1
|
Yu TY, Zhan ZJ, Lin Q, Huang ZH. Computed tomography-based radiomics predicts the fibroblast-related gene EZH2 expression level and survival of hepatocellular carcinoma. World J Clin Cases 2024; 12:5568-5582. [PMID: 39188617 PMCID: PMC11269978 DOI: 10.12998/wjcc.v12.i24.5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer. The primary treatment strategies for HCC currently include liver transplantation and surgical resection. However, these methods often yield unsatisfactory outcomes, leading to a poor prognosis for many patients. This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients. AIM To construct a radiomics model that can accurately predict the EZH2 expression in HCC. METHODS Gene expression, clinical parameters, HCC-related radiomics, and fibroblast-related genes were acquired from public databases. A gene model was developed, and its clinical efficacy was assessed statistically. Drug sensitivity analysis was conducted with identified hub genes. Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes. A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes. RESULTS EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model. This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis. A negative correlation was observed between EZH2 expression and drug sensitivity. Elevated EZH2 expression was linked to poorer prognosis, and its diagnostic value in HCC surpassed that of the risk model. A radiomics model, developed using a logistic algorithm, also showed superior efficiency in predicting EZH2 expression. The Radscore was higher in the group with high EZH2 expression. A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients. CONCLUSION EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy. A radiomics model, developed using a logistic algorithm, efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.
Collapse
Affiliation(s)
- Ting-Yu Yu
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Ze-Juan Zhan
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Qi Lin
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Zhen-Huan Huang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| |
Collapse
|
2
|
Guo L, Li K, Ma Y, Niu H, Li J, Shao X, Li N, Sun Y, Wang H. MicroRNA-322-5p targeting Smurf2 regulates the TGF-β/Smad pathway to protect cardiac function and inhibit myocardial infarction. Hum Cell 2024; 37:972-985. [PMID: 38656742 DOI: 10.1007/s13577-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Acute coronary artery blockage leads to acute myocardial infarction (AMI). Cardiomyocytes are terminally differentiated cells that rarely divide. Treatments preventing cardiomyocyte loss during AMI have a high therapeutic benefit. Accumulating evidence shows that microRNAs (miRNAs) may play an essential role in cardiovascular diseases. This study aims to explore the biological function and underlying regulatory molecular mechanism of miR-322-5p on myocardial infarction (MI). This study's miR-322-5p is downregulated in MI-injured hearts according to integrative bioinformatics and experimental analyses. In the MI rat model, miR-322-5p overexpression partially eliminated MI-induced changes in myocardial enzymes and oxidative stress markers, improved MI-caused impairment on cardiac functions, inhibited myocardial apoptosis, attenuated MI-caused alterations in TGF-β, p-Smad2, p-Smad4, and Smad7 protein levels. In oxygen-glucose deprivation (OGD)-injured H9c2 cells, miR-322-5p overexpression partially rescued OGD-inhibited cell viability and attenuated OGD-caused alterations in the TGF-β/Smad signaling. miR-322-5p directly targeted Smurf2 and inhibited Smurf2 expression. In OGD-injured H9c2 cells, Smurf2 knockdown exerted similar effects to miR-322-5p overexpression upon cell viability and TGF-β/Smad signaling; moreover, Smurf2 knockdown partially attenuated miR-322-5p inhibition effects on OGD-injured H9c2 cells. In conclusion, miR-322-5p is downregulated in MI rat heart and OGD-stimulated rat cardiomyocytes; the miR-322-5p/Smurf2 axis improves OGD-inhibited cardiomyocyte cell viability and MI-induced cardiac injuries and dysfunction through the TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Liping Guo
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Ke Li
- Department of Cardiology, The People's Hospital of Suzhou, Suzhou New District, Suzhou, 215129, Jiangsu, China
| | - Yan Ma
- Department of General Practice, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Huaiming Niu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Jun Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Xin Shao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Na Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Yuehui Sun
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
3
|
Su Y, Mei L, Jiang T, Wang Z, Ji Y. Novel role of lncRNAs regulatory network in papillary thyroid cancer. Biochem Biophys Rep 2024; 38:101674. [PMID: 38440062 PMCID: PMC10909982 DOI: 10.1016/j.bbrep.2024.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy. The incidence of PTC has increased annually worldwide. Thus, PTC diagnosis and treatment attract more attention. Noncoding RNAs (lncRNAs) play crucial roles in PTC progression and act as prognostic biomarkers. Moreover, microRNAs (miRNAs) and epithelial-mesenchymal transition (EMT)-associated proteins have potential biomarkers for diagnosing and treating PTC. However, the correlation of lncRNAs with miRNAs and EMT-associated proteins needs further clarification. The present review highlights the recent advances of lncRNAs in PTC. We significantly summarized the two molecular regulatory mechanisms in PTC progress, including lncRNAs-miRNAs-protein signaling axes and lncRNAs-EMT pathways. This review will help our understanding of the association between lncRNAs and PTC and may assist us in evaluating the prognosis for PTC patients. Taken together, targeting the lncRNAs regulatory network has promising applications in diagnosing and treating PTC.
Collapse
Affiliation(s)
- Yuanhao Su
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tiantian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
4
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
5
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
6
|
Gao J, Fosbrook C, Gibson J, Underwood TJ, Gray JC, Walters ZS. Review: Targeting EZH2 in neuroblastoma. Cancer Treat Rev 2023; 119:102600. [PMID: 37467626 DOI: 10.1016/j.ctrv.2023.102600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuroblastoma is one of the commonest extra-cranial pediatric tumors, and accounts for over 15% of all childhood cancer mortality. Risk stratification for children with neuroblastoma is based on age, stage, histology, and tumor cytogenetics. The majority of patients are considered to have high-risk neuroblastoma, for which the long-term survival is less than 50%. Current treatments combine surgical resection, chemotherapy, stem cell transplantation, radiotherapy, anti-GD2 based immunotherapy as well as the differentiating agent isotretinoin. Despite the intensive multimodal therapies applied, there are high relapse rates, and recurrent disease is often resistant to further therapy. Enhancer of Zeste Homolog 2 (EZH2), a catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is a histone methyltransferase that represses transcription through trimethylation of lysine residue K27 on histone H3 (H3K27me3). It is responsible for epigenetic repression of transcription, making EZH2 an essential regulator for cell differentiation. Overexpression of EZH2 has been shown to promote tumorigenesis, cancer cell proliferation and prevent tumor cells from differentiating in a number of cancers. Therefore, research has been ongoing for the past decade, developing treatments that target EZH2 in neuroblastoma. This review summarises the role of EZH2 in neuroblastoma and evaluates the latest research findings on the therapeutic potential of targeting EZH2 in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Jinhui Gao
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| | - Claire Fosbrook
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Jane Gibson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Juliet C Gray
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Zoë S Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| |
Collapse
|
7
|
Mani R, Gupta A, Gupta S, Goyal B, Mishra R, Tandon A, Sharma O, Rohilla KK, Kishore S, Dhar P. Expression of ER, PR, and HER-2 Neu and correlation with tumor markers in gall bladder carcinoma. J Cancer Res Ther 2023; 19:1279-1287. [PMID: 37787296 DOI: 10.4103/jcrt.jcrt_1754_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Females having a large proportion of gallbladder carcinoma (GBC) and a higher incidence of gallstones pointed toward the role of sex hormones in GBC development. In this study, we evaluated the expression of Estrogen receptor (ER), Progesterone receptor (PR), and Her2/neu and their correlation with tumor markers and clinicopathological parameters in the GBC. Methods A total of 50 patients of GBC and 42 patients in control group undergoing surgery for other conditions were taken. The patient's biopsy sample's paraffin block was tested for ER, PR, and Her2/neu expression by immunohistochemistry. Results ER and PR had no significant expression in GBC and control group, but Her2/neu had 16% expression in GBC, significantly associated with the degree of differentiation with 62.5% (n-5) being well-differentiated; 75% of Her2/neu positive were in stages III and IV. Her2/neu did not correlate with tumor markers despite expression. Conclusions Her2/neu amplification is a small step in validating that option so it could be included in the treatment and prognostication of GBC.
Collapse
Affiliation(s)
- Rishit Mani
- Department of Surgery, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Amit Gupta
- Department of Surgery, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Sweety Gupta
- Department of Radiation Oncology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Rahul Mishra
- Department of Surgery, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Amoli Tandon
- Department of Surgery, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Oshin Sharma
- Department of Surgery, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Kusum K Rohilla
- Department of Nursing, College of Nursing, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Sanjeev Kishore
- Department of Pathology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Puneet Dhar
- Department of Surgical Gastroenterology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| |
Collapse
|
8
|
Kim MK, Shin HS, Shin MH, Kim H, Lee DH, Chung JH. Dual role of enhancer of zeste homolog 2 in the regulation of ultraviolet radiation-induced matrix metalloproteinase-1 and type I procollagen expression in human dermal fibroblasts. Matrix Biol 2023; 119:112-124. [PMID: 37031807 DOI: 10.1016/j.matbio.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Abnormalities in the extracellular matrix (ECM) caused by ultraviolet (UV) radiation are mediated by epigenetic mechanisms. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is implicated in inflammation, immune regulation, and senescence. However, its role in controlling UV-induced ECM alterations in the skin remains elusive. Here, we investigated the role of EZH2 in UV-induced expression of matrix metalloproteinase (MMP)-1 and type I procollagen. We found that UV induced EZH2 expression in human skin in vivo and in human dermal fibroblasts (HDFs). EZH2 knockdown reduced the expression and promoter activity of MMP-1 and increased those of type I procollagen, whereas EZH2 overexpression had the opposite effects. Mechanistically, EZH2 increased NF-κB activity, and p65 and p50 expression and promoter activity. Intriguingly, chromatin immunoprecipitation assays revealed that the EZH2/p65/p50 complex was recruited and bound to the MMP-1 promoter after UV irradiation, independent of its histone methyltransferase activity. In contrast, EZH2-induced DNA methyltransferase 1 (DNMT1) formed a complex with EZH2 and enhanced the enrichment of H3K27me3 on the COL1A2 promoter following UV irradiation. These findings indicate that EZH2 plays a dual role in regulating MMP-1 and type I procollagen expression and improve our understanding of how this epigenetic mechanism contributes to UV-induced skin responses and photoaging. This study shows that inhibiting EZH2 is a potential anti-aging strategy for preventing UV-induced skin aging by reducing MMP-1 expression and inducing type I procollagen expression.
Collapse
Affiliation(s)
- Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hye Sun Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Mi Hee Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zhao Y, Cheng Y, Qu Y. The role of EZH2 as a potential therapeutic target in retinoblastoma. Exp Eye Res 2023; 227:109389. [PMID: 36669714 DOI: 10.1016/j.exer.2023.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) has been reported selectively expressed in postnatal human retinoblastoma (RB). While, the contribution of EZH2 in progression of RB and its clinical importance has not been clarified. Here, immunohistochemistry (IHC) was performed on tumor specimens from 53 RB patients. UNC1999 and GSK503, inhibitors targeting EZH2, were incubated with human RB cell line WERI-Rb-1 and Y79 to assess the role and mechanism of EZH2 in RB proliferation, metastasis and tumor glycolysis. Administration of UNC1999 in subcutaneous tumor model of RB was conducted. The results showed that highly expressed EZH2 in RB tissues was significantly associated with the poor overall survival. UNC1999 and GSK503 inhibited proliferation, migration, invasion and tumor glycolysis of RB. Results in mouse xenograft model confirmed the inhibitory effect of UNC1999 on tumor growth of RB and the regulation effect of EZH2 to STAT3/FoxO1 signaling pathway. Therefore, EZH2 is rewarding to study as a potential target for anti-RB treatment.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China; Jinan Clinical Research Center for Geriatric Medicine, 202132001, China
| | - Ying Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China; Jinan Clinical Research Center for Geriatric Medicine, 202132001, China
| | - Yi Qu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China; Jinan Clinical Research Center for Geriatric Medicine, 202132001, China.
| |
Collapse
|
10
|
EZH2: An Accomplice of Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020425. [PMID: 36672374 PMCID: PMC9856299 DOI: 10.3390/cancers15020425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. Understanding the factors influencing the therapeutic effects in gastric cancer patients and the molecular mechanism behind gastric cancer is still facing challenges. In addition to genetic alterations and environmental factors, it has been demonstrated that epigenetic mechanisms can also induce the occurrence and progression of gastric cancer. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressor complex 2 (PRC2), which trimethylates histone 3 at Lys-27 and regulates the expression of downstream target genes through epigenetic mechanisms. It has been found that EZH2 is overexpressed in the stomach, which promotes the progression of gastric cancer through multiple pathways. In addition, targeted inhibition of EZH2 expression can effectively delay the progression of gastric cancer and improve its resistance to chemotherapeutic agents. Given the many effects of EZH2 in gastric cancer, there are no studies to comprehensively describe this mechanism. Therefore, in this review, we first introduce EZH2 and clarify the mechanisms of abnormal expression of EZH2 in cancer. Secondly, we summarize the role of EZH2 in gastric cancer, which includes the association of the EZH2 gene with genetic susceptibility to GC, the correlation of the EZH2 gene with gastric carcinogenesis and invasive metastasis, the resistance to chemotherapeutic drugs of gastric cancer mediated by EZH2 and the high expression of EZH2 leading to poor prognosis of gastric cancer patients. Finally, we also clarify some of the current statuses of drug development regarding targeted inhibition of EZH2/PRC2 activity.
Collapse
|
11
|
Yeh SJ, Yeh TY, Chen BS. Systems Drug Discovery for Diffuse Large B Cell Lymphoma Based on Pathogenic Molecular Mechanism via Big Data Mining and Deep Learning Method. Int J Mol Sci 2022; 23:ijms23126732. [PMID: 35743172 PMCID: PMC9224183 DOI: 10.3390/ijms23126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive heterogeneous disease. The most common subtypes of DLBCL include germinal center b-cell (GCB) type and activated b-cell (ABC) type. To learn more about the pathogenesis of two DLBCL subtypes (i.e., DLBCL ABC and DLBCL GCB), we firstly construct a candidate genome-wide genetic and epigenetic network (GWGEN) by big database mining. With the help of two DLBCL subtypes’ genome-wide microarray data, we identify their real GWGENs via system identification and model order selection approaches. Afterword, the core GWGENs of two DLBCL subtypes could be extracted from real GWGENs by principal network projection (PNP) method. By comparing core signaling pathways and investigating pathogenic mechanisms, we are able to identify pathogenic biomarkers as drug targets for DLBCL ABC and DLBCL GCD, respectively. Furthermore, we do drug discovery considering drug-target interaction ability, drug regulation ability, and drug toxicity. Among them, a deep neural network (DNN)-based drug-target interaction (DTI) model is trained in advance to predict potential drug candidates holding higher probability to interact with identified biomarkers. Consequently, two drug combinations are proposed to alleviate DLBCL ABC and DLBCL GCB, respectively.
Collapse
|
12
|
Luo Y, Li J, Yu P, Sun J, Hu Y, Meng X, Xiang L. Targeting lncRNAs in programmed cell death as a therapeutic strategy for non-small cell lung cancer. Cell Death Dis 2022; 8:159. [PMID: 35379783 PMCID: PMC8980082 DOI: 10.1038/s41420-022-00982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the most common histological type. Owing to the limited therapeutic efficacy and side effects of currently available therapies for NSCLC, it is necessary to identify novel therapeutic targets for NSCLC. Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs with a transcript length of more than 200 nucleotides, which play a vital role in the tumorigenesis and progression of multiple cancers, including NSCLC. Induction of programmed cell death (PCD) is the main mechanism leading to tumour cell death in most cancer treatments. Recent studies have demonstrated that lncRNAs are closely correlated with PCD including apoptosis, pyroptosis, autophagy and ferroptosis, which can regulate PCD and relevant death pathways to affect NSCLC progression and the efficacy of clinical therapy. Therefore, in this review, we focused on the function of lncRNAs in PCD of NSCLC and summarized the therapeutic role of targeting lncRNAs in PCD for NSCLC treatment, aiming to provide new sights into the underlying pathogenic mechanisms and propose a potential new strategy for NSCLC therapy so as to improve therapeutic outcomes with the ultimate goal to benefit the patients.
Collapse
Affiliation(s)
- Yanqin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, P. R. China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
13
|
Yang Z, Wei B, Qiao A, Yang P, Chen W, Zhen D, Qiu X. A novel EZH2/NXPH4/CDKN2A axis is involved in regulating the proliferation and migration of non-small cell lung cancer cells. Biosci Biotechnol Biochem 2022; 86:340-350. [PMID: 34919637 DOI: 10.1093/bbb/zbab217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
NXPH4 is discovered to be a neuropeptide-like glycoprotein, belonging to the Neurexophilins (Nxphs) family. NXPH4 shares a similar domain structure with NXPH1, which, however, is poorly understood in terms of its function. Bioinformatics analysis and experimental verification in this study confirmed the abnormal high expression of NXPH4 in non-small cell lung cancer (NSCLC) tissues and cells. Knockdown of NXPH4 by siRNA can inhibit the proliferation and migration of cells, resulting in significant cell cycle arrest in S1 phase. Furthermore, in NSCLC cells, NXPH4 was regulated by transcriptional activation of enhancer of zeste homolog 2 (EZH2) in its upstream. While downstream, NXPH4 could interact with CDKN2A and downregulate its protein stability, thus participating in the cell cycle regulation through interacting with cyclinD-CDK4/6-pRB-E2F signaling pathway. To sum up, the present study reveals a regulatory pathway of EZH2/NXPH4/CDKN2A in NSCLC, providing possible reference for understanding the function of NXPH4 in tumors.
Collapse
Affiliation(s)
- Zeng Yang
- Department of Thoracic Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Bo Wei
- Department of Thoracic Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Anbang Qiao
- Department of Thoracic Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Popo Yang
- Department of Thoracic Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Wenhui Chen
- Department of Thoracic Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Dezhi Zhen
- Department of Thoracic Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Qiu
- Department of Respiratory Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Saigusa N, Hirai H, Tada Y, Kawakita D, Nakaguro M, Tsukahara K, Kano S, Ozawa H, Kondo T, Okami K, Togashi T, Sato Y, Urano M, Kajiwara M, Shimura T, Fushimi C, Shimizu A, Okamoto I, Okada T, Suzuki T, Imanishi Y, Watanabe Y, Sakai A, Ebisumoto K, Sato Y, Honma Y, Yamazaki K, Ueki Y, Hanazawa T, Saito Y, Takahashi H, Ando M, Kohsaka S, Matsuki T, Nagao T. The Role of the EZH2 and H3K27me3 Expression as a Predictor of Clinical Outcomes in Salivary Duct Carcinoma Patients: A Large-Series Study With Emphasis on the Relevance to the Combined Androgen Blockade and HER2-Targeted Therapy. Front Oncol 2022; 11:779882. [PMID: 35186711 PMCID: PMC8850643 DOI: 10.3389/fonc.2021.779882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
ObjectiveSalivary duct carcinoma (SDC) is a highly aggressive and uncommon tumor arising not only de novo but also in pleomorphic adenoma. Androgen receptor (AR)- and HER2-targeted therapy have recently been introduced for SDC as promising treatment options; however, no predictive biomarkers have yet been established. EZH2 and H3K27me3 are closely linked to the development and progression of various cancers, and EZH2 is also expected to be a desirable therapeutic target. We therefore explored the clinicopathological and prognostic implications of EZH2 and H3K27me3 in a large cohort of SDC patients, focusing on their impact on the therapeutic efficacy of AR- or HER2-targeted therapy.Materials and MethodsThe EZH2 and H3K27me3 immunohistochemical expression and EZH2 Y646 gain-of-function mutation status were examined in 226 SDCs, and the relationship with the clinicopathological factors as well as clinical outcomes were evaluated within the three groups depending on the treatment: AR-targeted (combined androgen blockade with leuprorelin acetate and bicalutamide; 89 cases), HER2-targeted (trastuzumab and docetaxel; 42 cases), and conventional therapy (112 cases).ResultsEZH2 and H3K27me3 were variably immunoreactive in most SDCs. A positive correlation was found between the expression of EZH2 and H3K27me3. The EZH2 expression in the SDC component was significantly higher than that in the pre-existing pleomorphic adenoma component. EZH2 Y646 was not identified in any cases. EZH2-high cases more frequently had an advanced clinical stage and aggressive histological features than EZH2-low cases. An EZH2-high status in patients treated with AR-targeted therapy was associated with a significantly shorter progression-free and overall survival as well as a lower objective response rate and clinical benefit rate. In addition, a H3K27me3-high status in patients treated with AR-targeted therapy was related to a shorter overall survival. Conversely, there was no association between the EZH2 and H3K27me3 expression and the clinical outcomes in the conventional or HER2-targeted therapy groups.ConclusionsA high expression of EZH2 and H3K27me3 in SDC might be a predictor of a poor efficacy of AR-targeted therapy. Our data provide new insights into the role of EZH2 and H3K27me3 in therapeutic strategies for SDC.
Collapse
Affiliation(s)
- Natsuki Saigusa
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hirai
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Daisuke Kawakita
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Kano
- Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takahito Kondo
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Kenji Okami
- Department of Otolaryngology Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Takafumi Togashi
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yukiko Sato
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology Bantane Hospital Fujita Health University, School of Medicine, Nagoya, Japan
| | - Manami Kajiwara
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Tomotaka Shimura
- Department of Otolaryngology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Chihiro Fushimi
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Akira Shimizu
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Isaku Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Takuro Okada
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Takayoshi Suzuki
- Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Watanabe
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Sakai
- Department of Otolaryngology Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Koji Ebisumoto
- Department of Otolaryngology Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yuichiro Sato
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yoshitaka Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Keisuke Yamazaki
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yushi Ueki
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toyoyuki Hanazawa
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuki Saito
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Matsuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
- *Correspondence: Toshitaka Nagao,
| |
Collapse
|
15
|
Liao Y, Chen CH, Xiao T, de la Peña Avalos B, Dray EV, Cai C, Gao S, Shah N, Zhang Z, Feit A, Xue P, Liu Z, Yang M, Lee JH, Xu H, Li W, Mei S, Pierre RS, Shu S, Fei T, Duarte M, Zhao J, Bradner JE, Polyak K, Kantoff PW, Long H, Balk SP, Liu XS, Brown M, Xu K. Inhibition of EZH2 transactivation function sensitizes solid tumors to genotoxic stress. Proc Natl Acad Sci U S A 2022; 119:e2105898119. [PMID: 35031563 PMCID: PMC8784159 DOI: 10.1073/pnas.2105898119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.
Collapse
Affiliation(s)
- Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Chen-Hao Chen
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Tengfei Xiao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Eloise V Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA 02125
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA 02125
| | - Neel Shah
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Avery Feit
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Pengya Xue
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Han Xu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Wei Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Shenglin Mei
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Roodolph S Pierre
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Biological and Biomedical Science Program, Harvard Medical School, Boston, MA 02115
| | - Shaokun Shu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Teng Fei
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Melissa Duarte
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Jin Zhao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - James E Bradner
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Biological and Biomedical Science Program, Harvard Medical School, Boston, MA 02115
| | - Kornelia Polyak
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Philip W Kantoff
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115;
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
| |
Collapse
|
16
|
EZH2 Regulates Lipopolysaccharide-Induced Periodontal Ligament Stem Cell Proliferation and Osteogenesis through TLR4/MyD88/NF- κB Pathway. Stem Cells Int 2021; 2021:7625134. [PMID: 34899921 PMCID: PMC8654561 DOI: 10.1155/2021/7625134] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Periodontitis induced by bacteria especially Gram-negative bacteria is the most prevalent chronic inflammatory disease worldwide. Emerging evidence supported that EZH2 plays a significant role in the inflammatory response of periodontal tissues. However, little information is available regarding the underlying mechanism of EZH2 in periodontitis. This study is aimed at determining the potential role and underlying mechanism of EZH2 in periodontitis. Methods The protein levels of EZH2, H3K27ME, p-p65, p-IKB, TLR4, MyD88, Runx2, and OCN were examined by western blot assay. Proliferation was evaluated by CCK8 assay. The levels of TNFα, IL1β, and IL6 were detected by ELISA assay. Migration was detected by wound healing assay. The distribution of p65 was detected by immunofluorescence. The formation of mineralized nodules was analyzed using alizarin red staining. Results LPS stimulation significantly promoted EZH2 and H3K27me3 expression in primary human periodontal ligament stem cells (PDLSCs). Targeting EZH2 prevented LPS-induced upregulation of the inflammatory cytokines and inhibition of cell proliferation and migration. Furthermore, EZH2 knockdown attenuated the TLR4/MyD88/NF-κB signaling to facilitate PDLSC osteogenesis. Conclusions Modulation of the NF-κB pathway through the inhibition of EZH2 may offer a new perspective on the treatment of chronic apical periodontitis.
Collapse
|
17
|
Adibfar S, Elveny M, Kashikova HS, Mikhailova MV, Farhangnia P, Vakili-Samiani S, Tarokhian H, Jadidi-Niaragh F. The molecular mechanisms and therapeutic potential of EZH2 in breast cancer. Life Sci 2021; 286:120047. [PMID: 34653429 DOI: 10.1016/j.lfs.2021.120047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Due to its high occurrence and mortality rate, breast cancer has been studied from various aspects as one of the cancer field's hot topics in the last decade. Epigenetic alterations are spoused to be highly effective in breast cancer development. Enhancer of zeste homolog 2 (EZH2) is an enzymatic epi-protein that takes part in most vital cell functions by its different action modes. EZH2 is suggested to be dysregulated in specific breast cancer types, particularly in advanced stages. Mounting evidence revealed that EZH2 overexpression or dysfunction affects the pathophysiology of breast cancer. In this review, we discuss biological aspects of the EZH2 molecule with a focus on its newly identified action mechanisms. We also highlight how EZH2 plays an essential role in breast cancer initiation, progression, metastasis, and invasion, which emerged as a worthy target for treating breast cancer in different approaches.
Collapse
Affiliation(s)
- Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marischa Elveny
- DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Advanced Cellular Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sajjad Vakili-Samiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Tarokhian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Integrated Medicine and Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Dele-Oni DO, Christianson KE, Egri SB, Vaca Jacome AS, DeRuff KC, Mullahoo J, Sharma V, Davison D, Ko T, Bula M, Blanchard J, Young JZ, Litichevskiy L, Lu X, Lam D, Asiedu JK, Toder C, Officer A, Peckner R, MacCoss MJ, Tsai LH, Carr SA, Papanastasiou M, Jaffe JD. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds. Sci Data 2021; 8:226. [PMID: 34433823 PMCID: PMC8387426 DOI: 10.1038/s41597-021-01008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
While gene expression profiling has traditionally been the method of choice for large-scale perturbational profiling studies, proteomics has emerged as an effective tool in this context for directly monitoring cellular responses to perturbations. We previously reported a pilot library containing 3400 profiles of multiple perturbations across diverse cellular backgrounds in the reduced-representation phosphoproteome (P100) and chromatin space (Global Chromatin Profiling, GCP). Here, we expand our original dataset to include profiles from a new set of cardiotoxic compounds and from astrocytes, an additional neural cell model, totaling 5300 proteomic signatures. We describe filtering criteria and quality control metrics used to assess and validate the technical quality and reproducibility of our data. To demonstrate the power of the library, we present two case studies where data is queried using the concept of "connectivity" to obtain biological insight. All data presented in this study have been deposited to the ProteomeXchange Consortium with identifiers PXD017458 (P100) and PXD017459 (GCP) and can be queried at https://clue.io/proteomics .
Collapse
Affiliation(s)
| | | | - Shawn B Egri
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | | | | | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Desiree Davison
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Joel Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Jennie Z Young
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Lev Litichevskiy
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Xiaodong Lu
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Daniel Lam
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Jacob K Asiedu
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Caidin Toder
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Adam Officer
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Ryan Peckner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | | | - Jacob D Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States.
- Inzen Therapeutics, Cambridge, MA, 02139, United States.
| |
Collapse
|
19
|
Zhang C, Xu J, Xue S, Ye J. Prognostic Value of L-Type Amino Acid Transporter 1 (LAT1) in Various Cancers: A Meta-Analysis. Mol Diagn Ther 2021; 24:523-536. [PMID: 32410110 DOI: 10.1007/s40291-020-00470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The L-type amino acid transporter 1 (LAT1, SLC7A5) is overexpressed in various types of cancer and has been thought to assist cancer progression through its uptake of neutral amino acids. However, the prognostic role of LAT1 in human cancers remains uncharacterized. Therefore, we conducted this meta-analysis to determine the prognostic significance of LAT1 in various cancers. METHODS We systematically searched the PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure, and WanFang databases to collect relevant cohort studies investigating the prognostic value of LAT1 expression in patients with cancer. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were pooled to clarify the association between the LAT1 expression and the survival of patients with cancer. Odds ratios (ORs) with 95% CIs were calculated to appraise the correlation between LAT1 and the clinicopathological characteristics in patients with cancer. RESULTS A total of 32 eligible articles, including 34 cohorts and 6410 patients, were enrolled in this meta-analysis. Our results demonstrated that high LAT1 expression was significantly associated with poor overall survival (HR = 1.66, 95% CI 1.41-1.96, P < 0.001), cancer-specific survival (HR = 1.64, 95% CI 1.31-2.05, P < 0.001), disease-free survival (HR = 1.55, 95% CI 1.31-1.83, P < 0.001), and progression-free survival (HR = 1.18, 95% CI 1.02-1.37, P = 0.026) in patients with cancer. In addition, we found that the elevated expression level of LAT1 was significantly related to certain phenotypes of tumor aggressiveness, such as tumor size, clinical stage, T stage, lymphatic invasion, vascular invasion, tumor differentiation, Ki-67, CD34, CD98, p53, and system ASC amino acid transporter-2. CONCLUSIONS Elevated expression of LAT1 is associated with poor prognosis in human cancers and may serve as a potential prognostic marker and therapeutic target for patients with malignancies.
Collapse
Affiliation(s)
- Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jun Ye
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China.
| |
Collapse
|
20
|
The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. Int J Mol Sci 2021; 22:ijms22116065. [PMID: 34199773 PMCID: PMC8199989 DOI: 10.3390/ijms22116065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in medicine, cardiac disease remains an increasing health problem associated with a high mortality rate. Maladaptive cardiac remodeling, such as cardiac hypertrophy and fibrosis, is a risk factor for heart failure; therefore, it is critical to identify new therapeutic targets. Failing heart is reported to be associated with hyper-ubiquitylation and impairment of the ubiquitin–proteasome system, indicating an importance of ubiquitylation in the development of cardiac disease. Ubiquitylation is a post-translational modification that plays a pivotal role in protein function and degradation. In 1995, homologous to E6AP C-terminus (HECT) type E3 ligases were discovered. E3 ligases are key enzymes in ubiquitylation and are classified into three families: really interesting new genes (RING), HECT, and RING-between-RINGs (RBRs). Moreover, 28 HECT-type E3 ligases have been identified in human beings. It is well conserved in evolution and is characterized by the direct attachment of ubiquitin to substrates. HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health. The role of HECT-type E3 ligases in the development of cardiac diseases has been uncovered in the last decade. There are only a few review articles summarizing recent advancements regarding HECT-type E3 ligase in the field of cardiac disease. This study focused on cardiac remodeling and described the role of HECT-type E3 ligases in the development of cardiac disease. Moreover, this study revealed that the current knowledge could be exploited for the development of new clinical therapies.
Collapse
|
21
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
22
|
Prado G, Kaestner CL, Licht JD, Bennett RL. Targeting epigenetic mechanisms to overcome venetoclax resistance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119047. [PMID: 33945824 DOI: 10.1016/j.bbamcr.2021.119047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
The BH-3 mimetic venetoclax overcomes apoptosis and therapy resistance caused by high expression of BCL2 or loss of BH3-only protein function. Although a promising therapy for hematologic malignancies, increased expression of anti-apoptotic MCL-1 or BCL-XL, as well as other resistance mechanisms prevent a durable response to venetoclax. Recent studies demonstrate that agents targeting epigenetic mechanisms such as DNA methyltransferase inhibitors, histone deacetylase (HDAC) inhibitors, histone methyltransferase EZH2 inhibitors, or bromodomain reader protein inhibitors may disable oncogenic gene expression signatures responsible for venetoclax resistance. Combination therapies including venetoclax and epigenetic therapies are effective in preclinical models and the subject of many current clinical trials. Here we review epigenetic strategies to overcome venetoclax resistance mechanisms in hematologic malignancies.
Collapse
Affiliation(s)
- Gabriel Prado
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Charlotte L Kaestner
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Jonathan D Licht
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America
| | - Richard L Bennett
- University of Florida Health Cancer Center and University of Florida Department of Medicine, Division of Hematology and Oncology, Gainesville, FL 32610, United States of America.
| |
Collapse
|
23
|
Huang J, Gou H, Yao J, Yi K, Jin Z, Matsuoka M, Zhao T. The noncanonical role of EZH2 in cancer. Cancer Sci 2021; 112:1376-1382. [PMID: 33615636 PMCID: PMC8019201 DOI: 10.1111/cas.14840] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2). Dysregulation of EZH2 causes alteration of gene expression and functions, thereby promoting cancer development. The regulatory function of EZH2 varies across different tumor types. The canonical role of EZH2 is gene silencing through catalyzing the trimethylation of lysine 27 of histone H3 (H3K27me3) in a PRC2-dependent manner. Accumulating evidence indicates that EZH2 has an H3K27me3-independent function as a transcriptional coactivator and plays a critical role in cancer initiation, development, and progression. In this review, we summarize the regulation and function of EZH2 and focus on the current understanding of the noncanonical role of EZH2 in cancer.
Collapse
Affiliation(s)
- Jinhua Huang
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Hongwei Gou
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Jia Yao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Kaining Yi
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Zhigang Jin
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious DiseaseGraduate School of Medical SciencesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
- Laboratory of Virus ControlInstitute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tiejun Zhao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
- Laboratory of Virus ControlInstitute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| |
Collapse
|
24
|
Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, Wadhwani N, Aye JM, Stewart JE, Yoon KJ, Mroczek-Musulman E, Beierle EA. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS One 2021; 16:e0246244. [PMID: 33690617 PMCID: PMC7942994 DOI: 10.1371/journal.pone.0246244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Investigation of the mechanisms responsible for aggressive neuroblastoma and its poor prognosis is critical to identify novel therapeutic targets and improve survival. Enhancer of Zeste Homolog 2 (EZH2) is known to play a key role in supporting the malignant phenotype in several cancer types and knockdown of EZH2 has been shown to decrease tumorigenesis in neuroblastoma cells. We hypothesized that the EZH2 inhibitor, GSK343, would affect cell proliferation and viability in human neuroblastoma. We utilized four long-term passage neuroblastoma cell lines and two patient-derived xenolines (PDX) to investigate the effects of the EZH2 inhibitor, GSK343, on viability, motility, stemness and in vivo tumor growth. Immunoblotting confirmed target knockdown. Treatment with GSK343 led to significantly decreased neuroblastoma cell viability, migration and invasion, and stemness. GSK343 treatment of mice bearing SK-N-BE(2) neuroblastoma tumors resulted in a significant decrease in tumor growth compared to vehicle-treated animals. GSK343 decreased viability, and motility in long-term passage neuroblastoma cell lines and decreased stemness in neuroblastoma PDX cells. These data demonstrate that further investigation into the mechanisms responsible for the anti-tumor effects seen with EZH2 inhibitors in neuroblastoma cells is warranted.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hooper Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karina J. Yoon
- Division of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
25
|
Li HS, Xu Y. Inhibition of EZH2 via the STAT3/HOTAIR signalling axis contributes to cell cycle arrest and apoptosis induced by polyphyllin I in human non-small cell lung cancer cells. Steroids 2020; 164:108729. [PMID: 32941921 DOI: 10.1016/j.steroids.2020.108729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the potential mechanism of polyphyllin I (PPI)-induced apoptosis in lung cancer cells. METHODS AND MATERIALS The pathological changes in lung cancer tissues and paracancerous tissues were first analysed by H&E staining and IHC staining. After PPI treatment, cell viability and apoptosis were detected by MTT assays, cell cycle analyses and flow cytometry. The expression levels of EZH2 and apoptosis-related molecules were evaluated by qRT-PCR and Western blotting. RESULTS EZH2 overexpression decreased proapoptotic proteins, and this effect was reversed by PPI. Knockdown of HOTAIR downregulated EZH2 expression, upregulated proapoptotic proteins, and enhanced the effect of PPI treatment. Moreover, knockdown of STAT3 could counteract the effect of HOTAIR overexpression, which significantly increased the expression of EZH2, thus facilitating cell apoptosis in lung cancer. CONCLUSIONS PPI induced cell cycle arrest and apoptosis in lung cancer by inhibiting EZH2 through the STAT3/HOTAIR signalling pathway.
Collapse
Affiliation(s)
- Hok Shing Li
- R&D Department of AtaGenix Laboratories Co., Ltd. (Wuhan), Wuhan 430000, Hubei Province, PR China
| | - Yao Xu
- R&D Department of AtaGenix Laboratories Co., Ltd. (Wuhan), Wuhan 430000, Hubei Province, PR China.
| |
Collapse
|
26
|
Richter C, Mayhew D, Rennhack JP, So J, Stover EH, Hwang JH, Szczesna-Cordary D. Genomic Amplification and Functional Dependency of the Gamma Actin Gene ACTG1 in Uterine Cancer. Int J Mol Sci 2020; 21:ijms21228690. [PMID: 33217970 PMCID: PMC7698702 DOI: 10.3390/ijms21228690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomere and cytoskeleton genes, or actomyosin genes, regulate cell biology including mechanical stress, cell motility, and cell division. While actomyosin genes are recurrently dysregulated in cancers, their oncogenic roles have not been examined in a lineage-specific fashion. In this report, we investigated dysregulation of nine sarcomeric and cytoskeletal genes across 20 cancer lineages. We found that uterine cancers harbored the highest frequencies of amplification and overexpression of the gamma actin gene, ACTG1. Each of the four subtypes of uterine cancers, mixed endometrial carcinomas, serous carcinomas, endometroid carcinomas, and carcinosarcomas harbored between 5~20% of ACTG1 gene amplification or overexpression. Clinically, patients with ACTG1 gains had a poor prognosis. ACTG1 gains showed transcriptional patterns that reflect activation of oncogenic signals, repressed response to innate immunity, or immunotherapy. Functionally, the CRISPR-CAS9 gene deletion of ACTG1 had the most robust and consistent effects in uterine cancer cells relative to 20 other lineages. Overall, we propose that ACTG1 regulates the fitness of uterine cancer cells by modulating cell-intrinsic properties and the tumor microenvironment. In summary, the ACTG1 functions relative to other actomyosin genes support the notion that it is a potential biomarker and a target gene in uterine cancer precision therapies.
Collapse
Affiliation(s)
- Camden Richter
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - David Mayhew
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
- Department of Radiation Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Jonathan P. Rennhack
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - Jonathan So
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - Elizabeth H. Stover
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55414, USA
- Correspondence: (J.H.H.); (D.S.-C.); Tel.: +1-612-626-3003 (J.H.H.); +1-305-243-2908 (D.S.-C.); Fax: +1-612-625-6919 (J.H.H.); +1-305-243-4555 (D.S.-C.)
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (J.H.H.); (D.S.-C.); Tel.: +1-612-626-3003 (J.H.H.); +1-305-243-2908 (D.S.-C.); Fax: +1-612-625-6919 (J.H.H.); +1-305-243-4555 (D.S.-C.)
| |
Collapse
|
27
|
Yang Y, Li G. Post-translational modifications of PRC2: signals directing its activity. Epigenetics Chromatin 2020; 13:47. [PMID: 33129354 PMCID: PMC7603765 DOI: 10.1186/s13072-020-00369-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a chromatin-modifying enzyme that catalyses the methylation of histone H3 at lysine 27 (H3K27me1/2/3). This complex maintains gene transcriptional repression and plays an essential role in the maintenance of cellular identity as well as normal organismal development. The activity of PRC2, including its genomic targeting and catalytic activity, is controlled by various signals. Recent studies have revealed that these signals involve cis chromatin features, PRC2 facultative subunits and post-translational modifications (PTMs) of PRC2 subunits. Overall, these findings have provided insight into the biochemical signals directing PRC2 function, although many mysteries remain.
Collapse
Affiliation(s)
- Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
28
|
Lu Y, Hou K, Li M, Wu X, Yuan S. Exosome-Delivered LncHEIH Promotes Gastric Cancer Progression by Upregulating EZH2 and Stimulating Methylation of the GSDME Promoter. Front Cell Dev Biol 2020; 8:571297. [PMID: 33163491 PMCID: PMC7591465 DOI: 10.3389/fcell.2020.571297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths worldwide and is characterized by poor survival and high recurrence rates. Long non-coding RNAs (lncRNAs) have gained considerable attention in recent years as prognostic markers and gene regulators in various cancers. Here, we found that lncHEIH was upregulated in gastric cancer tissues and cell lines and positively correlated with high expression levels of EZH2. Mechanistically, the lncHEIH-EZH2 axis could promote the progression of gastric cancer. In addition, lncHEIH encapsulated in exosomes was released by gastric cancer cells and then absorbed by normal gastric cells. The uptake of lncHEIH resulted in the upregulation of EZH2, which inhibited the expression of the tumor suppressor GSDME by methylation of the GSDME promoter, promoting the malignant transformation of normal gastric cells. Overall, lncHEIH promotes gastric cancer progression by upregulating the expression of EZH2 and reducing the expression of GSDME in normal cells to induce malignant cell proliferation and migration, indicating its potential as a target in gastric cancer therapy.
Collapse
Affiliation(s)
- Yan Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, The 8th Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Kaiqing Hou
- Department of Gastrointestinal Surgery, Haikou City People’s Hospital, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The 8th Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Enhancer of Zeste Homolog 2 (EZH2) in Malignant Progression of Gallbladder Carcinoma. J Gastrointest Cancer 2020; 52:1029-1034. [PMID: 33051796 DOI: 10.1007/s12029-020-00536-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Data related to the role of epigenetic modifications in gallbladder carcinoma (GBC) is limited. We intended to assess the role of crucial epigenetic modifiers pertaining to histone modification and DNA-methylation system in gallbladder carcinogenesis. METHODS The expression of EZH2, H3K27me3, and DNA methyltransferases (DNMTs) was analyzed by immunohistochemistry in cases of GBC (n = 39), gallbladder dysplasia (GBD, n = 12), and benign mucosa (BM, n = 16). A semi-quantitative scoring system was used for assessing the immunohistochemical expression. RESULTS The expression of EZH2 was significantly higher in cases of GBC than GBD (p value 0.001). The cases of BM were negative. Its expression was also higher in poorly differentiated tumors and positively correlated with the proliferative activity (MIB-1 labeling index) (p value 0.03 and 0.01, respectively). There was no significant difference in the expression levels of H3K27me3, DNMT-1, and DNMT-3B among GBC, GBD, and BM cases. Although GBC cases with strong EZH2 expression showed a shorter overall survival, the difference was not statistically significant. CONCLUSION This study highlights the crucial role of the key epigenetic regulators EZH2 in the pathobiology and evolution of gallbladder carcinogenesis. Given the reversibility of epigenetic alterations, EZH2 may be a novel therapeutic target for gallbladder carcinogenesis.
Collapse
|
30
|
Identification and Expression Pattern of EZH2 in Pig Developing Fetuses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5315930. [PMID: 33083470 PMCID: PMC7557918 DOI: 10.1155/2020/5315930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
The proper methylation status of histones is essential for appropriate cell lineage and organogenesis. EZH2, a methyltransferase catalyzing H3K27me3, has been abundantly studied in human and mouse embryonic development. The pig is an increasing important animal model for molecular study and pharmaceutical research. However, the transcript variant and temporal expression pattern of EZH2 in the middle and late porcine fetus are still unknown. Here, we identified the coding sequence of the EZH2 gene and characterized its expression pattern in fetal tissues of Duroc pigs at 65- and 90-day postcoitus (dpc). Our results showed that the coding sequence of EZH2 was 2241 bp, encoding 746 amino acids. There were 9 amino acid insertions and an amino acid substitution in this transcript compared with the validated reference sequence in NCBI. EZH2 was ubiquitously expressed in the fetal tissues of two time points with different expression levels. These results validated a different transcript in pigs and characterized its expression profile in fetal tissues of different gestation stages, which indicated that EZH2 played important roles during porcine embryonic development.
Collapse
|
31
|
Sun CC, Zhu W, Li SJ, Hu W, Zhang J, Zhuo Y, Zhang H, Wang J, Zhang Y, Huang SX, He QQ, Li DJ. FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway. Genome Med 2020; 12:77. [PMID: 32878637 PMCID: PMC7466809 DOI: 10.1186/s13073-020-00773-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are extensively intricate in the tumorigenesis and metastasis of various cancer types. Nevertheless, the detailed molecular mechanisms of lncRNA in non-small cell lung cancer (NSCLC) still remain mainly undetermined. Methods qPCR was performed to verify LINC00301 expression in NSCLC clinical specimens or cell lines. Fluorescence in situ hybridization (FISH) was conducted to identify the localization of LINC00301 in NSCLC cells. Chromatin immunoprecipitation (ChIP) was subjected to validate the binding activity between FOXC1 and LINC00301 promoters. RNA immunoprecipitation (RIP) was performed to explore the binding activity between LINC00301 and EZH2. RNA pull-down followed by dot-blot, protein domain mapping, and RNA electrophoresis mobility shift assay (EMSA) were conducted to identify the detailed binding regions between LINC00301 and EZH2. Alpha assay was conducted to quantitatively assess the interaction between LINC00301 and EZH2. Results LINC00301 is highly expressed in NSCLC and closely corelated to its prognosis by analyzing the relationship between differentially expressed lncRNAs and prognosis in NSCLC samples. in vitro and in vivo experiments revealed that LINC00301 facilitates cell proliferation, releases NSCLC cell cycle arrest, promotes cell migration and invasion, and suppresses cell apoptosis in NSCLC. In addition, LINC00301 increases regulatory T cell (Treg) while decreases CD8+ T cell population in LA-4/SLN-205-derived tumors through targeting TGF-β. The transcription factor FOXC1 mediates LINC00301 expression in NSCLC. Bioinformatics prediction and in vitro experiments indicated that LINC00301 (83–123 nucleotide [nt]) can directly bind to the enhancer of zeste homolog 2 (EZH2) (612–727 amino acid [aa]) to promote H3K27me3 at the ELL protein-associated factor 2 (EAF2) promoter. EAF2 directly binds and stabilizes von Hippel–Lindau protein (pVHL), so downregulated EAF2 augments hypoxia-inducible factor 1 α (HIF1α) expression by regulating pVHL in NSCLC cells. Moreover, we also found that LINC00301 could function as a competing endogenous RNA (ceRNA) against miR-1276 to expedite HIF1α expression in the cytoplasm of NSCLC cells. Conclusions In summary, our present research revealed the oncogenic roles of LINC00301 in clinical specimens as well as cellular and animal experiments, illustrating the potential roles and mechanisms of the FOXC1/LINC00301/EZH2/EAF2/pVHL/HIF1α and FOXC1/LINC00301/miR-1276/HIF1α pathways, which provides novel insights and potential theraputic targets to NSCLC.
Collapse
Affiliation(s)
- Cheng-Cao Sun
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Wei Zhu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430022, Hubei, People's Republic of China
| | - Wei Hu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Jian Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Yue Zhuo
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Han Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Juan Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Yu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China
| | - Shao-Xin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, 332005, Jiangxi, People's Republic of China
| | - Qi-Qiang He
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China.
| | - De-Jia Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, No.115 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA, Yang YJ. LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis 2020; 11:676. [PMID: 32826865 PMCID: PMC7442829 DOI: 10.1038/s41419-020-02853-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Our study aimed to investigate the expression, functional significance, and related mechanism of long noncoding RNA CRNDE (colorectal neoplasia differentially expressed) in hepatocellular carcinoma (HCC) pathogenesis. The resulted revealed that CRNDE was significantly overexpressed in HCC tissues and cell lines, and was statistically correlated with poor clinical outcome. CRNDE knockdown markedly decreased HCC cell proliferation, migration, and chemoresistance. In addition, in vivo experiments confirmed the suppressive effect of CRNDE knockdown on HCC progression. Mechanically, CRNDE directly bound to EZH2 (enhancer of zeste homolog), SUZ12 (suppressor of zeste 12), SUV39H1, and mediated their inhibition of tumor suppressor genes, including CUGBP Elav-like family member 2 (CELF2) and large tumor suppressor 2 (LATS2). CELF2 exerted tumor suppressive effect in HCC and was involved in CRNDE-mediated oncogenic effect. In addition, the oncogenic effects of CRNDE on HCC proliferation, migration and tumorigenesis, as well as its inhibition of Hippo pathway were abolished by LATS2 overexpression. Together, our work demonstrated the importance of CRNDE in HCC progression and elucidated the underlying molecular mechanisms. These findings provided new insights into HCC pathogenesis and chemoresistance mediated by CRNDE.
Collapse
Affiliation(s)
- Shu-Cai Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jian-Quan Zhang
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Xi-Li Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yong-Yong Hua
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Shao-Wei Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ye-Ang Qin
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
33
|
Xu YJ, Liu PP, Ng SC, Teng ZQ, Liu CM. Regulatory networks between Polycomb complexes and non-coding RNAs in the central nervous system. J Mol Cell Biol 2020; 12:327-336. [PMID: 31291646 PMCID: PMC7288736 DOI: 10.1093/jmcb/mjz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 06/11/2019] [Indexed: 01/29/2023] Open
Abstract
High-throughput sequencing has facilitated the identification of many types of non-coding RNAs (ncRNAs) involved in diverse cellular processes. NcRNAs as epigenetic mediators play key roles in neuronal development, maintenance, and dysfunction by controlling gene expression at multiple levels. NcRNAs may not only target specific DNA or RNA for gene silence but may also directly interact with chromatin-modifying proteins like Polycomb group (PcG) proteins to drive orchestrated transcriptional programs. Recent significant progress has been made in characterizing ncRNAs and PcG proteins involved in transcriptional, post-transcriptional, and epigenetic regulation. More importantly, dysregulation of ncRNAs, PcG proteins, and interplay among them is closely associated with the pathogenesis of central nervous system (CNS) disorders. In this review, we focus on the interplay between ncRNAs and PcG proteins in the CNS and highlight the functional roles of the partnership during neural development and diseases.
Collapse
Affiliation(s)
- Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shyh-Chang Ng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Liao X, Zhou Z, Zhang X. Effects of miR‑195‑5p on cell proliferation and apoptosis in gestational diabetes mellitus via targeting EZH2. Mol Med Rep 2020; 22:803-809. [PMID: 32626980 PMCID: PMC7339727 DOI: 10.3892/mmr.2020.11142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a type of diabetes mellitus (DM) that occurs during pregnancy. The present study aimed to investigate the roles of microRNA (miR)‑195‑5p and enhancer of zeste homolog 2 (EZH2) in GDM, and their potential association. Human umbilical vein endothelial cells (HUVECs) were collected from healthy and GDM umbilical cords, and the endothelial properties were detected by flow cytometry. mRNA expression levels of miR‑195‑5p and EZH2, and EZH2 protein expression levels were detected by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis, respectively. Cell colony formation and flow cytometry were performed to determine cell proliferation and apoptosis. Furthermore, the target gene of miR‑195‑5p was predicted and assessed using a dual‑luciferase reporter assay. The levels of cell viability, proliferation and apoptosis following the overexpression of miR‑195‑5p, EZH2 or miR‑195‑5p + EZH2, were detected using Cell Counting Kit‑8, colony formation and flow cytometry assays, respectively. In addition, the mRNA expression levels of miR‑195‑59 and EZH2, and EZH2 protein expression levels following transfection with overexpression plasmids were detected using RT‑qPCR and western blot analysis, respectively. It was identified that high mRNA expression of miR‑195‑5p, and low EZH2 mRNA and protein expression levels decreased the level of cell proliferation and the high apoptotic rate of GDM‑HUVECs. In addition, miR‑195‑5p was predicted and identified to target EZH2, and miR‑195‑5p overexpression was identified to inhibit cell proliferation and promote apoptosis. However, it was demonstrated that upregulation of EZH2 could alleviate the inhibition of cell proliferation and the increased apoptotic rate induced by miR‑195‑5p overexpression. Therefore, the present results suggested that miR‑195‑5p may inhibit cell viability, proliferation and promote apoptosis by targeting EZH2 in GDM‑induced HUVECs.
Collapse
Affiliation(s)
- Xiaojie Liao
- Department of Obstetrics, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Zhuolin Zhou
- Family Planning Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Xiaoliu Zhang
- Department of Obstetrics, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
35
|
Li Q, Wang Y, Hu R, Yang G. Dysregulation of SPRR3/miR-876-3p Axis Contributes to Tumorigenesis in Non-Small-Cell Lung Cancer. Onco Targets Ther 2020; 13:2411-2419. [PMID: 32273714 PMCID: PMC7106992 DOI: 10.2147/ott.s245422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background SPRR3, also known as esophagin, has been shown to be involved in the initiation and progression of numerous types of tumor. However, the biological function of SPRR3 that contributes to non-small-cell lung cancer (NSCLC) growth and migration is largely unknown. Methods The expression of SPRR3 and its association with EZH2 and miR-876-3p in NSCLC cells were determined by real-time PCR. Protein levels were measured by immunohistochemistry (IHC) and Western blot. Cell functions were studied by CCK-8, transwell assay, flow cytometry and dual-luciferase reporter assay. The effect of SPRR3 on tumor growth in vivo was evaluated in patient-derived xenograft (PDX) models. Results SPRR3 was up-regulated in most NSCLC cell lines and clinical tissues. Also, the correlation between SPRR3 expression and clinical features was significant. Functional studies confirmed that SPRR3 modulates cell proliferation, invasion and cell apoptosis in NSCLC via regulating EZH2, which is a well-known oncogene in NSCLC. Furthermore, SPRR3 was found to be a direct target of miR-876-3p that also plays a suppressor role in NSCLC. Conclusion These findings indicated that miR-876-3p/SPRR3/EZH2 signaling cascade exerts important roles in the regulation of NSCLC, suggesting that this pathway can serve as a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Qin Li
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuxuan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Rongkuan Hu
- GenePharma Co., Ltd, Suzhou, People's Republic of China
| | - Guang Yang
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
36
|
Mechaal A, Menif S, Abbes S, Safra I. EZH2, new diagnosis and prognosis marker in acute myeloid leukemia patients. Adv Med Sci 2019; 64:395-401. [PMID: 31331874 DOI: 10.1016/j.advms.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/06/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Acute myeloid leukemia (AML) is a heterogeneous disease. The discovery of novel discriminative biomarkers remains of utmost value for improving outcome predictions. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase of H3K27me3. It is frequently up-regulated in human cancers and associated with silencing of differentiation genes. We aimed herein to investigate the prevalence and prognosis impact of somatic EZH2 mutations and their potential associations with other prognostic markers FLT3, NPM1, DNMT3A and IDH2. MATERIALS AND METHODS Our study population was composed of 211 Tunisian patients with de novo AML and 14 healthy donors. The 11 last exons coding the set domain of EZH2 were investigated by PCR and Sanger sequencing. RESULTS EZH2 mutations were identified in 66/211 (31%) patients with a sex ratio of 1.06. The presence of EZH2 mutations was statistically significantly associated with failure consolidation therapy (p = 0.004). There were no differences in the incidence of EZH2 mutations and FLT3-ITD, NPM1, DNMT3A and IDH2 mutations. When EZH2 mutations were associated with those of FLT3 or IDH2, a short duration of progression free survival was observed (p < 0.05). Moreover, CD7 aberrant markers conferred a poor prognosis in EZH2 mutated patients (p < 0.05). CONCLUSIONS Given these data we conclude that EZH2 mutations are frequent in our patients, and can be used as a prognosis marker in combination with FLT3, IDH2 mutations and CD7 marker, to stratify AML patients and to guide therapeutic decisions.
Collapse
|
37
|
Li MY, Tang XH, Fu Y, Wang TJ, Zhu JM. Regulatory Mechanisms and Clinical Applications of the Long Non-coding RNA PVT1 in Cancer Treatment. Front Oncol 2019; 9:787. [PMID: 31497532 PMCID: PMC6712078 DOI: 10.3389/fonc.2019.00787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death worldwide, and no obvious decline in incidence and mortality has occurred in recent years. It is imperative to further investigate the mechanisms underlying tumor progression. Long non-coding RNAs have received considerable attention in recent years because of their major regulatory roles in gene expression. Among them, PVT1 is well-studied, and substantial evidence indicates that PVT1 plays critical roles in the onset and development of cancers. Normally, PVT1 acts as an oncogenic factor by promoting cancer cell proliferation, invasion, metastasis, and drug resistance. Herein, we summarize current knowledge regarding the regulatory effects of PVT1 in cancer progression, as well as the related underlying mechanisms, such as interaction with Myc, modulation of miRNAs, and regulation of gene transcription and protein expression. In extracellular fluid, PVT1 mainly promotes cancer initiation, and it normally enhances cellular cancer characteristics in the cytoplasm and cell nucleus. Regarding clinical applications, its role in drug resistance and its potential use as a diagnostic and prognostic marker have received increasing attention. We hope that this review will contribute to a better understanding of the regulatory role of PVT1 in cancer progression, paving the way for the development of PVT1-based therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Huan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tie-Jun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Ming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Akpa CA, Kleo K, Lenze D, Oker E, Dimitrova L, Hummel M. DZNep-mediated apoptosis in B-cell lymphoma is independent of the lymphoma type, EZH2 mutation status and MYC, BCL2 or BCL6 translocations. PLoS One 2019; 14:e0220681. [PMID: 31419226 PMCID: PMC6697340 DOI: 10.1371/journal.pone.0220681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) tri-methylates histone 3 at position lysine 27 (H3K27me3). Overexpression and gain-of-function mutations in EZH2 are regarded as oncogenic drivers in lymphoma and other malignancies due to the silencing of tumor suppressors and differentiation genes. EZH2 inhibition is sought to represent a good strategy for tumor therapy. In this study, we treated Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) cell lines with 3-deazaneplanocin—A (DZNep), an indirect EZH2 inhibitor which possesses anticancer properties both in-vitro and in-vivo. We aimed to address the impact of the lymphoma type, EZH2 mutation status, as well as MYC, BCL2 and BCL6 translocations on the sensitivity of the lymphoma cell lines to DZNep-mediated apoptosis. We show that DZNep inhibits proliferation and induces apoptosis of these cell lines independent of the type of lymphoma, the EZH2 mutation status and the MYC, BCL2 and BCL6 rearrangement status. Furthermore, DZNep induced a much stronger apoptosis in majority of these cell lines at a lower concentration, and within a shorter period when compared with EPZ-6438, a direct EZH2 inhibitor currently in phase II clinical trials. Apoptosis induction by DZNep was both concentration-dependent and time-dependent, and was associated with the inhibition of EZH2 and subsequent downregulation of H3K27me3 in DZNep-sensitive cell lines. Although EZH2, MYC, BCL2 and BCL6 are important prognostic biomarkers for lymphomas, our study shows that they poorly influence the sensitivity of lymphoma cell lines to DZNep-mediated apoptosis.
Collapse
Affiliation(s)
- Chidimma Agatha Akpa
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
- Berlin School of Integrative Oncology, Charité Medical University, Berlin, Berlin, Germany
- * E-mail:
| | - Karsten Kleo
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Dido Lenze
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Elisabeth Oker
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Lora Dimitrova
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Michael Hummel
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| |
Collapse
|
39
|
Zhang J, Li WY, Yang Y, Yan LZ, Zhang SY, He J, Wang JX. LncRNA XIST facilitates cell growth, migration and invasion via modulating H3 histone methylation of DKK1 in neuroblastoma. Cell Cycle 2019; 18:1882-1892. [PMID: 31208278 PMCID: PMC6681787 DOI: 10.1080/15384101.2019.1632134] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been confirmed to be aberrantly expressed and involved in the progression of neuroblastoma. This study aimed to explore the expression profile of lncRNA X-inactive specific transcript (XIST) and its functional involvement in neuroblastoma. In this study, the relative level of XIST in neuroblastoma tissues and cell lines was detected by qPCR, and DKK1 protein expression was determined using western blot. The effect of XIST on cell growth, invasion and migration in vitro and in tumorigenesis of neuroblastoma was assessed. The level of H3K27me3 in DKK1 promoter was analyzed with ChIP-qPCR. Interaction between XIST and EZH2 was verified by RNA immunoprecipitation (RIP) and RNA pull-down assay. XIST was significantly upregulated in neuroblastoma tissues (n = 30) and cells lines, and it was statistically associated with the age and International Neuroblastoma Staging System (INSS) staging in neuroblastoma patients. Downregulation of XIST suppressed the growth, migration and invasion of neuroblastoma cells. EZH2 inhibited DKK1 expression through inducing H3 histone methylation in its promoter. XIST increased the level of H3K27me3 in DKK1 promoter via interacting with EZH2. Downregulation of XIST increased DKK1 expression to suppress neuroblastoma cell growth, invasion, and migration, which markedly restrained the tumor progression. In conclusion, XIST downregulated DKK1 by inducing H3 histone methylation via EZH2, thereby facilitating the growth, migration and invasion of neuroblastoma cells and retarding tumor progression.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- CONTACT Jiao Zhang
| | - Wen-Ya Li
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li-Zhao Yan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Song-Yang Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jia-Xiang Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Zhi H, Lian J. LncRNA BDNF-AS suppresses colorectal cancer cell proliferation and migration by epigenetically repressing GSK-3β expression. Cell Biochem Funct 2019; 37:340-347. [PMID: 31062382 DOI: 10.1002/cbf.3403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
This study was designed to investigate the molecular mechanism and biological roles of long non-coding RNA (lncRNA) brain-derived neurotrophic factor antisense (BDNF-AS) in colorectal cancer (CRC). The quantitative real-time PCR (qRT-PCR) and western blotting were performed to detect the expressions of lncRNA BDNF-AS and glycogen synthase kinase-3β (GSK-3β) in human CRC tissues and cell lines. The cell proliferation, transwell migration, and invasion assays were carried out to evaluate the effect of lncRNA BDNF-AS on the growth of CRC cells. RNA pull-down and RNA immunoprecipitation (RIP) assays were conducted to confirm the interaction between lncRNA BDNF-AS and enhancer of Zeste Homologue 2 (EZH2). Chromatin immunoprecipitation (ChIP) assay was used to verify the enrichment of EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) in the promoter region of GSK-3β in CRC cells. LncRNA BDNF-AS expression was significantly decreased, while GSK-3β was highly expressed in human CRC tissues and cell lines. Moreover, lncRNA BDNF-AS induced inhibition of proliferation, migration, and invasion of CRC cells via inhibiting GSK-3β expression. Mechanistically, BDNF-AS led to GSK-3β promoter silencing in CRC cells through recruitment of EZH2. In conclusion, lncRNA BDNF-AS functioned as an oncogene in CRC and shed new light on lncRNA-directed therapeutics in CRC. SIGNIFICANCE OF THE STUDY: LncRNA BDNF-AS is recently reported to be remarkably downregulated in a variety of tumours and served as a tumour suppressor. However, the functions and underlying mechanism of lncRNA BDNF-AS in CRC pathogenesis have not been reported yet. Our study is the first to demonstrate the effect of lncRNA BDNF-AS in CRC and revealed that lncRNA BDNF-AS expression is negatively correlated with the aggressive biological behaviour of CRC. Further investigation demonstrated that lncRNA BDNF-AS functioned as a tumour suppressor in CRC progression by suppressing GSK-3β expression through binding to EZH2 and H3K27me3 with the GSK-3β promoter, shedding light on the diagnosis and therapy for CRC.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Anorectal Surgery, ZhouKou Central Hospital, Zhoukou, Henan, China
| | - Jiayu Lian
- Department of Anorectal Surgery, ZhouKou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
41
|
Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB, Zhang Z. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother 2019; 115:108912. [PMID: 31048188 DOI: 10.1016/j.biopha.2019.108912] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell types, including osteogenic, chondrogenic and adipogenic lineages. Osteogenic differentiation of MSCs plays a critical role in bone tissue engineering. Inducing MSC osteogenesis represents a potential treatment that promotes bone formation and bone regeneration. Recently, long non-coding RNA (lncRNA) was shown to participate in the occurrence and development of various diseases. Different lncRNA expression patterns can regulate the cell cycle, proliferation, metastasis, immunobiology and differentiation. With the recent extensive study of lncRNAs, an increasing number of lncRNAs are being studied in the MSC field. Furthermore, some lncRNAs have been confirmed to regulate MSC osteogenesis. Therefore, here, we review research concerning lncRNA in osteogenic differentiation of MSCs and highlight the importance of lncRNA in bone formation and bone regeneration.
Collapse
Affiliation(s)
- Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yuan-Wei Zhang
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yu Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
42
|
Yagnik G, Rutowski MJ, Shah SS, Aghi MK. Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 2019; 10:2212-2223. [PMID: 31040912 PMCID: PMC6481336 DOI: 10.18632/oncotarget.26775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
Tumor-associated macrophages (TAMs) polarize to M1 and M2 subtypes exerting anti-tumoral and pro-tumoral effects, respectively. To date, little is known about TAMs, their subtypes, and their roles in non-functional pituitary adenomas (NFPAs). We performed flow cytometry on single cell suspensions from 16 NFPAs, revealing that CD11b+ myeloid cells comprise an average of 7.3% of cells in NFPAs (range = 0.5%–27.1%), with qPCR revealing most CD11b+ cells to be monocyte-derived TAMs rather than native microglia. The most CD11b-enriched NFPAs (10–27% CD11b+) were the most expansile (size>3.5 cm or MIB1>3%). Increasing CD11b+ fraction was associated with decreased M2 TAMs and increased M1 TAMs. All NFPAs with cavernous sinus invasion had M2/M1 gene expression ratios above one, while 80% of NFPAs without cavernous sinus invasion had M2/M1<1 (P = 0.02). Cultured M2 macrophages promoted greater invasion (P < 10-5) and proliferation (P = 0.03) of primary NFPA cultures than M1 macrophages in a manner inhibited by siRNA targeting S100A9 and EZH2, respectively. Primary NFPA cultures were of two types: some recruited more monocytes in an MCP-1-dependent manner and polarized these to M2 TAMs, while others recruited fewer monocytes and polarized them to M1 TAMS in a GM-CSF-dependent manner. These findings suggest that TAM recruitment and polarization into the pro-tumoral M2 subtype drives NFPA proliferation and invasion. Robust M2 TAM infiltrate may occur during an NFPA growth phase before self-regulating into a slower growth phase with fewer overall TAMs and M1 polarization. Analyses like these could generate immunomodulatory therapies for NFPAs.
Collapse
Affiliation(s)
- Garima Yagnik
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Martin J Rutowski
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sumedh S Shah
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
43
|
Kumari K, Das B, Adhya AK, Rath AK, Mishra SK. Genome-wide expression analysis reveals six contravened targets of EZH2 associated with breast cancer patient survival. Sci Rep 2019; 9:1974. [PMID: 30760814 PMCID: PMC6374476 DOI: 10.1038/s41598-019-39122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/27/2018] [Indexed: 01/31/2023] Open
Abstract
Several pioneering work have established that apart from genetic alterations, epigenetic modifications contribute significantly in tumor progression. Remarkable role of EZH2 in cancer highlights the importance of identifying its targets. Although much emphasis has been placed in recent years in designing drugs and inhibitors targeting EZH2, less effort has been given in exploring its existing targets that will help in understanding the oncogenic role of EZH2 in turn which may provide a more stringent method of targeting EZH2. In the present study, we validated six direct targets of EZH2 that are GPNMB, PMEPA1, CoL5A1, VGLL4, POMT2 and SUMF1 associated with cancer related pathways. Upon EZH2 knockdown, more than two fold increase in the target gene expression was evident. CHIP-qPCR performed in both MCF-7 and MDA-MDA-231 confirmed the in-vivo binding of EZH2 on its identified target. Thirty invasive breast carcinoma cases with their adjacent normal tissues were included in the study. Immunohistochemistry in primary breast tumor tissue array showed tumor dependent expression of EZH2. Array of MERAV expression database revealed the strength of association of EZH2 with its target genes. Real time PCR performed with RNA extracted from breast tumor tissues further authenticated the existing negative correlation between EZH2 and its target genes. Pearson correlation coefficient & statistical significance computed using the matrix provided in the database strengthened the negative correlation between identified target genes and EZH2. KM plotter analysis showed improved relapse-free survival with increased expression of PMEPA1, POMT2, VGLL4 and SUMF1 in breast cancer patients indicating their therapeutic potential. While investigating the relevance of these target genes, different mutations of them were found in breast cancer patients. Seeking the clinical relevance of our study, following our recent publication that reports the role of EZH2 in nicotine-mediated breast cancer development and progression, we observed significant reduced expression of SUMF1 in breast cancer patient samples with smoking history in comparison to never-smoked patient samples.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Utkal University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Department of Translational Research, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Manipal University, Manipal, Karnataka, India
| | - Amit K Adhya
- Department of Pathology, AIIMS, Bhubaneswar, Odisha, India
| | - Arabinda K Rath
- Hemalata Hospitals and Research Centre, Chandrashekharpur, Bhubaneswar, Odisha, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
44
|
Kogan AA, Lapidus RG, Baer MR, Rassool FV. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment. Adv Cancer Res 2019; 141:213-253. [PMID: 30691684 DOI: 10.1016/bs.acr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) derives from the clonal expansion of immature myeloid cells in the bone marrow, and results in the disruption of normal hematopoiesis and subsequent bone marrow failure. The bone marrow microenvironment (BME) and its immune and other supporting cells are regarded to facilitate the survival, differentiation and proliferation of leukemia stem cells (LSCs), which enables AML cells to persist and expand despite treatment. Recent studies have identified epigenetic modifications among AML cells and BME constituents in AML, and have shown that epigenetic therapy can potentially reprogram these alterations. In this review, we summarize the interactions between the BME and LSCs, and discuss changes in how the BME and immune cells interact with AML cells. After describing the epigenetic modifications seen across chromatin, DNA, the BME, and the immune microenvironment, we explore how demethylating agents may reprogram these pathological interactions, and potentially re-sensitize AML cells to treatment.
Collapse
Affiliation(s)
- Aksinija A Kogan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
45
|
Dong W, Xie F, Chen XY, Huang WL, Zhang YZ, Luo WB, Chen J, Xie MT, Peng XP. Inhibition of Smurf2 translation by miR-322/503 protects from ischemia-reperfusion injury by modulating EZH2/Akt/GSK3β signaling. Am J Physiol Cell Physiol 2019; 317:C253-C261. [PMID: 30649914 DOI: 10.1152/ajpcell.00375.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) is a common and lethal disease that threatens people's life worldwide. The underlying mechanisms are under intensive study and yet remain unclear. Here, we explored the function of miR-322/503 in myocardial I/R injury. We used isolated rat perfused heart as an in vivo model and H9c2 cells subjected with the oxygen and glucose deprivation followed by reperfusion as in vitro model to study myocardial I/R injury. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to measure the infarct size, and terminal deoxynucleotidyl transferase dUTP-mediated nick-end label (TUNEL) staining was used to examine apoptosis. Quantitative RT-PCR and Western blot were used to determine expression levels of miR-322/503, Smad ubiquitin regulatory factor 2 (Smurf2), enhancer of zeste homolog 2 (EZH2), p-Akt, and p-GSK3β. Overexpression of miR-322/503 decreased infarct size, inhibited cell apoptosis, and promoted cell proliferation through upregualtion of p-Akt and p-GSK3β. Thus the expression of miR-322/503 was reduced during I/R process. On the molecular level, miR-322/503 directly bound Smurf2 mRNA and suppressed its translation. Smurf2 ubiquitinated EZH2 and degraded EZH2, which could activate Akt/GSK3β signaling. Our study demonstrates that miR-322/503 plays a beneficial role in myocardial I/R injury. By inhibition of Smurf2 translation, miR-322/503 induces EZH2 expression and activates Akt/GSK3β pathway, thereby protecting cells from ischemia reperfusion injury.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fei Xie
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan-Ying Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wei-Lin Huang
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yu-Zhen Zhang
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wen-Bo Luo
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jin Chen
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ming-Tuan Xie
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiao-Ping Peng
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
46
|
Liu J, Liang L, Huang S, Nong L, Li D, Zhang B, Li T. Aberrant differential expression of EZH2 and H3K27me3 in extranodal NK/T-cell lymphoma, nasal type, is associated with disease progression and prognosis. Hum Pathol 2019; 83:166-176. [DOI: 10.1016/j.humpath.2018.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
|
47
|
Su M, Xiao Y, Tang J, Wu J, Ma J, Tian B, Zhou Y, Wang H, Yang D, Liao QJ, Wang W. Role of lncRNA and EZH2 Interaction/Regulatory Network in Lung Cancer. J Cancer 2018; 9:4156-4165. [PMID: 30519315 PMCID: PMC6277609 DOI: 10.7150/jca.27098] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts and longer than 200 nucleotides. LncRNAs have been demonstrated to modulate gene expression at transcriptional, post-transcriptional, as well as epigenetic levels in lung cancer. Interestingly, compelling studies have revealed that lncRNAs participated in the EZH2 oncogenic regulatory network. EZH2 plays an important role in the initiation, progression and metastasis of cancer. On one hand, lncRNAs can directly bind to EZH2, recruit EZH2 to the promoter region of genes and repress their expression. On the other hand, lncRNAs can also serve as EZH2 effectors or regulators. In this review, we summarized the types of lncRNA-EZH2 interaction and regulatory network identified till date and discussed their influence on lung cancer. Better understanding regarding the interaction and regulatory network will provide new insights on lncRNA- or EZH2-based therapeutic development in lung cancer.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410001, P.R. China
| | - Jinming Tang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Wang
- Department of Thoracic Radiotherapy, Key laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qian-Jin Liao
- Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
48
|
Salisbury TB, Arthur S. The Regulation and Function of the L-Type Amino Acid Transporter 1 (LAT1) in Cancer. Int J Mol Sci 2018; 19:ijms19082373. [PMID: 30103560 PMCID: PMC6121554 DOI: 10.3390/ijms19082373] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer is associated with increases in amino acid uptake by cancer cells. Upon their entry into cells through specific transporters, exogenous amino acids are used to synthesize proteins, nucleic acids and lipids and to generate ATP. The essential amino acid leucine is also important for maintaining cancer-associated signaling pathways. By upregulating amino acid transporters, cancer cells gain greater access to exogenous amino acids to support chronic proliferation, maintain metabolic pathways, and to enhance certain signal transduction pathways. Suppressing cancer growth by targeting amino acid transporters will require an in-depth understanding of how cancer cells acquire amino acids, in particular, the transporters involved and which cancer pathways are most sensitive to amino acid deprivation. L-Type Amino Acid Transporter 1 (LAT1) mediates the uptake of essential amino acids and its expression is upregulated during the progression of several cancers. We will review the upstream regulators of LAT1 and the downstream effects caused by the overexpression of LAT1 in cancer cells.
Collapse
Affiliation(s)
- Travis B Salisbury
- Departments of Biomedical Sciences and Clinical & Translational Science, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Subha Arthur
- Departments of Biomedical Sciences and Clinical & Translational Science, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
49
|
Chen Y, Liu X, Li Y, Quan C, Zheng L, Huang K. Lung Cancer Therapy Targeting Histone Methylation: Opportunities and Challenges. Comput Struct Biotechnol J 2018; 16:211-223. [PMID: 30002791 PMCID: PMC6039709 DOI: 10.1016/j.csbj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common malignancies. In spite of the progress made in past decades, further studies to improve current therapy for lung cancer are required. Dynamically controlled by methyltransferases and demethylases, methylation of lysine and arginine residues on histone proteins regulates chromatin organization and thereby gene transcription. Aberrant alterations of histone methylation have been demonstrated to be associated with the progress of multiple cancers including lung cancer. Inhibitors of methyltransferases and demethylases have exhibited anti-tumor activities in lung cancer, and multiple lead candidates are under clinical trials. Here, we summarize how histone methylation functions in lung cancer, highlighting most recent progresses in small molecular inhibitors for lung cancer treatment.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- DUSP3, dual-specificity phosphatase 3
- EMT, epithelial-to-mesenchymal transition
- Elk1, ETS-domain containing protein
- HDAC, histone deacetylase
- Histone demethylase
- Histone demethylation
- Histone methylation
- Histone methyltransferase
- IHC, immunohistochemistry
- Inhibitors
- KDMs, lysine demethylases
- KLF2, Kruppel-like factor 2
- KMTs, lysine methyltransferases
- LSDs, lysine specific demethylases
- Lung cancer
- MEP50, methylosome protein 50
- NSCLC, non-small cell lung cancer
- PAD4, peptidylarginine deiminase 4
- PCNA, proliferating cell nuclear antigen
- PDX, patient-derived xenografts
- PRC2, polycomb repressive complex 2
- PRMTs, protein arginine methyltrasferases
- PTMs, posttranslational modifications
- SAH, S-adenosyl-L-homocysteine
- SAM, S-adenosyl-L-methionine
- SCLC, small cell lung cancer
- TIMP3, tissue inhibitor of metalloproteinase 3
Collapse
Affiliation(s)
- Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chuntao Quan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
50
|
Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, Solali S. Double sword role of EZH2 in leukemia. Biomed Pharmacother 2018; 98:626-635. [DOI: 10.1016/j.biopha.2017.12.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
|