1
|
Wang K, Chen X. Protective effect of flavonoids on oxidative stress injury in Alzheimer's disease. Nat Prod Res 2025; 39:1272-1299. [PMID: 38910339 DOI: 10.1080/14786419.2024.2345760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which is mainly caused by the damage of the structure and function of the central nervous system. At present, there are many adverse reactions in market-available drugs, which can't significantly inhibit the occurrence of AD. Therefore, the current focus of research is to find safe and effective therapeutic drugs to improve the clinical treatment of AD. Oxidative stress bridges different mechanism hypotheses of AD and plays a key role in AD. Numerous studies have shown that natural flavonoids have good antioxidant effects. They can directly or indirectly resist -oxidative stress, inhibit Aβ aggregation and Tau protein hyperphosphorylation by activating Nrf2 and other oxidation-antioxidation-related signals, regulating synaptic function-related pathways, promoting mitochondrial autophagy, etc., and play a neuroprotective role in AD. In this review, we summarised the mechanism of flavonoids inhibiting oxidative stress injury in AD in recent years. Moreover, because of the shortcomings of poor biofilm permeability and low bioavailability of flavonoids, the advantages and recent research progress of nano-drug delivery systems such as liposomes and solid lipid nanoparticles were highlighted. We hope this review provides a useful way to explore safe and effective AD treatments.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinmei Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Carrasco M, Guzman L, Olloquequi J, Cano A, Fortuna A, Vazquez-Carrera M, Verdaguer E, Auladell C, Ettcheto M, Camins A. Licochalcone A prevents cognitive decline in a lipopolysaccharide-induced neuroinflammation mice model. Mol Med 2025; 31:54. [PMID: 39930360 PMCID: PMC11812219 DOI: 10.1186/s10020-025-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Inflammation plays a key role in the development of neurodegenerative disorders that are currently incurable. Licochalcone A (LCA) has been described as an emerging anti-inflammatory drug with multiple therapeutical properties that could potentially prevent neurodegeneration. However, its neuroprotective mechanism remains unclear. Here, we investigated if LCA prevents cognitive decline induced by Lipopolysaccharide (LPS) and elucidated its potential benefits. For that, 8-week-old C57BL6/J male mice were intraperitonially (i.p.) treated with saline solution or LCA (15 mg/kg/day, 3 times per week) for two weeks. The last day, a single i.p injection of LPS (1 mg/kg) or saline solution was administered 24 h before sacrifice. The results revealed a significant reduction in mRNA expression in genes involved in oxidative stress (Sod1, Cat, Pkm, Pdha1, Ndyfv1, Uqcrb1, Cycs and Cox4i1), metabolism (Slc2a1, Slc2a2, Prkaa1 and Gsk3b) and synapsis (Bdnf, Nrxn3 and Nlgn2) in LPS group compared to saline. These findings were linked to memory impairment and depressive-like behavior observed in this group. Interestingly, LCA protected against LPS alterations through its anti-inflammatory effect, reducing gliosis and regulating M1/M2 markers. Moreover, LCA-treated animals showed a significant improvement of antioxidant mechanisms, such as citrate synthase activity and SOD2. Additionally, LCA demonstrated protection against metabolic disturbances, downregulating GLUT4 and P-AKT, and enhanced the expression of synaptic-related proteins (P-CREB, BDNF, PSD95, DBN1 and NLG3), leading all together to dendritic spine preservation. In conclusion, our results demonstrate that LCA treatment prevents LPS-induced cognitive decline by reducing inflammation, enhancing the antioxidant response, protecting against metabolic disruptions and improving synapsis related mechanisms.
Collapse
Affiliation(s)
- Marina Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Laura Guzman
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Amanda Cano
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Fortuna
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT/ICNAS, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Manuel Vazquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Networking Research Centre of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain.
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| |
Collapse
|
3
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
4
|
Giangrandi I, Dinu M, Napoletano A, Maggini V, Lombardi N, Crescioli G, Gallo E, Mascherini V, Antonelli M, Donelli D, Vannacci A, Firenzuoli F, Sofi F. Licorice and liver function in patients with primary liver disease: A systematic review and meta-analysis of RCTs. Phytother Res 2024; 38:4614-4627. [PMID: 39079711 DOI: 10.1002/ptr.8288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/24/2024] [Accepted: 06/23/2024] [Indexed: 10/25/2024]
Abstract
Licorice (Glycyrrhiza spp.) has been a cornerstone of traditional Chinese and Japanese medicine. This systematic review and meta-analysis aimed to evaluate the efficacy of licorice formulations, alone or in combination with other herbs, on liver function enzymes in patients with primary liver disease. We systematically searched MEDLINE, Embase, Scopus, Web of Science, and Cochrane Library up to April 2024. Randomized controlled trials (RCTs) comparing the effects of Glycyrrhiza spp. preparations versus placebo or standard of care controls were included. Standard Cochrane methods were used to extract data and appraise eligible studies. A total of 15 RCTs, involving 1367 participants, were included in the analysis. The studies varied widely in geographical location, duration, and licorice preparations used. Licorice significantly reduced alanine aminotransferase (ALT) by 15.63 U/L (95% CI: -25.08, -6.18; p = 0.001) and aspartate aminotransferase (AST) by 7.37 U/L (95% CI: -13.13, -1.61; p = 0.01) compared to control groups. Subgroup analyses revealed that purified glycyrrhizic acid compounds were particularly effective, showing greater reductions in ALT and AST without significant heterogeneity. Although licorice treatment did not significantly impact gamma-glutamyl transferase and total bilirubin (TBIL) levels overall, specific licorice-herb preparations did show a notable reduction in TBIL. The safety profile of licorice was consistent with known side effects, predominantly mild and related to its mineralocorticoid effects. Despite heterogeneity and potential language bias, the findings suggest that licorice can enhance liver function. Further studies should standardize licorice preparations and explore its role in multifaceted herbal formulations to better understand its hepatoprotective mechanisms.
Collapse
Affiliation(s)
- Ilaria Giangrandi
- Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Antonia Napoletano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Valentina Maggini
- Research and Innovation Center for Phytotherapy and Integrated Medicine - Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Niccolò Lombardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Integrative Medicine Unit, Tuscan Regional Centre of Pharmacovigilance, Florence, Italy
| | - Giada Crescioli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Integrative Medicine Unit, Tuscan Regional Centre of Pharmacovigilance, Florence, Italy
| | - Eugenia Gallo
- Research and Innovation Center for Phytotherapy and Integrated Medicine - Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Vittorio Mascherini
- Research and Innovation Center for Phytotherapy and Integrated Medicine - Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Michele Antonelli
- Deparment of Public Health, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Davide Donelli
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alfredo Vannacci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Integrative Medicine Unit, Tuscan Regional Centre of Pharmacovigilance, Florence, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center for Phytotherapy and Integrated Medicine - Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Francesco Sofi
- Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Chen H, Ren L, Yang Y, Long W, Lan W, Yang J, Fu H. Three-dimensional fluorescence combined with alternating trilinear decomposition and random forest algorithm for the rapid prediction of species, geographical origin and main components of Glycyrrhizae Radix et Rhizoma (Gancao). Food Chem 2024; 444:138603. [PMID: 38330604 DOI: 10.1016/j.foodchem.2024.138603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Glycyrrhizae Radix et Rhizoma (Gancao) is a functional food whose quality varies significantly between distinct geographical sources owing to the influence of genetics and the geographical environment. This study employed three-dimensional fluorescence coupled with alternating trilinear decomposition (ATLD) and random forest (RF) algorithms to rapidly predict Gancao species, geographical origins, and primary constituents. Seven fluorescent components were resolved from the three-dimensional fluorescence of the ATLD for subsequent analysis. Results indicated that the RF model distinguished Gancao from various species and origins better than other algorithms, achieving an accuracy of 94.4 % and 88.9 %, respectively. Furthermore, the RF regressor algorithm was used to predict the concentrations of liquiritin and glycyrrhizic acid in Gancao, with 96.4 % and 95.6 % prediction accuracies compared to HPLC, respectively. This approach offers a novel means of objectively evaluating the origin of food and holds substantial promise for food quality assessment.
Collapse
Affiliation(s)
- Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Lixue Ren
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yinan Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Alsharairi NA. The Role of Licorice Chalcones as Molecular Genes and Signaling Pathways Modulator-A Review of Experimental Implications for Nicotine-Induced Non-Small Cell Lung Cancer Treatment. Curr Issues Mol Biol 2024; 46:5894-5908. [PMID: 38921023 PMCID: PMC11202283 DOI: 10.3390/cimb46060352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Lung cancer (LC) represents the leading cause of global cancer deaths, with cigarette smoking being considered a major risk factor. Nicotine is a major hazardous compound in cigarette smoke (CS), which stimulates LC progression and non-small cell lung cancer (NSCLC) specifically through activation of the nicotinic acetylcholine receptor (α7nAChR)-mediated cell-signaling pathways and molecular genes involved in proliferation, angiogenesis, and metastasis. Chalcones (CHs) and their derivatives are intermediate plant metabolites involved in flavonol biosynthesis. Isoliquiritigenin (ILTG), licochalcone A-E (LicoA-E), and echinatin (ECH) are the most common natural CHs isolated from the root of Glycyrrhiza (also known as licorice). In vitro and/or vivo experiments have shown that licorice CHs treatment exhibits a range of pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite advances in NSCLC treatment, the mechanisms of licorice CHs in nicotine-induced NSCLC treatment remain unknown. Therefore, the aim of this paper is to review experimental studies through the PubMed/Medline database that reveal the effects of licorice CHs and their potential mechanisms in nicotine-induced NSCLC treatment.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
7
|
Liu Y, Wang Y, Yang Y, Quan Y, Guo M. Liquiritigenin Induces Cell Cycle Arrest and Apoptosis in Lung Squamous Cell Carcinoma. Cell Biochem Biophys 2024; 82:1397-1407. [PMID: 38775930 DOI: 10.1007/s12013-024-01294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/25/2024]
Abstract
Liquiritigenin (LQ), as a dihydroflavone monomer compound extracted from Glycyrrhiza uralensis Fisch, has been demonstrated to show anti-tumor effects in multiple human cancers, including lung adenocarcinoma. Our study aimed to explore its role in lung squamous cell carcinoma (LSCC) development and the related mechanism. The effects of LQ on SK-MES-1 and NCI-H520 cell proliferation, cell cycle, and apoptosis were investigated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays revealed that LQ inhibited LSCC cell viability and proliferation in a dose- and time-dependent manner. Flow cytometry analysis demonstrated that LQ promoted G2/M cell cycle arrest, cell apoptosis, and loss of mitochondrial membrane potential. In vivo assays showed that LQ administration suppressed tumor growth in nude mice. Additionally, LQ treatment reduced the levels of phosphorylated PI3K, AKT, and mTOR levels in LSCC cells. Pretreatment with the PI3K inhibitor LY294002 antagonized the LQ-mediated effects on cell proliferation, cell cycle arrest, and apoptosis in LSCC cells. Collectively, LQ induces cell cycle arrest and apoptosis in LSCC by inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yixiao Wang
- Department of Dermatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Yiran Yang
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Mingxing Guo
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
8
|
Ahmad K, Lee EJ, Ali S, Han KS, Hur SJ, Lim JH, Choi I. Licochalcone A and B enhance muscle proliferation and differentiation by regulating Myostatin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155350. [PMID: 38237512 DOI: 10.1016/j.phymed.2024.155350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul 05702, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
9
|
Song L, Xu J, Shi Y, Zhao H, Zhang M, Wang Y, Cui Y, Chai X. An integrated strategy of UPLC-Q-TOF-MS analysis, network pharmacology, and molecular docking to explore the chemical constituents and mechanism of Zixue Powder against febrile seizures. Heliyon 2024; 10:e23865. [PMID: 38192830 PMCID: PMC10772254 DOI: 10.1016/j.heliyon.2023.e23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Febrile seizures (FS) are the most common type of seizures for children. As a commonly used representative cold formula for resuscitation, Zixue Powder (ZP) has shown great efficacy for the treatment of FS in clinic, while its active ingredients and underlying mechanism remain largely unclear. This study aimed to preliminarily elucidate the material basis of ZP and the potential mechanism for the treatment of FS through ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), network pharmacology, and molecular docking. UPLC-Q-TOF-MS was firstly applied to characterize the ingredients in ZP, followed by network pharmacology to explore the potential bioactive ingredients and pathways of ZP against FS. Furthermore, molecular docking technique was employed to verify the binding affinity between the screened active ingredients and targets. As a result, 75 ingredients were identified, containing flavonoids, chromogenic ketones, triterpenes and their saponins, organic acids, etc. Through the current study, we focused on 13 potential active ingredients and 14 key potential anti-FS targets of ZP, such as IL6, STAT3, TNF, and MMP9. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that inflammatory response, EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications, and neuroactive ligand-receptor interaction were the main anti-FS signaling pathways. Licochalcones A and B, 26-deoxycimicifugoside, and hederagenin were screened as the main potential active ingredients by molecular docking. In conclusion, this study provides an effective in-depth investigation of the chemical composition, potential bioactive components, and possible anti-FS mechanism of ZP, which lays the foundation for pharmacodynamic studies and clinical applications of ZP.
Collapse
Affiliation(s)
- Lingling Song
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jian Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqiong Shi
- Department of Pharmacy, Xuhui District Central Hospital, Shanghai, 200031, China
| | - Hemiao Zhao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Ying Cui
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
10
|
Chen D, Ren Y, Jin J, Liu S, Zhan X, Li X, Liang R, Ding Z. Pingchong Jiangni recipe through nerve growth factor/transient receptor potential vanilloid 1 signaling pathway to relieve pain in endometriosis model rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116940. [PMID: 37479067 DOI: 10.1016/j.jep.2023.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pingchong Jiangni recipe (PJR) is often used in the treatment of endometriosis (EM). This formula has been clinically validated by the State Administration of Traditional Chinese Medicine Key Specialties Collaborative Group for its therapeutic efficacy. Recently, our research team also confirmed that PJR has a shrinking effect on ovarian chocolate cysts. Additionally, PJR was also found to have a shrinking effect on EM lesions; however, the mechanism by which this effect occurs remains unclear. AIM OF THE STUDY To explore the mechanisms by which PJR relieves pain in patients with EM. MATERIALS AND METHODS A rat model of EM was established by autologous transplantation. PJR (3.78 g/kg, 7.56 g/kg, and 15.12 g/kg) was orally administered for 21 days. The rat grimace scale (RGS) score and paw withdrawal threshold (PWT) were measured at a fixed time during the experiment. Hematoxylin and eosin staining was performed to observe histopathological changes in EM rats after administration, enzyme-linked immunosorbent assay to evaluate the plasma expression of tumor necrosis factor-α (TNF-α) and nerve growth factor (NGF), and immunohistochemistry and western blotting to identify differences in the expression of pain-related factors in EM rats. RESULTS The medium-dose group of PJR (7.56 g/kg) had the best effect on relieving pain in EM rats by reducing RGS, increasing PWT, reducing the ectopic endometrium, improving the cellular structure of the lesion, and reducing TNF-α and NGF levels. However, PJR significantly decreased the expression of transient receptor potential vanilloid 1 (TRPV1), phosphorylated TRPV1 (p-TRPV1), protein kinase C (PKC), and NGF. CONCLUSION The mechanism by which PJR relieves EM pain may be through the downregulation of NGF, PKC, and TRPV1 expression.
Collapse
Affiliation(s)
- Danni Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yunying Ren
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Jing Jin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Shuzhen Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xiaoxuan Zhan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xin Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Ruining Liang
- Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Zhiling Ding
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
11
|
Hwang SY, Wi K, Yoon G, Lee CJ, Lee SI, Jung JG, Jeong HW, Kim JS, Choi CH, Na CS, Shim JH, Lee MH. Licochalcone D Inhibits Skin Epidermal Cells Transformation through the Regulation of AKT Signaling Pathways. Biomol Ther (Seoul) 2023; 31:682-691. [PMID: 37899745 PMCID: PMC10616519 DOI: 10.4062/biomolther.2023.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl-2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.
Collapse
Affiliation(s)
- Sun-Young Hwang
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Kwanhwan Wi
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Soong-In Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jong-gil Jung
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Hyun-Woo Jeong
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jeong-Sang Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Chan-Heon Choi
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| |
Collapse
|
12
|
Lin JH, Yang KT, Ting PC, Lee WS, Lin DJ, Chang JC. Licochalcone a improves cardiac functions after ischemia-reperfusion via reduction of ferroptosis in rats. Eur J Pharmacol 2023; 957:176031. [PMID: 37660967 DOI: 10.1016/j.ejphar.2023.176031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury triggers several cell death types, including apoptosis, autophagy, and ferroptosis. Licochalcone A (LCA), a natural flavonoid compound isolated from the root of Glycyrrhiza glabra, has been demonstrated to exert potential pharmacological benefits, such as antioxidant, antitumor, and anti-inflammatory activities. The present study aimed to investigate the involvement of ferroptosis in the pathogenesis of I/R and determine whether LCA can inhibit ferroptosis to prevent the myocardial I/R injury in rats. The effects of LCA on myocardial I/R injury were detected by examining the left ventricular-developed pressure and triphenyltetrazolium chloride staining. We conducted Western blotting analyses, ELISA assay, and quantitative real-time PCR to determine the levels of ferroptosis-related molecules. To demonstrate the cardioprotective effect of LCA in vitro, H9c2 and primary neonatal rat cardiomyocytes were co-treated with ferroptosis inducers (erastin, RSL3, or Fe-SP) and LCA for 16 and 24 h. Our ex vivo study showed that LCA increased the cardiac contractility, and reduced the infarct volume and ferroptosis-related biomarkers in rat hearts after I/R. Moreover, LCA reduced the levels of ferroptosis inducers-induced reactive oxygen species generation, lipid peroxidation, and ferroptosis-related biomarkers in cultured H9c2 cells and cardiomyocytes. LCA also reduced the Fe-SP-increased nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 protein levels in cultured cardiomyocytes. In the present study, we showed that the LCA-induced cardioprotective effects in attenuating the myocardial I/R injury were correlated with ferroptosis regulation, and provided a possible new therapeutic strategy for prevention or therapy of the myocardial I/R injury.
Collapse
Affiliation(s)
- Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.
| | - Kun-Ta Yang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Pei-Ching Ting
- PhD Program in Pharmacology and Toxicology, School of Medicine Tzu Chi University, Hualien 97004, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Wen-Sen Lee
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; Department of Surgery, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan R.O.C.
| |
Collapse
|
13
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
14
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Leite FF, de Sousa NF, de Oliveira BHM, Duarte GD, Ferreira MDL, Scotti MT, Filho JMB, Rodrigues LC, de Moura RO, Mendonça-Junior FJB, Scotti L. Anticancer Activity of Chalcones and Its Derivatives: Review and In Silico Studies. Molecules 2023; 28:molecules28104009. [PMID: 37241750 DOI: 10.3390/molecules28104009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Chalcones are direct precursors in the biosynthesis of flavonoids. They have an α,β-unsaturated carbonyl system which gives them broad biological properties. Among the biological properties exerted by chalcones, their ability to suppress tumors stands out, in addition to their low toxicity. In this perspective, the present work explores the role of natural and synthetic chalcones and their anticancer activity in vitro reported in the last four years from 2019 to 2023. Moreover, we carried out a partial least square (PLS) analysis of the biologic data reported for colon adenocarcinoma lineage HCT-116. Information was obtained from the Web of Science database. Our in silico analysis identified that the presence of polar radicals such as hydroxyl and methoxyl contributed to the anticancer activity of chalcones derivatives. We hope that the data presented in this work will help researchers to develop effective drugs to inhibit colon adenocarcinoma in future works.
Collapse
Affiliation(s)
- Fernando Ferreira Leite
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Natália Ferreira de Sousa
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Bruno Hanrry Melo de Oliveira
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Gabrielly Diniz Duarte
- Post-Graduate Program in Development and Innovation of Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Maria Denise Leite Ferreira
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - José Maria Barbosa Filho
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Luís Cezar Rodrigues
- Post-Graduate Program in Development and Innovation of Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Ricardo Olímpio de Moura
- Post-Graduate Program in Pharmaceuticals Sciences Paraiba State University, Campina Grande 58429-500, Brazil
| | | | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
16
|
Fang M, Su K, Wang X, Guan P, Hu X. Study on molecular mechanisms of destabilizing Aβ(1-42) protofibrils by licochalcone A and licochalcone B using molecular dynamics simulations. J Mol Graph Model 2023; 122:108500. [PMID: 37094420 DOI: 10.1016/j.jmgm.2023.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Amyloid-beta (Aβ) protofibrils are closely related to Alzheimer's disease. Their behaviors with or without the presence of Aβ fibrillization inhibitors have been intensively studied by molecular dynamics simulations. In this work, the molecular mechanisms of licochalcone A and licochalcone B on destabilizing Aβ(1-42) protofibrils are explored. It is found that both two licochalcones can disorder the configuration of the Aβ(1-42) protofibril. The stable interactions between the Aβ(1-42) protofibril and licochalcone A or licochalcone B are able to be formed. A reduction of the β-sheet structure contents and an increment of the random coil structures of Aβ(1-42) protofibril are observed in the presence of either licochalcone A or licochalcone B. The hydrogen bonds inside the Aβ(1-42) protofibril could be partially collapsed to varying degrees by two licochalcones. Furthermore, the van der Waals interactions between Aβ(1-42) protofibril and licochalcone A make an important contribution to the binding free energy, while the contribution of the electrostatic interactions between Aβ(1-42) protofibril and licochalcone B is more prominent in the binding affinity. Our work may help in the development of new drug candidates for disrupting the Aβ protofibril.
Collapse
Affiliation(s)
- Mei Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Kehe Su
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
17
|
Liao XX, Hu K, Xie XH, Wen YL, Wang R, Hu ZW, Zhou YL, Li JJ, Wu MK, Yu JX, Chen JW, Ren P, Wu XY, Zhou JJ. Banxia Xiexin decoction alleviates AS co-depression disease by regulating the gut microbiome-lipid metabolic axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116468. [PMID: 37044233 DOI: 10.1016/j.jep.2023.116468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin decoction (BXD) is a classic Chinese herbal formulation consisting of 7 herbs including Pinelliae Rhizoma, Scutellariae Radix, Zingiberis Rhizoma, Ginseng Radix, Glycyrrhizae Radix, Coptidis Rhizoma, and Jujubae Fructus, which can exert effects on lowering lipids and alleviating depressive mood disorders via affecting gastrointestinal tract. AIM OF THE STUDY The pathogenesis of atherosclerosis (AS) co-depression disease has not been well studied, and the current clinical treatment strategies are not satisfactory. As a result, it is critical to find novel methods of treatment. Based on the hypothesis that the gut microbiome may promote the development of AS co-depression disease by regulating host lipid metabolism, this study sought to evaluate the effectiveness and action mechanism of BXD in regulation of the gut microbiome via an intervention in AS co-depression mice. MATERIALS AND METHODS To determine the primary constituents of BXD, UPLC-Q/TOF-MS analysis was carried out. Sixteen C56BL/6 mice were fed normal chow as a control group; 64 ApoE-/- mice were randomized into four groups (model group and three treatment groups) and fed high-fat chow combined with daily bind stimulation for sixteen weeks to develop the AS co-depression mouse model and were administered saline or low, medium or high concentrations of BXD during the experimental modeling period. The antidepressant efficacy of BXD was examined by weighing, a sucrose preference test, an open field test, and a tail suspension experiment. The effectiveness of BXD as an anti-AS treatment was evaluated by means of biochemical indices, the HE staining method, and the Oil red O staining method. The impacts of BXD on the gut microbiome structure and brain (hippocampus and prefrontal cortex tissue) lipids in mice with the AS co-depression model were examined by 16S rDNA sequencing combined with lipidomics analysis. RESULTS The main components of BXD include baicalin, berberine, ginsenoside Rb1, and 18 other substances. BXD could improve depression-like behavioral characteristics and AS-related indices in AS co-depression mice; BXD could regulate the abundance of some flora (phylum level: reduced abundance of Proteobacteria and Deferribacteres; genus level: reduced abundance of Clostridium_IV, Helicobacter, and Pseudoflavonifractor, Acetatifactor, Oscillibacter, which were significantly different). The lipidomics analysis showed that the differential lipids between the model and gavaged high-dose BXD (BXH) groups were enriched in glycerophospholipid metabolism, and lysophosphatidylcholine (LPC(20:3)(rep)(rep)) in the hippocampus and LPC(20:4)(rep) in the prefrontal cortex both showed downregulation in BXH. The correlation analysis illustrated that the screened differential lipids were mainly linked to Deferribacteres and Actinobacteria. CONCLUSION BXD may exert an anti-AS co-depression therapeutic effect by modulating the abundance of some flora and thus intervening in peripheral lipid and brain lipid metabolism (via downregulation of LPC levels).
Collapse
Affiliation(s)
- Xing-Xing Liao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ke Hu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xin-Hua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - You-Liang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Rui Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zi-Wei Hu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yu-Long Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Jun Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ming-Kun Wu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jing-Xuan Yu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jia-Wei Chen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Peng Ren
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xiao-Yun Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Jun-Jie Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
18
|
Deng N, Qiao M, Li Y, Liang F, Li J, Liu Y. Anticancer effects of licochalcones: A review of the mechanisms. Front Pharmacol 2023; 14:1074506. [PMID: 36755942 PMCID: PMC9900005 DOI: 10.3389/fphar.2023.1074506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/β-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.
Collapse
Affiliation(s)
- Nan Deng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingming Qiao
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengyan Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Yanfeng Liu,
| |
Collapse
|
19
|
Shaikh S, Ali S, Lim JH, Chun HJ, Ahmad K, Ahmad SS, Hwang YC, Han KS, Kim NR, Lee EJ, Choi I. Dipeptidyl peptidase-4 inhibitory potentials of Glycyrrhiza uralensis and its bioactive compounds licochalcone A and licochalcone B: An in silico and in vitro study. Front Mol Biosci 2022; 9:1024764. [PMID: 36250007 PMCID: PMC9564220 DOI: 10.3389/fmolb.2022.1024764] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications. Natural medicines are receiving greater interest due to the inherent safety of natural compounds. Glycyrrhiza uralensis (licorice) is widely consumed and used as medicine. In this study, we investigated the abilities of a crude water extract (CWE) of G. uralensis and two of its constituents (licochalcone A (LicA) and licochalcone B (LicB)) to inhibit the enzymatic activity of DPP-4 in silico and in vitro. In silico studies showed that LicA and LicB bind tightly to the catalytic site of DPP-4 and have 11 amino acid residue interactions in common with the control inhibitor sitagliptin. Protein-protein interactions studies of LicA-DPP4 and LicB-DPP4 complexes with GLP1 and GIP reduced the DPP-4 to GLP1 and GIP interactions, indicated that these constituents might reduce the degradations of GLP1 and GIP. In addition, molecular dynamics simulations revealed that LicA and LicB stably bound to DPP-4 enzyme. Furthermore, DPP-4 enzyme assay showed the CWE of G. uralensis, LicA, and LicB concentration-dependently inhibited DPP-4; LicA and LicB had an estimated IC50 values of 347.93 and 797.84 μM, respectively. LicA and LicB inhibited DPP-4 at high concentrations, suggesting that these compounds could be used as functional food ingredients to manage T2DM.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul, South Korea
| | - Na Ri Kim
- Neo Cremar Co., Ltd., Seoul, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
20
|
Sun S, Xun G, Zhang J, Gao Y, Ge J, Liu F, Qian Q, Liu X, Tian Y, Sun Q, Wang Q, Wang X. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115366. [PMID: 35551974 DOI: 10.1016/j.jep.2022.115366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical formula of traditional Chinese medicine (TCM), Lingguizhugan Decoction (LGZGD) has been used for treating heart failure (HF) because it has an efficiency of yang-warming and fluid-dispersing. However, the pharmacodynamic material basis of LGZGD responsible for the therapeutic benefits is not well understood. AIM OF THE STUDY The aim of this study was to elucidate the pharmacodynamic material basis of LGZGD by an integrated approach. MATERIALS AND METHODS Following oral administration of LGZGD in mice, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify prototype substances. A heart failure (HF) model was established, followed by an untargeted metabolomics study to determine potential targets of LGZGD. The network pharmacology method was performed to screen substances that interacted with potential targets of LGZGD treating HF. Molecular docking technology was applied to further screen substances based on binding energy. Cell viability assays were conducted to verify pharmacodynamic effects of selected substances. RESULTS In all, forty-two prototype substances were identified in the blood, urine, and fecal samples of mice. A total of fifty-five differential metabolites were identified using heart tissue untargeted metabolomics. Twenty-five substances of LGZGD were screened relating to thirty-three targets treating HF. Twenty-two substances were filtered according to their binding energy using molecular docking technology. Cell experiments revealed cinnamaldehyde, glycyrrhetinic acid, kaempferol, daidzein, caffeic acid, and catechin could significantly improve the survival rate of H9c2 cells, which might be the pharmacodynamic material basis of LGZGD. CONCLUSIONS A scientific approach that integrated in vivo substances identification, metabolomics, network pharmacology, molecular docking, and cell pharmacodynamic assay has been developed to study the pharmacodynamic material basis of LGZGD in the treatment of HF.
Collapse
Affiliation(s)
- Shuo Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Ge Xun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jia Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanhua Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jiachen Ge
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Fangfang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qi Qian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xin Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhuan Tian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qian Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China.
| | - Xu Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
21
|
Mittal A, Vashistha VK, Das DK. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radic Res 2022; 56:378-397. [PMID: 36063087 DOI: 10.1080/10715762.2022.2120396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this review, we have reported the antioxidant mechanisms and structure-antioxidant activity relationship of several chalcone derivatives, investigated in the recent past, based on the density functional theory (DFT) calculations, considering free radical scavenging and metal chelation ability. The antioxidant mechanisms include hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), single electron transfer followed by proton transfer (SET-PT), sequential proton loss hydrogen atom transfer (SPLHAT), sequential double proton loss electron transfer (SdPLET), sequential triple proton loss double electron transfer (StPLdET), sequential triple proton loss triple electron transfer (StPLtET), double HAT, double SPLET, double SET-PT, triple HAT, triple SET-PT, triple SPLET, proton-coupled electron transfer (PCET), single electron transfer (SET), radical adduct formation (RAF) and radical adduct formation followed by hydrogen atom abstraction (RAF-HAA). Furthermore, solvent effects have also been considered using different solvation models. The feasibility of scavenging different reactive oxygen and nitrogen species (ROS/RNS) has been discussed considering various factors such as the number and position of hydroxyl as well as methoxy groups present in the antioxidant molecule, stability of the species formed after scavenging reactive species, nature of substituent, steric effects, etc. This review opens new perspectives for designing new compounds with better antioxidant potential.
Collapse
Affiliation(s)
- Ankit Mittal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Vinod Kumar Vashistha
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Dipak Kumar Das
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| |
Collapse
|
22
|
Zhou H, Dai C, Cui X, Zhang T, Che Y, Duan K, Yi L, Nguyen AD, Li N, De Souza C, Wan X, Wu Y, Li K, Liu Y, Wu Y. Immunomodulatory and antioxidant effects of Glycyrrhiza uralensis polysaccharide in Lohmann Brown chickens. Front Vet Sci 2022; 9:959449. [PMID: 36090181 PMCID: PMC9458957 DOI: 10.3389/fvets.2022.959449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhiza polysaccharide extract 1 (GPS-1) is a bioactive component isolated from Glycyrrhiza uralensis, also known as Chinese licorice. It appears to be pharmacologically active as an antibacterial, antiviral, and anti-tumor agent. GPS-1 has also been shown to buffer liver health and regulate the immune system. Moreover, GPS-1 is low cost and easy to extract. More study was needed to elucidate the biochemical pathways underlying the immunomodulatory and antioxidant benefits observed in Glycyrrhiza polysaccharide extract 1 (GPS-1). in vitro experiments on chicken lymphocytes and dendritic cells (DCs) show that GPS-1 significantly promotes the proliferation of immune cells and is linked to lymphocytes' secretion of IL-12, IFN-γ, and TNF-α by. DC secretion of NO, IL-2, IL-1β, IFN-γ, TNF-α, and IL-12p70 was also increased significantly. Additionally, GPS-1 also displayed a significant antioxidant effect in vitro, able to scavenge DPPH, hydrogen peroxide, ABTS, and other free radicals like superoxide anions. Separately, GPS-1 was tested in vivo in combination with the Newcastle disease virus (NDV) - attenuated vaccine. 120 Lohmann Brown chickens were vaccinated, while another 30 became the unvaccinated blank control (BC) group. For three consecutive days 1 mL of GPS-1 was administered at doses of 19.53 μg/mL, 9.77 μg/mL, or 4.88 μg/mL to the ND-vaccinated birds, except for the vaccine control (VC), where n = 30 per group. In vivo results show that GPS-1 combined with Newcastle disease (ND) vaccine had the best efficacy at significantly increasing chickens' body weight and ND serum antibody titer, enhancing their secretion of IL-2 and IFN- γ, and promoting the development of immune organs. The results also indicate that GPS-1 was able increase the proliferation of in vitro immune cells and elevate their cytokine secretion, which enhances the body's immune response. GPS-1 also clearly has the potential to be used as an immune adjuvant alongside ND vaccination.
Collapse
Affiliation(s)
- Hui Zhou
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuejie Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Lei Yi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Animal Science, Huaihua Polytechnic College, Huaihua, China
| | - Audrey D. Nguyen
- Department of Biochemistry and Molecular Medicine, Davis Medical Center, University of California, Sacramento, Sacramento, CA, United States
| | - Nannan Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Xin Wan
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhong Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Wang Y, Ning Y, He T, Chen Y, Han W, Yang Y, Zhang CX. Explore the Potential Ingredients for Detoxification of Honey-Fired Licorice (ZGC) Based on the Metabolic Profile by UPLC-Q-TOF-MS. Front Chem 2022; 10:924685. [PMID: 35910719 PMCID: PMC9335949 DOI: 10.3389/fchem.2022.924685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Licorice is well known for its ability to reduce the toxicity of the whole prescription in traditional Chinese medicine theory. However, honey-fired licorice (ZGC for short), which is made of licorice after being stir-fried with honey water, is more commonly used for clinical practice. The metabolism in vivo and detoxification-related compounds of ZGC have not been fully elucidated. In this work, the chemical constituents in ZGC and its metabolic profile in rats were both identified by high ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The network pharmacology was applied to predict the potential detoxifying ingredients of ZGC. As a result, a total of 115 chemical compounds were identified or tentatively characterized in ZGC aqueous extract, and 232 xenobiotics (70 prototypes and 162 metabolites) were identified in serum, heart, liver, kidneys, feces, and urine. Furthermore, 41 compounds absorbed in serum, heart, liver, and kidneys were employed for exploring the detoxification of ZGC by network pharmacology. Ultimately, 13 compounds (five prototypes including P5, P24, P30, P41 and P44, and 8 phase Ⅰ metabolites including M23, M47, M53, M93, M100, M106, M118, and M134) and nine targets were anticipated to be potential mediums regulating detoxification actions. The network pharmacology analysis had shown that the ZGC could detoxify mainly through regulating the related targets of cytochrome P450 and glutathione. In summary, this study would help reveal potential active ingredients in vivo for detoxification of ZGC and provided practical evidence for explaining the theory of traditional Chinese medicine with modern technology.
Collapse
Affiliation(s)
- Yinjie Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Ning
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Ting He
- Ningxia Hui Medicine Research Institute, Yinchuan, China
| | - Yingtong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinping Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Cui-Xian Zhang,
| |
Collapse
|
24
|
Chang KW, Lin TY, Fu SL, Ping YH, Chen FP, Kung YY. A Houttuynia cordata-based Chinese herbal formula improved symptoms of allergic rhinitis during the COVID-19 pandemic. J Chin Med Assoc 2022; 85:717-722. [PMID: 35421875 DOI: 10.1097/jcma.0000000000000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The symptoms of coronavirus disease 2019 (COVID-19) such as hyposmia, rhinorrhea, nasal obstruction, and cough are similar to those of chronic allergic rhinitis (AR). Such symptoms can easily lead AR patients to unnecessary anxiety, misdiagnosis, and invasive diagnostic tests in the COVID-19 pandemic. Interleukin-6 (IL-6) is an important mediator for chronic AR and plays a crucial role in the inflammation of COVID-19. Houttuynia cordata (HC) has been shown to reduce nasal congestion and swelling by suppressing the activation of IL-6 and is used to fight COVID-19. A novel HC-based Chinese herbal formula, Zheng-Yi-Fang (ZYF), was developed to test effects on nasal symptoms of patients with AR in the COVID-19 pandemic. METHODS Participants aged between 20 and 60 years with at least a 2-year history of moderate to severe perennial AR were enrolled. Eligible participants were randomly allocated to either the intervention group (taking ZYF) or the control group (using regular western medicine) for 4 weeks. The Chinese version of the Rhinosinusitis Outcome Measures was used to evaluate impacts on quality of life and nasal symptoms of participants with AR. In addition, the effect of ZYF on lipopolysaccharide (LPS)-induced IL-6 was investigated. RESULTS Participants with AR taking ZYF improved their symptoms of nasal obstruction, nasal secretion, hyposmia, and postnasal drip in comparison with those of the control group. Meanwhile, ZYF exhibited inhibition of IL-6 secretion in the LPS-induced inflammatory model. CONCLUSION ZYF has potential effects to relieve nasal symptoms for AR during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Ling Fu
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh-Hsin Ping
- Department of Pharmacology, School of Medicine and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
25
|
Acute and Subchronic Toxicity Study of Flavonoid Rich Extract of Glycyrrhiza glabra (GutGard®) in Sprague Dawley Rats. J Toxicol 2022; 2022:8517603. [PMID: 35401742 PMCID: PMC8989621 DOI: 10.1155/2022/8517603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Glycyrrhiza glabra (G. glabra) is well known for its health benefits based on the traditional and current scientific evidence. The aim of the present study was to evaluate the safety of GutGard, a standardised-flavonoid rich extract of G. glabra. The study was designed to evaluate the acute and subchronic oral toxicity of GutGard in Sprague Dawley rats according to the procedures and methods of Organisation for Economic Cooperation and Development (OECD) test guidelines for acute and subchronic toxicity. A single dose of GutGard at 5000 mg/kg body weight did not produce treatment related clinical signs of toxicity or mortality in any of the animals tested during the 14-day observation period. Therefore, the median lethal dose was estimated to be more than 5000 mg/kg. A subchronic oral toxicity study for 90 days in rats at the dose levels of 250, 500, and 1000 mg/kg did not show any treatment related adverse clinical signs. The treated animals exhibited normal weight gain and comparable feed intake. Ophthalmoscope examination did not reveal any abnormalities. Further, GutGard administration in rats did not show any clinical evidence of toxicity with respect to urinalysis, haematology, and blood chemistry parameters. The relative organ weight of vital organs did not differ significantly as compared to control. Gross and histopathological findings did not show any remarkable and treatment related changes. Based on the current experimental study findings, the median lethal dose (LD50) of GutGard was found to be >5000 mg/kg b.wt and the no observed adverse effect level (NOAEL) was found to be 1000 mg/kg rat b.wt.
Collapse
|
26
|
Tian M, Li N, Liu R, Li K, Du J, Zou D, Ma Y. The protective effect of licochalcone A against inflammation injury of primary dairy cow claw dermal cells induced by lipopolysaccharide. Sci Rep 2022; 12:1593. [PMID: 35102233 PMCID: PMC8803976 DOI: 10.1038/s41598-022-05653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Laminitis is one of the most important and intractable diseases in dairy cows, which can lead to enormous economic losses. Although many scholars have conducted a large number of studies on laminitis, the therapeutic test of medicinal plants in vitro is really rare. Licochalcone A is proved to possess anti-inflammatory and anti-oxidant properties. But the effect of licochalcone A on LPS-induced inflammatory claw dermal cells has not been discovered yet. In this study, the primary dairy cow claw dermal cells were treated with gradient concentrations of licochalcone A (1, 5, 10 µg/mL) in the presence of 10 µg/mL lipopolysaccharides (LPS). The results indicated that licochalcone A reduced the concentrations of inflammation mediators (TNF-α, IL-1β and IL-6), increased the activity of SOD, reduced the levels of MDA and ROS, downregulated the mRNA expressions of TLR4 and MyD88, suppressed the protein levels of p-IκBα and p-p65, and upregulated the protein expression of PPARγ. In summary, licochalcone A protected dairy cow claw dermal cells against LPS-induced inflammatory response and oxidative stress through the regulation of TLR4/MyD88/NF-κB and PPARγ signaling pathways.
Collapse
Affiliation(s)
- Mengyue Tian
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
| | - Nan Li
- Hebei Agricultural University College of Animal Science and Technology, Baoding, 071001, Hebei, China
| | - Ruonan Liu
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
| | - Ke Li
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
| | - Jinliang Du
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Dongmin Zou
- Shanxi Agricultural University College of Veterinary Medicine, Taigu, 030801, Shanxi, China
| | - Yuzhong Ma
- Hebei Agricultural University College of Veterinary Medicine, 2596 Lekai South Street, Baoding, 071001, Hebei, China.
| |
Collapse
|
27
|
Mittal A, Kakkar R. The antioxidant potential of retrochalcones isolated from liquorice root: A comparative DFT study. PHYTOCHEMISTRY 2021; 192:112964. [PMID: 34598043 DOI: 10.1016/j.phytochem.2021.112964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Polyphenolic compounds are known to exhibit potent antioxidant properties owing to the presence of various phenolic groups. The present study reports the antioxidant potentials of six retrochalcones, namely echinatin, and licochalcone A, B, C, D and E, isolated from the root of the Glycyrrhiza species, toward various reactive oxygen and nitrogen species. Different mechanistic pathways, viz. hydrogen atom transfer (HAT), single electron transfer (SET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), have been considered. In addition, two other pathways, i.e. sequential double proton loss electron transfer (SdPLET) and sequential proton loss hydrogen atom transfer (SPLHAT), which are significant for the scavenging of reactive species by the mono-deprotonated forms of retrochalcones, have also been considered. All the calculations were performed using density functional theory at the B3LYP/6-311++G** level in the gas phase and in aqueous solution. The results suggest the predominance of the HAT mechanism in the gas phase, while in aqueous solution, the SPLET mechanism is thermodynamically favored. The possibility of SdPLET increases at higher pH.
Collapse
Affiliation(s)
- Ankit Mittal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
28
|
Dong JN, Wu GD, Dong ZQ, Yang D, Bo YK, An M, Zhao LS. Natural deep eutectic solvents as tailored and sustainable media for the extraction of five compounds from compound liquorice tablets and their comparison with conventional organic solvents. RSC Adv 2021; 11:37649-37660. [PMID: 35496443 PMCID: PMC9043790 DOI: 10.1039/d1ra06338c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
An efficient and environmentally friendly ultrasound-assisted (UAE) natural deep eutectic solvent (NADES) extraction method was applied for the extraction of five bioactive compounds (liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin) from compound liquorice tablets (CPLTs), and the antioxidant activities of these compounds were evaluated. In this study, eighteen different NADES systems based on either two or three components were tested and a 1,4-butanediol–levulinic acid system (1 : 3 molar ratio) was selected as a topgallant solvent for maximizing analyte extraction yields. Various extraction parameters, such as water content, liquid/solid ratio, extraction time and temperature, were systematically optimized by single-factor and response surface methodology (RSM) experiments. The results indicated that the optimum extraction conditions for the analytes featured a water content of 17%, a liquid/solid ratio of 42 mL g−1 and an extraction time of 30 min. The extracted amounts of liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin reached 5.60, 3.17, 1.27, 74.62 and 1.34 mg g−1, respectively, under optimized conditions, which were much higher than those extracted using conventional organic solvents. In addition, antioxidant tests revealed that the NADES extracts showed higher DPPH and hydroxyl radical-scavenging capacity than the conventional solvent extracts used for comparison. This study provides a suitable approach for efficiently extracting the bioactive compounds of CPLTs. Meanwhile, NADESs can be extended to other natural products as green extraction media. A 1,4-butanediol–levulinic acid system was selected as a topgallant solvent and extraction parameters were optimized. NADES extracts exhibited higher extraction efficiency and in vitro antioxidant activities than conventional solvent extracts.![]()
Collapse
Affiliation(s)
- Jia-Ni Dong
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Guo-Dong Wu
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Zhi-Qiang Dong
- The First Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia 014010 China
| | - Dan Yang
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Yu-Kun Bo
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Ming An
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Long-Shan Zhao
- Shenyang Pharmaceutical University Shenyang Liaoning Province 110016 China +86 24 43520571
| |
Collapse
|
29
|
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100043. [PMID: 35399823 PMCID: PMC7886629 DOI: 10.1016/j.phyplu.2021.100043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 04/28/2023]
Abstract
BACKGROUND Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. PURPOSE The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. METHODOLOGY We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo). These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). RESULTS Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. CONCLUSION The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.
Collapse
Key Words
- 18β-GA, 18β-glycyrrhetinic acid
- : ACE2, angiotensin-converting enzyme 2
- ALI, acute lung injury
- ARDS, acute Respiratory Distress Syndrome
- Acute lung injury protector
- COVID-19
- COVID-19, Coronavirus disease 2019
- COX-2, cyclooxygenase-2
- DCs, dendritic cells
- Gl, glycyrrhizin
- Glycyrrhizin and licorice extract;Antiviral and antimicrobial, Anti-inflammatory and antioxidant
- HBsAg, hepatitis B surface antigen
- HCV, hepatitis C virus
- HMGB1, high-mobility group box 1
- IL, interleukin
- Immunododulator
- MAPKs, mitogen-activated protein kinases
- MERS, Middle East respiratory syndrome
- MR, mineralocorticoid receptor
- MRSA, Methicillin-resistant Staphylococcus aureus
- NO, nitric oxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- S, Spike
- SARS, severe acute respiratory syndrome
- TCM, traditional Chinese medicine
- TLR, toll-like receptor
- TMPRSS2, type 2 transmembrane serine protease
- TNF-α, tumor necrosis factor alpha
- h, hour
- iNOS, inducible nitric oxide synthase
- licorice extract, LE
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut Universitya, Beni-Suif, Egypt
| | | |
Collapse
|
30
|
Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation. Int J Mol Sci 2021; 22:ijms22147324. [PMID: 34298945 PMCID: PMC8304008 DOI: 10.3390/ijms22147324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-β-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.
Collapse
|
31
|
Microbial Conjugation Studies of Licochalcones and Xanthohumol. Int J Mol Sci 2021; 22:ijms22136893. [PMID: 34206985 PMCID: PMC8268106 DOI: 10.3390/ijms22136893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial conjugation studies of licochalcones (1-4) and xanthohumol (5) were performed by using the fungi Mucor hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and xanthohumol in mammalian systems. Although licochalcone A 4'-sulfate (7) showed less cytotoxic activity against human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50 values in the range of 27.35-43.07 μM.
Collapse
|
32
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
33
|
Licochalcone A inhibits enterovirus A71 replication in vitro and in vivo. Antiviral Res 2021; 195:105091. [PMID: 34044060 DOI: 10.1016/j.antiviral.2021.105091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023]
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-mouth disease (HFMD) and causes serious neurological complications. However, no effective therapy is currently available for treating these infections. Therefore, effective drugs to prevent and treat EV-A71 infections are urgently needed. Here, we demonstrated that treatment with Licochalcone A (LCA) significantly inhibited EV-A71 replication in a dose-dependent manner, with an EC50 of 9.30 μM in RD cells and 5.73 μM in Vero cells. The preliminary results on the inhibition mechanism showed that LCA exerted antiviral effects by interfering with the early step of viral replication. We further demonstrated that LCA showed potent antiviral activity against many enteroviruses, including EV-A71 (strain C4), EV-A71 (strain H), and coxsackievirus A16 (CV-A16). Furthermore, LCA could effectively prevent the clinical symptoms and death of virus infected mice and decreased viral load in EV-A71-infected mice. Taken together, our studies showed for the first time, that LCA is a promising EV-A71 inhibitor and provide important information for the clinical development of LCA as a potential new anti-EV-A71 agent.
Collapse
|
34
|
Zhou K, Yang S, Li SM. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat Prod Rep 2021; 38:2236-2260. [PMID: 33972962 DOI: 10.1039/d0np00083c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to July 2020Naturally occurring chalcones carrying up to three modified or unmodified C5-, C10-, and C15-prenyl moieties on both rings A and B as well as at the α- and β-carbons are widely distributed in plants of the families of Fabaceae, Moraceae, Zingiberaceae and Cannabaceae. Xanthohumol and isobavachalcone being the most investigated representatives, exhibit diverse and remarkable biological and pharmacological activities. The present review deals with their structural characters, biological activities and occurrence in the plant kingdom. Biosynthesis of prenylated chalcones and metabolism of xanthohumol are also discussed.
Collapse
Affiliation(s)
- Kang Zhou
- Guizhou University, School of Pharmaceutical Sciences, Huaxi Avenue 2708, Guiyang, 550025, China
| | - Song Yang
- Guizhou University, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Huaxi Avenue 2708, Guiyang, 550025, China
| | - Shu-Ming Li
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Biologie und Biotechnologie, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
35
|
Gatica-Ortega ME, Pastor-Nieto MA. Allergic contact dermatitis to Glycyrrhiza inflata root extract in an anti-acne cosmetic product. Contact Dermatitis 2021; 85:454-455. [PMID: 33913165 DOI: 10.1111/cod.13872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Affiliation(s)
| | - María A Pastor-Nieto
- Dermatology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain.,Faculty of Medicine and Health Sciences, Medicine and Medical Specialties Department, Universidad de Alcalá Alcalá de Henares, Madrid, Spain
| |
Collapse
|
36
|
Wang T, Dong J, Yuan X, Wen H, Wu L, Liu J, Sui H, Deng W. A New Chalcone Derivative C49 Reverses Doxorubicin Resistance in MCF-7/DOX Cells by Inhibiting P-Glycoprotein Expression. Front Pharmacol 2021; 12:653306. [PMID: 33927626 PMCID: PMC8076869 DOI: 10.3389/fphar.2021.653306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: C49 is a chalcone derivative. The aim of the current study is to illuminate the efficacy of C49 in reversing multidrug resistance (MDR) in MCF-7/DOX cells and its underlying molecular mechanism. Methods: The cytotoxic effects of C49 on MCF-7/DOX cells were evaluated by MTT assay using different concentration (0-250 μmol/L) of C49. Cell proliferation was evaluated by colony formation assay. Cell death was examined by morphological analysis using Hoechst 33,258 staining. Flow cytometry and immunofluorescence were utilized to evaluate the intracellular accumulation of doxorubicin (DOX) and cell apoptosis. The differentially expressed genns between MCF-7 and MCF-7/DOX cells were analyzed by GEO database. The expression of PI3K/Akt pathway proteins were assessed by Western blot The activities of C49 combined with DOX was evaluated via xenograft tumor model in female BALB/c nude mice. Results: C49 inhibited the growth of MCF-7 cells (IC50 = 59.82 ± 2.10 μmol/L) and MCF-7/DOX cells (IC50 = 65.69 ± 8.11 μmol/L) with dosage-dependent and enhanced the cellular accumulation of DOX in MCF-7/DOX cells. The combination of C49 and DOX inhibited cell proliferation and promoted cell apoptosis. MCF-7/DOX cells regained drug sensibility with the combination treatment through inhibiting the expression of P-gp, p-PI3K and p-Akt proteins. Meanwhile, C49 significantly increased the anticancer efficacy of DOX in vivo. Conclusion: C49 combined with DOX restored DOX sensitivity in MCF-7/DOX cells through inhibiting P-gp protein.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Dong
- Shanghai Bailijia Health Pharmaceutical Technology, Shanghai, China
| | - Xu Yuan
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haotian Wen
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linguangjin Wu
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanli Deng
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Park MK, Ji J, Haam K, Han TH, Lim S, Kang MJ, Lim SS, Ban HS. Licochalcone A inhibits hypoxia-inducible factor-1α accumulation by suppressing mitochondrial respiration in hypoxic cancer cells. Biomed Pharmacother 2020; 133:111082. [PMID: 33378978 DOI: 10.1016/j.biopha.2020.111082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/28/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1 is an important regulator of the cellular response in the hypoxic tumor environment. While searching for HIF inhibitors derived from natural products that act as anticancer agents, we found that Glycyrrhiza uralensis exerts HIF-1 inhibitory activity in hypoxic cancer cells. Among the five components of G. uralensis, licochalcone A was found to potently suppress hypoxia-induced HIF-1α accumulation and expression of HIF-1α target genes, including GLUT1 and PDK1 in HCT116 cells. Licochalcone A also enhances intracellular oxygen content by directly inhibiting mitochondrial respiration, resulting in oxygen-dependent HIF-1α degradation. Hence, licochalcone A may effectively inhibit ATP production, primarily by reducing the mitochondrial respiration-mediated ATP production rate rather than the glycolysis-mediated ATP production rate. This effect subsequently suppresses cancer cell viability, including that of HCT116, H1299, and H322 cells. Consequently, these results suggest that licochalcone A has therapeutic potential in hypoxic cancer cells.
Collapse
Affiliation(s)
- Min Kyung Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, South Korea; Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Jun Ji
- Institute of Natural Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Keeok Haam
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Tae-Hee Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Seona Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Mi-Jung Kang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Soon Sung Lim
- Institute of Natural Medicine, Hallym University, Chuncheon, 24252, South Korea; Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, South Korea.
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.
| |
Collapse
|
39
|
Gao F, Li M, Yu X, Liu W, Zhou L, Li W. Licochalcone A inhibits EGFR signalling and translationally suppresses survivin expression in human cancer cells. J Cell Mol Med 2020; 25:813-826. [PMID: 33247550 PMCID: PMC7812290 DOI: 10.1111/jcmm.16135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Dysfunction of epidermal growth factor receptor (EGFR) signalling plays a critical role in the oncogenesis of non–small‐cell lung cancer (NSCLC). Here, we reported the natural product, licochalcone A, exhibited a profound anti‐tumour efficacy through directly targeting EGFR signalling. Licochalcone A inhibited in vitro cell growth, colony formation and in vivo tumour growth of either wild‐type (WT) or activating mutation EGFR‐expressed NSCLC cells. Licochalcone A bound with L858R single‐site mutation, exon 19 deletion, L858R/T790M mutation and WT EGFR ex vivo, and impaired EGFR kinase activity both in vitro and in NSCLC cells. The in silico docking study further indicated that licochalcone A interacted with both WT and mutant EGFRs. Moreover, licochalcone A induced apoptosis and decreased survivin protein robustly in NSCLC cells. Mechanistically, we found that treatment with licochalcone A translationally suppressed survivin through inhibiting EGFR downstream kinases ERK1/2 and Akt. Depletion of the translation initiation complex by eIF4E knockdown effectively inhibited survivin expression. In contrast, knockdown of 4E‐BP1 showed the opposite effect and dramatically enhanced survivin protein level. Overall, our data indicate that targeting survivin might be an alternative strategy to sensitize EGFR‐targeted therapy.
Collapse
Affiliation(s)
- Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, China.,Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Changsha Stomatological Hospital, Changsha, China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJS, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed Pharmacother 2020; 133:111037. [PMID: 33249281 PMCID: PMC7676327 DOI: 10.1016/j.biopha.2020.111037] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan.
| | - Yi-Chia Huang
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Section 4, Seatwen District, Taichung 407204, Taiwan.
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Sunny Jui-Shan Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Jia-Tsrong Jan
- Genomic Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Shen-Ming Lee
- Department of Statistic, Feng Chia University, No. 100, Wenhwa Road, Seatwen District, Taichung 40724, Taiwan.
| | - Ming-Yung Lee
- Department of Data Science and Big Data Analytics, Providence University, Taichung, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
41
|
Li H, Huang H, Long W, Zuo J, Huang H. Herbal medicine significantly improved muscle function in a patient with type 1 facioscapulohumeral muscular dystrophy: A case report. Explore (NY) 2020; 17:247-251. [PMID: 32505519 DOI: 10.1016/j.explore.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Facioscapulohumeral muscular dystrophy (FSHD) is a common muscular disorder. At present, treatments for FSHD have limited effects on the muscle function of patients. A famous Chinese medicine formula, Buzhong Yiqi (BZYQ), has shown promising effects on several muscular diseases, but evidence regarding its effect on FSHD is lacking. This study aimed to examine the effect of BZYQ on FSHD. CASE PRESENTATION A 15-year-old girl suffered from progressive muscle weakness, with a genetically confirmed diagnosis of FSHD. Except for routine FSHD management, the patient received BZQY every day. The muscle strength of the patient remarkably increased after discharge. CONCLUSIONS This study was novel in reporting a significant improvement in muscle function in a patient with FSHD treated with an integrated approach of BZYQ and routine management. Therefore, BZYQ might be a potential treatment for FSHD, requiring further investigations.
Collapse
Affiliation(s)
- Hongjuan Li
- The First Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Chinese Medicine), Guangzhou, Guangdong, 510120, China.
| | - Haoming Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Wenjie Long
- Department of Geriatric Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Junling Zuo
- Department of Emergency, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Hongqiang Huang
- The First Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Chinese Medicine), Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
42
|
Microbial Transformation of Licochalcones. Molecules 2019; 25:molecules25010060. [PMID: 31878031 PMCID: PMC6982849 DOI: 10.3390/molecules25010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
Microbial transformation of licochalcones B (1), C (2), D (3), and H (4) using the filamentous fungi Aspergillus niger and Mucor hiemalis was investigated. Fungal transformation of the licochalcones followed by chromatographic separations led to the isolation of ten new compounds 5–14, including one hydrogenated, three dihydroxylated, three expoxidized, and three glucosylated metabolites. Their structures were elucidated by combined analyses of UV, IR, MS, NMR, and CD spectroscopic data. Absolute configurations of the 2″,3″-diols in the three dihydroxylated metabolites were determined by ECD experiments according to the Snatzke’s method. The trans-cis isomerization was observed for the metabolites 7, 11, 13, and 14 as evidenced by the analysis of their 1H-NMR spectra and HPLC chromatograms. This could be useful in better understanding of the trans-cis isomerization mechanism of retrochalcones. The fungal transformation described herein also provides an effective method to expand the structural diversity of retrochalcones for further biological studies.
Collapse
|
43
|
Licochalcone A-Induced Apoptosis Through the Activation of p38MAPK Pathway Mediated Mitochondrial Pathways of Apoptosis in Human Osteosarcoma Cells In Vitro and In Vivo. Cells 2019; 8:cells8111441. [PMID: 31739642 PMCID: PMC6912226 DOI: 10.3390/cells8111441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Licochalcone A (LicA) is isolated from the roots of Glycyrrhiza glabra and possesses antitumor and anti-invasive activities against several tumor cells. However, the antitumor effects of LicA on human osteosarcoma cells have yet to be demonstrated either in vitro or in vivo. METHODS Cell viability was measured by MTT assay. Apoptosis and mitochondrial dysfunction were detected with Annexin V/PI staining and JC-1 staining by flow cytometry. The expressions of caspase- or mitochondrial-related proteins were demonstrated by western blotting. Antitumor effect of LicA on 143B xenograft mice in vivo. RESULTS LicA could inhibit cell proliferation and induce apoptosis in human osteosarcoma cells, as evidenced by a decrease in cell viability, loss of mitochondrial membrane potentials, and activation of caspases. LicA treatment substantially reduced the expression of Bcl-2 and Mcl-1 and increased the expression of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, and Bax in HOS and U2OS cells. Moreover, mitochondrial membrane potential and apoptosis suppression mediated by Z-VAD or tauroursodeoxycholic acid significantly reduced LicA-induced mitochondria-dependent apoptosis. The study also determined that LicA treatment induced p38MAPK phosphorylation, but siRNA-p38 or BIRB796 substantially reversed cell viability through the inhibition of mitochondria-dependent apoptosis pathways. Finally, an in vivo study revealed that LicA significantly inhibited 143B xenograft tumor growth. CONCLUSIONS These findings demonstrate that LicA has antitumor activities against human osteosarcoma cells through p38MAPK regulation of mitochondria-mediated intrinsic apoptotic pathways in vitro and in vivo.
Collapse
|
44
|
Marques BC, Santos MB, Anselmo DB, Monteiro DA, Gomes E, Saiki MFC, Rahal P, Rosalen PL, Sardi JCO, Regasini LO. Methoxychalcones: Effect of Methoxyl Group on the Antifungal, Antibacterial and Antiproliferative Activities. Med Chem 2019; 16:881-891. [PMID: 31339075 DOI: 10.2174/1573406415666190724145158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chalcones substituted by methoxyl groups have presented a broad spectrum of bioactivities, including antifungal, antibacterial and antiproliferative effects. However, a clear and unambiguous investigation about the relevance of this substituent on the chalcone framework has not been described. OBJECTIVE The purpose of this work is to assess the antibacterial, antifungal and antiproliferative activities of the two series of seventeen synthesized regioisomeric methoxychalcones. Series I and II were constituted by chalcones substituted by methoxyl groups on rings A (5-12) and B (13-21), respectively. In addition, the library of methoxychalcones was submitted to in silico drug-likeness and pharmacokinetics properties predictions. METHODS Methoxychalcones were synthesized and their structures were confirmed by NMR spectral data analyses. Evaluations of antimicrobial activity were performed against five species of Candida, two Gram-negative and five Gram-positive species. For antiproliferative activity, methoxychalcones were evaluated against four human tumorigenic cell lines, as well as human non-tumorigenic keratinocytes. Drug-likeness and pharmacokinetics properties were predicted using Molinspiration and PreADMET toolkits. RESULTS In general, chalcones of series I are the most potent antifungal, antibacterial and antiproliferative agents. 3', 4', 5'-Trimethoxychalcone (12) demonstrated potent antifungal activity against Candida krusei (MIC = 3.9 μg/mL), eight times more potent than fluconazole (reference antifungal drug). 3'-Methoxychalcone (6) displayed anti-Pseudomonas activity (MIC = 7.8 μg/mL). 2',5'-Dimethoxychalcone (9) displayed potent antiproliferative effect against C-33A (cervix), A-431 (skin) and MCF-7 (breast), with IC50 values ranging from 7.7 to 9.2 μM. Its potency was superior to curcumin (reference antiproliferative compound), which exhibited IC50 values ranging from 10.4 to 19.0 μM. CONCLUSION Our studies corroborated the relevance of methoxychalcones as antifungal, antibacterial and antiproliferative agents. In addition, we elucidated influence of the position and number of methoxyl groups toward bioactivity. In silico predictions indicated good drug-likeness and pharmacokinetics properties to the library of methoxychalcones.
Collapse
Affiliation(s)
- Beatriz C Marques
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mariana B Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Daiane B Anselmo
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Diego A Monteiro
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto15054-000, SP, Brazil
| | - Eleni Gomes
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto15054-000, SP, Brazil
| | - Marilia F C Saiki
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto15054-000, SP, Brazil
| | - Paula Rahal
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto15054-000, SP, Brazil
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (Unicamp), Piracicaba 13083-970, SP, Brazil
| | - Janaina C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (Unicamp), Piracicaba 13083-970, SP, Brazil
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
45
|
Protective Effects of Licochalcone A Improve Airway Hyper-Responsiveness and Oxidative Stress in a Mouse Model of Asthma. Cells 2019; 8:cells8060617. [PMID: 31226782 PMCID: PMC6628120 DOI: 10.3390/cells8060617] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Licochalcone A was isolated from Glycyrrhiza uralensis and previously reported to have antitumor and anti-inflammatory effects. Licochalcone A has also been found to inhibit the levels of Th2-associated cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. However, the molecular mechanism underlying airway inflammation and how licochalcone A regulates oxidative stress in asthmatic mice are elusive. In this study, we investigated whether licochalcone A could attenuate inflammatory and oxidative responses in tracheal epithelial cells, and whether it could ameliorate oxidative stress and airway inflammation in asthmatic mice. Inflammatory human tracheal epithelial (BEAS-2B) cells were treated with licochalcone A to evaluate oxidative responses and inflammatory cytokine levels. In addition, BALB/c mice were sensitized with ovalbumin (OVA) and injected intraperitoneally with licochalcone A (5 or 10 mg/kg). Licochalcone A significantly inhibited reactive oxygen species, eotaxin, and proinflammatory cytokines in BEAS-2B cells. Licochalcone A also decreased intercellular adhesion molecule 1 levels in inflammatory BEAS-2B cells, blocking monocyte cell adherence. We also found that licochalcone A significantly decreased oxidative responses, reduced malondialdehyde levels, and increased glutathione levels in the lungs of OVA-sensitized mice. Furthermore, licochalcone A decreased airway hyper-responsiveness, eosinophil infiltration, and Th2 cytokine production in the BALF. These findings suggest that licochalcone A alleviates oxidative stress, inflammation, and pathological changes by inhibiting Th2-associated cytokines in asthmatic mice and human tracheal epithelial cells. Thus, licochalcone A demonstrated therapeutic potential for improving asthma.
Collapse
|
46
|
Hao Y, Zhang C, Sun Y, Xu H. Licochalcone A inhibits cell proliferation, migration, and invasion through regulating the PI3K/AKT signaling pathway in oral squamous cell carcinoma. Onco Targets Ther 2019; 12:4427-4435. [PMID: 31239711 PMCID: PMC6556467 DOI: 10.2147/ott.s201728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most common cancers, with high metastasis and mortality. Licochalcone A (LCA) is a chalconoid from the root of Glycyrrhiza inflata, which has anti-tumor, anti-inflammatory, anti-angiogenesis effects in many cancers. However, the mechanism that underlies LCA regulating cell proliferation, migration, and invasion in OSCC remains poorly understood. Methods: LY294002 or insulin-like growth factor 1 (IGF-1) were used to block or stimulate the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway in OSCC cells. Cell proliferation was investigated by MTT assay and proliferating cell nuclear antigen (PCNA) protein level using Western blot. The expression of metastasis-related protein was detected via Western blot. Cell migration and invasion abilities were evaluated by trans-well assay. A murine xenograft model of OSCC was established to investigate the anti-tumor effect of LCA in vivo. Results: Treatment of LCA inhibited cell proliferation in SCC4 and CAL-27 cells. Moreover, PI3K/AKT signaling was blocked by LY294002, and activated by IGF-1. LCA could suppress proliferation, migration, and invasion of OSCC cells, which was similar to the treatment of LY294002. In addition, LCA decreased IGF-1-induced OSCC progression. In a murine xenograft model, LCA treatment protected against tumor growth and metastasis in vivo. Conclusions: LCA might inhibit cell proliferation, migration, and invasion through regulating the PI3K/AKT pathway in OSCC, developing a potential chemotherapeutic agent for OSCC.
Collapse
Affiliation(s)
- Yuli Hao
- Department of Stomatology, Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Chunping Zhang
- Department of Stomatology, Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Yuanyuan Sun
- Department of Periodontology, Yantai Stomatological Hospital, Yantai 264000, People's Republic of China
| | - Hongyan Xu
- Department of Stomatology, Shaanxi People's Hospital, Xian 710000, People's Republic of China
| |
Collapse
|