1
|
Anwar F, Zhang K, Sun C, Pang M, Zhou W, Li H, He R, Liu X, Ming D. Hydrocephalus: An update on latest progress in pathophysiological and therapeutic research. Biomed Pharmacother 2024; 181:117702. [PMID: 39581146 DOI: 10.1016/j.biopha.2024.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hydrocephalus is a severe and life-threatening disease associated with the imbalance of CSF dynamics and affects millions globally at any age, including infants. One cause of pathology that is wide-ranging is genetic mutations to post-traumatic injury. The most effective current pharmacological treatments provide only symptomatic relief and do not address the underlying pathology. At the same time, surgical procedures such as VP shunts performed in lower-income countries are often poorly tolerated due to insufficient diagnostic resources and suboptimal outcomes partially attributable to inferior materials. These problems are compounded by an overall lack of funding that keeps high-quality medical devices out of reach for all but the most developed countries and even among those states. There is a massive variance in treatment effectiveness. This review indicates the necessity for innovative and low-cost, accessible treatment strategies to close these gaps, focusing on current advances in novel therapies, including Pharmacological, gene therapy, and nano-based technologies, which are currently at different stages of clinical trial phases. This review provides an overview of pathophysiology, current treatments, and promising new therapeutic strategies for hydrocephalus.
Collapse
Affiliation(s)
- Faheem Anwar
- Medical School, Tianjin University, Tianjin 300072, China
| | - Kuo Zhang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Changcheng Sun
- Medical School, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300380, China
| | - Meijun Pang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Wanqi Zhou
- Medical School, Tianjin University, Tianjin 300072, China
| | - Haodong Li
- Medical School, Tianjin University, Tianjin 300072, China
| | - Runnan He
- Medical School, Tianjin University, Tianjin 300072, China
| | - Xiuyun Liu
- Medical School, Tianjin University, Tianjin 300072, China; School of Pharmaceutical Science and Technology, Tianjin University, 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300380, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300072, China.
| | - Dong Ming
- Medical School, Tianjin University, Tianjin 300072, China; School of Pharmaceutical Science and Technology, Tianjin University, 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300380, China.
| |
Collapse
|
2
|
Vargas R, Lizano-Barrantes C, Romero M, Valencia-Clua K, Narváez-Narváez DA, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E, Martinez-Martinez N, Hernández-Munain C, Suñé C, Suñé-Pou M. The piper at the gates of brain: A systematic review of surface modification strategies on lipid nanoparticles to overcome the Blood-Brain-Barrier. Int J Pharm 2024; 665:124686. [PMID: 39265851 DOI: 10.1016/j.ijpharm.2024.124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The Blood-Brain Barrier (BBB) significantly impedes drug delivery to the central nervous system. Nanotechnology, especially surface-functionalized lipid nanoparticles, offers innovative approaches to overcome this barrier. However, choosing an effective functionalization strategy is challenging due to the lack of detailed comparative analysis in current literature. Our systematic review examined various functionalization strategies and their impact on BBB permeability from 2041 identified articles, of which 80 were included for data extraction. Peptides were the most common modification (18) followed by mixed strategies (12) proteins (9), antibodies (7), and other strategies (8). Interestingly, 26 studies showed BBB penetration with unmodified or modified nanoparticles using commonly applied strategies such as PEGylation or surfactant addition. Statistical analysis across 42 studies showed correlation between higher in vivo permeation improvements and nanoparticle type, size, and functionalization category. The highest ratios were found for nanostructured lipid carriers or biomimetic systems, in studies with particle sizes under 150 nm, and in those applying mixed functionalization strategies. The interstudy heterogeneity we observed highlights the importance of adopting standardized evaluation protocols to enhance comparability. Our systematic review aims to provide a comparative insight and identify future research directions in the development of more effective lipid nanoparticle systems for drug delivery to the brain to help improve the treatment of neurological and psychiatric disorders and brain tumours.
Collapse
Affiliation(s)
- Ronny Vargas
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica.
| | - Catalina Lizano-Barrantes
- Department of Pharmaceutical Care and Clinical Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica
| | - Miquel Romero
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kevin Valencia-Clua
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David A Narváez-Narváez
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep Ma Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Encarna García-Montoya
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Noelia Martinez-Martinez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain.
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
3
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Liao J, Zhao X. Recent Research Progress on the Chemical Constituents, Pharmacology, and Pharmacokinetics of Alpinae oxyphyllae Fructus. Molecules 2024; 29:3905. [PMID: 39202984 PMCID: PMC11357166 DOI: 10.3390/molecules29163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alpinae oxyphyllae fructus (AOF), the dried mature fruit of Alpinia oxyphylla Miquel of the Zingiberaceae family, shows many special pharmacological effects. In recent years, there has been an abundance of research results on AOF. In this paper, the new compounds isolated from AOF since 2018 are reviewed, including terpenes, flavonoids, diarylheptanoids, phenolic acid, sterols, alkanes, fats, etc. The isolation methods that were applied include the microwave-assisted method, response surface method, chiral high-performance liquid chromatography-multiple reaction monitoring-mass spectrometry (HPLC-MRM-MS) analytical method, ultra-high-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Orbitrap-HRMS) method, ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, hot water leaching method, ethanol leaching method, and so on. Additionally, the pharmacological effects of AOF found from 2018 to 2024 are also summarized, including neuroprotection, regulation of metabolic disorders, antioxidant activity, antiapoptosis, antiinflammatory activity, antidiabetic activity, antihyperuricemia, antiaging, antidiuresis, immune regulation, anti-tumor activity, renal protection, hepatoprotection, and anti-asthma. This paper provides a reference for further research on AOF.
Collapse
Affiliation(s)
| | - Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China;
| |
Collapse
|
5
|
Boylin K, Aquino GV, Purdon M, Abedi K, Kasendra M, Barrile R. Basic models to advanced systems: harnessing the power of organoids-based microphysiological models of the human brain. Biofabrication 2024; 16:032007. [PMID: 38749420 DOI: 10.1088/1758-5090/ad4c08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Understanding the complexities of the human brain's function in health and disease is a formidable challenge in neuroscience. While traditional models like animals offer valuable insights, they often fall short in accurately mirroring human biology and drug responses. Moreover, recent legislation has underscored the need for more predictive models that more accurately represent human physiology. To address this requirement, human-derived cell cultures have emerged as a crucial alternative for biomedical research. However, traditional static cell culture models lack the dynamic tissue microenvironment that governs human tissue function. Advancedin vitrosystems, such as organoids and microphysiological systems (MPSs), bridge this gap by offering more accurate representations of human biology. Organoids, which are three-dimensional miniaturized organ-like structures derived from stem cells, exhibit physiological responses akin to native tissues, but lack essential tissue-specific components such as functional vascular structures and immune cells. Recent endeavors have focused on incorporating endothelial cells and immune cells into organoids to enhance vascularization, maturation, and disease modeling. MPS, including organ-on-chip technologies, integrate diverse cell types and vascularization under dynamic culture conditions, revolutionizing brain research by bridging the gap betweenin vitroandin vivomodels. In this review, we delve into the evolution of MPS, with a particular focus on highlighting the significance of vascularization in enhancing the viability, functionality, and disease modeling potential of organoids. By examining the interplay of vasculature and neuronal cells within organoids, we can uncover novel therapeutic targets and gain valuable insights into disease mechanisms, offering the promise of significant advancements in neuroscience and improved patient outcomes.
Collapse
Affiliation(s)
- Katherine Boylin
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Grace V Aquino
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Michael Purdon
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kimia Abedi
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Magdalena Kasendra
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
6
|
Chowdhury R, Bhuia MS, Al Hasan MS, Ansari SA, Ansari IA, Gurgel APAD, Coutinho HDM, Islam MT. Anticonvulsant effect of (±) citronellal possibly through the GABAergic and voltage-gated sodium channel receptor interaction pathways: In vivo and in silico studies. Neurochem Int 2024; 175:105704. [PMID: 38395152 DOI: 10.1016/j.neuint.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to investigate the anticonvulsant effects of citronellal (CIT) and possible underlying mechanisms through an isoniazid (INH)-induced seizure (convulsion) via in vivo and in silico studies. For this, convulsions were induced by the oral administration of INH (300 mg/kg) to the mice. The animals were treated orally with different doses of CIT (50, 100, and 200 mg/kg). Vehicle served as a negative control (NC), while diazepam (DZP) (2 mg/kg) and carbamazepine (CAR) (80 mg/kg) were provided (p.o.) as positive controls (PC). A combination therapy of CIT (middle dose) with DZP and CAR was also given to two separate groups of animals to estimate the synergistic or antagonistic effects. Molecular docking and visualization of ligand-receptor interactions are also estimated through different computational tools. The results of the in vivo study showed that CIT dose-dependently significantly (p < 0.05) exhibited a higher onset of seizures while reducing the frequency and duration of seizures in mice compared to the NC group. Besides these, in combination therapy, CIT significantly antagonized the activity of CAR and DZP, leading to a reduction in the onset of seizures and an increase in their frequency and duration compared to treatment with CAR and DZP alone. Additionally, molecular docking revealed that the CIT exhibited a moderate binding affinity (-5.8 kcal/mol) towards the GABAA receptor and a relative binding affinity (-5.3 kcal/mol) towards the voltage-gated sodium channel receptor by forming several bonds. In conclusion, CIT showed moderate anticonvulsant activity in INH-induced convulsion animals, possibly by enhancing GABAA receptor activity and inhibiting the voltage-gated sodium channel receptor.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, 10124, Italy
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato CE, 63105-000, Brazil CE, 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
7
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
8
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
9
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
10
|
Kato R, Zeng W, Siramshetty VB, Williams J, Kabir M, Hagen N, Padilha EC, Wang AQ, Mathé EA, Xu X, Shah P. Development and validation of PAMPA-BBB QSAR model to predict brain penetration potential of novel drug candidates. Front Pharmacol 2023; 14:1291246. [PMID: 38108064 PMCID: PMC10722238 DOI: 10.3389/fphar.2023.1291246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Efficiently circumventing the blood-brain barrier (BBB) poses a major hurdle in the development of drugs that target the central nervous system. Although there are several methods to determine BBB permeability of small molecules, the Parallel Artificial Membrane Permeability Assay (PAMPA) is one of the most common assays in drug discovery due to its robust and high-throughput nature. Drug discovery is a long and costly venture, thus, any advances to streamline this process are beneficial. In this study, ∼2,000 compounds from over 60 NCATS projects were screened in the PAMPA-BBB assay to develop a quantitative structure-activity relationship model to predict BBB permeability of small molecules. After analyzing both state-of-the-art and latest machine learning methods, we found that random forest based on RDKit descriptors as additional features provided the best training balanced accuracy (0.70 ± 0.015) and a message-passing variant of graph convolutional neural network that uses RDKit descriptors provided the highest balanced accuracy (0.72) on a prospective validation set. Finally, we correlated in vitro PAMPA-BBB data with in vivo brain permeation data in rodents to observe a categorical correlation of 77%, suggesting that models developed using data from PAMPA-BBB can forecast in vivo brain permeability. Given that majority of prior research has relied on in vitro or in vivo data for assessing BBB permeability, our model, developed using the largest PAMPA-BBB dataset to date, offers an orthogonal means to estimate BBB permeability of small molecules. We deposited a subset of our data into PubChem bioassay database (AID: 1845228) and deployed the best performing model on the NCATS Open Data ADME portal (https://opendata.ncats.nih.gov/adme/). These initiatives were undertaken with the aim of providing valuable resources for the drug discovery community.
Collapse
Affiliation(s)
- Rintaro Kato
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Wenyu Zeng
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Vishal B. Siramshetty
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Jordan Williams
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Natalie Hagen
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Elias C. Padilha
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Amy Q. Wang
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Ewy A. Mathé
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| |
Collapse
|
11
|
Yamauchi H, Hitomi T, Takata A. Evaluation of arsenic metabolism and tight junction injury after exposure to arsenite and monomethylarsonous acid using a rat in vitro blood-Brain barrier model. PLoS One 2023; 18:e0295154. [PMID: 38032905 PMCID: PMC10688625 DOI: 10.1371/journal.pone.0295154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental verification of impairment to cognitive abilities and cognitive dysfunction resulting from inorganic arsenic (iAs) exposure in children and adults is challenging. This study aimed to elucidate the effects of arsenite (iAsIII; 1, 10 and 20 μM) or monomethylarsonous acid (MMAIII; 0.1, 1 and 2 μM) exposure on arsenic metabolism and tight junction (TJ) function in the blood-brain barrier (BBB) using a rat in vitro-BBB model. The results showed that a small percentage (~15%) of iAsIII was oxidized or methylated within the BBB, suggesting the persistence of toxicity as iAsIII. Approximately 65% of MMAIII was converted to low-toxicity monomethylarsonic acid and dimethylarsenic acid via oxidation and methylation. Therefore, it is estimated that MMAIII causes TJ injury to the BBB at approximately 35% of the unconverted level. TJ injury of BBB after iAsIII or MMAIII exposure could be significantly assessed from decreased expression of claudin-5 and decreased transepithelial electrical resistance values. TJ injury in BBB was found to be significantly affected by MMAIII than iAsIII. Relatedly, the penetration rate in the BBB by 24 h of exposure was higher for MMAIII (53.1% ± 2.72%) than for iAsIII (43.3% ± 0.71%) (p < 0.01). Exposure to iAsIII or MMAIII induced an antioxidant stress response, with concentration-dependent increases in the expression of nuclear factor-erythroid 2-related factor 2 in astrocytes and heme oxygenase-1 in a group of vascular endothelial cells and pericytes, respectively. This study found that TJ injury at the BBB is closely related to the chemical form and species of arsenic; we believe that elucidation of methylation in the brain is essential to verify the impairment of cognitive abilities and cognitive dysfunction caused by iAs exposure.
Collapse
Affiliation(s)
- Hiroshi Yamauchi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ayako Takata
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
12
|
Shen W, You T, Xu W, Xie Y, Wang Y, Cui M. Rapid and Widespread Distribution of Intranasal Small Extracellular Vesicles Derived from Mesenchymal Stem Cells throughout the Brain Potentially via the Perivascular Pathway. Pharmaceutics 2023; 15:2578. [PMID: 38004556 PMCID: PMC10675165 DOI: 10.3390/pharmaceutics15112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Intranasal administration is a promising strategy to enhance the delivery of the sEVsomes-based drug delivery system to the central nervous system (CNS). This study aimed to explore central distributive characteristics of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) and underlying pathways. Here, we observed that intranasal MSC-sEVs were rapidly distributed to various brain regions, especially in the subcortex distant from the olfactory bulb, and were absorbed by multiple cells residing in these regions. We captured earlier transportation of intranasal MSC-sEVs into the perivascular space and found an increase in cerebrospinal fluid influx after intranasal administration, particularly in subcortical structures of anterior brain regions where intranasal sEVs were distributed more significantly. These results suggest that the perivascular pathway may underlie the rapid and widespread central delivery kinetics of intranasal MSC-sEVs and support the potential of the intranasal route to deliver MSC-sEVs to the brain for CNS therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China; (W.S.); (T.Y.); (W.X.); (Y.X.); (Y.W.)
| |
Collapse
|
13
|
Jorgensen C, Troendle EP, Ulmschneider JP, Searson PC, Ulmschneider MB. A least-squares-fitting procedure for an efficient preclinical ranking of passive transport across the blood-brain barrier endothelium. J Comput Aided Mol Des 2023; 37:537-549. [PMID: 37573260 PMCID: PMC10505096 DOI: 10.1007/s10822-023-00525-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
The treatment of various disorders of the central nervous system (CNS) is often impeded by the limited brain exposure of drugs, which is regulated by the human blood-brain barrier (BBB). The screening of lead compounds for CNS penetration is challenging due to the biochemical complexity of the BBB, while experimental determination of permeability is not feasible for all types of compounds. Here we present a novel method for rapid preclinical screening of libraries of compounds by utilizing advancements in computing hardware, with its foundation in transition-based counting of the flux. This method has been experimentally validated for in vitro permeabilities and provides atomic-level insights into transport mechanisms. Our approach only requires a single high-temperature simulation to rank a compound relative to a library, with a typical simulation time converging within 24 to 72 h. The method offers unbiased thermodynamic and kinetic information to interpret the passive transport of small-molecule drugs across the BBB.
Collapse
Affiliation(s)
- Christian Jorgensen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| | | | | | - Peter C Searson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Kulkarni M, Patel K, Patel A, Patel S, Desai J, Patel M, Shah U, Patel A, Solanki N. Nanomaterials as drug delivery agents for overcoming the blood-brain barrier: A comprehensive review. ADMET AND DMPK 2023; 12:63-105. [PMID: 38560713 PMCID: PMC10974816 DOI: 10.5599/admet.2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Background and Purpose The blood-brain barrier (BBB), a critical interface of specialized endothelial cells, plays a pivotal role in regulating molecular and ion transport between the central nervous system (CNS) and systemic circulation. Experimental Approach This review aims to delve into the intricate architecture and functions of the BBB while addressing challenges associated with delivering therapeutics to the brain. Historical milestones and contemporary insights underscore the BBB's significance in protecting the CNS. Key Results Innovative approaches for enhanced drug transport include intranasal delivery exploiting olfactory and trigeminal pathways, as well as techniques like temporary BBB opening through chemicals, receptors, or focused ultrasound. These avenues hold the potential to reshape conventional drug delivery paradigms and address the limitations posed by the BBB's selectivity. Conclusion This review underscores the vital role of the BBB in maintaining CNS health and emphasizes the importance of effective drug delivery through this barrier. Nanoparticles emerge as promising candidates to overcome BBB limitations and potentially revolutionize the treatment of CNS disorders. As research progresses, the application of nanomaterials shows immense potential for advancing neurological therapeutics, albeit with careful consideration of safety aspects.
Collapse
Affiliation(s)
- Mangesh Kulkarni
- Department of Pharmaceutical Technology; L J Institute of Pharmacy; L J University; Opp. Kataria Motors; Sarkhej-Gandhinagar Highway-382210, India
| | - Krishi Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Ayush Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Swayamprakash Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Jagruti Desai
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Mehul Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Umang Shah
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Ashish Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Nilay Solanki
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| |
Collapse
|
15
|
Sharlow ER, Llaneza DC, Tewari BP, Mingledorff GA, Mendelson AJ, Sontheimer H, Bloom GS, Lazo JS. Pharmacological profiling identifies divergent chemosensitivities of differentiating and maturing iPSC-derived human cortical neuron populations. FEBS J 2023; 290:4950-4965. [PMID: 37428551 PMCID: PMC10592385 DOI: 10.1111/febs.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Neuronal differentiation and maturation are extended developmental processes. To determine whether neurons at different developmental stages have divergent chemosensitivities, we screened differentiating and maturing neuronal populations using a small compound library comprising FDA-approved and investigational drugs. Using a neurotoxicity assay format, both respective neuronal population-based screening campaigns performed robustly (Z-factors = 0.7-0.8), although the hit rate for the differentiating neurons (2.8%) was slightly higher than for maturing neurons (1.9%). While the majority of hits were toxic to both neuronal populations, these hits predominantly represented promiscuous drugs. Other drugs were selectively neurotoxic, with receptor tyrosine kinase inhibitors disproportionally represented after confirmation. Ponatinib and amuvatinib were neuroinhibitory for differentiating and maturing neurons, respectively. Chemoinformatic analyses confirmed differences in potential drug targets that may be differentially expressed during neuronal development. Subsequent studies demonstrated neuronal expression of AXL, an amuvatinib target, in both neuronal populations. However, functional AXL activity was confirmed only in the maturing neuronal population as determined by AXL phosphorylation in response to GAS6, the cognate ligand of AXL, and concurrent STAT3Y705 phosphorylation. Differentiating neurons were unresponsive to the effects of GAS6 suggesting that the AXL-STAT3 signaling axis was nonfunctional. Amuvatinib treatment of maturing neuronal cultures significantly reduced pAXL levels. These studies indicate that neuronal developmental states may exhibit unique chemosensitivities and that drugs may have different neuro-inhibitory effects depending upon the developmental stage of the neuronal population.
Collapse
Affiliation(s)
| | - Danielle C. Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| | - Bhanu P. Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | | | - Anna J. Mendelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - George S. Bloom
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
- Department of Biology, University of Virginia, Charlottesville, VA 22904
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
16
|
Shen H, Song H, Wang S, Su D, Sun Q. NEAT1 enhances MPP + -induced pyroptosis in a cell model of Parkinson's disease via targeting miR-5047/YAF2 signaling. Immun Inflamm Dis 2023; 11:e817. [PMID: 37382256 PMCID: PMC10288836 DOI: 10.1002/iid3.817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE Parkinson's disease (PD) is the second most frequent neurodegenerative disease. The aim of our study is to explore the role and the regulatory mechanism of long noncoding RNA (lncRNA) NEAT1 in MPP+ -induced pyroptosis in a cell model of PD. MATERIALS AND METHODS MPP+ -treated SH-SY5Y cells were used as an in vitro model of dopaminergic neurons for PD. Expression levels of miR-5047 and YAF2 mRNA were determined through qRT-PCR. TUNEL staining was carried out to analyze neuronal apoptosis. Luciferase activity assay was accomplished to analyze the combination of miR-5047 with NEAT1 or YAF2 3'-UTR region. Besides, concentrations of IL-1β and IL-18 in supernatant samples were analyzed by using ELISA assay. Expression level of proteins were examined through Western blot. RESULTS NEAT1 and YAF2 expression were increased, while miR-5047 expression was declined in the SH-SY5Y cells treated with MPP+ . NEAT1 was a positively regulator to SH-SY5Y cells pyroptosis induced by MPP+ . In addition, YAF2 was a downstream target of miR-5047. NEAT1 promoted YAF2 expression via inhibiting miR-5047. Importantly, the promotion of NEAT1 to SH-SY5Y cells pyroptosis induced by MPP+ was rescued by miR-5047 mimic transfection or YAF2 downregulation. CONCLUSION In conclusion, NEAT1 was increased in MPP+ -induced SH-SY5Y cells, and it promoted MPP+ -induced pyroptosis through facilitating YAF2 expression by sponging miR-5047.
Collapse
Affiliation(s)
- Hong Shen
- Department of EncephalopathySecond People's HospitalSuzhou CityJiangsu ProvinceChina
| | - Hui Song
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Songlin Wang
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Daojing Su
- Department of Orthopaedic Rehabilitation, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Qiang Sun
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| |
Collapse
|
17
|
Sánchez-Dengra B, García-Montoya E, González-Álvarez I, Bermejo M, González-Álvarez M. Establishment and Validation of a New Co-Culture for the Evaluation of the Permeability through the Blood-Brain Barrier in Patients with Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15051431. [PMID: 37242673 DOI: 10.3390/pharmaceutics15051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Currently, the mechanisms involved in drug access to the central nervous system (CNS) are not completely elucidated, and research efforts to understand the behaviour of the therapeutic agents to access the blood-brain barrier continue with the utmost importance. The aim of this work was the creation and validation of a new in vitro model capable of predicting the in vivo permeability across the blood-brain barrier in the presence of glioblastoma. The selected in vitro method was a cell co-culture model of epithelial cell lines (MDCK and MDCK-MDR1) with a glioblastoma cell line (U87-MG). Several drugs were tested (letrozole, gemcitabine, methotrexate and ganciclovir). Comparison of the proposed in vitro model, MDCK and MDCK-MDR1 co-cultured with U87-MG, and in vivo studies showed a great predictability for each cell line, with R2 values of 0.8917 and 0.8296, respectively. Therefore, both cells lines (MDCK and MDCK-MDR1) are valid for predicting the access of drugs to the CNS in the presence of glioblastoma.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Elena García-Montoya
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| |
Collapse
|
18
|
Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm 2023; 636:122759. [PMID: 36801479 DOI: 10.1016/j.ijpharm.2023.122759] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain.
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Marta González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| |
Collapse
|
19
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
20
|
Loza MI, Hmeljak J, Bountra C, Audia JE, Chowdhury S, Weiman S, Merchant K, Blanco MJ. Collaboration and knowledge integration for successful brain therapeutics - lessons learned from the pandemic. Dis Model Mech 2022; 15:286134. [PMID: 36541917 PMCID: PMC9844134 DOI: 10.1242/dmm.049755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brain diseases are a major cause of death and disability worldwide and contribute significantly to years of potential life lost. Although there have been considerable advances in biological mechanisms associated with brain disorders as well as drug discovery paradigms in recent years, these have not been sufficiently translated into effective treatments. This Special Article expands on Keystone Symposia's pre- and post-pandemic panel discussions on translational neuroscience research. In the article, we discuss how lessons learned from the COVID-19 pandemic can catalyze critical progress in translational research, with efficient collaboration bridging the gap between basic discovery and clinical application. To achieve this, we must place patients at the center of the research paradigm. Furthermore, we need commitment from all collaborators to jointly mitigate the risk associated with the research process. This will require support from investors, the public sector and pharmaceutical companies to translate disease mechanisms into world-class drugs. We also discuss the role of scientific publishing in supporting these models of open innovation. Open science journals can now function as hubs to accelerate progress from discovery to treatments, in neuroscience in particular, making this process less tortuous by bringing scientists together and enabling them to exchange data, tools and knowledge effectively. As stakeholders from a broad range of scientific professions, we feel an urgency to advance brain disease therapies and encourage readers to work together in tackling this challenge.
Collapse
Affiliation(s)
- Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Pharmacology Department, School of Pharmacy, University of Santiago de Compostela, Health Research Institute (IDIS), Kærtor Foundation, 15706 Santiago de Compostela, Spain,Authors for correspondence (; ; )
| | - Julija Hmeljak
- Disease Models & Mechanisms, The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Chas Bountra
- Dorothy Crowfoot Hodgkin Building, Dorothy Hodgkin Road, University of Oxford, Oxford OX1 3QU, UK
| | - James E. Audia
- Flare Therapeutics, 215 1st Street, Cambridge, MA, 02142, USA
| | - Sohini Chowdhury
- The Michael J. Fox Foundation for Parkinson's Research, 111 West 33 Street, New York, NY 10120, USA
| | - Shannon Weiman
- Keystone Symposia, 160 U.S. Highway 6, Suite 201, PO Box 1630, Silverthorne, CO 80498, USA
| | - Kalpana Merchant
- Northwestern University, 303 E Chicago Ave., Chicago, IL 60611, USA,Authors for correspondence (; ; )
| | - Maria-Jesus Blanco
- Atavistik Bio, 38 Sidney Street, Cambridge MA 02139, USA,Authors for correspondence (; ; )
| |
Collapse
|
21
|
UPLC Technique in Pharmacy—An Important Tool of the Modern Analyst. Processes (Basel) 2022. [DOI: 10.3390/pr10122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In recent years, ultra-efficient liquid chromatography (UPLC) has gained particular popularity due to the possibility of faster separation of small molecules. This technique, used to separate the ingredients present in multi-component mixtures, has found application in many fields, such as chemistry, pharmacy, food, and biochemistry. It is an important tool in both research and production. UPLC created new possibilities for analytical separation without reducing the quality of the obtained results. This technique is therefore a milestone in liquid chromatography. Thanks to the increased resolution, new analytical procedures, in many cases, based on existing methods, are being developed, eliminating the need for re-analysis. Researchers are trying to modify and transfer the analytical conditions from the commonly used HPLC method to UPLC. This topic may be of strategic importance in the analysis of medicinal substances. The information contained in this manuscript indicates the importance of the UPLC technique in drug analysis. The information gathered highlights the importance of selecting the appropriate drug control tools. We focused on drugs commonly used in medicine that belong to various pharmacological groups. Rational prescribing based on clinical pharmacology is essential if the right drug is to be administered to the right patient at the right time. The presented data is to assist the analyst in the field of broadly understood quality control, which is very important, especially for human health and treatment. This manuscript shows that the UPLC technique is now an increasingly used tool for assessing the quality of drugs and determining the identity and content of active substances. It also allows the monitoring of active substances and finished products during their processing and storage.
Collapse
|
22
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
23
|
A Study on the Application of Extended Care Based on the Biopsychosocial Medicine Model in People with Abnormal Tumor Markers on Physical Examination. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7547001. [PMID: 36043148 PMCID: PMC9377962 DOI: 10.1155/2022/7547001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to explore the value of extended care based on a biopsychosocial medicine model in patients with abnormal tumor markers on physical examination. One hundred and fifty-two cases with abnormal primary screening tumor markers who were examined in our medical examination center between January 2020 and January 2022 were selected as the subjects of this study and divided into intervention and control groups according to the random number table method, with 76 cases in each group. The control group was given the usual extended care intervention and the intervention group was given the extended care intervention based on the biopsychosocial medicine model. The compliance rates of regular follow-up, reasonable diet, appropriate exercise, and regular rest were compared between the two groups. After the intervention, the disease-related knowledge score in the intervention group was higher than that in the control group (
). The compliance rates of regular return visits, reasonable diet, appropriate exercise, and regular routines in the intervention group were higher than those in the control group (
). After the intervention, the scores of psychological states such as anxiety, depression, and post-traumatic growth in the intervention group were better than those in the control group (
). After the intervention, the total scores of objective support, subjective support, support utilization, and social support in the intervention group were higher than those in the control group (
). After the intervention, the intervention group had higher positive coping scores and lower negative coping scores than the control group (
). Continuing care based on the biopsychosocial model of medicine is effective in people with abnormal tumor markers on medical screening. It can improve the knowledge about the disease, increase the compliance rate, improve negative emotions, psychological status, and social support, and promote a more positive way of responding.
Collapse
|
24
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
25
|
Bung N, Krishnan SR, Roy A. An In Silico Explainable Multiparameter Optimization Approach for De Novo Drug Design against Proteins from the Central Nervous System. J Chem Inf Model 2022; 62:2685-2695. [PMID: 35581002 DOI: 10.1021/acs.jcim.2c00462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of drug design and development is to produce a drug that can inhibit the target protein and possess a balanced physicochemical and toxicity profile. Traditionally, this is a multistep process where different parameters such as activity and physicochemical and pharmacokinetic properties are optimized sequentially, which often leads to high attrition rate during later stages of drug design and development. We have developed a deep learning-based de novo drug design method that can design novel small molecules by optimizing target specificity as well as multiple parameters (including late-stage parameters) in a single step. All possible combinations of parameters were optimized to understand the effect of each parameter over the other parameters. An explainable predictive model was used to identify the molecular fragments responsible for the property being optimized. The proposed method was applied against the human 5-hydroxy tryptamine receptor 1B (5-HT1B), a protein from the central nervous system (CNS). Various physicochemical properties specific to CNS drugs were considered along with the target specificity and blood-brain barrier permeability (BBBP), which act as an additional challenge for CNS drug delivery. The contribution of each parameter toward molecule design was identified by analyzing the properties of generated small molecules from optimization of all possible parameter combinations. The final optimized generative model was able to design similar inhibitors compared to known inhibitors of 5-HT1B. In addition, the functional groups of the generated small molecules that guide the BBBP predictive model were identified through feature attribution techniques.
Collapse
Affiliation(s)
- Navneet Bung
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad 500081, India
| | | | - Arijit Roy
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad 500081, India
| |
Collapse
|
26
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
27
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
28
|
Ali F, Fang HL, Shah FA, Muhammad SA, Khan A, Li S. Reprofiling analysis of FDA approved drugs with upregulated differential expression genes found in hypertension. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Imami AS, McCullumsmith RE, O’Donovan SM. Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example. Transl Psychiatry 2021; 11:591. [PMID: 34785660 PMCID: PMC8594646 DOI: 10.1038/s41398-021-01724-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Drug repurposing is an invaluable strategy to identify new uses for existing drug therapies that overcome many of the time and financial costs associated with novel drug development. The COVID-19 pandemic has driven an unprecedented surge in the development and use of bioinformatic tools to identify candidate repurposable drugs. Using COVID-19 as a case study, we discuss examples of machine-learning and signature-based approaches that have been adapted to rapidly identify candidate drugs. The Library of Integrated Network-based Signatures (LINCS) and Connectivity Map (CMap) are commonly used repositories and have the advantage of being amenable to use by scientists with limited bioinformatic training. Next, we discuss how these recent advances in bioinformatic drug repurposing approaches might be adapted to identify repurposable drugs for CNS disorders. As the development of novel therapies that successfully target the cause of neuropsychiatric and neurological disorders has stalled, there is a pressing need for innovative strategies to treat these complex brain disorders. Bioinformatic approaches to identify repurposable drugs provide an exciting avenue of research that offer promise for improved treatments for CNS disorders.
Collapse
Affiliation(s)
- Ali S. Imami
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA ,grid.422550.40000 0001 2353 4951Neurosciences Institute, Promedica, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| |
Collapse
|
30
|
Watanabe D, Nakagawa S, Morofuji Y, Tóth AE, Vastag M, Aruga J, Niwa M, Deli MA. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics 2021; 13:pharmaceutics13091484. [PMID: 34575559 PMCID: PMC8470770 DOI: 10.3390/pharmaceutics13091484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023] Open
Abstract
Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (D.W.); (J.A.)
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki 852-8135, Japan;
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan;
| | - Andrea E. Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Monika Vastag
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary;
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (D.W.); (J.A.)
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki 852-8135, Japan;
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Correspondence:
| |
Collapse
|
31
|
Increased In Vitro Intercellular Barrier Function of Lung Epithelial Cells Using Adipose-Derived Mesenchymal Stem/Stromal Cells. Pharmaceutics 2021; 13:pharmaceutics13081264. [PMID: 34452225 PMCID: PMC8401152 DOI: 10.3390/pharmaceutics13081264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
With the emergence of coronavirus disease-2019, researchers have gained interest in the therapeutic efficacy of mesenchymal stem/stromal cells (MSCs) in acute respiratory distress syndrome; however, the mechanisms of the therapeutic effects of MSCs are unclear. We have previously reported that adipose-derived MSCs (AD-MSCs) strengthen the barrier function of the pulmonary vessels in scaffold-based bioengineered rat lungs. In this study, we evaluated whether AD-MSCs could enhance the intercellular barrier function of lung epithelial cells in vitro using a transwell coculture system. Transepithelial electrical resistance (TEER) measurements revealed that the peak TEER value was significantly higher in the AD-MSC coculture group than in the AD-MSC non-coculture group. Similarly, the permeability coefficient was significantly decreased in the AD-MSC coculture group compared to that in the AD-MSC non-coculture group. Immunostaining of insert membranes showed that zonula occuldens-1 expression was significantly high at cell junctions in the AD-MSC coculture group. Moreover, cell junction-related gene profiling showed that the expression of some claudin genes, including claudin-4, was upregulated in the AD-MSC coculture group. Taken together, these results showed that AD-MSCs enhanced the barrier function between lung epithelial cells, suggesting that both direct adhesion and indirect paracrine effects strengthened the barrier function of lung alveolar epithelium in vitro.
Collapse
|
32
|
Gogou M, Cross JH. Fenfluramine as antiseizure medication for epilepsy. Dev Med Child Neurol 2021; 63:899-907. [PMID: 33565102 DOI: 10.1111/dmcn.14822] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Fenfluramine hydrochloride has classically been described as acting pharmacologically through a serotonergic mechanism. Therefore, it was initially used as an anorectic drug, given that impaired serotonin homeostasis may be associated with increased food intake. Although positive results were documented, cardiovascular concerns resulted in its temporary withdrawal. Nevertheless, a novel role in patients with epilepsy was later suggested by isolated clinical observations. The wide application of genetic testing allowed the classification (predominantly as Dravet syndrome) of patients in whom benefit was seen, while with the development of zebrafish models, its antiepileptic properties were confirmed at a molecular level. Data from randomized clinical trials have shown a beneficial effect of fenfluramine, as an adjunct therapy, on seizure control for children with Dravet syndrome, though there is still uncertainty about the impact on neurodevelopment in these patients. No signs of heart valve disease have been documented to date. Long-term and appropriately designed clinical studies will verify whether fenfluramine is a therapeutic agent of high importance, living up to the promise shown so far. What this paper adds Fenfluramine is a very promising repurposed therapy specifically for seizures in Dravet syndrome. The long-term effect of fenfluramine on neurodevelopmental prognosis requires further investigation.
Collapse
Affiliation(s)
- Maria Gogou
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK.,Developmental Neurosciences, University College London NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
33
|
Yoshimura S, Nakagawa S, Takahashi T, Tanaka K, Tsujino A. FTY720 Exacerbates Blood-Brain Barrier Dysfunction Induced by IgG Derived from Patients with NMO and MOG Disease. Neurotox Res 2021; 39:1300-1309. [PMID: 33999356 DOI: 10.1007/s12640-021-00373-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein (MOG) antibody-related disease (MOG disease) are inflammatory demyelinating diseases of the central nervous system (CNS). The disruption of the blood-brain barrier (BBB) is considered a key step in the pathogenesis of NMO and MOG disease. Although a previous report indicated that circulating immunoglobulin G (IgG) from NMO patients disrupts the BBB, the effect of IgG from patients with MOG disease has not been elucidated. In addition, it has been reported that some disease-modifying drugs for multiple sclerosis are harmful to NMO by an unknown mechanism. This study aimed to examine the effects of IgG from patients with NMO or MOG disease on BBB integrity. We also examined the effects of disease-modifying drugs (fingolimod [FTY720] and dimethyl fumarate [DMF]) on IgG-treated brain capillary endothelial cells. We used in vitro BBB models constructed with rat brain capillary endothelial cells (RBECs) to examine the effects on BBB function. The integrity of the RBECs was assessed by measuring transendothelial resistance (TEER) and cell viability. NMO or MOG-IgG treatment decreased TEER and cell viability in the endothelial monolayer model. Although FTY720 and DMF did not affect barrier function or cell viability under normal conditions, disease IgG-induced barrier dysfunctions were worsened by the presence of FTY720. These data indicate that circulating IgG in patients with NMO or MOG disease worsens BBB function. Furthermore, in patients with NMO or MOG disease treated with FTY720, changes in the integrity of the BBB were found to exacerbate the disease.
Collapse
Affiliation(s)
- Shunsuke Yoshimura
- Department of Neurology and Strokology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-0872, Japan.,Department of Neurology, National Hospital Organization Yonezawa Hospital, 992-1202, Misawa, Yonezawa, Yamagata, 26100-1, Japan
| | - Keiko Tanaka
- Department of Animal Model Development, Brain Research Institute, Niigata University, 757 Asahimachidori, Niigata Chuo-ku, Niigata, 951-8122, Japan
| | - Akira Tsujino
- Department of Neurology and Strokology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
34
|
Deli M, Kovac A. Brain Barriers as Targets in Pathologies and Therapy. Curr Pharm Des 2020; 26:1403-1404. [PMID: 32410548 DOI: 10.2174/138161282613200506134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Maria Deli
- Institute of Biophysics, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia
| |
Collapse
|
35
|
Defective Function of the Blood-Brain Barrier in a Stroke-Prone Spontaneously Hypertensive Rat: Evaluation in an In Vitro Cell Culture Model. Cell Mol Neurobiol 2020; 42:243-253. [PMID: 32648236 DOI: 10.1007/s10571-020-00917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) comprises three cell types: brain capillary endothelial cells (BECs), astrocytes, and pericytes. Abnormal interaction among these cells may induce BBB dysfunction and lead to cerebrovascular diseases. The stroke-prone spontaneously hypertensive rat (SHRSP) harbors a defective BBB, so we designed the present study to examine the role of these three cell types in a functional disorder of the BBB in SHRSP in order to elucidate the role of these cells in the BBB more generally. To this end, we employed a unique in vitro model of BBB, in which various combinations of the cells could be tested. The three types of cells were prepared from both SHRSPs and Wistar Kyoto rats (WKYs). They were then co-cultured in various combinations to construct in vitro BBB models. The barrier function of the models was estimated by measuring transendothelial electrical resistance and the permeability of the endothelial monolayer to sodium fluorescein. The in vitro models revealed that (1) BECs from SHRSPs had an inherent lower barrier function, (2) astrocytes of SHRSPs had an impaired ability to induce barrier function in BECs, although (3) both pericytes and astrocytes of SHRSPs and WKYs could potentiate the barrier function of BECs under co-culture conditions. Furthermore, we found that claudin-5 expression was consistently lower in models that used BECs and/or SHRSP astrocytes. These results suggested that defective interaction among BBB cells-especially BECs and astrocytes-was responsible for a functional disorder of the BBB in SHRSPs.
Collapse
|