressed by capsaicin pretreatment. WAS exposure significantly induced an increased number of total mast cells in the bladder, while capsaicin pretreatment possibly antagonized them. No significant difference in ETAR expression was found between all groups. IF staining indicated the co-localization of ETAR and calcitonin gene-related peptides in both bladder and DRGs. Conclusion The activation of ET-1 receptors could enhance chronic stress-induced bladder hypersensitization and hyperalgesia through capsaicin-sensitive C-fiber afferents. Targeting the endothelin pathway may have therapeutic value for IC/BPS.
Collapse
Affiliation(s)
- Chuying Qin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Sai Li
- Acupuncture and Tuina School, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yuanyuan Tang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Yunliang Gao, Department of Urology, The Second Xiangya Hospital, Central South University, No. 139. Renmin Road, Changsha, 410011, People’s Republic of China, Email
| |
Collapse
|
13
|
Matsuura K, Sakai A, Watanabe Y, Mikahara Y, Sakamoto A, Suzuki H. Endothelin receptor type A is involved in the development of oxaliplatin-induced mechanical allodynia and cold allodynia acting through spinal and peripheral mechanisms in rats. Mol Pain 2021; 17:17448069211058004. [PMID: 34894846 PMCID: PMC8679041 DOI: 10.1177/17448069211058004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic agent, frequently causes severe
neuropathic pain typically encompassing cold allodynia and long-lasting mechanical
allodynia. Endothelin has been shown to modulate nociceptive transmission in a variety of
pain disorders. However, the action of endothelin varies greatly depending on many
variables, including pain causes, receptor types (endothelin type A (ETA) and B
(ETB) receptors) and organs (periphery and spinal cord). Therefore, in this
study, we investigated the role of endothelin in a Sprague–Dawley rat model of
oxaliplatin-induced neuropathic pain. Intraperitoneal administration of bosentan, a dual
ETA/ETB receptor antagonist, effectively blocked the development
or prevented the onset of both cold allodynia and mechanical allodynia. The preventive
effects were exclusively mediated by ETA receptor antagonism. Intrathecal
administration of an ETA receptor antagonist prevented development of
long-lasting mechanical allodynia but not cold allodynia. In marked contrast, an
intraplantar ETA receptor antagonist had a suppressive effect on cold allodynia
but only had a partial and transient effect on mechanical allodynia. In conclusion,
ETA receptor antagonism effectively prevented long-lasting mechanical
allodynia through spinal and peripheral actions, while cold allodynia was prevented
through peripheral actions.
Collapse
Affiliation(s)
- Kae Matsuura
- Department of Anesthesiology, 26367Nippon Medical School, Bunkyo-ku, Japan.,Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Atsushi Sakai
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Yuji Watanabe
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Yasunori Mikahara
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| |
Collapse
|
14
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
15
|
Kuroda Y, Nonaka M, Kamikubo Y, Ogawa H, Murayama T, Kurebayashi N, Sakairi H, Miyano K, Komatsu A, Dodo T, Nakano-Ito K, Yamaguchi K, Sakurai T, Iseki M, Hayashida M, Uezono Y. Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors. Biomed Pharmacother 2021; 141:111800. [PMID: 34175819 DOI: 10.1016/j.biopha.2021.111800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
Collapse
Affiliation(s)
- Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakushun Sakairi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsushi Dodo
- Strategy Planning & Operations, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Kyoko Nakano-Ito
- Global Drug Safety, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, Chiba, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
16
|
Kelemen B, Pinto S, Kim N, Lisztes E, Hanyicska M, Vládar A, Oláh A, Pénzes Z, Shu B, Vriens J, Bíró T, Rohács T, Voets T, Tóth BI. The TRPM3 ion channel mediates nociception but not itch evoked by endogenous pruritogenic mediators. Biochem Pharmacol 2021; 183:114310. [PMID: 33130130 PMCID: PMC8086171 DOI: 10.1016/j.bcp.2020.114310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.
Collapse
Affiliation(s)
- Balázs Kelemen
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research) Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Silvia Pinto
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research) Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nawoo Kim
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Hanyicska
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Vládar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pénzes
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Brian Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Rohács
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Thomas Voets
- Laboratory of Ion Channel Research (VIB-KU Leuven Center for Brain & Disease Research) Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Potentiation of P2X3 receptor mediated currents by endothelin-1 in rat dorsal root ganglion neurons. Neuropharmacology 2020; 181:108356. [PMID: 33069757 DOI: 10.1016/j.neuropharm.2020.108356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
Endothelin-1 (ET-1), an endogenous vasoconstrictor, has been known as a pro-nociceptive agent involved in multitude of pain. ET-1 acts on endothelin receptors on vascular endothelial cells, sensitizes release of ATP, which then acts on P2X3 receptors on nociceptors and results in mechanical hyperalgesia. Both endothelin receptors and P2X3 receptors are present in primary sensory neuron, where it remains unclear whether there is an interaction between them. Herein, we reported that ET-1 potentiated the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. ET-1 concentration-dependently increased α,β-methylene-ATP (α,β-meATP)-evoked inward currents, which were mediated by P2X3 receptors. ET-1 shifted the α,β-meATP concentration-response curve upwards, with an increase of 34.38 ± 4.72% in the maximal current response to α,β-meATP in the presence of ET-1. ET-1 potentiation of α,β-meATP-evoked currents was voltage-independent. ET-1 potentiated P2X3 receptor-mediated currents through endothelin-A receptors (ETAR), but not endothelin-B receptors (ETBR). ET-1 potentiation was supressed by blockade of intracellular G-protein or protein kinase C (PKC) signaling. Moreover, there is a synergistic effect on mechanical allodynia induced by intraplantar injection of ET-1 and α,β-meATP in rats. Pharmacological blockade of P2X3 receptors also alleviated ET-1-induced mechanical allodynia. These results suggested that ET-1 sensitized P2X3 receptors in primary sensory neurons via an ETAR and PKC signaling pathway. Our data provide evidence that cutaneous ET-1 induced mechanical allodynia not only by increasing the release of ATP from vascular endothelial cells, but also by sensitizing P2X3 receptors on nociceptive DRG neurons.
Collapse
|
18
|
Current modalities of sickle cell disease management. BLOOD SCIENCE 2020; 2:109-116. [PMID: 35400022 PMCID: PMC8974986 DOI: 10.1097/bs9.0000000000000056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease (SCD) affects nearly 100,000 people in the United States of America and the sickle gene is present in approximately 8% of black Americans. Among Africans, the prevalence of sickle cell trait (heterozygosity) is as high as 30%. While SCD occurs among varying racial and ethnic groups, it is more commonly prevalent in individuals of African or African-American descent. This inherited blood disorder causes varying symptoms and complications among affected children and adults and early diagnosis and treatment are essential to help reduce mortality rates. Because there is no cure for SCD, management is vital to survival. Hence, there are different approaches in use to aid those living with SCD; thus, this paper provides insight into the current methods that are implemented in the management and maintenance of this disease.
Collapse
|
19
|
Xu F, Liang Y, Ren J, Wang S, Zhan J. Discovery of a novel analogue of FR901533 and the corresponding biosynthetic gene cluster from Streptosporangium roseum No. 79089. Appl Microbiol Biotechnol 2020; 104:7131-7142. [DOI: 10.1007/s00253-020-10765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
|
20
|
Endothelin-1 enhances acid-sensing ion channel currents in rat primary sensory neurons. Acta Pharmacol Sin 2020; 41:1049-1057. [PMID: 32107467 PMCID: PMC7468575 DOI: 10.1038/s41401-019-0348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1−100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration–response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.
Collapse
|
21
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
22
|
Royds J, Conroy MJ, Dunne MR, Cassidy H, Matallanas D, Lysaght J, McCrory C. Examination and characterisation of burst spinal cord stimulation on cerebrospinal fluid cellular and protein constituents in patient responders with chronic neuropathic pain - A Pilot Study. J Neuroimmunol 2020; 344:577249. [PMID: 32361148 DOI: 10.1016/j.jneuroim.2020.577249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Patients with neuropathic pain have altered proteomic and neuropeptide constituents in cerebrospinal fluid (CSF) compared to controls. Tonic spinal cord stimulation (SCS) has demonstrated differential expression of neuropeptides in CSF before and after treatment suggesting potential mechanisms of action. Burst-SCS is an evidence-based paraesthesia free waveform utilised for neuropathic pain with a potentially different mechanistic action to tonic SCS. This study examines the dynamic biological changes of CSF at a cellular and proteome level after Burst-SCS. METHODS Patients with neuropathic pain selected for SCS had CSF sampled prior to implant of SCS and following 8 weeks of continuous Burst-SCS. Baseline and 8-week pain scores with demographics were recorded. T cell frequencies were analysed by flow cytometry, proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS 4 patients (2 females, 2 males) with a mean age of 51 years (+/-SEM 2.74, SD 5.48) achieved a reduction in pain of >50% following 8 weeks of Burst-SCS. Analysis of the CSF proteome indicated a significant alteration in protein expression most related to synapse assembly and immune regulators. There was significantly lower expression of the proteins: growth hormone A1 (PRL), somatostatin (SST), nucleobindin-2 (NUCB2), Calbindin (CALB1), acyl-CoA binding protein (DBI), proSAAS (PCSK1N), endothelin-3 (END3) and cholecystokinin (CCK) after Burst-SCS. The concentrations of secreted chemokines and cytokines and the frequencies of T cells were not significantly changed following Burst-SCS. CONCLUSION This study characterised the alteration in the CSF proteome in response to burst SCS in vivo. Functional analysis indicated that the alterations in the CSF proteome is predominately linked to synapse assembly and immune effectors. Individual protein analysis also suggests potential supraspinal mechanisms.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland.
| | - Melissa J Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
23
|
Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J Clin Med 2020; 9:jcm9030824. [PMID: 32197449 PMCID: PMC7141375 DOI: 10.3390/jcm9030824] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin axis, recognized for its vasoconstrictive action, plays a central role in the pathology of pulmonary arterial hypertension (PAH). Treatment with approved endothelin receptor antagonists (ERAs), such as bosentan, ambrisentan, or macitentan, slow down PAH progression and relieves symptoms. Several findings have indicated that endothelin is further involved in the pathogenesis of certain other diseases, making ERAs potentially beneficial in the treatment of various conditions. In addition to PAH, this review summarizes the use and perspectives of ERAs in cancer, renal disease, fibrotic disorders, systemic scleroderma, vasospasm, and pain management. Bosentan has proven to be effective in systemic sclerosis PAH and in decreasing the development of vasospasm-related digital ulcers. The selective ERA clazosentan has been shown to be effective in preventing cerebral vasospasm and delaying ischemic neurological deficits and new infarcts. Furthermore, in the SONAR (Study Of Diabetic Nephropathy With Atrasentan) trial, the selective ERA atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease. These data suggest atrasentan as a new therapy in the treatment of diabetic nephropathy and possibly other renal diseases. Preclinical studies regarding heart failure, cancer, and fibrotic diseases have demonstrated promising effects, but clinical trials have not yet produced measurable results. Nevertheless, the potential benefits of ERAs may not be fully realized.
Collapse
Affiliation(s)
- Frederik C. Enevoldsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
- Correspondence: ; Tel.: +49-391-6721267
| |
Collapse
|
24
|
Fujii T, Yamasaki R, Kira JI. Novel Neuropathic Pain Mechanisms Associated With Allergic Inflammation. Front Neurol 2019; 10:1337. [PMID: 31920952 PMCID: PMC6928142 DOI: 10.3389/fneur.2019.01337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases are associated with central and peripheral nervous system diseases such as autism spectrum disorders and eosinophilic granulomatosis with polyangiitis, which frequently causes mononeuritis multiplex. Thus, it is possible that patients with an atopic constitution might develop multifocal inflammation in central and peripheral nervous system tissues. In a previous study in Japan, we reported a rare form of myelitis with persistent neuropathic pain (NeP) in patients with allergic disorders. However, the underlying mechanism of allergic inflammation-related NeP remains to be elucidated. First, we analyzed the effect of allergic inflammation on the nociceptive system in the spinal cord. Mice with atopy showed microglial and astroglial activation in the spinal cord and tactile allodynia. In a microarray analysis of isolated microglia from the spinal cord, endothelin receptor type B (EDNRB) was the most upregulated cell surface receptor in mice with atopy. Immunohistochemical analysis demonstrated EDNRB expression was upregulated in microglia and astroglia. The EDNRB antagonist BQ788 abolished glial activation and allodynia. These findings indicated that allergic inflammation induced widespread glial activation through the EDNRB pathway and NeP. Second, we investigated whether autoantibody-mediated pathogenesis underlies allergic inflammation-related NeP. We detected specific autoantibodies to small dorsal root ganglion (DRG) neurons and their nerve terminals in the dorsal horns of NeP patients with allergic disorders. An analysis of IgG subclasses revealed a predominance of IgG2. These autoantibodies were mostly colocalized with isolectin B4- and P2X3-positive unmyelinated C-fiber type small DRG neurons. By contrast, immunostaining for S100β, a myelinated DRG neuron marker, showed no colocalization with patient IgG. Immunoprecipitation and liquid chromatography-tandem mass spectrometry identified plexin D1 as a target autoantigen. Patients with anti-plexin D1 antibodies often present with burning pain and thermal hyperalgesia. Immunotherapies, including plasma exchange, are effective for NeP management. Therefore, anti-plexin D1 antibodies may be pathogenic for immune-mediated NeP, especially under allergic inflammation conditions. Thus, allergic inflammation may induce NeP through glial inflammation in the spinal cord and the anti-plexin D1 antibody-mediated impairment of small DRG neurons.
Collapse
Affiliation(s)
- Takayuki Fujii
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
26
|
Shepherd AI, Costello JT, Bailey SJ, Bishop N, Wadley AJ, Young-Min S, Gilchrist M, Mayes H, White D, Gorczynski P, Saynor ZL, Massey H, Eglin CM. "Beet" the cold: beetroot juice supplementation improves peripheral blood flow, endothelial function, and anti-inflammatory status in individuals with Raynaud's phenomenon. J Appl Physiol (1985) 2019; 127:1478-1490. [PMID: 31343948 DOI: 10.1152/japplphysiol.00292.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Raynaud's phenomenon (RP) is characterized by recurrent transient peripheral vasospasm and lower nitric oxide (NO) bioavailability in the cold. We investigated the effect of nitrate-rich beetroot juice (BJ) supplementation on 1) NO-mediated vasodilation, 2) cutaneous vascular conductance (CVC) and skin temperature (Tsk) following local cooling, and 3) systemic anti-inflammatory status. Following baseline testing, 23 individuals with RP attended four times, in a double-blind, randomized crossover design, following acute and chronic (14 days) BJ and nitrate-depleted beetroot juice (NDBJ) supplementation. Peripheral Tsk and CVC were measured during and after mild hand and foot cooling, and during transdermal delivery of acetylcholine and sodium nitroprusside. Markers of anti-inflammatory status were also measured. Plasma nitrite concentration ([nitrite]) was increased in the BJ conditions (P < 0.001). Compared with the baseline visit, thumb CVC was greater following chronic-BJ (Δ2.0 flux/mmHg, P = 0.02) and chronic-NDBJ (Δ1.45 flux/mmHg, P = 0.01) supplementation; however, no changes in Tsk were observed (P > 0.05). Plasma [interleukin-10] was greater, pan endothelin and systolic and diastolic blood pressure (BP) were reduced, and forearm endothelial function was improved, by both BJ and NDBJ supplementation (P < 0.05). Acute and chronic BJ and NDBJ supplementation improved anti-inflammatory status, endothelial function and blood pressure (BP). CVC following cooling increased post chronic-BJ and chronic-NDBJ supplementation, but no effect on Tsk was observed. The key findings are that beetroot supplementation improves thumb blood flow, improves endothelial function and anti-inflammatory status, and reduces BP in people with Raynaud's.NEW & NOTEWORTHY This is the first study to examine the effect of dietary nitrate supplementation in individuals with Raynaud's phenomenon. The principal novel findings from this study were that both beetroot juice and nitrate-depleted beetroot juice 1) increased blood flow in the thumb following a cold challenge; 2) enhanced endothelium-dependent and -independent vasodilation in the forearm; 3) reduced systolic and diastolic blood pressure, and pan-endothelin concentration; and 4) improved inflammatory status in comparison to baseline.
Collapse
Affiliation(s)
- Anthony I Shepherd
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Joseph T Costello
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Stephen J Bailey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom
| | - Nicolette Bishop
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Alex J Wadley
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Steven Young-Min
- Rheumatology Department, Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| | - Mark Gilchrist
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom
| | - Harry Mayes
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Danny White
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul Gorczynski
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Zoe L Saynor
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Heather Massey
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Clare M Eglin
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
27
|
Abstract
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2 µg/g, intraperitoneally) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
Collapse
|
28
|
Pontes RB, Lisboa MRP, Pereira AF, Lino JA, de Oliveira FFB, de Mesquita AKV, de Freitas Alves BW, Lima-Júnior RCP, Vale ML. Involvement of Endothelin Receptors in Peripheral Sensory Neuropathy Induced by Oxaliplatin in Mice. Neurotox Res 2019; 36:688-699. [PMID: 31228092 DOI: 10.1007/s12640-019-00074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the participation of the endothelin ETA and ETB receptors and the effects of bosentan in oxaliplatin-induced peripheral sensory neuropathy (OIN) in mice. Adult male Swiss mice received 1 mg/kg of oxaliplatin intravenously, twice a week for 5 weeks. Dorsal root ganglia (DRG) and spinal cords were removed for evaluation of the endothelin ETA and ETB receptor expression. Afterwards, selective (BQ-123 and BQ-788; 10 nmol in 30 μL, intraplantarly) and non-selective (bosentan, 100 mg/kg, orally) antagonists were administered in order to evaluate the involvement of the endothelin receptors in OIN. Mechanical and thermal nociception tests were performed once a week for 56 days. Oxaliplatin induced mechanical and thermal hypersensitivity and increased the endothelin ETA receptor expression in both the DRG and spinal cord (P < 0.05). Endothelin ETB receptor expression was increased in the DRG (P < 0.05) but not in the spinal cord. Both endothelin ETA and ETB receptor selective antagonists partially prevented mechanical hyperalgesia in mice with OIN (P < 0.05). Moreover, bosentan prevented mechanical and thermal hypersensitivity in oxaliplatin-treated mice (P < 0.05). In conclusion, both endothelin ETA and ETB receptors seem to be involved in the OIN in mice and they should be considered possible targets for the management of this clinical feature.
Collapse
Affiliation(s)
- Renata Bessa Pontes
- Department of Physical Therapy, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-160, Brazil
| | - Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Juliana Arcanjo Lino
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-140, Brazil
| | - Francisco Fábio Bezerra de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil.
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
29
|
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci 2019; 13:271. [PMID: 31293388 PMCID: PMC6598622 DOI: 10.3389/fncel.2019.00271] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory neurons with cell bodies situated in dorsal root ganglia convey information from external or internal sites of the body such as actual or potential harm, temperature or muscle length to the central nervous system. In recent years, large investigative efforts have worked toward an understanding of different types of DRG neurons at transcriptional, translational, and functional levels. These studies most commonly rely on data obtained from laboratory animals. Human DRG, however, have received far less investigative focus over the last 30 years. Nevertheless, knowledge about human sensory neurons is critical for a translational research approach and future therapeutic development. This review aims to summarize both historical and emerging information about the size and location of human DRG, and highlight advances in the understanding of the neurochemical characteristics of human DRG neurons, in particular nociceptive neurons.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Nicholas Dominguez
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
30
|
Muratspahić E, Freissmuth M, Gruber CW. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol Sci 2019; 40:309-326. [PMID: 30955896 DOI: 10.1016/j.tips.2019.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) represent important drug targets, as they regulate pivotal physiological processes and they have proved to be readily druggable. Natural products have been and continue to be amongst the most valuable sources for drug discovery and development. Here, we surveyed small molecules and (poly-)peptides derived from plants, animals, fungi, and bacteria, which modulate GPCR signaling. Among naturally occurring compounds, peptides from plants, cone-snails, snakes, spiders, scorpions, fungi, and bacteria are of particular interest as lead compounds for the development of GPCR ligands, since they cover a chemical space, which differs from that of synthetic small molecules. Peptides, however, face challenges, some of which can be overcome by studying plant-derived compounds. We argue here that the opportunities outweigh the challenges.
Collapse
Affiliation(s)
- Edin Muratspahić
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
31
|
Kopruszinski CM, dos Reis RC, Rae GA, Chichorro JG. Blockade of peripheral endothelin receptors abolishes heat hyperalgesia and spontaneous nociceptive behavior in a rat model of facial cancer. Arch Oral Biol 2019; 97:231-237. [DOI: 10.1016/j.archoralbio.2018.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
|
32
|
Zheng X, Tai Y, He D, Liu B, Wang C, Shao X, Jordt SE, Liu B. ET AR and protein kinase A pathway mediate ET-1 sensitization of TRPA1 channel: A molecular mechanism of ET-1-induced mechanical hyperalgesia. Mol Pain 2019; 15:1744806919842473. [PMID: 30990108 PMCID: PMC6537062 DOI: 10.1177/1744806919842473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor that has been widely known as a pain mediator involved in various pain states. Evidence indicates that ET-1 sensitizes transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in vivo. But the molecular mechanisms still remain unknown. We aim to explore whether ET-1 sensitizes TRPA1 in primary sensory neurons and the molecular mechanisms. Ca2+ imaging, immunostaining, electrophysiology, animal behavioral assay combined with pharmacological experiments were performed. ET-1 sensitized TRPA1-mediated Ca2+ responses in human embryonic kidney (HEK)293 cells as well as in cultured native mouse dorsal root ganglion (DRG) neurons. ET-1 also sensitized TRPA1 channel currents. ET-1 sensitized TRPA1 activated by endogenous agonist H2O2. ETA receptor (ETAR) colocalized with TRPA1 in DRG neurons. ET-1-induced TRPA1 sensitization in vivo was mediated via ETAR and protein kinase A (PKA) pathway in HEK293 cells and DRG neurons. Pharmacological blocking of ETAR, PKA, and TRPA1 significantly attenuated ET-1-induced mechanical hyperalgesia in mice. Our results suggest that TRPA1 acts as a molecular target for ET-1, and sensitization of TRPA1 through ETAR-PKA pathway contributes to ET-1-induced mechanical hyperalgesia. Pharmacological targeting of TRPA1 and ETAR-PKA pathway may provide effective strategies to alleviate pain conditions associated with ET-1.
Collapse
Affiliation(s)
- Xiaoli Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongwei He
- Department of Immune-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
33
|
New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2019; 11:e2019002. [PMID: 30671208 PMCID: PMC6328043 DOI: 10.4084/mjhid.2019.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023] Open
Abstract
Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity and the multiplicity of pathophysiological targets, development of new therapeutic options is critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug for SCD. New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and (2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-endothelial adhesive events; c) Anti-oxidant agents. This review highlights new therapeutic strategies in SCD and discusses future developments, research implications, and possible innovative clinical trials.
Collapse
|
34
|
Tai LW, Pan Z, Sun L, Li H, Gu P, Wong SSC, Chung SK, Cheung CW. Suppression of Pax2 Attenuates Allodynia and Hyperalgesia through ET-1-ETAR-NFAT5 Signaling in a Rat Model of Neuropathic Pain. Neuroscience 2018; 384:139-151. [PMID: 29847776 DOI: 10.1016/j.neuroscience.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Endothelin-1 (ET-1) and its receptors (ETAR/ETBR) emerge to be a key signaling axis in neuropathic pain processing and are recognized as new therapeutic targets. Yet, little is known on the functional regulation of ET-1 axis during neuropathic pain. Bioinformatics analysis indicated that paired box gene 2 (Pax2) or nuclear factor of activated T-cells 5 (NFAT5), two transcription factors involved in the modulation of neurotransmission, may regulate ET-1. Therefore, we hypothesized that ET-1 axis may be regulated by Pax2 or NFAT5 in the development of neuropathic pain. After partial sciatic nerve ligation (pSNL), rats displayed allodynia and hyperalgesia, which was associated with increased mRNA and protein expressions of spinal Pax2, NFAT5, and mRNA levels of ET-1 and ETAR, but not ETBR. Knockdown of Pax2 or NFAT5 with siRNA, or inhibition of ETAR with BQ-123 attenuated pSNL-induced pain-like behaviors. At molecular level, Pax2 siRNA, but not NFAT5 siRNA, downregulated ET-1 and ETAR, while ETAR inhibitor reduced NFAT5, indicating Pax2 in the upstream of ET-1 axis with NFAT5 in the downstream. Further, suppression of Pax2 (inhibiting ET-1) or impairment of ET-1 signaling (inhibition of ETAR and/or decrease of NFAT5) deactivated mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, supporting the significance of functional regulation of ET-1 axis in neuropathic pain signaling. These findings demonstrate that Pax2 targeting ET-1-ETAR-NFAT5 is a novel regulatory mechanism underlying neuropathic pain.
Collapse
Affiliation(s)
- Lydia Wai Tai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Zhiqiang Pan
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liting Sun
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Stanley Sau Ching Wong
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Sookja K Chung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Iljazi A, Ayata C, Ashina M, Hougaard A. The Role of Endothelin in the Pathophysiology of Migraine-a Systematic Review. Curr Pain Headache Rep 2018; 22:27. [PMID: 29557064 DOI: 10.1007/s11916-018-0682-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Vasoactive peptides play a key role in the attack-initiating cascade of migraine. Recent studies have highlighted a potentially important role for endothelin-1, a potent vasoconstrictor peptide, in migraine pathophysiology. Here, we review the current data on endothelin's involvement in migraine. RECENT FINDINGS We identified 23 articles. Nine studies reported on endothelin-1 plasma concentrations in patients with migraine, eight studies investigated relevant genetic associations, five studies investigated endothelin-1 and spreading depression in animals, and one randomized controlled clinical trial tested the efficacy of an endothelin antagonist in the acute treatment of migraine in patients both with and without aura. Elevated endothelin-1 plasma levels have been reported in the early phase of migraine attacks. Genetic abnormalities related to the endothelin type A receptor have been reported in migraineurs. Endothelin-1 potently induces spreading depression in animals, which may explain the connection between endothelial irritation and migraine aura. Endothelin-1 could be a primary factor in the attack-triggering cascade of migraine attacks with and without aura. Additional studies in humans and animal models are needed to further elucidate the role of endothelin-1 in migraine.
Collapse
Affiliation(s)
- Afrim Iljazi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600, Glostrup, Denmark
| | - Cenk Ayata
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600, Glostrup, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600, Glostrup, Denmark.
| |
Collapse
|
36
|
Nodai T, Hitomi S, Ono K, Masaki C, Harano N, Morii A, Sago-Ito M, Ujihara I, Hibino T, Terawaki K, Omiya Y, Hosokawa R, Inenaga K. Endothelin-1 Elicits TRP-Mediated Pain in an Acid-Induced Oral Ulcer Model. J Dent Res 2018. [PMID: 29518348 DOI: 10.1177/0022034518762381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oral ulcer is the most common oral disease and leads to pain during meals and speaking, reducing the quality of life of patients. Recent evidence using animal models suggests that oral ulcers induce cyclooxygenase-dependent spontaneous pain and cyclooxygenase-independent mechanical allodynia. Endothelin-1 is upregulated in oral mucosal inflammation, although it has not been shown to induce pain in oral ulcers. In the present study, we investigated the involvement of endothelin-1 signaling with oral ulcer-induced pain using our proprietary assay system in conscious rats. Endothelin-1 was significantly upregulated in oral ulcers experimentally induced by topical acetic acid treatment, while endothelin-1 production was suppressed by antibacterial pretreatment. Spontaneous nociceptive behavior in oral ulcer model rats was inhibited by swab applications of BQ-788 (ETB receptor antagonist), ONO-8711 (prostanoid receptor EP1 antagonist), and HC-030031 (TRPA1 antagonist). Prostaglandin E2 production in the ulcers was suppressed by BQ-788. Mechanical allodynia in the model was inhibited not only by BQ-788 and HC-030031 but also by BQ-123 (ETA receptor antagonist), SB-366791 (TRPV1 antagonist), and RN-1734 (TRPV4 antagonist). In naive rats, submucosal injection of endothelin-1 caused mechanical allodynia that was sensitive to HC-030031 and SB-366791 but not to RN-1734. These results suggest that endothelin-1 production following oral bacterial invasion via ulcerative regions elicits TRPA1-mediated spontaneous pain. This pain likely occurs through an indirect route that involves ETB receptor-accelerated prostanoid production. Endothelin-1 elicits directly TRPA1- and TRPV1-mediated mechanical allodynia via both ETA and ETB receptors on nociceptive fibers. The TRPV4-mediated allodynia component seems to be independent of endothelin signaling. These findings highlight the potential of endothelin signaling blockers as effective analgesic approaches for oral ulcer patients.
Collapse
Affiliation(s)
- T Nodai
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan.,2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - S Hitomi
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - K Ono
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - C Masaki
- 2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - N Harano
- 3 Division of Dental Anesthesiology, Kyushu Dental University, Fukuoka, Japan
| | - A Morii
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan.,4 Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - M Sago-Ito
- 4 Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - I Ujihara
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - T Hibino
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - K Terawaki
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Y Omiya
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - R Hosokawa
- 2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - K Inenaga
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
37
|
Blockade of endothelin receptors reduces tumor-induced ongoing pain and evoked hypersensitivity in a rat model of facial carcinoma induced pain. Eur J Pharmacol 2018; 818:132-140. [DOI: 10.1016/j.ejphar.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
38
|
G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Toxins (Basel) 2017; 9:toxins9110372. [PMID: 29144441 PMCID: PMC5705987 DOI: 10.3390/toxins9110372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a complex and debilitating condition associated with a large personal and socioeconomic burden. Current pharmacological approaches to treating chronic pain such as opioids, antidepressants and anticonvulsants exhibit limited efficacy in many patients and are associated with dose-limiting side effects that hinder their clinical use. Therefore, improved strategies for the pharmacological treatment of pathological pain are urgently needed. G-protein coupled receptors (GPCRs) are ubiquitously expressed on the surface of cells and act to transduce extracellular signals and regulate physiological processes. In the context of pain, numerous and diverse families of GPCRs expressed in pain pathways regulate most aspects of physiological and pathological pain and are thus implicated as potential targets for therapy of chronic pain. In the search for novel compounds that produce analgesia via GPCR modulation, animal venoms offer an enormous and virtually untapped source of potent and selective peptide molecules. While many venom peptides target voltage-gated and ligand-gated ion channels to inhibit neuronal excitability and blunt synaptic transmission of pain signals, only a small proportion are known to interact with GPCRs. Of these, only a few have shown analgesic potential in vivo. Here we review the current state of knowledge regarding venom peptides that target GPCRs to produce analgesia, and their development as therapeutic compounds.
Collapse
|
39
|
Allergic Inflammation Leads to Neuropathic Pain via Glial Cell Activation. J Neurosci 2017; 36:11929-11945. [PMID: 27881779 DOI: 10.1523/jneurosci.1981-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Allergic and atopic disorders have increased over the past few decades and have been associated with neuropsychiatric conditions, such as autism spectrum disorder and asthmatic amyotrophy. Myelitis presenting with neuropathic pain can occur in patients with atopic disorder; however, the relationship between allergic inflammation and neuropathic pain, and the underlying mechanism, remains to be established. We studied whether allergic inflammation affects the spinal nociceptive system. We found that mice with asthma, atopic dermatitis, or atopic diathesis had widespread and significantly more activated microglia and astroglia in the spinal cord than those without atopy, and displayed tactile allodynia. Microarray analysis of isolated microglia revealed a dysregulated phenotype showing upregulation of M1 macrophage markers and downregulation of M2 markers in atopic mice. Among the cell surface protein genes, endothelin receptor type B (EDNRB) was most upregulated. Immunohistochemical analysis revealed that EDNRB expression was enhanced in microglia and astroglia, whereas endothelin-1, an EDNRB ligand, was increased in serum, lungs, and epidermis of atopic mice. No EDNRA expression was found in the spinal cord. Expression of FBJ murine osteosarcoma viral oncogene homolog B was significantly higher in the dorsal horn neurons of asthma mice than nonatopic mice. The EDNRB antagonist BQ788 abolished glial and neural activation and allodynia. We found increased serum endothelin-1 in atopic patients with myelitis and neuropathic pain, and activation of spinal microglia and astroglia with EDNRB upregulation in an autopsied case. These results suggest that allergic inflammation induces diffuse glial activation, influencing the nociceptive system via the EDNRB pathway. SIGNIFICANCE STATEMENT The prevalence of allergic disorders has markedly increased over the past few decades. Allergic disorders are associated with neuropsychiatric conditions; however, the relationship between allergic inflammation and CNS complications is unknown. A peculiar myelitis presenting with persistent neuropathic pain has been reported in patients with allergic disorders. We studied how atopy exerts substantial influence on the nociceptive system. We found that mice with allergic disorders had severe allodynia with activated astroglia and microglia, and showed marked upregulation of endothelin-1 (ET-1) receptor type B (EDNRB) in the spinal cord. A selective EDNRB antagonist prevented allodynia and glial activation. Our findings suggest a novel mechanism whereby atopy induces glial activation and neuropathic pain via an ET-1/EDNRB pathway.
Collapse
|
40
|
Feldman-Goriachnik R, Hanani M. The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides 2017; 63:37-42. [PMID: 28342550 DOI: 10.1016/j.npep.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
Abstract
Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca2+]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca2+]in elevation in response to ET-1 was partially due to Ca2+ influx from the extracellular space and partially to Ca2+ release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
41
|
Dias RG, Sampaio SC, Sant'Anna MB, Cunha FQ, Gutiérrez JM, Lomonte B, Cury Y, Picolo G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A 2: activation of endogenous phospholipases contributes to the pronociceptive effect. J Venom Anim Toxins Incl Trop Dis 2017; 23:18. [PMID: 28344594 PMCID: PMC5364601 DOI: 10.1186/s40409-017-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
Collapse
Affiliation(s)
- Renata Gonçalves Dias
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Healthy Sciences Institute, Paulista University (UNIP), São Paulo, SP Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP Brazil.,Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Morena Brazil Sant'Anna
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yara Cury
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Gisele Picolo
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
42
|
Quantitative sensory testing and pain-evoked cytokine reactivity: comparison of patients with sickle cell disease to healthy matched controls. Pain 2017; 157:949-956. [PMID: 26713424 DOI: 10.1097/j.pain.0000000000000473] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder associated with significant morbidity, which includes severe episodic pain, and, often, chronic pain. Compared to healthy individuals, patients with SCD report enhanced sensitivity to thermal detection and pain thresholds and have altered inflammatory profiles, yet no studies to date have examined biomarker reactivity after laboratory-induced pain. We sought to examine this relationship in patients with SCD compared to healthy control participants. We completed quantitative sensory testing in 83 patients with SCD and sequential blood sampling in 27 of them, whom we matched (sex, age, race, body mass index, and education) to 27 healthy controls. Surprisingly, few quantitative sensory testing differences emerged between groups. Heat pain tolerance, pressure pain threshold at the trapezius, thumb, and quadriceps, and thermal temporal summation at 45°C differed between groups in the expected direction, whereas conditioned pain modulation and pain ratings to hot water hand immersion were counterintuitive, possibly because of tailoring the water temperature to a perceptual level; patients with SCD received milder temperatures. In the matched subsample, group differences and group-by-time interactions were observed in biomarkers including tumor necrosis factor alpha, interleukin-1ß, interleukin-4, and neuropeptide Y. These findings highlight the utility of laboratory pain testing methods for understanding individual differences in inflammatory cytokines. Our findings suggest amplified pain-evoked proinflammatory cytokine reactivity among patients with SCD relative to carefully matched controls. Future research is warranted to evaluate the impact of enhanced pain-related cytokine response and whether it is predictive of clinical characteristics and the frequency/severity of pain crises in patients with SCD.
Collapse
|
43
|
Fox BM, Kasztan M. Endothelin receptor antagonists in sickle cell disease: A promising new therapeutic approach. Life Sci 2016; 159:15-19. [PMID: 27049871 PMCID: PMC4992628 DOI: 10.1016/j.lfs.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell disease (SCD) is a genetic hematologic disorder that is characterized by a variety of potentially life threatening acute and chronic complications. Currently, hydroxyurea is the only clinically approved pharmacological therapy for the treatment of SCD, and the continued prevalence of severe disease complications underscores the desperate need for the development of new therapeutic agents. Central features of the sickle cell disease milieu, including hypoxia, oxidative stress, and thrombosis, are established enhancers of endothelin-1 (ET-1) synthesis. This conceptual connection between ET-1 and SCD was confirmed by multiple studies that demonstrated markedly elevated plasma and urinary levels of ET-1 in SCD patients. Direct evidence for the involvement of ET-1 signaling in the development of SCD pathologies has come from studies using endothelin receptor antagonists in SCD mice. This review summarizes recent studies that have implicated ET-1 signaling as a mechanistic contributor to renal, vascular, pulmonary, and nociceptive complications of sickle cell disease and discusses the potential for the use of ET receptor antagonists in the treatment of SCD.
Collapse
Affiliation(s)
- Brandon M Fox
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
45
|
Forner S, Martini A, de Andrade E, Rae G. Neuropathic pain induced by spinal cord injury: Role of endothelin ETA and ETB receptors. Neurosci Lett 2016; 617:14-21. [DOI: 10.1016/j.neulet.2016.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/21/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023]
|
46
|
Tang Y, Peng H, Liao Q, Gan L, Zhang R, Huang L, Ding Z, Yang H, Yan X, Gu Y, Zang X, Huang D, Cao S. Study of breakthrough cancer pain in an animal model induced by endothelin-1. Neurosci Lett 2016; 617:108-15. [PMID: 26828300 DOI: 10.1016/j.neulet.2016.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/03/2015] [Accepted: 01/26/2016] [Indexed: 01/05/2023]
Abstract
Cancer patients with bone metastases often suffer breakthrough pain. However, little progress has been made in the treatment of breakthrough pain and its associated mechanism(s) in the patient with cancer due to lacking of resembling and predictive animal models. We previously have demonstrated that endothelin-1 plays an important role in breakthrough cancer pain. In the present study, we have established an animal model of breakthrough cancer pain induced by endothelin-1. The animal model of breakthrough cancer pain is strictly followed the definition and meets the characteristics of breakthrough pain. The model is reliable, reproducible and easy to be produced. To our knowledge, this is the first report for establishing such an animal model. In addition, we also found that a selective ETA receptor antagonist BQ-123 could reverse endothelin-1 induced breakthrough pain. We further studied the characteristics of pain behaviors such as hind limb use score and voluntary wheel running as well as the electrophysiology of sciatic nerve fibers with the model. The murine model shows high resemblance compared to the breakthrough cancer pain in the patients with cancer clinically. It provides a platform for further study of the pathogenesis of breakthrough cancer pain and targeted intervention.
Collapse
Affiliation(s)
- Yixun Tang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Hao Peng
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Qian Liao
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Li Gan
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Raoxiang Zhang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Lihua Huang
- Medical Experimental Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhigang Ding
- Medical Experimental Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Yang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Xuebin Yan
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Yonghong Gu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaofang Zang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China.
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou, Sichuan Province, China; Visiting Professor, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
47
|
Hung VKL, Tai LW, Luo X, Wang XM, Chung SK, Cheung CW. Targeted Overexpression of Astrocytic Endothelin-1 Attenuates Neuropathic Pain by Upregulating Spinal Excitatory Amino Acid Transporter-2. J Mol Neurosci 2015; 57:90-6. [PMID: 25994587 DOI: 10.1007/s12031-015-0581-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that endogenous endothelin-1 (ET-1) inhibits pathological pain in a transgenic mouse model with astrocyte-specific ET-1 overexpression (GET-1 mice); however, the underlying mechanism is unclear. ET-1 regulates excitatory amino acid transporter-2 (EAAT-2), a predominant subtype of glutamate transporters that plays critical role in pain modulation in spinal astrocytes. We hypothesized that astrocytic ET-1 overexpression alleviates neuropathic pain through modulating EAAT-2. GET-1 or nontransgenic (NTg) mice either received sham operation or sciatic nerve ligation (SNL) with or without ceftriaxone (CEF, an EAAT-2 inducer, for 4 days before termination). In GET-1 mice, mRNA and protein expressions of EAAT-2, but not EAAT-1, were upregulated associated with reduced SNL-induced neuropathic pain. Despite that SNL induced a significant reduction of EAAT-2 mRNA expression in both genotypes of mice, post-SNL EAAT-2 mRNA expression was higher in GET-1 mice than that in NTg mice. EAAT-2 induction by CEF reduced SNL-induced neuropathic pain in both NTg and GET-1 mice. In cultured rat astrocytic cell line, overexpression of ET-1 mRNA expression also elevated EAAT-2 mRNA expression, which was reversed by ET receptor antagonists. In conclusion, overexpressed astrocytic ET-1 suppressed neuropathic pain by upregulating spinal EAAT-2 expression via ET receptors.
Collapse
Affiliation(s)
- Victor K L Hung
- Department of Anaesthesiology, The University of Hong Kong, Rm 424, 4/F, Block K, Queen Mary Hospital, 102, Pokfulam, HKSAR, China
| | | | | | | | | | | |
Collapse
|