1
|
Li X, Xu X, Zhang J, Wang X, Zhao C, Liu Q, Fan K. Review of the therapeutic effects of traditional Chinese medicine in sepsis-associated encephalopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118588. [PMID: 39029543 DOI: 10.1016/j.jep.2024.118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.
Collapse
Affiliation(s)
- Xingyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jun Zhang
- Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, Wu Han, 430014, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Chunming Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Pan B, Wu F, Lu S, Lu W, Cao J, Cheng F, Ou M, Chen Y, Zhang F, Wu G, Mei L. Luteolin-Loaded Hyaluronidase Nanoparticles with Deep Tissue Penetration Capability for Idiopathic Pulmonary Fibrosis Treatment. SMALL METHODS 2024:e2400980. [PMID: 39370583 DOI: 10.1002/smtd.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by sustained fibrotic lesions. Orally administered drugs usually fail to efficiently penetrate the interstitial tissue and reach the lesions, resulting in low treatment efficiency. Luteolin (Lut) is a natural flavonoid, active metabolites of which possess antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. In this study, a nano-formulation is developed by loading Lut into hyaluronidase nanoparticles (Lut@HAase). These Lut@HAase nanoparticles (NPs) exhibit small size and good stability, suitable for noninvasive inhalation and accumulation in the lungs, and hyaluronidase at the site of lesions can degrade hyaluronic acid in the interstitial tissue, enabling efficient penetration of Lut. Lut's therapeutic effect, when administered via NPs, is studied both in vitro (using MRC5 cells) and in vivo (using IPF mice models), and its anti-fibrotic properties are found to inhibit inflammation and eliminate reactive oxygen species. Conclusively, this study demonstrates that Lut@HAase can improve lung function and enhance survival rates while reducing lung damage with few abnormalities during IPF treatment.
Collapse
Affiliation(s)
- Bo Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fangping Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Wenwen Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Youyi Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fan Zhang
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guolin Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
3
|
Tang WK, Lee JCY. Association of Fast-Food Intake with Depressive and Anxiety Symptoms among Young Adults: A Pilot Study. Nutrients 2024; 16:3317. [PMID: 39408284 PMCID: PMC11478624 DOI: 10.3390/nu16193317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Background: High intake of fast food has been linked to increased risks of both depressive and anxiety disorders. However, associations between individual fast-food items and depressive/anxiety disorders are rarely examined. Method: Using cross-sectional survey the association between common fast-food items and depressive/anxiety symptoms among 142 young Hong Kong adults aged 18-27 years old was examined. A qualitative food frequency questionnaire was employed to measure the intake frequency of 22 common fast-food items found in Hong Kong. Occurrence of significant depressive and anxiety symptoms was measured by the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7), respectively. Primary measures were multivariate-adjusted odds ratios for occurrence of depressive and anxiety symptoms compared with the low intake frequency group for common fast-food items. Results: Our observations suggest that frequent intake of high-fat, -sugar, and -sodium fast-foods increased depressive symptoms, while frequent high-fat fast-food intake was associated with anxiety symptoms. However, frequent intake of sugar-free beverages reduced the risk of depressive symptoms. Conclusions: Habitual intake of certain fast foods were related to depressive/anxiety symptoms in young adults.
Collapse
Affiliation(s)
- Wai-Kin Tang
- HKU School of Professional and Continuing Education, Hong Kong SAR, China;
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Dong X, Pei G, Yang Z, Huang S. Flavonoid chrysin activates both TrkB and FGFR1 receptors while upregulates their endogenous ligands such as brain derived neurotrophic factor to promote human neurogenesis. Cell Prolif 2024:e13732. [PMID: 39331585 DOI: 10.1111/cpr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) and plays a crucial role in neurological diseases. The process involves a series of steps, including NSC proliferation, migration and differentiation, which are regulated by multiple pathways such as neurotrophic Trk and fibroblast growth factor receptors (FGFR) signalling. Despite the discovery of numerous compounds capable of modulating individual stages of neurogenesis, it remains challenging to identify an agent that can regulate multiple cellular processes of neurogenesis. Here, through screening of bioactive compounds in dietary functional foods, we identified a flavonoid chrysin that not only enhanced the human NSCs proliferation but also facilitated neuronal differentiation and neurite outgrowth. Further mechanistic study revealed the effect of chrysin was attenuated by inhibition of neurotrophic tropomyosin receptor kinase-B (TrkB) receptor. Consistently, chrysin activated TrkB and downstream ERK1/2 and AKT. Intriguingly, we found that the effect of chrysin was also reduced by FGFR1 blockade. Moreover, extended treatment of chrysin enhanced levels of brain-derived neurotrophic factor, as well as FGF1 and FGF8. Finally, chrysin was found to promote neurogenesis in human cerebral organoids by increasing the organoid expansion and folding, which was also mediated by TrkB and FGFR1 signalling. To conclude, our study indicates that activating both TrkB and FGFR1 signalling could be a promising avenue for therapeutic interventions in neurological diseases, and chrysin appears to be a potential candidate for the development of such treatments.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Wang Y, Jin JQ, Zhang R, He M, Wang L, Mao Z, Gan M, Wu L, Chen L, Wang L, Wei K. Association analysis of BSA-seq, BSR-seq, and RNA-seq reveals key genes involved in purple leaf formation in a tea population ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae191. [PMID: 39257538 PMCID: PMC11384119 DOI: 10.1093/hr/uhae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/12/2024]
Abstract
Purple tea, rich in anthocyanins, has a variety of health benefits and is attracting global interest. However, the regulation mechanism of anthocyanin in purple tea populations has not been extensively studied. In this experiment, RNA-seq, BSA-seq, and BSR-seq were performed using 30 individuals with extreme colors (dark-purple and green) in an F 1 population of 'Zijuan' and 'Jinxuan'. The results show that 459 genes were differentially expressed in purple and green leaves, among which genes involved in the anthocyanin synthesis and transport pathway, such as CHS, F3H, ANS, MYB75, GST, MATE, and ABCC, were highly expressed in purple leaves. Moreover, there were multiple SNP/InDel variation sites on chromosomes 2 and 14 of the tea plant, as identified by BSA-seq. The integrated analysis identified two highly expressed genes (CsANS and CsMYB75) with SNP/InDel site variations in the purple tea plants. By silencing leaves, we proved that CsMYB75 could positively regulate anthocyanin accumulation and expression of related structural genes in tea plants. A 181-bp InDel in the CsMYB75 promoter was also found to be co-segregating with leaf color. The results of this study provide a theoretical reference for the molecular mechanism of anthocyanin accumulation in purple tea plants and contribute to the creation of new tea cultivars with high anthocyanin content.
Collapse
|
6
|
Ablat A, Li MJ, Zhai XR, Wang Y, Bai XL, Shu P, Liao X. Fast Screening of Tyrosinase Inhibitors in Coreopsis tinctoria Nutt. by Ligand Fishing Based on Paper-Immobilized Tyrosinase. Molecules 2024; 29:4018. [PMID: 39274866 PMCID: PMC11397727 DOI: 10.3390/molecules29174018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Coreopsis tinctoria Nutt. is an important medicinal plant in traditional Uyghur medicine. The skin-lightening potential of the flower has been recognized recently; however, the active compounds responsible for that are not clear. In this work, tyrosinase, a target protein for regulating melanin synthesis, was immobilized on the Whatman paper for the first time to screen skin-lightening compounds present in the flower. Quercetagetin-7-O-glucoside (1), marein (2), and okanin (3) were found to be the enzyme inhibitors. The IC50 values of quercetagetin-7-O-glucoside (1) and okanin (3) were 79.06 ± 1.08 μM and 30.25 ± 1.11 μM, respectively, which is smaller than 100.21 ± 0.11 μM of the positive control kojic acid. Enzyme kinetic analysis and molecular docking were carried out to investigate their inhibition mechanism. Although marein (2) showed a weak inhibition effect in vitro, it inhibited the intracellular tyrosinase activity and diminished melanin production in melanoma B16 cells as did the other two inhibitors. The paper-based ligand fishing method developed in this work makes it effective to quickly screen tyrosinase inhibitors from natural products. This is the first report on the tyrosinase inhibitory effect of those three compounds, showing the promising potential of Coreopsis tinctoria for the development of herbal skin-lightening products.
Collapse
Affiliation(s)
- Ayzohra Ablat
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Jie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xiao-Rui Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
| |
Collapse
|
7
|
Yang H, Ren J, Ji P, Zhang X, Mai Z, Li C, Zhao N, Ma T, Zhu X, Hua Y, Wei Y. Investigating the regulatory effect of Shen Qi Bu Qi powder on the gastrointestinal flora and serum metabolites in calves. Front Cell Infect Microbiol 2024; 14:1443712. [PMID: 39247054 PMCID: PMC11377352 DOI: 10.3389/fcimb.2024.1443712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Object To investigate the effects of Shen Qi Bu Qi Powder (SQBQP) on the average daily gain, blood indexes, gastrointestinal microflora, and serum metabolites of calves. Methods A total of 105 calves were randomly assigned to three groups (n = 35 per group): the control group (C, fed with a basal diet for 21 days) and two treatment groups (SQBQP-L and SQBQP-H, fed with the basal diet supplemented with 15 and 30 g/kg of SQBQP), respectively for 21 days. The active components of SQBQP were identified using LC-MS/MS. Serum digestive enzymes and antioxidant indices were determined by ELISA kits and biochemical kits, respectively. Serum differential metabolites were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), while flora in rumen fluid and fecal were analyzed by 16S rDNA sequencing. Further correlation analysis of gastrointestinal flora and serum metabolites of SQBQP-H and C groups were performed with Spearman's correlation. Results The principal active components of SQBQP mainly includes polysaccharides, flavonoids, and organic acids. Compared to the control group (C), calves in the SQBQP-H (high dose) and SQBQP-L (low dose) groups showed a significant increase in serum amylase (AMS) levels (P<0.001), while lipase content significantly decreased (P<0.05). Additionally, the average daily gain, T-AOC, and cellulase content of calves in the SQBQP-H group significantly increased (P<0.05). Proteobacteria and Succinivibrio in the rumen flora of the SQBQP-H group was significantly lower than that of the C group (P<0.05). The relative abundance of Proteobacteria, Actinobacteria, Candidatus_Saccharibacteria, Deinococcus_Thermus, Cyanobacteria, and Succinivibrio in the SQBQP-H group was significantly increased (P<0.05), while the relative abundance of Tenericutes and Oscillibacter was significantly decreased (P<0.05). Serum metabolomics analysis revealed 20 differential metabolites, mainly enriched in amino acid biosynthesis, β-alanine metabolism, tyrosine, and tryptophan biosynthesis metabolic pathways (P<0.05). Correlation analysis results showed that Butyrivibrio in rumen flora and Oscillibacter_valericigenes in intestinal flora were significantly positively correlated with average daily gain, serum biochemical indexes, and differential metabolite (-)-Epigallocatechin (R>0.58, P<0.05). Conclusion SQBQP can promote calves weight gain and enhance health by modulating gastrointestinal flora and metabolic processes in the body.
Collapse
Affiliation(s)
- Haochi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianming Ren
- College of Chemistry and Life Sciences, Gansu Minzu Normal University, Gannan, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaosong Zhang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Nianshou Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ting Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaopeng Zhu
- Zhangye Wanhe Animal Husbandry Industry Technology Development Co., Ltd, Zhangye, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Chu Y, Pang B, Yang M, Wang S, Meng Q, Gong H, Kong Y, Leng Y. Exploring the possible therapeutic mechanism of Danzhixiaoyao pills in depression and MAFLD based on "Homotherapy for heteropathy": A network pharmacology and molecular docking. Heliyon 2024; 10:e35309. [PMID: 39170292 PMCID: PMC11336640 DOI: 10.1016/j.heliyon.2024.e35309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Danzhixiaoyao pills (DXP) is a traditional Chinese medicine formula that has been effectively used in clinical practice to treat depression and metabolic associated fatty liver disease (MAFLD), but its therapeutic mechanism is not yet clear. The purpose of this study is to explore the possible mechanisms of DXP in treating depression and MAFLD using network pharmacology and molecular docking techniques based on existing literature reports. Methods By combining TCMSP, Swiss ADME, Swiss TargetPrediction, and UniProt databases, the active ingredients and potential targets of DXP were screened and obtained. By searching for relevant disease targets through Gene Cards, OMIM, and TTD databases, intersection targets between drugs and diseases were obtained. The network of "Disease - Potential targets - Active ingredients - Traditional Chinese medicine - Prescriptions" was constructed using Cytoscape 3.9.1 software, and the PPI network was constructed using STRING 12.0 database. The core targets were obtained through topology analysis. GO function enrichment and KEGG pathway enrichment analysis were conducted based on DAVID. The above results were validated by molecular docking using PyMol 2.5 and AutoDock Tool 1.5.7 software, and their possible therapeutic mechanisms were discussed. Results Network pharmacology analysis obtained 130 main active ingredients of drugs, 173 intersection targets between drugs and diseases, and 37 core targets. Enrichment analysis obtained 1390 GO functional enrichment results, of which 922 were related to biological process, 107 were related to cellular component, 174 were related to molecular function, and obtained 180 KEGG pathways. Molecular docking has confirmed the good binding ability between relevant components and targets, and the literature discussion has preliminarily verified the above results. Conclusion DXP can act on targets such as TNF, AKT1, ALB, IL1B, TP53 through active ingredients such as kaempferol, quercetin, naringenin, isorhamnetin, glyuranolide, etc, and by regulating signaling pathways such as pathways in cancer, MAPK signaling pathway, lipid and atherosclerosis, to exert its effect of "homotherapy for heteropathy" on depression and MAFLD. In addition, glyuranolide showed the strongest affinity with TNF (-7.88 kcal/mol), suggesting that it may play a key role in the treatment process. The research results provide a theoretical basis for elucidating the scientific connotation and mechanism of action of traditional Chinese medicine compound DXP, and provide new directions for its clinical application.
Collapse
Affiliation(s)
- YunHang Chu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - BingYao Pang
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ming Yang
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Qi Meng
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - HongChi Gong
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - YuDong Kong
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yan Leng
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Sun L, Zhang S, Yu Z, Zheng X, Liang S, Ren H, Qi X. Transcription-Associated Metabolomic Analysis Reveals the Mechanism of Fruit Ripening during the Development of Chinese Bayberry. Int J Mol Sci 2024; 25:8654. [PMID: 39201345 PMCID: PMC11355050 DOI: 10.3390/ijms25168654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The ripening process of Chinese bayberries (Myrica rubra) is intricate, involving a multitude of molecular interactions. Here, we integrated transcriptomic and metabolomic analysis across three developmental stages of the Myrica rubra (M. rubra) to elucidate these processes. A differential gene expression analysis categorized the genes into four distinct groups based on their expression patterns. Gene ontology and pathway analyses highlighted processes such as cellular and metabolic processes, including protein and sucrose metabolism. A metabolomic analysis revealed significant variations in metabolite profiles, underscoring the dynamic interplay between genes and metabolites during ripening. Flavonoid biosynthesis and starch and sucrose metabolism were identified as key pathways, with specific genes and metabolites playing crucial roles. Our findings provide insights into the molecular mechanisms governing fruit ripening in M. rubra and offer potential targets for breeding strategies aimed at enhancing fruit quality.
Collapse
Affiliation(s)
- Li Sun
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Shuwen Zhang
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Zheping Yu
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Xiliang Zheng
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Senmiao Liang
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Haiying Ren
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Xingjiang Qi
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
10
|
Chen X, Sun B, Zeng J, Yu Z, Liu J, Tan Z, Li Y, Peng C. Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5789-5806. [PMID: 38321212 DOI: 10.1007/s00210-024-02985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Cholangiocarcinoma (CCA) is a type of malignant tumor originating from the intrahepatic, periportal, or distal biliary system. The treatment means for CCA is limited, and its prognosis is poor. Spatholobi Caulis (SC) is reported to have effects on anti-inflammatory and anti-tumor, but its role in CCA is unclear. First, the potential molecular mechanism of SC for CCA treatment was explored based on network pharmacology, and the core targets were verified by molecular docking and molecular dynamics simulation. Then, we explored the inhibitory effect of SC on the malignant biological behavior of CCA in vitro and in vivo and also explored the related signaling pathways. The effect of combination therapy of SC and cisplatin (DDP) in CCA was also explored. Finally, we conducted a network pharmacological study and simple experimental verification on luteolin, one of the main components of SC. Network pharmacology analysis showed that the core targets of SC on CCA were AKT1, CASP3, MYC, TP53, and VEGFA. Molecular docking and molecular dynamics simulation indicated a good combination between the core target protein and the corresponding active ingredients. In vitro, SC inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of CCA cells. In vivo experiments, the results were consistent with in vitro experiments, and there was no significant hepatorenal toxicity of SC at our dosage. Based on KEGG enrichment analysis, we found PI3K/AKT signaling pathway might be the main signaling pathway of SC action on CCA by using AKT agonist SC79. To explore whether SC was related to the chemotherapy sensitivity of CCA, we found that SC combined with DDP could more effectively inhibit the progression of cholangiocarcinoma. Finally, we found luteolin may inhibit the proliferation and invasion of CCA cells. Our study demonstrates for the first time that SC inhibits the progression of CCA by suppressing EMT through the PI3K-AKT signaling pathway, and SC could enhance the effectiveness of cisplatin therapy for CCA.
Collapse
Affiliation(s)
- Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jia Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Faysal M, Dehbia Z, Zehravi M, Sweilam SH, Haque MA, Kumar KP, Chakole RD, Shelke SP, Sirikonda S, Nafady MH, Khan SL, Nainu F, Ahmad I, Emran TB. Flavonoids as Potential Therapeutics Against Neurodegenerative Disorders: Unlocking the Prospects. Neurochem Res 2024; 49:1926-1944. [PMID: 38822985 DOI: 10.1007/s11064-024-04177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Neurodegeneration, the decline of nerve cells in the brain, is a common feature of neurodegenerative disorders (NDDs). Oxidative stress, a key factor in NDDs such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease can lead to neuronal cell death, mitochondria impairment, excitotoxicity, and Ca2+ stress. Environmental factors compromising stress response lead to cell damage, necessitating novel therapeutics for preventing or treating brain disorders in older individuals and an aging population. Synthetic medications offer symptomatic benefits but can have adverse effects. This research explores the potential of flavonoids derived from plants in treating NDDs. Flavonoids compounds, have been studied for their potential to enter the brain and treat NDDs. These compounds have diverse biological effects and are currently being explored for their potential in the treatment of central nervous system disorders. Flavonoids have various beneficial effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic, and antioxidant properties. Their potential to alleviate symptoms of NDDs is significant.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | - M Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Ghatkesar, Hyderabad, 500088, India
| | - Kusuma Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Govt. of N.C.T. of Delhi, Pushpvihar, New Delhi, 110017, India
| | - Rita D Chakole
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad, 415124, Maharashtra, India
| | - Satish P Shelke
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, 443001, Maharashtra, India
| | - Swapna Sirikonda
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Ghatkesar, 500088, Hyderabad, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
12
|
Liu Y, Luo J, Peng L, Zhang Q, Rong X, Luo Y, Li J. Flavonoids: Potential therapeutic agents for cardiovascular disease. Heliyon 2024; 10:e32563. [PMID: 38975137 PMCID: PMC11225753 DOI: 10.1016/j.heliyon.2024.e32563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Flavonoids are found in the roots, stems, leaves, and fruits of many plant taxa. They are related to plant growth and development, pigment formation, and protection against environmental stress. Flavonoids function as antioxidants and exert anti-inflammatory effects in the cardiovascular system by modulating classical inflammatory response pathways, such as the TLR4-NF-ĸB, PI3K-AKT, and Nrf2/HO-1 signalling pathways. There is increasing evidence for the therapeutic effects of flavonoids on hypertension, atherosclerosis, and other diseases. The potential clinical value of flavonoids for diseases of the cardiovascular system has been widely explored. For example, studies have evaluated the roles of flavonoids in the regulation of blood pressure via endothelium-dependent and non-endothelium-dependent pathways and in the regulation of myocardial systolic and diastolic functions by influencing calcium homeostasis and smooth muscle-related protein expression. Flavonoids also have hypoglycaemic, hypolipidemic, anti-platelet, autophagy, and antibacterial effects. In this paper, the role and mechanism of flavonoids in cardiovascular diseases were reviewed in order to provide reference for the clinical application of flavonoids in the future.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, China
| |
Collapse
|
13
|
Wang X, Chen H, Jiang J, Ma J. Hesperidin Alleviates Hepatic Injury Caused by Deoxynivalenol Exposure through Activation of mTOR and AKT/GSK3β/TFEB Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14349-14363. [PMID: 38869217 DOI: 10.1021/acs.jafc.4c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3β/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3β/TFEB pathway, thereby reducing liver injury.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, P. R. China
| |
Collapse
|
14
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
15
|
Maaloul S, Ghzaiel I, Mahmoudi M, Mighri H, Pires V, Vejux A, Martine L, de Barros JPP, Prost-Camus E, Boughalleb F, Lizard G, Abdellaoui R. Characterization of Silybum marianum and Silybum eburneum seed oils: Phytochemical profiles and antioxidant properties supporting important nutritional interests. PLoS One 2024; 19:e0304021. [PMID: 38875282 PMCID: PMC11178192 DOI: 10.1371/journal.pone.0304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024] Open
Abstract
Milk thistle seed oil is still not a well-known edible oil. Silybum marianum (milk thistle), is present in several countries and is the only known representative of the genus Silybum. However, Silybum eburneum, which is an endemic plant in Spain, Kenya, Morocco, Algeria, and Tunisia, is considered a marginalized species. The present work is the first report that gives information on the lipid and phenolic profiles of Tunisian S. eburneum seed oil compared to those of Tunisian S. marianum seed oil. In addition, the antioxidant properties of these oils were determined with DPPH, FRAP, and KRL assays, and their ability to prevent oxidative stress was determined on human monocytic THP-1 cells. These oils are characterized by high amounts of unsaturated fatty acids; linoleic acid and oleic acid are the most abundant. Campesterol, sitosterol, stigmasterol, and β-amyrin were the major phytosterols identified. α-tocopherol was the predominant tocopherol found. These oils also contain significant amounts of phenolic compounds. The diversity and richness of Silybum marianum and Silybum eburneum seed oils in unsaturated fatty acids, phenolic compounds, and tocopherols are associated with high antioxidant activities revealed by the DPPH, FRAP, and KRL assays. In addition, on THP-1 cells, these oils powerfully reduced the oxidative stress induced by 7-ketocholesterol and 7β-hydroxycholesterol, two strongly pro-oxidant oxysterols often present at increased levels in patients with age-related diseases. Silybum marianum and Silybum eburneum seed oils are therefore important sources of bioactive molecules with nutritional interest that prevent age-related diseases, the frequency of which is increasing in all countries due to the length of life expectancy.
Collapse
Affiliation(s)
- Samah Maaloul
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
- University Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand, France
| | - Maher Mahmoudi
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Laboratory of Plant, Soil and Environement Interactions (LR21ES01)-University of Tunis El-Manar, Faculty of Sciences of Tunis, El-Manar, Tunis, Tunisia
- Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja (LR23ES08), University of Jendouba, Jendouba, Tunisia
| | - Hédi Mighri
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | | | | | | | - Fayçal Boughalleb
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) University of Bourgogne/Inserm, Dijon, France
| | - Raoudha Abdellaoui
- Laboratory of Rangeland Ecosystems and Valorisation of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
16
|
Shah FA, Albaqami F, Alattar A, Alshaman R, Zaitone SA, Gabr AM, Abdel-Moneim AMH, dosoky ME, Koh PO. Quercetin attenuated ischemic stroke induced neurodegeneration by modulating glutamatergic and synaptic signaling pathways. Heliyon 2024; 10:e28016. [PMID: 38571617 PMCID: PMC10987936 DOI: 10.1016/j.heliyon.2024.e28016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Ischemic strokes originate whenever the circulation to the brain is interrupted, either temporarily or permanently, resulting in a lack of oxygen and other nutrients. This deprivation primarily impacts the cerebral cortex and striatum, resulting in neurodegeneration. Several experimental stroke models have demonstrated that the potent antioxidant quercetin offers protection against stroke-related damage. Multiple pathways have been associated with quercetin's ability to safeguard the brain from ischemic injury. This study examines whether the administration of quercetin alters glutamate NMDA and GluR1 receptor signaling in the cortex and striatum 72 h after transient middle cerebral artery occlusion. The administration of 10 mg/kg of quercetin shielded cortical and striatal neurons from cell death induced by ischemia in adult SD rats. Quercetin reversed the ischemia-induced reduction of NR2a/PSD95, consequently promoting the pro-survival AKT pathway and reducing CRMP2 phosphorylation. Additionally, quercetin decreased the levels of reactive oxygen species and inflammatory pathways while increasing the expression of the postsynaptic protein PSD95. Our results suggest that quercetin may be a promising neuroprotective drug for ischemic stroke therapy as it recovers neuronal damage via multiple pathways.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Faisal Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Attia M. Gabr
- Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Physiology, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed El dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
17
|
Yoon KN, Cui Y, Quan QL, Lee DH, Oh JH, Chung JH. Tomato and lemon extracts synergistically improve cognitive function by increasing brain-derived neurotrophic factor levels in aged mice. Br J Nutr 2024; 131:1105-1114. [PMID: 38016800 PMCID: PMC10918522 DOI: 10.1017/s0007114523002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
Brain ageing, the primary risk factor for cognitive impairment, occurs because of the accumulation of age-related neuropathologies. Identifying effective nutrients that increase cognitive function may help maintain brain health. Tomatoes and lemons have various bioactive functions and exert protective effects against oxidative stress, ageing and cancer. Moreover, they have been shown to enhance cognitive function. In the present study, we aimed to investigate the effects of tomato and lemon ethanolic extracts (TEE and LEE, respectively) and their possible synergistic effects on the enhancement of cognitive function and neurogenesis in aged mice. The molecular mechanisms underlying the synergistic effect of TEE and LEE were investigated. For the in vivo experiment, TEE, LEE or their mixture was orally administered to 12-month-old mice for 9 weeks. A single administration of either TEE or LEE improved cognitive function and neurogenesis in aged mice to some extent, as determined using the novel object recognition test and doublecortin immunohistochemical staining, respectively. However, a significant enhancement of cognitive function and neurogenesis in aged mice was observed after the administration of the TEE + LEE mixture, which had a synergistic effect. N-methyl-d-aspartate receptor 2B, postsynaptic density protein 95, and brain-derived neurotrophic factor (BDNF) levels and tropomyosin receptor kinase B (TrkB)/extracellular signal-regulated kinase (ERK) phosphorylation also synergistically increased after the administration of the mixture compared with those in the individual treatments. In conclusion, compared with their separate treatments, treatment with the TEE + LEE mixture synergistically improved the cognitive function, neurogenesis and synaptic plasticity in aged mice via the BDNF/TrkB/ERK signalling pathway.
Collapse
Affiliation(s)
- Kyeong-No Yoon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yidan Cui
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing-Ling Quan
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hun Lee
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Wan Y, Ma D, Shang Q, Xu H. Association between dietary flavonoid intake and hypertension among U.S. adults. Front Immunol 2024; 15:1380493. [PMID: 38680497 PMCID: PMC11046732 DOI: 10.3389/fimmu.2024.1380493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Background Hypertension is one of the major risk factors for cardiovascular disease. Dietary flavonoids have been reported to reduce inflammation, protect against oxidative stress, protect the vascular endothelium, and improve vascular health. However, the relationship between dietary flavonoid intake and the prevalence of hypertension remains controversial. Methods This study included 8010 adults from the 2007-2010 and 2017-2018 National Health and Nutrition Examination Surveys (NHANES). The relationship between dietary flavonoid intake and the prevalence of hypertension was explored by weighted logistic regression and weighted restricted cubic spline. Results We found an inverse relationship between total anthocyanin intake and the prevalence of hypertension in the fourth quartile compared with the first quartile [0.81(0.66,0.99), p = 0.04]. Moreover, the prevalence of hypertension tended to decrease with increasing total anthocyanin intake in participants over 60 years of age. In addition, we found a U-shaped relationship between the prevalence of hypertension and total flavan-3-ol intake. Total flavan-3-ol intake was inversely associated with hypertension prevalence in the third quartile compared with the first quartile [0.79 (0.63,0.99), p = 0.04]. Moreover, there was a significant negative association between the prevalence of hypertension and total flavan-3-ol intake when total flavan-3-ol intake was below 48.26 mg/day. Conclusion Our study found a negative association between the prevalence of hypertension and moderate total anthocyanins intake and total flavan-3-ols intake. Our study provides evidence from a population-based study for a negative association between dietary flavonoid intake and the prevalence of hypertension.
Collapse
Affiliation(s)
- Yingying Wan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- China Academy of Chinese Medical Sciences, Xiyuan Hospital Suzhou Hospital, Suzhou, China
| | - Qinghua Shang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Abdulsahib WK, Al-Radeef MY. Effect of quercetin against pilocarpine-induced epilepsy in mice. J Adv Pharm Technol Res 2024; 15:63-69. [PMID: 38903552 PMCID: PMC11186541 DOI: 10.4103/japtr.japtr_496_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
Globally, an estimated 50 million people are affected by epilepsy, a persistent, noncommunicable neurological ailment. Quercetin (QR) is a prevalent flavonoid substance extensively dispersed throughout agricultural life. In a pilocarpine (PILO)-induced epilepsy model in mice, this investigation aimed to determine whether QR has an antiepileptic effect and explore its putative mechanism of action. Fifty mice were allocated into seven groups, with six in every group. The first group received physiological saline, the second group was given diazepam (1 mg/kg), and four groups were administered QR at 50, 100, 150, and 200 mg/kg, respectively. The seventh group (the induction group) received normal saline. After 30 min, all groups were injected intraperitoneally with PILO. The impact of QR on motor coordination was assessed using the rotarod test, while measures such as latency to first seizure, generalized tonic-clonic seizures (GTCS), number of convulsions, and mortality were recorded. Serum samples were collected through the retro-orbital route to measure prostaglandin E2 (PGE2) and interleukin 1 beta (IL-1β) levels. QR showed no significant difference in motor impairment, but increased duration until the initial seizure occurred and declined the mortality rate, duration of GTCS, and incidence of convulsions. All doses of QR significantly reduced PGE2 levels (P ≤ 0.05). However, QR's effect on IL-1β reduction was statistically insignificant (P > 0.05). QR's capacity to inhibit PILO-induced epilepsy by decreasing IL-1 and PGE2 levels is supported by this study. The results of this work indicate that QR could have a function to treat acute epilepsy.
Collapse
Affiliation(s)
- Waleed K. Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Mohanad Y. Al-Radeef
- Department of Clinical Pharmacy, College of Pharmacy, Tikrit University, Tikrit, Iraq
| |
Collapse
|
20
|
Yilmaz E, Acar G, Onal U, Erdogan E, Baltaci AK, Mogulkoc R. Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia-Reperfusion Model of Rats. Neuromolecular Med 2024; 26:4. [PMID: 38457013 PMCID: PMC10924031 DOI: 10.1007/s12017-023-08771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.
Collapse
Affiliation(s)
- Esen Yilmaz
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Gozde Acar
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Ummugulsum Onal
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | - Ender Erdogan
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | | | - Rasim Mogulkoc
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
21
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
22
|
Yu J, Ding Y, Wu D, Liu P. Rutin, Puerarin and Silymarin Regulated Aluminum-Induced Imbalance of Neurotransmitters and Metal Elements in Brain of Rats. Biol Trace Elem Res 2024; 202:548-557. [PMID: 37289414 DOI: 10.1007/s12011-023-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/22/2023] [Indexed: 06/09/2023]
Abstract
Non-specifically binding of aluminum to various substances in the organism can result in toxicity. The accumulation of large amounts of aluminum can cause an imbalance in metal homeostasis and interfere with the synthesis and release of neurotransmitters. Flavonoids have strong metal chelating activity, which can reduce damage to the central nervous system. The purpose of this study was to investigate the protective effect of three representative flavonoids, rutin, puerarin and silymarin, on the brain toxicity induced by long-term exposure to aluminum trichloride (AlCl3). Sixty-four Wistar rats were randomly divided into eight groups (n = 8). The rats in six intervention groups were given 100 or 200 mg/kg BW/day of three different flavonoids for four weeks after a 4-week exposure to 281.40 mg/kg BW/day AlCl3·6H2O, while the rats in the AlCl3-toxicity and control groups were given the vehicle after the period of AlCl3 exposure. The results showed that rutin, puerarin, and silymarin could increase the concentrations of magnesium, iron, and zinc in the brains of the rats. Moreover, the intake of these three flavonoids regulated the homeostasis of amino acid neurotransmitters and adjusted the concentrations of monoamine neurotransmitters to normal levels. Taken together, our data suggest that rutin, puerarin, and silymarin could ameliorate AlCl3-induced brain toxicity in the rats by regulating imbalance of metal elements and neurotransmitters in the brains of rats.
Collapse
Affiliation(s)
- Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yun Ding
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
23
|
Zhang L, Muscat JE, Chinchilli VM, Kris-Etherton PM, Al-Shaar L, Richie JP. Berry Consumption in Relation to Allostatic Load in US Adults: The National Health and Nutrition Examination Survey, 2003-2010. Nutrients 2024; 16:403. [PMID: 38337686 PMCID: PMC10857206 DOI: 10.3390/nu16030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Berries are a rich source of antioxidant polyphenols and other nutrients that are associated with good health. Allostatic load (AL) is an aggregate measure of chronic stress-induced physiological dysregulations across cardiovascular, metabolic, autonomic, and immune systems; the extent of these dysregulations, collectively or in each system, can be characterized by a composite score or a domain score assessed by integrated biomarkers. It was hypothesized that the anti-inflammatory and other effects of berries lower AL. The association was determined between berry consumption and AL composite and domain scores in the 2003-2010 National Health and Nutrition Examination Survey (NHANES). METHODS Berry intake was measured using two 24 h dietary recalls collected from US adults in the 2003-2010 NHANES (n = 7684). The association with AL and its specific domains was examined using population weight-adjusted multivariable linear regression. RESULTS The mean AL composite scores for consumers of any berries (11.9), strawberries (11.6), and blueberries (11.6), respectively, were significantly lower than nonconsumers (12.3), after fully adjusting for sociodemographic, lifestyle, and dietary confounders. A significant dose-response relationship was determined between greater consumption of total berries, strawberries, and blueberries and lower mean AL composite scores (p-trend < 0.05, for all). Consistently, mean cardiovascular and metabolic domain scores remained significantly lower in the consumers of total berries (mean cardiovascular domain score: 4.73 versus 4.97 for nonconsumers; mean metabolic domain score: 2.97 versus 3.1), strawberries (4.73 versus 4.95; 2.99 versus 3.1), and blueberries (4.6 versus 4.95; 2.92 versus 3.11). Berry consumers also had significantly lower mean AL immune scores (1.52 versus 1.56) and lower mean AL autonomic scores (2.49 versus 2.57) than nonconsumers (initial sample: n = 15,620). CONCLUSIONS The current study indicates that consumption of berries lowers the AL composite scores and potentially reduces stress-related disease risks in the US adult population.
Collapse
Affiliation(s)
- Li Zhang
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.M.C.); (L.A.-S.); (J.P.R.)
| | - Joshua E. Muscat
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.M.C.); (L.A.-S.); (J.P.R.)
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.M.C.); (L.A.-S.); (J.P.R.)
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA;
| | - Laila Al-Shaar
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.M.C.); (L.A.-S.); (J.P.R.)
| | - John P. Richie
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.M.C.); (L.A.-S.); (J.P.R.)
| |
Collapse
|
24
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
25
|
Wang S, Xiao F, Yuan Y, Li J, Liang X, Fan X, Zhang M, Yan T, Yang M, He Z, Yang D. Transcriptomic and metabolomic analyses reveal that lemon extract prolongs Drosophila lifespan by affecting metabolism. Genomics 2024; 116:110751. [PMID: 38052259 DOI: 10.1016/j.ygeno.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Ya Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
26
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Devi V, Deswal G, Dass R, Chopra B, Kriplani P, Grewal AS, Guarve K, Dhingra AK. Therapeutic Potential and Clinical Effectiveness of Quercetin: A Dietary Supplement. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:13-32. [PMID: 38258783 DOI: 10.2174/012772574x269376231107095831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 01/24/2024]
Abstract
Fruits and vegetables (like apples, citrus, grapes, onions, parsley, etc.) are the primary dietary sources of quercetin. In addition, isolated quercetin is also available on the market as a dietary supplement with a daily dose of up to 1000 mg/d. The objective of the present study is to explore the therapeutic potential and clinical efficacy of quercetin as a dietary supplement. The present paper highlights the safety parameters and clinical trial studies with several targets reviewed from the data available on PubMed, Science Direct, ClinicalTrails. gov, and from many reputed foundations. The results of the studies prove the unique position of quercetin in the treatment of various disorders and the possibility of using phytochemicals such as quercetin for an efficient cure. As evidenced by the numerous published reports on human interventions, it has been concluded that quercetin intake significantly improves disease conditions with minimal adverse effects.
Collapse
Affiliation(s)
- Vishakha Devi
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Geeta Deswal
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Rameshwar Dass
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Bhawna Chopra
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Priyanka Kriplani
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Ajmer Singh Grewal
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Kumar Guarve
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Ashwani K Dhingra
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
28
|
Betts Z, Deveci Ozkan A, Yuksel B, Alimudin J, Aydin D, Aksoy O, Yanar S. Investigation of the combined cytotoxicity induced by sodium butyrate and a flavonoid quercetin treatment on MCF-7 breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:833-845. [PMID: 37668343 DOI: 10.1080/15287394.2023.2254807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Quercetin (QUE) belonging to the flavonoid class is a common phytochemical present in the daily diet of some individuals. Quercetin is an important source of free radical scavengers. This property makes this flavonoid a reliable antioxidant with the following properties: anti-inflammatory, anti-diabetic, antimicrobial and anti-carcinogenic. Sodium butyrate (NaBu) acts as a histone deacetylase inhibitor (HDACi) and is known to regulate apoptosis in cancer cells. Combining natural flavonoids such as QUE with different substances may synergistically enhance their anti-carcinogenic capacity. Thus, the aim of this study was to examine the combined treatment effects of QUE and NaBu in hormone-sensitive breast cancer cells in vitro. MCF-7 breast cancer cells were treated with QUE alone, NaBu alone, as well as QUE and NaBu combined to determine the following: cell proliferation, levels of protein annexin A5 (ANXA5) and reactive oxygen species (ROS), mRNA protein expression, as well as cell and nuclear morphology. Data demonstrated that either QUE or NaBu alone inhibited cell proliferation, and reduced levels protein ANXA5, ROS and mRNA protein expression, The combination of QUE and NaBu produced a significant synergistic inhibitory effect compared to treatment groups of QUE or NaBu alone. In conclusion, our findings showed that the combination treatment of QUE and NaBu may constitute a promising therapeutic approach to breast cancer treatment but this needs further molecular and in vivo investigations.
Collapse
Affiliation(s)
- Zeynep Betts
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli, Turkiye
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| | - Burcu Yuksel
- Department of Medical Services and Techniques, Kocaeli Vocational School of Health Services, Kocaeli University, Kocaeli, Turkiye
| | - Janiah Alimudin
- Department of Biology, Institute of Health Science, Kocaeli University, Kocaeli, Turkiye
| | - Duygu Aydin
- Department of Biology, Institute of Health Science, Kocaeli University, Kocaeli, Turkiye
| | - Ozlem Aksoy
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli, Turkiye
| | - Sevinc Yanar
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| |
Collapse
|
29
|
Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3860. [PMID: 38005756 PMCID: PMC10674704 DOI: 10.3390/plants12223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Ancient people sought out drugs in nature to prevent, cure, and treat their diseases, including mental illnesses. Plants were their primary source for meeting their healthcare needs. In Algeria, folk medicine remains a fundamental part of the local intangible knowledge. This study aims to conduct a comprehensive ethnomedicinal investigation and documentation of medicinal plants and the different plant formulations traditionally used in Algeria for the treatment of pain, psychiatric, and neurological disorders. It also intends to improve the current knowledge of Algerian folk medicine. Several scientific databases were used to accomplish this work. Based on this investigation, we identified 82 plant species belonging to 69 genera and spanning 38 distinct botanical families used as remedies to treat various psychological and neurological conditions. Their traditional uses and methods of preparation, along with their phytochemical composition, main bioactive constituents, and toxicity were noted. Therefore, this review provides a new resource of information on Algerian medicinal plants used in the treatment and management of neurological and psychological diseases, which can be useful not only for the documentation and conservation of traditional knowledge, but also for conducting future phytochemical and pharmacological studies.
Collapse
Affiliation(s)
- Farida Larit
- Laboratoire d’Obtention de Substances Thérapeutiques (LOST), Université Frères Mentouri-Constantine 1, Route de Ain El Bey, Constantine 25017, Algeria
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
30
|
Jameel S, Kaur L, Amin H, Bhat SA, Malik FA, Bhat KA. Design, synthesis and neuroprotective evaluation of nitrogen heterocyclic and triazole derivatives of sarracinic acid. Nat Prod Res 2023:1-10. [PMID: 37850445 DOI: 10.1080/14786419.2023.2269464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Novel sarracinic acid derivatives bearing triazole or N-heterocyclic moiety were prepared via two separate reaction schemes. The triazoles and the N-heterocyclic derivatives were synthesised using standard click chemistry approach and amination of 2-bromoethyl ester of sarracinic acid respectively. All the synthesised derivatives were screened for in vitro neuroprotective activity against corticosterone induced impairment in neuroblastoma cell line SH-SY5Y. Two analogs SA-2 and SA-12 exhibited strong neuroprotective activity. The cell viability, after high dose corticosterone induced cell death, increased remarkably with the pre treatment of SA-2 and SA-12. The in vitro biological activity of SA-2 and SA-12 was verified through docking studies. The docking studies were in good agreement with the biological results. SA-2 and SA-12 showed strong binding affinities with the target protein having ΔGb = -8.88 and -7.52; inhibition constant (ki) = 3.08 nM and 30.9 nM respectively.
Collapse
Affiliation(s)
- Salman Jameel
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Loveleena Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
| | - Henna Amin
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Showkat Ahmad Bhat
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Fayaz A Malik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
| | - Khursheed Ahmad Bhat
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Ceren Akgor M, Vuralli D, Sucu DH, Gokce S, Tasdelen B, Gultekin F, Bolay H. Distinct Food Triggers for Migraine, Medication Overuse Headache and Irritable Bowel Syndrome. J Clin Med 2023; 12:6488. [PMID: 37892628 PMCID: PMC10607881 DOI: 10.3390/jcm12206488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is an under-diagnosed common health problem that impairs quality of life. Migraine and IBS are comorbid disorders that are triggered by foods. We aim to investigate IBS frequency in medication overuse headache (MOH) patients and identify food triggers and food avoidance behavior. METHODS Participants who completed the cross-sectional, observational and online survey were included (n = 1118). Demographic data, comorbid disorders, medications used, presence of headache, the diagnostic features of headache and IBS, migraine related subjective cognitive symptoms scale (MigSCog), consumption behavior of patients regarding 125 food/food additives and food triggers were asked about in the questionnaire. RESULTS Migraine and MOH diagnoses were made in 88% and 30.7% of the participants, respectively. Non-steroidal anti-inflammatory drugs (NSAIDs) were the main overused drug (89%) in MOH patients. IBS symptoms were present in 35.8% of non-headache sufferers, 52% of migraine patients and 65% of MOH patients. Specific food triggers for MOH patients were dopaminergic and frequently consumed as healthy foods such as banana, apple, cherry, apricot, watermelon, olive, ice cream and yogurt. MigSCog scores were significantly higher in episodic migraine and MOH patients when IBS symptoms coexisted. CONCLUSIONS The frequency of IBS was higher in MOH patients compared to migraine patients. Coexistence of IBS seems to be a confounding factor for cognitive functions. MOH specific triggers were mostly dopaminergic foods, whereas migraine specific food triggers were mostly histaminergic and processed foods. Personalized diets focusing on food triggers and interference with leaky gut must be integrated to MOH and migraine treatment to achieve sustainable management of these disorders.
Collapse
Affiliation(s)
- Merve Ceren Akgor
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye; (M.C.A.); (D.V.); (S.G.)
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06560, Türkiye
| | - Doga Vuralli
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye; (M.C.A.); (D.V.); (S.G.)
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06560, Türkiye
- Neuropsychiatry Center, Gazi University, Ankara 06560, Türkiye
| | - Damla Hazal Sucu
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Mersin University, Mersin 33343, Türkiye; (D.H.S.); (B.T.)
| | - Saliha Gokce
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye; (M.C.A.); (D.V.); (S.G.)
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06560, Türkiye
| | - Bahar Tasdelen
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Mersin University, Mersin 33343, Türkiye; (D.H.S.); (B.T.)
| | - Fatih Gultekin
- Department of Medical Biochemistry, Lokman Hekim University, Ankara 06510, Türkiye;
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye; (M.C.A.); (D.V.); (S.G.)
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06560, Türkiye
- Neuropsychiatry Center, Gazi University, Ankara 06560, Türkiye
| |
Collapse
|
32
|
Chang PR, Liou JW, Chen PY, Gao WY, Wu CL, Wu MJ, Yen JH. The Neuroprotective Effects of Flavonoid Fisetin against Corticosterone-Induced Cell Death through Modulation of ERK, p38, and PI3K/Akt/FOXO3a-Dependent Pathways in PC12 Cells. Pharmaceutics 2023; 15:2376. [PMID: 37896136 PMCID: PMC10610442 DOI: 10.3390/pharmaceutics15102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The overactive hypothalamic-pituitary-adrenal (HPA) axis is believed to trigger the overproduction of corticosterone, leading to neurotoxicity in the brain. Fisetin is a flavonoid commonly found in fruits and vegetables. It has been suggested to possess various biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study aims to explore the potential neuroprotective properties of fisetin against corticosterone-induced cell death and its underlying molecular mechanism in PC12 cells. Our results indicate that fisetin, at concentrations ranging from 5 to 40 μM, significantly protected PC12 cells against corticosterone-induced cell death. Fisetin effectively reduced the corticosterone-mediated generation of reactive oxygen species (ROS) in PC12 cells. Fisetin treatments also showed potential in inhibiting the corticosterone-induced apoptosis of PC12 cells. Moreover, inhibitors targeting MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK, and phosphatidylinositol 3-kinase (PI3K) were found to significantly block the increase in cell viability induced by fisetin in corticosterone-treated cells. Consistently, fisetin enhanced the phosphorylation levels of ERK, p38, Akt, and c-AMP response element-binding protein (CREB) in PC12 cells. Additionally, it was found that the diminished levels of p-CREB and p-ERK by corticosterone can be restored by fisetin treatment. Furthermore, the investigation of crosstalk between ERK and CREB revealed that p-CREB activation by fisetin occurred through the ERK-independent pathway. Moreover, we demonstrated that fisetin effectively counteracted the corticosterone-induced nuclear accumulation of FOXO3a, an apoptosis-triggering transcription factor, and concurrently promoted FOXO3a phosphorylation and its subsequent cytoplasmic localization through the PI3K/Akt pathway. In conclusion, our findings indicate that fisetin exerts its neuroprotective effect against corticosterone-induced cell death by modulating ERK, p38, and the PI3K/Akt/FOXO3a-dependent pathways in PC12 cells. Fisetin emerges as a promising phytochemical for neuroprotection.
Collapse
Affiliation(s)
- Pei-Rong Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| |
Collapse
|
33
|
Carneiro Lobo LA, Alves Santos P, de Sousa JT, Picada JN, Bianchi SE, Bassani VL, da Silva FC, Ethur EM, Goettert MI, Pereira P. Toxicological profile of the Hymenaea courbaril stem bark hydroalcoholic extract using in vitro bioassays and an alternative in vivo Caenorhabditis elegans model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:678-695. [PMID: 37482814 DOI: 10.1080/15287394.2023.2237069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Hymenaea genus has been used in folk medicine in Brazil, but few studies investigated its toxicity profile. Thus, the aim of this study was to determine toxicological parameters of Hymenaea courbaril stem bark hydroalcoholic extract by utilizing three cell lines including murine macrophages (RAW 264.7), mouse fibroblast cells (L929) and human lung fibroblast (MRC-5), as well as Salmonella/microsome assay, and in vivo Caenorhabditis elegans model. The predominant detected phytoconstituents in the extract were coumarins, flavonoids, phenolics, tannins and saponins and by HPLC analysis, astilbin (AST) was found to be the main component. The DPPH assay demonstrated that H. courbaril hydroalcoholic extract exhibited potent antioxidant activity, with an IC50 of 3.12 μg/ml. The extract at concentrations of 400 and 800 μg/ml decreased cell viability 48 hr after treatment in L929 and MRC-5 cell lines. In the Raw 264.7 strain, just the highest concentration (800 μg/ml) lowered cell viability within 48 hr following exposure. The concentration of 100 μg/ml did not markedly affect cell viability in the trypan blue assay. In the alkaline comet assay the extract was found to be non-genotoxic. In the Ames test, the extract exhibited low mutagenic potential without metabolic activation, since only the highest concentrations produced an effect. H. courbaril extract only affected the survival of C. elegans at concentrations of 800 and 1600 μl/ml. These findings demonstrate that H. courbaril extract appears to exert low toxicity as evidenced in vitro and mutagenicity assays; however, the biological relevance of the response of C. elegans survival to safety assessments needs further studies.
Collapse
Affiliation(s)
- Larissa Aline Carneiro Lobo
- Laboratory of Neuropharmacology and Preclinical Toxicology, Federal University of Rio Grande Do Sul, Porto Alegre, RS - Brazil
| | - Peterson Alves Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Federal University of Rio Grande Do Sul, Porto Alegre, RS - Brazil
| | - Jayne Torres de Sousa
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Sara Elis Bianchi
- Galenic Development Laboratory, Graduate in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Porto Alegre, RS - Brazil
| | - Valquiria Linck Bassani
- Galenic Development Laboratory, Graduate in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Porto Alegre, RS - Brazil
| | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology and Post Graduate Program in Environment and Development, University of Vale Do Taquari (Univates), Lajeado, RS - Brazil
| | - Márcia Inês Goettert
- Postgraduate Program in Biotechnology and Post Graduate Program in Environment and Development, University of Vale Do Taquari (Univates), Lajeado, RS - Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Federal University of Rio Grande Do Sul, Porto Alegre, RS - Brazil
| |
Collapse
|
34
|
De Gaetano F, Margani F, Barbera V, D’Angelo V, Germanò MP, Pistarà V, Ventura CA. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2209. [PMID: 37765179 PMCID: PMC10536596 DOI: 10.3390/pharmaceutics15092209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Morin (MRN) is a natural compound with antiangiogenic, antioxidant, anti-inflammatory, and anticancer activity. However, it shows a very low water solubility (28 μg/mL) that reduces its oral absorption, making bioavailability low and unpredictable. To improve MRN solubility and positively affect its biological activity, particularly its antiangiogenic activity, in this work, we prepared the inclusion complexes of MNR with sulfobutylether-β-cyclodextrin (SBE-β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes obtained by the freeze-drying method were extensively characterized in solution (phase-solubility studies, UV-Vis titration, and NMR spectroscopy) and in the solid state (TGA, DSC, and WAXD analysis). The complexation significantly increased the water solubility by about 100 times for MRN/HP-β-CD and 115 times for MRN/SBE-β-CD. Furthermore, quantitative dissolution of the complexes was observed within 60 min, whilst 1% of the free drug dissolved in the same experimental time. 1H NMR and UV-Vis titration studies demonstrated both CDs well include the benzoyl moiety of the drug. Additionally, SBE-β-CD could interact with the cinnamoyl moiety of MRN too. The complexes are stable in solution, showing a high value of association constant, that is, 3380 M-1 for MRN/HP-β-CD and 2870 M-1 for MRN/SBE-β-CD. In vivo biological studies on chick embryo chorioallantoic membrane (CAM) and zebrafish embryo models demonstrated the high biocompatibility of the inclusion complexes and the effective increase in antiangiogenic activity of complexed MRN with respect to the free drug.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Fatima Margani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Valeria D’Angelo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| |
Collapse
|
35
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
36
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Effect of Europinidin against Alcohol-Induced Liver Damage in Rats by Inhibiting the TNF-α/TGF-β/IFN-γ/NF-kB/Caspase-3 Signaling Pathway. ACS OMEGA 2023; 8:22656-22664. [PMID: 37396259 PMCID: PMC10308532 DOI: 10.1021/acsomega.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The effect of europinidin on alcoholic liver damage in rats was examined in this research. METHODS A total of 24 Wistar rats were grouped in the same way into four groups: normal control (normal), ethanol control (EtOH), europinidin low dose (10 mg/kg), and europinidin higher dose (20 mg/kg). The test group rats were orally treated with europinidin-10 and europinidin-20 for 4 weeks, whereas 5 mL/kg distilled water was administered to control rats. In addition, 1 h after the last dose of the above-mentioned oral treatment, 5 mL/kg (i.p.) EtOH was injected to induce liver injury. After 5 h of EtOH treatment, samples of blood were withdrawn for biochemical estimations. RESULTS Administration of europinidin at both doses restored all of the estimated serum, i.e., liver function tests (ALT, AST, ALP), biochemical test (Creatinine, albumin, BUN, direct bilirubin, and LDH), lipid assessment (TC and TG), endogenous antioxidants (GSH-Px, SOD, and CAT), malondialdehyde (MDA), nitric oxide (NO), cytokines (TGF-β, TNF-α, IL-1β, IL-6, IFN-γ, and IL-12), caspase-3, and nuclear factor kappa B (NF-κB) associated with the EtOH group. CONCLUSION The results of the investigation showed that europinidin had favorable effects in rats given EtOH and may have hepatoprotective potential property.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
37
|
Luo X, An F, Xue J, Zhu W, Wei Z, Ou W, Li K, Chen S, Cai J. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava ( Manihot esculenta Crantz) leaves. FRONTIERS IN PLANT SCIENCE 2023; 14:1181257. [PMID: 37360704 PMCID: PMC10289162 DOI: 10.3389/fpls.2023.1181257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Cassava (Manihot esculenta Crantz) leaves are often used as vegetables in Africa. Anthocyanins possess antioxidant, anti-inflammatory, anti-cancer, and other biological activities. They are poor in green leaves but rich in the purple leaves of cassava. The mechanism of anthocyanin's accumulation in cassava is poorly understood. In this study, two cassava varieties, SC9 with green leaves and Ziyehuangxin with purple leaves (PL), were selected to perform an integrative analysis using metabolomics and transcriptomics. The metabolomic analysis indicated that the most significantly differential metabolites (SDMs) belong to anthocyanins and are highly accumulated in PL. The transcriptomic analysis revealed that differentially expressed genes (DEGs) are enriched in secondary metabolites biosynthesis. The analysis of the combination of metabolomics and transcriptomics showed that metabolite changes are associated with the gene expressions in the anthocyanin biosynthesis pathway. In addition, some transcription factors (TFs) may be involved in anthocyanin biosynthesis. To further investigate the correlation between anthocyanin accumulation and color formation in cassava leaves, the virus-induced gene silencing (VIGS) system was used. VIGS-MeANR silenced plant showed the altered phenotypes of cassava leaves, partially from green to purple color, resulting in a significant increase of the total anthocyanin content and reduction in the expression of MeANR. These results provide a theoretical basis for breeding cassava varieties with anthocyanin-rich leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Cai
- *Correspondence: Songbi Chen, ; Jie Cai,
| |
Collapse
|
38
|
Alghamdi AM, Al-Abbasi FA, AlGhamdi SA, Fatima F, Alzarea SI, Kazmi I. Rosinidin inhibits NF-κB/ Nrf2/caspase-3 expression and restores neurotransmitter levels in rotenone-activated Parkinson's disease. Saudi J Biol Sci 2023; 30:103656. [PMID: 37187936 PMCID: PMC10176079 DOI: 10.1016/j.sjbs.2023.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Objectives The examination was sighted to study the preventive effects of rosinidin against rotenone-activated Parkinson's disease in rats. Methods Animals were randamoized into five groups: I-saline, II-rotenone (0.5 mg/kg/b.wt.), III- IV-10 and 20 mg/kg rosinidin after rotenone and V-20 mg/kg rosinidin per se for 28 days and were assigned for behavioral analysis., Biochemical parameters i.e. lipid peroxidation, endogenous antioxidants, nitrite level, neurotransmitter levels, proinflammatory biomarkers such as interleukin- 6 (IL-6), tumor necrosis factor-α, IL-1β, nuclear factor kappa B, nuclear factor erythroid 2-related factor 2, and caspase-3 were assessed on the 29th day of the research. Results Rosinidin augmented the effectiveness of rotenone on akinesia, catalepsy, forced-swim test, rotarod, and open-field test. Biochemical findings indicated that treatment of rosinidin showed restoring neuroinflammatory cytokines, antioxidants, and neurotransmitter levels in rotenone-injected rats. Conclusion As a result of rosinidin treatment, the brain was protected from oxidative stress-induced neuronal damage and inhibited neuroinflammatory cytokines.
Collapse
Affiliation(s)
- Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
39
|
Li J, Zhou Z, Liu D, Dong H, Zhou J, Wu J. Therapeutic effects of Zhuling Jianpi capsule on experimental ulcerative colitis and characterization of its chemical constituents and metabolomics using UHPLC-Q-TOF-MS. Heliyon 2023; 9:e16553. [PMID: 37274655 PMCID: PMC10238897 DOI: 10.1016/j.heliyon.2023.e16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Zhuling Jianpi Capsule (Zhuling) is a traditional Chinese medicinal formula used to treat symptoms such as abdominal pain, bloating and diarrhea associated with inflammatory bowel disease (IBD). However, the protective effects of Zhuling on experimental ulcerative colitis (UC) and the effective substance responsible for its efficacy have rarely been reported. In this study, we evaluated the therapeutic effects of orally administrated Zhuling on DSS-induced UC in mice. The chemical constituents and metabolomics of Zhuling were qualitatively analyzed by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The results showed that Zhuling treatment markedly alleviated DSS-induced clinical symptoms, restrained the secretion of pro-inflammatory cytokines, and improved intestinal epithelial barrier function. Furthermore, a total of 167 compounds have been identified or characterized, and 120 prototype components were detected in the urine, plasma, bile and feces of mice. Among them, altogether 26 representative prototypes were associated with 139 metabolites via the corresponding biotransformation pathways, and both of them mainly contained flavonoids, alkaloids, organic acids, monoterpenes, phenylpropanoids, triterpenoids, sesquiterpenoids and anthraquinones. Finally, 12 potent compounds mainly containing flavonoids, terpenoids and phenylpropanoids were screened out as potential quality control index components and might be the main substances that exert a pharmacological effect. Our data indicated that Zhuling administration prominently alleviates DSS-induced colitis in mice. Additionally, the chemical and metabolic profiling provided helpful information on the potential pharmacodynamic substances of Zhuling, which can be further investigated in the future.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Jinling Pharmaceutical Co., Ltd., Nanjing, China
| | - Ziqi Zhou
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Liu
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
40
|
Barreca MM, Alessandro R, Corrado C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119236. [PMID: 37298188 DOI: 10.3390/ijms24119236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Flavonoids are polyphenolic phytochemical compounds found in many plants, fruits, vegetables, and leaves. They have a multitude of medicinal applications due to their anti-inflammatory, antioxidative, antiviral, and anticarcinogenic properties. Furthermore, they also have neuroprotective and cardioprotective effects. Their biological properties depend on the chemical structure of flavonoids, their mechanism of action, and their bioavailability. The beneficial effects of flavonoids have been proven for a variety of diseases. In the last few years, it is demonstrated that the effects of flavonoids are mediated by inhibiting the NF-κB (Nuclear Factor-κB) pathway. In this review, we have summarized the effects of some flavonoids on the most common diseases, such as cancer, cardiovascular, and human neurodegenerative diseases. Here, we collected all recent studies describing the protective and prevention role of flavonoids derived from plants by specifically focusing their action on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
41
|
F S, MR R, S T, M JG, S E, A M, D M. Resveratrol improves episodic-like memory and motor coordination through modulating neuroinflammation in old rats. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
42
|
Téglás T, Mihok E, Cziáky Z, Oláh NK, Nyakas C, Máthé E. The Flavonoid Rich Black Currant ( Ribes nigrum) Ethanolic Gemmotherapy Extract Elicits Neuroprotective Effect by Preventing Microglial Body Swelling in Hippocampus and Reduces Serum TNF-α Level: Pilot Study. Molecules 2023; 28:molecules28083571. [PMID: 37110805 PMCID: PMC10145433 DOI: 10.3390/molecules28083571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Many plant-derived flavonoids are known for their anti-neuroinflammatory and anti-neurodegenerative effects. The fruits and leaves of the black currant (BC, Ribes nigrum) contain these phytochemicals with therapeutic benefits. The current study presents a report on a standardized BC gemmotherapy extract (BC-GTE) that is prepared from fresh buds. It provides details about the phytoconstituent profile specific to the extract as well as the associated antioxidant and anti-neuroinflammatory properties. The reported BC-GTE was found to contain approximately 133 phytonutrients, making it unique in its composition. Furthermore, this is the first report to quantify the presence of significant flavonoids such as luteolin, quercetin, apigenin, and kaempferol. Drosophila melanogaster-based tests revealed no cytotoxic but nutritive effects. We also demonstrated that adult male Wistar rats, pretreated with the analyzed BC-GTE and assessed after lipopolysaccharide (LPS) injection, did not show any apparent increase in body size in the microglial cells located in the hippocampal CA1 region, while in control experiments, the activation of microglia was evident. Moreover, no elevated levels of serum-specific TNF-α were observed under the LPS-induced neuroinflammatory condition. The analyzed BC-GTE's specific flavonoid content, along with the experimental data based on an LPS-induced inflammatory model, suggest that it possesses anti-neuroinflammatory/neuroprotective properties. This indicates that the studied BC-GTE has the potential to be used as a GTE-based complementary therapeutic approach.
Collapse
Affiliation(s)
- Tímea Téglás
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, H-1123 Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, H-1088 Budapest, Hungary
| | - Emőke Mihok
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research Institute, University of Nyíregyháza, H-4400 Nyíregyháza, Hungary
| | - Neli-Kinga Oláh
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 310414 Arad, Romania
- Plantextrakt Ltd., 407059 Rădaia, Romania
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, H-1123 Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, H-1088 Budapest, Hungary
| | - Endre Máthé
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
43
|
Müller L, Di Benedetto S. Aged brain and neuroimmune responses to COVID-19: post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immun Ageing 2023; 20:17. [PMID: 37046272 PMCID: PMC10090758 DOI: 10.1186/s12979-023-00341-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Advanced age is one of the significant risk determinants for coronavirus disease 2019 (COVID-19)-related mortality and for long COVID complications. The contributing factors may include the age-related dynamical remodeling of the immune system, known as immunosenescence and chronic low-grade systemic inflammation. Both of these factors may induce an inflammatory milieu in the aged brain and drive the changes in the microenvironment of neurons and microglia, which are characterized by a general condition of chronic inflammation, so-called neuroinflammation. Emerging evidence reveals that the immune privilege in the aging brain may be compromised. Resident brain cells, such as astrocytes, neurons, oligodendrocytes and microglia, but also infiltrating immune cells, such as monocytes, T cells and macrophages participate in the complex intercellular networks and multiple reciprocal interactions. Especially changes in microglia playing a regulatory role in inflammation, contribute to disturbing of the brain homeostasis and to impairments of the neuroimmune responses. Neuroinflammation may trigger structural damage, diminish regeneration, induce neuronal cell death, modulate synaptic remodeling and in this manner negatively interfere with the brain functions.In this review article, we give insights into neuroimmune interactions in the aged brain and highlight the impact of COVID-19 on the functional systems already modulated by immunosenescence and neuroinflammation. We discuss the potential ways of these interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and review proposed neuroimmune mechanisms and biological factors that may contribute to the development of persisting long COVID conditions. We summarize the potential mechanisms responsible for long COVID, including inflammation, autoimmunity, direct virus-mediated cytotoxicity, hypercoagulation, mitochondrial failure, dysbiosis, and the reactivation of other persisting viruses, such as the Cytomegalovirus (CMV). Finally, we discuss the effects of various interventional options that can decrease the propagation of biological, physiological, and psychosocial stressors that are responsible for neuroimmune activation and which may inhibit the triggering of unbalanced inflammatory responses. We highlight the modulatory effects of bioactive nutritional compounds along with the multimodal benefits of behavioral interventions and moderate exercise, which can be applied as postinfectious interventions in order to improve brain health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
44
|
Santonocito S, Donzella M, Venezia P, Nicolosi G, Mauceri R, Isola G. Orofacial Pain Management: An Overview of the Potential Benefits of Palmitoylethanolamide and Other Natural Agents. Pharmaceutics 2023; 15:pharmaceutics15041193. [PMID: 37111679 PMCID: PMC10142272 DOI: 10.3390/pharmaceutics15041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pain is the most common symptom that dentists are confronted with, whether acute (pulpitis, acute periodontitis, post-surgery, etc.) or chronic diseases, such as periodontitis, muscle pain, temporomandibular joint (TMJ) disorders, burning mouth syndrome (BMS), oral lichen planus (OLP) and others. The success of therapy depends on the reduction in and management of pain through specific drugs, hence the need to analyze new pain medications with specific activity, which are suitable for long-term use, with a low risk of side effects and interactions with other drugs, and capable of leading to a reduction in orofacial pain. Palmitoylethanolamide (PEA) is a bioactive lipid mediator, which is synthesized in all tissues of the body as a protective pro-homeostatic response to tissue damage and has aroused considerable interest in the dental field due to its anti-inflammatory, analgesic, antimicrobial, antipyretic, antiepileptic, immunomodulatory and neuroprotective activities. It has been observed that PEA could play a role in the management of the pain of orofacial origin, including BMS, OLP, periodontal disease, tongue a la carte and temporomandibular disorders (TMDs), as well as in the treatment of postoperative pain. However, actual clinical data on the use of PEA in the clinical management of patients with orofacial pain are still lacking. Therefore, the main objective of the present study is to provide an overview of orofacial pain in its many manifestations and an updated analysis of the molecular pain-relieving and anti-inflammatory properties of PEA to understand its beneficial effects in the management of patients with orofacial pain, both neuropathic and nociceptive in nature. The aim is also to direct research toward the testing and use of other natural agents that have already been shown to have anti-inflammatory, antioxidant and pain-relieving actions and could offer important support in the treatment of orofacial pain.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Pietro Venezia
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
45
|
Mao C, Wang Y, Xu Z, Wang X, Fang B, Chen H. Luteolin-Zn Complex Inhibits Invasion and Migration of M2-Like TAMs via the Downregulation of AMPK/mTOR and PI3K/Akt/mTOR Signaling Pathway Under Hypoxia. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231167996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Purpose: The high mortality rate of malignant tumors is often attributable to the loss of surgical opportunities due to late diagnosis when invasion and metastasis have significantly affected the patient. A hypoxic microenvironment can promote the progression of malignant tumors. This study explored the invasion resistance and migration ability of luteolin-Zn complexes. Methods: We created a low-oxygen environment using a 3-atmosphere incubator. The appropriate drug concentration was determined using the CCK8 experiment. We determined its role in cell invasion and migration through scratch and transwell experiments. Western blotting, polymerase chain reaction, and cellular immunity experiments were used to study the mechanism and its impact on the secretion of invasion and migration factors. Results: Our results indicated that the luteolin-Zn complex significantly reduced MMP2, MMP9, N-Ca, and HIF-1ɑ expression. It also upregulated TIMP1 and E-Ca expression. Moreover, its capabilities may be achieved by regulating the AMPK/mTOR and PI3K/Akt/mTOR signaling pathways. Conclusions: The luteolin-Zn complex was highly resistant to the invasion and migration of M2-like tumor-related macrophages. This may exert a unique influence on mTOR by integrating various signals. This study suggests that the luteolin-Zn complex has a strong anticancer effect under hypoxic conditions.
Collapse
Affiliation(s)
- Chenyang Mao
- Department of Hepatobiliary Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Yongling Wang
- Department of Ultrasonography, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Zhenhua Xu
- Sanya Rehabilitation Center of Joint Support Forces, Hainan, China
| | | | - Binbo Fang
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Haihua Chen
- Department of Hepatopancreatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Linhai, China
| |
Collapse
|
46
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
47
|
Corrado C, Barreca MM, Raimondo S, Diana P, Pepe G, Basilicata MG, Conigliaro A, Alessandro R. Nobiletin and xanthohumol counteract the TNFα-mediated activation of endothelial cells through the inhibition of the NF-κB signaling pathway. Cell Biol Int 2023; 47:634-647. [PMID: 36378586 DOI: 10.1002/cbin.11963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Fisciano, Campania, Italy
| | | | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| |
Collapse
|
48
|
Quercetin 3-O-(6″-O-E-caffeoyl)-β-D-glucopyranoside, a Flavonoid Compound, Promotes Melanogenesis through the Upregulation of MAPKs and Akt/GSK3β/β-Catenin Signaling Pathways. Int J Mol Sci 2023; 24:ijms24054780. [PMID: 36902210 PMCID: PMC10003212 DOI: 10.3390/ijms24054780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Quercetin 3-O-(6″-O-E-caffeoyl)-β-D-glucopyranoside is a flavonoid compound produced by various plants with reported antiprotozoal potential against E. histolytica and G. lamblia; however, its effects on skin pigment regulation have not been studied in detail. In this investigation, we discovered that quercetin 3-O-(6″-O-E-caffeoyl)-D-glucopyranoside (coded as CC7) demonstrated a more increased melanogenesis effect in B16 cells. CC7 exhibited no cytotoxicity or effective stimulating melanin content or intracellular tyrosinase activity. This melanogenic-promoting effect was accompanied by activated expression levels of microphthalmia-associated transcription factor (MITF), a key melanogenic regulatory factor, melanogenic enzymes, and tyrosinase (TYR) and tyrosinase-related protein-1 (TRP-1) and 2 (TRP-2) in the CC7-treated cells. Mechanistically, we found that CC7 exerted melanogenic effects by upregulating the phosphorylation of stress-regulated protein kinase (p38) and c-Jun N-terminal kinase (JNK). Moreover, the CC7 upregulation of phosphor-protein kinase B (Akt) and Glycogen synthase kinase-3 beta (GSK-3β) increased the content of β-catenin in the cell cytoplasm, and subsequently, it translocated into the nucleus, resulting in melanogenesis. Specific inhibitors of P38, JNK, and Akt validated that CC7 promotes melanin synthesis and tyrosinase activity by regulating the GSK3β/β-catenin signaling pathways. Our results support that the CC7 regulation of melanogenesis involves MAPKs and Akt/GSK3β/β-catenin signaling pathways.
Collapse
|
49
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
50
|
Chen Y, Yang C, Zou M, Wang D, Sheng R, Zhan M, Chen Q, Yang W, Liu X, Xu S. Inhibiting mitochondrial inflammation through Drp1/HK1/NLRP3 pathway: A mechanism of alpinetin attenuated aging-associated cognitive impairment. Phytother Res 2023. [PMID: 36772986 DOI: 10.1002/ptr.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Mitochondrial inflammation triggered by abnormal mitochondrial division and regulated by the Drp1/HK1/NLRP3 pathway is correlated with the progression of aging-associated cognitive impairment (AACI). Alpinetin is a novel flavonoid derived from Zingiberaceae that has many bioactivities such as antiinflammation and anti-oxidation. However, whether alpinetin alleviates AACI by suppressing Drp1/HK1/NLRP3 pathway-inhibited mitochondrial inflammation is still unknown. In the present study, D-galactose (D-gal)-induced aging mice and BV-2 cells were used, and the effects of alpinetin on learning and memory function, neuroprotection and activation of the Drp1/HK1/NLRP3 pathway were investigated. Our data indicated that alpinetin significantly alleviated cognitive dysfunction and neuronal damage in the CA1 and CA3 regions of D-gal-treated mice. Moreover, D-gal-induced microglial activation was markedly reduced by alpinetin by inhibiting the Drp1/HK1/NLRP3 pathway-suppressed mitochondrial inflammation, down-regulating the levels of p-Drp1 (s616), VDAC, NLRP3, ASC, Cleaved-caspase 1, IL-18, and IL-1β, and up-regulating the expression of HK1. Furthermore, after Drp1 inhibition by Mdivi-1 in vitro, the inhibitory effect of alpinetin on Drp1/HK1/NLRP3 pathway was more evident. In summary, the current results implied that alpinetin attenuated aging-related cognitive deficits by inhibiting the Drp1/HK1/NLRP3 pathway and suppressing mitochondrial inflammation, suggesting that the inhibition of the Drp1/HK1/NLRP3 pathway is one of the mechanisms by which alpinetin attenuates AACI.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Zou
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|