1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Pollak U, Avniel-Aran A, Binshtok AM, Bar-Yosef O, Bronicki RA, Checchia PA, Finkelstein Y. Exploring the Possible Role of Cannabinoids in Managing Post-cardiac Surgery Complications: A Narrative Review of Preclinical Evidence and a Call for Future Research Directions. J Cardiovasc Pharmacol 2024; 83:537-546. [PMID: 38498618 DOI: 10.1097/fjc.0000000000001560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT Open-heart surgery with cardiopulmonary bypass often leads to complications including pain, systemic inflammation, and organ damage. Traditionally managed with opioids, these pain relief methods bring potential long-term risks, prompting the exploration of alternative treatments. The legalization of cannabis in various regions has reignited interest in cannabinoids, such as cannabidiol, known for their anti-inflammatory, analgesic, and neuroprotective properties. Historical and ongoing research acknowledges the endocannabinoid system's crucial role in managing physiological processes, suggesting that cannabinoids could offer therapeutic benefits in postsurgical recovery. Specifically, cannabidiol has shown promise in managing pain, moderating immune responses, and mitigating ischemia/reperfusion injury, underscoring its potential in postoperative care. However, the translation of these findings into clinical practice faces challenges, highlighting the need for extensive research to establish effective, safe cannabinoid-based therapies for patients undergoing open-heart surgery. This narrative review advocates for a balanced approach, considering both the therapeutic potential of cannabinoids and the complexities of their integration into clinical settings.
Collapse
Affiliation(s)
- Uri Pollak
- Section of Pediatric Critical Care, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Avniel-Aran
- Section of Pediatric Critical Care, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omer Bar-Yosef
- Pediatric Neurology and Child Development, The Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronald A Bronicki
- Department of Pediatrics, Critical Care Medicine and Cardiology, Baylor College of Medicine, Houston, TX
- Pediatric Cardiovascular Intensive Care Unit, Texas Children's Hospital, Houston, TX
| | - Paul A Checchia
- Department of Pediatrics, Critical Care Medicine and Cardiology, Baylor College of Medicine, Houston, TX
- Pediatric Cardiovascular Intensive Care Unit, Texas Children's Hospital, Houston, TX
| | - Yaron Finkelstein
- Division of Emergency Medicine, Faculty of Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; and
- Division of Clinical Pharmacology and Toxicology, Faculty of Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Anti-Ischemic Effect of Leptin in the Isolated Rat Heart Subjected to Global Ischemia-Reperfusion: Role of Cardiac-Specific miRNAs. CARDIOGENETICS 2023. [DOI: 10.3390/cardiogenetics13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Leptin is an obesity-associated adipokine that has been implicated in cardiac protection against ischemia-reperfusion injury (IRI). In this study, concentration-dependent effects of leptin on myocardial IRI were investigated in the isolated rat heart. In addition, we analyzed myocardial miRNAs expression in order to investigate their potential involvement in leptin-mediated cardioprotection. Methods: The effect of leptin on IRI was examined in Langendorff-perfused rat hearts preconditioned with two leptin concentrations (1.0 nM and 3.1 nM) for 60 min. The hearts were subjected to 30 min global ischemia and 120 min reperfusion with buffer containing leptin in the respective concentration. Heart function and arrhythmia incidence were analyzed. Infarct size was assessed histochemically. Expression of miRNA-144, -208a, -378, and -499 was analyzed in the ventricular myocardium using RT-PCR. Results: The addition of 1.0 nM leptin to the buffer exerted an infarct-limiting effect, preserved post-ischemic ventricular function, and prevented reperfusion arrhythmia compared to 3.1 nM leptin. Myocardial expression of miRNA-208a was decreased after heart exposure to 1.0 nM leptin and significantly elevated in the hearts perfused with leptin at 3.1 nM. Conclusion: Acute administration of leptin at low dose (1.0 nM) results in cardiac protection against IRI. This effect is associated with reduced myocardial expression of miRNA-208a.
Collapse
|
4
|
Gao SJ, Liu DQ, Li DY, Sun J, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Adipocytokines: Emerging therapeutic targets for pain management. Biomed Pharmacother 2022; 149:112813. [PMID: 35279597 DOI: 10.1016/j.biopha.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Although pain has lower mortality rates than cancer, diabetes and stroke, pain is a predominate source of distress and disability. However, the management of pain remains an enormous problem. Many drugs used to pain treatment have more or less side effects. Therefore, the development of novel therapeutic target is critical for the treatment of pain. Notably, studies have shown that adipocytokines have a dual role in pain. Growing shreds of evidence shows that the levels of adipocytokines are upregulated or downregulated in the development of pain. In addition, substantial evidence indicates that regulation of adipocytokines levels in models of pain attenuates or promotes pain behaviors. In this review, we summarized and discussed the effect of adipocytokines in pain. These evidence indicates that adipocytokines attenuate or promote pain behaviors through interacting with their receptors, activating serotonin pathway, interacting with μ-opioid receptor, activating microglia, infiltrating macrophage and so on. Overall, adipocytokines have some potential in treating pain, but the underlying mechanisms remain unclear and need to be further studied.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
5
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
6
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
7
|
Zou Y, Hu L, Zou W, Li H. Association of Low Leptin with Poor 3-Month Prognosis in Ischemic Stroke Patients with Type 2 Diabetes. Clin Interv Aging 2020; 15:2353-2361. [PMID: 33328729 PMCID: PMC7734075 DOI: 10.2147/cia.s279535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Leptin, an adipokine, has effects on the cardiovascular system with both protective and harmful role. This study aimed to assess the relationship between leptin and 3-month prognosis in ischemic stroke patients with type 2 diabetes. Patients and Methods As a prospective single-center observational study, we collected consecutive first-ever acute ischemia stroke with type 2 diabetes mellitus from February 2019 to February 2020. Serum samples were obtained at admission, and leptin serum levels were tested by the ELISA method. Logistic regression models were used to assess leptin's prognostic value to predict the functional outcome and mortality within three months. Results Finally, two hundred and eleven patients were included, and the mean leptin serum level was 16.8 (SD. 6.9) ng/mL. At admission, 53.6% of those included patients (N=113) were defined as severe stroke (NIH Stroke Scale [NIHSS]>5). In multivariable models adjusted for other factors, leptin levels<11.6ng/mL (lowest quartile, Q1) related to severe stroke and the risk increased 175% (odds ratios [OR] =2.75; 95% confidence interval [CI]=2.13-3.38; P=0.002). Serum leptin levels on admission in patients with poor outcomes and nonsurvivors were significantly reduced (P<0.001 and P<0.001). Leptin levels <11.6ng/mL (lowest quartile, Q1) related to a higher risk of poor functional impairment (OR=5.13; 95% CI =3.25-6.86; P<0.001) and mortality (OR=3.19; 95% CI =2.03-4.25; P<0.001). Conclusion The data shows that leptin serum level is a useful prognostic biomarker in ischemic stroke patients with type 2 diabetes, and this relationship is negative.
Collapse
Affiliation(s)
- Yi Zou
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ling Hu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wenjun Zou
- General Surgery, Nanchang Third Hospital, Nanchang, People's Republic of China
| | - Honglin Li
- Department of Biochemistry, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
8
|
Huang G, Hao F, Hu X. Downregulation of microRNA-155 stimulates sevoflurane-mediated cardioprotection against myocardial ischemia/reperfusion injury by binding to SIRT1 in mice. J Cell Biochem 2019; 120:15494-15505. [PMID: 31099069 DOI: 10.1002/jcb.28816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The inhaled sevoflurane has been demonstrated to protect against myocardial ischemia/reperfusion (I/R) injury. However, the relative mechanisms of sevoflurane-mediated cardioprotection remain largely unknown. This study intends to explore the effect of miR-155 on the sevoflurane-mediated cardioprotection by regulating Sirtuin 1 (SIRT1) in mouse models of myocardial I/R. METHODS Left anterior descending coronary artery ligation was used to induce models of myocardial I/R in mice. The I/R mice were treated with sevoflurane, sevoflurane + mimics negative control (NC) or sevoflurane + miR-155 mimics. The expression of microRNA-155 (miR-155) and SIRT1 was examined by quantitative real-time polymerase chain reaction and Western blot assay. Then cardiac functions and hemodynamic alterations were evaluated. Evans blue-2,3,5-triphenyltetrazolium chloride and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay staining methods were adopted to evaluate infarct size and cardiomyocyte apoptosis, respectively. RESULTS In the I/R mice, miR-155 was expressed at a high level and SIRT1 at a low level. SIRT1 was confirmed to be a target gene of miR-155. The treatment of sevoflurane could reduce miR-155 expression and increased SIRT1 expression in the myocardial tissues, under which conditions, cardiac functions were promoted, accompanied by reduced infarct size and inhibited cardiomyocyte apoptosis. In response to miR-155 upregulation, the sevoflurane-treated I/R mice showed reduced cardiac functions, and increased infarct size and cardiomyocyte apoptosis. CONCLUSION The findings obtained in this study provide evidence suggesting that miR-155 targets and negatively regulates SIRT1 expression, a mechanism by which the protection of sevoflurane is inhibited against myocardial I/R in mice.
Collapse
Affiliation(s)
- Guirong Huang
- Department of Anesthesiology, Central Hospital of Linyi, Linyi, Shandong, P.R. China
| | - Fengguan Hao
- Department of Epidemic Prevention, Dragon House Township Health Centers, Linyi, Shandong, P.R. China
| | - Xueyan Hu
- Department of Anesthesiology, Central Hospital of Linyi, Linyi, Shandong, P.R. China
| |
Collapse
|
9
|
Zhang JF, Zhang YL, Wu YC. The Role of Sirt1 in Ischemic Stroke: Pathogenesis and Therapeutic Strategies. Front Neurosci 2018; 12:833. [PMID: 30519156 PMCID: PMC6258790 DOI: 10.3389/fnins.2018.00833] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine dinucleotide (NAD+)-dependent enzyme, is well-known in playing a part in longevity. Ischemic stroke is a major neurological disorder and is a leading cause of death and adult disability worldwide. Recently, many studies have focused on the role of Sirt1 in ischemic stroke. Numerous studies consider Sirt1 as a protective factor and investigate the signaling pathways involved in the process under ischemic stress. However, the answer to whether upregulation of Sirt1 improves the outcome of stroke is still a controversy. In this review, we discuss the role and mechanisms of Sirt1 in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Jun-Fang Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lei Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Nozaki C, Nent E, Bilkei-Gorzo A, Zimmer A. Involvement of leptin signaling in the development of cannabinoid CB2 receptor-dependent mirror image pain. Sci Rep 2018; 8:10827. [PMID: 30018366 PMCID: PMC6050271 DOI: 10.1038/s41598-018-28507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Neuropathic pain typically appears in a region innervated by an injured or diseased nerve and, in some instances, also on the contralateral side. This so-called mirror image pain is often observed in mice lacking CB2 receptors after sciatic nerve injury, but the underlying mechanisms for this phenotype largely remain unclear. Here we focused on peripheral leptin signaling, which modulates neuropathic pain development and interacts with the endocannabinoid system. Leptin production is induced at the site of nerve injury in CB2-deficient mice (CB2-KO) mice and wild type controls (WT). However, induction of leptin receptor expression was only observed in the injured nerve of CB2-KO mice. This was paralleled by a stimulation of the leptin receptor-downstream STAT3 signaling and an infiltration of F4/80-positive macrophages. Interestingly, an upregulation of leptin receptor expression STAT3 activity and macrophage infiltration was also observed on the non-injured nerve of CB2-KO mice thus reflecting the mirror image pain in CB2-KO animals. Importantly, perineurally-administered leptin-neutralizing antibodies reduced mechanical hyperalgesia, blocked mirror image pain and inhibited the recruitment of F4/80-positive macrophages. These results identify peripheral leptin signaling as an important modulator of CB2 signaling in neuropathic pain.
Collapse
Affiliation(s)
- Chihiro Nozaki
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Elisa Nent
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
11
|
Proteostasis and Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives. Neural Plast 2018; 2018:6798712. [PMID: 30050571 PMCID: PMC6040257 DOI: 10.1155/2018/6798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.
Collapse
|
12
|
Xu L, Jia L, Wang Q, Hou J, Li S, Teng J. Salidroside attenuates hypoxia/reoxygenation-induced human brain vascular smooth muscle cell injury by activating the SIRT1/FOXO3α pathway. Exp Ther Med 2017; 15:822-830. [PMID: 29434685 PMCID: PMC5772920 DOI: 10.3892/etm.2017.5446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
It has been reported that salidroside (SAL), a natural dietary isothiocyanate, exhibits neuroprotective roles in cerebral ischemia-reperfusion injury. However, to the best of our knowledge, its underlying protective mechanism remains unknown. Sirtuin 1 (SIRT1) is a class III histone deacetylase involved in a variety of cellular functions. SIRT1 has been identified as a mediator of cerebral ischemia and may induce neuroprotection by activating various intracellular downstream targets, such as forkhead box protein O3α (FOXO3α). Therefore, the present study aimed to investigate whether SAL protects human brain vascular smooth muscle cells (HBVSMC) against hypoxia/reoxygenation (H/R) injury, which is a cell model of cerebral ischemia-reperfusion injury, through regulating the SIRT1-activited signaling pathway. The present study revealed that H/R treatment significantly reduced the expression of SIRT1 protein in HBVSMCs. Additionally, pretreatment with SAL reversed the H/R-induced decrease in cellular viability, increased caspase-3 activity, the appearance of apoptotic cells and the apoptosis rate in HBVSMCs. SAL attenuated the H/R-induced decrease in the expression of SIRT1 and phosphorylated FOXO3α protein in HBVSMCs, suggesting that the protective role of SAL in H/R injury occurs via the SIRT1/FOXO3α pathway. Furthermore, sirtinol, a SIRT1-specific inhibitor, suppressed the inhibitory effects of SAL on H/R-induced cytotoxicity and apoptosis as indicated by the downregulation of cell viability and upregulation of caspase-3 activity and apoptosis rate induced by sirtinol treatment in HBVSMCs. The reversal effects of SAL on H/R-induced alternation of B-cell lymphoma (Bcl-2) and Bcl-2 associated X protein expression were also attenuated by sirtinol. These results suggest that SAL exhibits neuroprotective effects against H/R injury by activating the SIRT1/FOXO3α pathway, which may become a novel potential therapeutic target for the treatment of cerebral ischemic disease.
Collapse
Affiliation(s)
- Lina Xu
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China.,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Longbin Jia
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Qingyun Wang
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Jing Hou
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Shifang Li
- Department of Neurology, Jincheng People's Hospital, Jincheng, Shanxi 048026, P.R. China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
13
|
Masdrakis VG, Papageorgiou C, Markianos M. Associations of plasma leptin to clinical manifestations in reproductive aged female patients with panic disorder. Psychiatry Res 2017; 255:161-166. [PMID: 28551488 DOI: 10.1016/j.psychres.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/16/2017] [Accepted: 05/14/2017] [Indexed: 12/14/2022]
Abstract
Preclinical studies suggest the implication of the adipocyte hormone leptin in anxiety and fear processes. We explored for potential differences regarding plasma leptin, cortisol and the ratio leptin/Body Mass Index (BMI) between 27 medication-free female patients with Panic Disorder (PD) and 42 age-matched female controls, and for potential associations between plasma leptin and psychometric evaluations including number of panic attacks during last week, Clinical Global Impression-Severity of Illness (CGI-S) and Symptoms Checklist-90-Revised (SCL-90-R). Cortisol levels showed no differences between patients and controls, or correlations to leptin or to any clinical features. Both groups demonstrated a strong positive correlation between leptin and BMI and similar leptin and leptin/BMI, despite patients' lower BMI. However, patients -but not controls- demonstrated significant negative correlations of leptin to the 'somatization', 'anxiety', and 'phobic anxiety' SCL-90-R subscales. Moreover, there was a significant negative correlation of leptin and of leptin/BMI ratio to the number of panic attacks during last week, while higher CGI-S was associated with lower leptin/BMI ratio. Our results, limited to PD female patients, suggest that lower leptin serum levels are significantly associated with greater severity of psychopathological manifestations, including number of panic attacks, symptoms of somatization, anxiety and phobic anxiety and overall clinical presentation.
Collapse
Affiliation(s)
- Vasilios G Masdrakis
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece.
| | - Charalambos Papageorgiou
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece
| | - Manolis Markianos
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece
| |
Collapse
|
14
|
Liu SY, Li D, Zeng HY, Kan LY, Zou W, Zhang P, Gu HF, Tang XQ. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress. Int J Neuropsychopharmacol 2017; 20:867-876. [PMID: 28482013 PMCID: PMC5737807 DOI: 10.1093/ijnp/pyx030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying mechanism. METHODS We established the rat model of chronic unpredictable mild stress to simulate depression. Open field test, forced swim test, and tail suspension test were used to assess depressive-like behaviors. The expression of Sirt-1 and three marked proteins related to endoplasmic reticulum stress (GRP-78, CHOP, and cleaved caspase-12) were detected by western blot. RESULTS We found that chronic unpredictable mild stress-exposed rats exhibit depression-like behavior responses, including significantly increased immobility time in the forced swim test and tail suspension test, and decreased climbing time and swimming time in the forced swim test. In parallel, chronic unpredictable mild stress-exposed rats showed elevated levels of hippocampal endoplasmic reticulum stress and reduced levels of Sirt-1. However, NaHS (a donor of H2S) not only alleviated chronic unpredictable mild stress-induced depressive-like behaviors and hippocampal endoplasmic reticulum stress, but it also increased the expression of hippocampal Sirt-1 in chronic unpredictable mild stress-exposed rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the protective effects of H2S against chronic unpredictable mild stress-induced depression-like behaviors and hippocampal endoplasmic reticulum stress. CONCLUSION These results demonstrated that H2S has an antidepressant potential, and the underlying mechanism is involved in the inhibition of hippocampal endoplasmic reticulum stress by upregulation of Sirt-1 in hippocampus. These findings identify H2S as a novel therapeutic target for depression.
Collapse
Affiliation(s)
- Shu-Yun Liu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Dan Li
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hai-Ying Zeng
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Li-Yuan Kan
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Wei Zou
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Ping Zhang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hong-Feng Gu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Xiao-Qing Tang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang).,Correspondence: Xiao-Qing Tang, MD, PhD, Department of Physiology, Institute of Neuroscience, Medical College, University of South China, 28 West Changsheng Road, Hengyang 421001, Hunan Province, P. R. China ()
| |
Collapse
|
15
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
16
|
Lopez-Rodriguez AB, Mela V, Acaz-Fonseca E, Garcia-Segura LM, Viveros MP. CB2 cannabinoid receptor is involved in the anti-inflammatory effects of leptin in a model of traumatic brain injury. Exp Neurol 2016; 279:274-282. [DOI: 10.1016/j.expneurol.2016.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/06/2023]
|
17
|
Agar E. The role of cannabinoids and leptin in neurological diseases. Acta Neurol Scand 2015; 132:371-80. [PMID: 25880465 DOI: 10.1111/ane.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.
Collapse
Affiliation(s)
- E. Agar
- Department of Physiology; Faculty of Medicine; University of Ondokuz Mayis; Samsun Turkey
| |
Collapse
|
18
|
Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2442-55. [PMID: 26303641 DOI: 10.1016/j.bbadis.2015.08.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
Sirtuins or Sir2 family of proteins are a class of NAD(+) dependent protein deacetylases which are evolutionarily conserved from bacteria to humans. Some sirtuins also exhibit mono-ADP ribosyl transferase, demalonylation and desuccinylation activities. Originally identified in the yeast, these proteins regulate key cellular processes like cell cycle, apoptosis, metabolic regulation and inflammation. Humans encode seven sirtuin isoforms SIRT1-SIRT7 with varying intracellular distribution. Apart from their classic role as histone deacetylases regulating transcription, a number of cytoplasmic and mitochondrial targets of sirtuins have also been identified. Sirtuins have been implicated in longevity and accumulating evidence indicate their role in a spectrum of diseases like cancer, diabetes, obesity and neurodegenerative diseases. A number of studies have reported profound changes in SIRT1 expression and activity linked to mitochondrial functional alterations following hypoxic-ischemic conditions and following reoxygenation injury. The SIRT1 mediated deacetylation of targets such as PGC-1α, FOXO3, p53 and NF-κb has profound effect on mitochondrial function, apoptosis and inflammation. These biological processes and functions are critical in life-span determination and outcome following injury. Aging is reported to be characterized by declining SIRT1 activity, and its increased expression or activation demonstrated prolonged life-span in lower forms of animals. A pseudohypoxic state due to declining NAD(+) has also been implicated in aging. In this review we provide an overview of studies on the role of sirtuins in aging and injury.
Collapse
Affiliation(s)
- Ninu Poulose
- Georgia Regents University, Augusta, GA 30912, United States
| | - Raghavan Raju
- Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
19
|
Bhavsar SK, Hosseinzadeh Z, Brenner D, Honisch S, Jilani K, Liu G, Szteyn K, Sopjani M, Mak TW, Shumilina E, Lang F. Energy-sensitive regulation of Na+/K+-ATPase by Janus kinase 2. Am J Physiol Cell Physiol 2013; 306:C374-84. [PMID: 24304834 DOI: 10.1152/ajpcell.00320.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Janus kinase 2 (JAK2) contributes to intracellular signaling of leptin and erythropoietin, hormones protecting cells during energy depletion. The present study explores whether JAK2 is activated by energy depletion and regulates Na(+)/K(+)-ATPase, the major energy-consuming pump. In Jurkat cells, JAK2 activity was determined by radioactive kinase assay, phosphorylated JAK2 detected by Western blotting, ATP levels measured by luciferase assay, as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance determined by real-time PCR and Western blotting, respectively. Ouabain-sensitive K(+)-induced currents (Ipump) were measured by whole cell patch clamp. Ipump was further determined by dual-electrode voltage clamp in Xenopus oocytes injected with cRNA-encoding JAK2, active (V617F)JAK2, or inactive (K882E)JAK2. As a result, in Jurkat T cells, JAK2 activity significantly increased following energy depletion by sodium azide (NaN3) or 2,4- dinitro phenol (DNP). DNP- and NaN3-induced decrease of cellular ATP was significantly augmented by JAK2 inhibitor AG490 and blunted by Na(+)/K(+)-ATPase inhibitor ouabain. DNP decreased and AG490 enhanced Ipump as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance. The α1-subunit transcript levels were also enhanced by signal transducer and activator of transcription-5 inhibitor CAS 285986-31-4. In Xenopus oocytes, Ipump was significantly decreased by expression of JAK2 and (V617F)JAK2 but not of (K882E)JAK2, effects again reversed by AG490. In (V617F)JAK2-expressing Xenopus oocytes, neither DNP nor NaN3 resulted in further decline of Ipump. In Xenopus oocytes, the effect of (V617F)JAK2 on Ipump was not prevented by inhibition of transcription with actinomycin. In conclusion, JAK2 is a novel energy-sensing kinase that curtails energy consumption by downregulating Na(+)/K(+)-ATPase expression and activity.
Collapse
|
20
|
Takemori K, Inoue T, Ito H. Effects of angiotensin II type 1 receptor blocker and adiponectin on adipocyte dysfunction in stroke-prone spontaneously hypertensive rats. Lipids Health Dis 2013; 12:108. [PMID: 23876211 PMCID: PMC3750705 DOI: 10.1186/1476-511x-12-108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hypoadiponectinemia in lipoatrophy may be related to worsening of hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). One of the beneficial effects of candesartan (Angiotensin II Type 1 receptor blocker) for preventing hypertension may be increasing of adiponectin due to improvement of adipocyte dysfunction. In this study, we determined the effects of candesartan or adiponectin on pathophysiologic features and adipocyte dysfunction in SHRSP. METHODS Candesartan was administered to male SHRSP from 16 to 20 weeks of age (2 mg/kg/day). Adiponectin was cloned and intravenously administered to male SHRSP from 16 to 20 weeks of age. We examined biological parameters, as well as the expression and release of adipokines. RESULTS The SHRSP exhibited severe atrophy of visceral fat and progression of severe hypertension. The expression and release of leptin and adiponectin were impaired at 6 and 20 weeks of age. Candesartan suppressed the development of lipoatrophy and reduced the incidence of stroke at 20 weeks of age. Candesartan also enhanced the expression of adiponectin and leptin by inducing the overexpression of peroxisome proliferator activated receptor γ. Circulating level of leptin was significantly higher in candesartan group than in the control group, whereas adiponectin was similar in both groups. Intravenous administration of adiponectin resulted in enhancement of adiponectin expression in adipose tissue, but no remarkable effects were found in pathophysiology in SHRSP. CONCLUSIONS Our results indicate that candesartan protects against hypertension and adipocyte dysfunction in SHRSP. The induction of leptin expression appeared to be important factor in the inhibition of stroke lesions, whereas adiponectin was not a major regulator of blood pressure in SHRSP with genetic hypertension. Further studies are needed to elucidate the role of the renin-angiotensin system in adipose tissue dysfunction in relation to hypertensive end-organ damage.
Collapse
Affiliation(s)
- Kumiko Takemori
- Department of Food Science and Nutrition, Faculty of Agriculture, Kinki University, Nara, Japan.
| | | | | |
Collapse
|
21
|
Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway. J Cereb Blood Flow Metab 2013; 33:567-74. [PMID: 23299243 PMCID: PMC3618393 DOI: 10.1038/jcbfm.2012.202] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to investigate the protective mechanism of leptin-mediated metabolic recovery against cerebral injury after ischemia and reperfusion. We determined the neurologic deficit score, extent of brain edema, and infarct volume after reperfusion. The histopathologic alterations and changes in glucose uptake in the brain were also observed. Moreover, the levels of lactate dehydrogenase (LDH), lactic acid, pyruvate, and ATP in brain tissue were detected. Leptin levels in serum were also detected. To further define leptin-induced neuroprotective signaling pathways, we examined the levels of phosphorylated Akt (p-Akt) in the brain and in cultured cells. After transient ischemia, leptin treatment markedly reduced the neurologic deficits, cerebral infarct volume, and brain edema. After leptin injection, ATP, leptin, and p-Akt levels were significantly increased, LDH levels and lactic acid/pyruvate ratio were noticeably reduced, and histopathologic injuries were alleviated, which were all reversed by the PI(3)K inhibitor LY294002. These data show that leptin ameliorates cerebral ischemia/reperfusion injury by enhancing p-Akt, which in turn improves the supply of energy. The PI(3)K/Akt pathway was found to be the critical pathway for the mediation of leptin-induced neuroprotection, a finding that may prove to be useful in the treatment of ischemic stroke.
Collapse
|
22
|
Mu J, Ostrowski RP, Krafft PR, Tang J, Zhang JH. Serum leptin levels decrease after permanent MCAo in the rat and remain unaffected by delayed hyperbaric oxygen therapy. Med Gas Res 2013; 3:8. [PMID: 23510433 PMCID: PMC3614877 DOI: 10.1186/2045-9912-3-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/11/2013] [Indexed: 01/26/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT), referring to the medical use of oxygen at a level higher than atmospheric pressure, exerts neuroprotective effects after ischemic stroke via various mechanisms. It has been demonstrated that HBOT modulates the synthesis and degradation of hormones. Leptin, an adipose derived hormone, has been found to confer neuroprotection following experimental stroke. However, it is not known whether HBOT alters leptin concentrations after permanent middle cerebral artery occlusion (pMCAo) in the rat. In this present study, we aimed to investigate the effect of HBOT on the serum concentration of leptin in rats subjected to pMCAo. HBOT was initiated 48 hrs after experimental pMCAo, at 2.5 atmospheres absolutes with 100% oxygen, 1 hr a day for 10 consecutive days. Body weight, neurobehavioral deficits and infarct size were evaluated. Blood was collected on day 1 and day 16 following HBOT. Serum leptin concentrations were measured with ELISA. Delayed HBOT reduced infarct size and improved neurobehavioral scores. Decreased serum levels of leptin were found in treated and untreated pMCAo animals, compared to the sham group on day 1 (P > 0.05) and day 16 (P < 0.05). However, no statistical significance was found between HBOT and the air group. We concluded that the neuroprotective effects of delayed HBOT in pMCAo rats were unlikely to be exerted through changes in the serum concentration of leptin.
Collapse
Affiliation(s)
- Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
23
|
Swardfager W, Winer DA, Herrmann N, Winer S, Lanctôt KL. Interleukin-17 in post-stroke neurodegeneration. Neurosci Biobehav Rev 2013; 37:436-47. [PMID: 23370232 DOI: 10.1016/j.neubiorev.2013.01.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/10/2012] [Accepted: 01/20/2013] [Indexed: 12/15/2022]
Abstract
Stroke is a leading cause of physical disability with neurodegenerative sequelae such as dementia and depression causing significant excess morbidity. Stroke severity can be exacerbated by apoptotic cell death in ischemic tissue, of which inflammatory activity is a key determinant. Studies have identified harmful and beneficial sets of T lymphocytes that infiltrate the brain post-stroke and their activation signals, suggesting that they might be targeted for therapeutic benefit. Animal models and human studies implicate interleukin(IL)-17 and its congeners (e.g. IL-23, IL-21) as mediators of tissue damage in the delayed phase of the inflammatory cascade and the involvement of T lymphocytes in propagating IL-17 release. In this review, we highlight the current understanding of IL-17 secreting cells, including sets of CD4(+) αβ and CD4(-) γδ T lymphocytes, as potentially important mediators of brain pathology post-stroke. Interactions between the IL-17 axis and innate pathways, positive feedback mechanisms that prolong or amplify IL-17, and IL-17 regulatory pathways may offer intervention targets to enhance recovery, prevent long-term decline, and improve quality of life.
Collapse
Affiliation(s)
- Walter Swardfager
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
24
|
Folch J, Pedrós I, Patraca I, Sureda F, Junyent F, Beas-Zarate C, Verdaguer E, Pallàs M, Auladell C, Camins A. Neuroprotective and anti-ageing role of leptin. J Mol Endocrinol 2012; 49:R149-56. [PMID: 22967480 DOI: 10.1530/jme-12-0151] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Leptin (Lep), an adipose-derived hormone, exerts very important functions in the body mainly on energy storage and availability. The physiological effects of Lep controlling the body weight and suppressing appetite are mediated by the long form of Lep receptor in the hypothalamus. Lep receptor activates several downstream molecules involved in key pathways related to cell survival such as STAT3, PI3K, MAPK, AMPK, CDK5 and GSK3β. Collectively, these pathways act in a coordinated manner and form a network that is fully involved in Lep physiological response. Although the major interest in Lep is related to its role in the regulation of energy balance, and since resistance to Lep affects is the primary risk factor for obesity, the interest on their effects on brain cognition and neuroprotection is increasing. Thus, Lep and Lep mimetic compounds now await and deserve systematic exploration as the orchestrator of protective responses in the nervous system. Moreover, Lep might promote the activation of a cognitive process that may retard or even partially reverse selected aspects of Alzheimer's disease or ageing memory loss.
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina, Centros de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Omary R, Chernoguz D, Lasri V, Leker RR. Decompressive hemicraniectomy reduces mortality in an animal model of intracerebral hemorrhage. J Mol Neurosci 2012; 49:157-61. [PMID: 23152135 DOI: 10.1007/s12031-012-9922-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022]
Abstract
Decompressive hemicraniectomy (DHC) significantly reduces mortality in patients with large hemispheric ischemic strokes but has not been studied in intracranial hemorrhage (ICH). Male Sabra mice were subjected to large experimental ICH. The animals then underwent DHC or sham surgery. Early (1 day post-op) and late (5 days post-op) mortality rates and neurological disability were monitored. The animals were perfusion-fixed at 5 days post-ICH induction, and their brains were studied for hematoma volume and presence of active caspase 3 as a measure of apoptotic death in the area surrounding the hematoma. Our results show that DHC significantly reduced early (7 vs. 75 %, p < 0.001) and late (46 vs. 83 %, p = 0.017) mortality after large ICH. No significant differences in neurological disability were observed between surviving animals in both groups. Hematoma volumes did not differ between the groups on histological evaluation. The number of active caspase 3-positive neurons at the hematoma boundary was significantly higher in animals that underwent DHC. In conclusion, DHC reduces early and late mortality after devastating ICH without changing the hematoma volumes and without notable effects on motor and sensory functions in survivors. Further evaluation of this method to reduce mortality in ICH patients is warranted.
Collapse
Affiliation(s)
- R Omary
- Peritz and Chantal Scheinberg Cerebrovascular Research Laboratory, Department of Neurology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Hadassah Ein Kerem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
26
|
Avraham Y, Dayan M, Lassri V, Vorobiev L, Davidi N, Chernoguz D, Berry E, Leker RR. Delayed leptin administration after stroke induces neurogenesis and angiogenesis. J Neurosci Res 2012; 91:187-95. [PMID: 23152300 DOI: 10.1002/jnr.23147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/23/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
Abstract
Leptin is a potent AMP kinase (AMPK) inhibitor that induces neuroprotection, neurogenesis, and angiogenesis when administered immediately after stroke. To dissociate these effects, we explored the effects of delayed administration of leptin, at 10 days after stroke onset, on neurogenesis and angiogenesis after stroke. Sabra mice underwent photothrombotic stroke and were treated with vehicle or leptin given either as a single dose or in triple dosing, 10 days later. Newborn cells were labeled with bromodeoxyuridine. Functional outcome was studied with the neurological severity score for 90 days poststroke, and the brains were then evaluated via immunohistochemistry. Final infarct volumes did not differ between the groups. Exogenous leptin led to significant increments in the number of proliferating BrdU(+) cells in the subventricular zone and in the cortex abutting the lesion (2.5-fold and 1.4-fold, respectively). There were significant increments in the number of newborn neurons and glia (4- and 3.4-fold, respectively) in leptin-treated animals. Leptin also significantly increased the number of blood vessels in the perilesioned cortex. However, animals treated with leptin failed to demonstrate significantly better functional states. In conclusion, leptin induces neurogenesis and angiogenesis even when given late after stroke but does not lead to better functional outcome in this delayed-treatment paradigm. These results suggest that the main beneficial effects of leptin after stroke are associated with its early neuroprotective role rather than with its proneurogenic or proangiogenic effects.
Collapse
Affiliation(s)
- Y Avraham
- Department of Human Nutrition and Metabolism, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem Res 2012; 37:2686-96. [PMID: 22878646 DOI: 10.1007/s11064-012-0858-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/15/2012] [Accepted: 07/28/2012] [Indexed: 12/19/2022]
Abstract
Resveratrol has several beneficial effects, including reductions of oxidative stress, inflammatory responses and apoptosis. It has been known that resveratrol is a sirtuin 1 (SIRT1) activator and protective effects of resveratrol are mediated by Akt and mitogen-activated protein kinases. However, it is not examined whether these pathways are regulated by resveratrol in the ischemic brain. Previously, we found that acute resveratrol treatment reduces brain injury induced by transient focal ischemic stroke. In the present study, we defined the signaling pathways modulated by resveratrol in ischemia by examining SIRT1 expression and phosphorylation of Akt, ERK1/2 and p38 in the ischemic cortex. Resveratrol increased expression of SIRT1 and phosphorylation of Akt and p38 but inhibited the increase in phosphorylation of ERK1/2. Gene and protein levels of peroxisome proliferator-activated receptor γ coactivator 1α, a downstream molecule of SIRT1, and mRNA levels of its target genes antioxidative superoxide dismutase 2 and uncoupling protein 2 were elevated. Resveratrol also increased phosphorylation of cyclic AMP-response-element-binding protein and transcription of the anti-apoptotic gene Bcl-2. These results suggest that various neuroprotective actions of resveratrol, including anti-oxidative, anti-apoptotic and inflammatory effects, are mediated via modulation of multiple signaling pathways in the ischemic brain.
Collapse
|
28
|
Leptin administration alleviates ischemic brain injury in mice by reducing oxidative stress and subsequent neuronal apoptosis. J Trauma Acute Care Surg 2012; 72:982-91. [PMID: 22491615 DOI: 10.1097/ta.0b013e3182405459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recent research has indicates that leptin plays a protective role in traumatic brain injury. We studied the protective effect of leptin on cerebral ischemia/reperfusion injury by using mice transient focal cerebral ischemia/reperfusion injury model. METHODS The distribution of 125I-leptin in the mouse brain was assessed by radioimmunoassay method. Mouse models of transient focal cerebral ischemia were established by occlusion of the right middle cerebral artery for two hours followed by 24 hours reperfusion. The neurologic deficits and infarct volume were determined using the Longa's score and 2,3,5-triphenyltetrazolium chloride staining, respectively. Regional cerebral blood flow was monitored by a laser-Doppler blood flowmeter. The levels of malondialdehyde, nitric oxide, nitric oxide synthase, and superoxide dismutase were detected according to respective assay kit. The histologic changes and neuronal apoptosis were observed with hematoxylin and eosin and transferase-mediated dUTP-biotin nick end labeling staining, respectively. The expression of B-cell lymphoma/leukemia-2 (Bcl-2) and cysteineasparateprotease-3 (caspase-3) were investigated by Western blot and real-time polymerase chain reaction assay. RESULTS Leptin decreased infarct volume and neurologic defects and improved regional cerebral blood flow and microvascular branch blood flow after injury. The malondialdehyde and nitric oxide levels were reduced, and superoxide dismutase level was increased after leptin treatment, which also minimized histologic changes and neuronal apoptosis, led to the upregulation of Bcl-2 and downregulation of caspase-3 expression after injury. CONCLUSIONS Peripherally administered leptin crossed the blood-brain barrier and was distributed into multiple regions of the brain; in the brain, leptin directly alleviated the injury-evoked damages by reducing oxidative stress and neuronal apoptosis.
Collapse
|
29
|
The effect of galectin-3 genetic variants on the susceptibility and prognosis of gliomas in a Chinese population. Neurosci Lett 2012; 518:1-4. [DOI: 10.1016/j.neulet.2012.02.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/22/2012] [Accepted: 02/17/2012] [Indexed: 11/18/2022]
|
30
|
Pan W, Hsuchou H, Jayaram B, Khan RS, Huang EYK, Wu X, Chen C, Kastin AJ. Leptin action on nonneuronal cells in the CNS: potential clinical applications. Ann N Y Acad Sci 2012; 1264:64-71. [PMID: 22530983 PMCID: PMC3407332 DOI: 10.1111/j.1749-6632.2012.06472.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leptin, an adipocyte-derived cytokine, crosses the blood–brain barrier to act on many regions of the central nervous system (CNS). It participates in the regulation of energy balance, inflammatory processes, immune regulation, synaptic formation, memory condensation, and neurotrophic activities. This review focuses on the newly identified actions of leptin on astrocytes. We first summarize the distribution of leptin receptors in the brain, with a focus on the hypothalamus, where the leptin receptor is known to mediate essential feeding suppression activities, and on the hippocampus, where leptin facilitates memory, reduces neurodegeneration, and plays a dual role in seizures. We will then discuss regulation of the nonneuronal leptin system in obesity. Its relationship with neuronal leptin signaling is illustrated by in vitro assays in primary astrocyte culture and by in vivo studies on mice after pretreatment with a glial metabolic inhibitor or after cell-specific deletion of intracellular signaling leptin receptors. Overall, the glial leptin system shows robust regulation and plays an essential role in obesity. Strategies to manipulate this nonneuronal leptin signaling may have major clinical impact.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Lousiana 70808, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Update on the role of cannabinoid receptors after ischemic stroke. Mediators Inflamm 2012; 2012:824093. [PMID: 22577257 PMCID: PMC3337695 DOI: 10.1155/2012/824093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 01/22/2023] Open
Abstract
Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.
Collapse
|
32
|
Abstract
The term sociotype has been introduced to describe the dynamic relationship of an individual with his/her social environment throughout life. The sociotype is a conceptual framework to highlight, in addition to bio-medical pathways, the psycho-social and environmental factors necessary to understand responses to life stresses and patient self-management for chronic illness. The sociotype interacts with genotype expression through mate selection and metabolic programming, and with the phenotype to determine adaptation throughout life from birth to old age. Following on the work of Antonovsky, Engel, and McEwen, and others in the life and social sciences, the sociotype details and expands the many factors generally included in the environmental influences on a person's life identified here as the domains of health, relationships, and environment. Physiological mediators for sociotypic influences include: adrenal steroids and the sympathetic nervous system (allostatic load), and oxytocin (social neuroscience). The biological pathways are multiple through nutrition (essential dietary-derived amino- and fatty acids for neurotransmitter synthesis, caloric restriction, and diet-gene interactions), epigenesis, and metabolic programming. Nutrition influences growth and development, fertility and longevity, and also determines susceptibility to non-communicable diseases such as cardiovascular disease and cancer, and particularly diabetes and obesity, through in-utero effects, the development of intestinal flora (microbiome), and chronic stress. Thus the sociotype and nutrition are reciprocally related in both health and disease.
Collapse
Affiliation(s)
- Elliot M. Berry
- Braun School of Public Health, Faculty of Medicine, Hebrew University of Jerusalem, Israel
- To whom correspondence should be addressed. E-mail:
| | - Sabina De Geest
- Institute of Nursing Science, Faculty of Medicine, University of Basel, Switzerland
| |
Collapse
|
33
|
Leptin attenuates cerebral ischemia/reperfusion injury partially by CGRP expression. Eur J Pharmacol 2011; 671:61-9. [DOI: 10.1016/j.ejphar.2011.09.170] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 01/08/2023]
|
34
|
Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons. Biochem Biophys Res Commun 2011; 414:170-4. [PMID: 21945934 DOI: 10.1016/j.bbrc.2011.09.050] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
Abstract
Leptin is a pleiotropic hormone primarily secreted by adipocytes. A high density of functional Leptin receptors has been reported to be expressed in the hippocampus and other cortical regions of the brain, the physiological significance of which has not been explored extensively. Alzheimer's disease (AD) is marked by impaired brain metabolism with decreased glucose utilization in those regions which often precede pathological changes. Recent epidemiological studies suggest that plasma Leptin is protective against AD. Specifically, elderly with plasma Leptin levels in the lowest quartile were found to be four times more likely to develop AD than those in the highest quartile. We have previously reported that Leptin modulates AD pathological pathways in vitro through a mechanism involving the energy sensor, AMP-activated protein kinase (AMPK). To this end, we investigated the extent to which activation of AMPK as well as another class of sensors linking energy availability to cellular metabolism, the sirtuins (SIRT), mediate Leptin's biological activity. Leptin directly activated neuronal AMPK and SIRT in cell lines. Additionally, the ability of Leptin to reduce tau phosphorylation and β-amyloid production was sensitive to the AMPK and sirtuin inhibitors, compound C and nicotinamide, respectively. These findings implicate that Leptin normally acts as a signal for energy homeostasis in neurons. Perhaps Leptin deficiency in AD contributes to a neuronal imbalance in handling energy requirements, leading to higher Aβ and phospho-tau, which can be restored by replenishing low Leptin levels. This may also be a legitimate strategy for therapy.
Collapse
|
35
|
Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 2011; 95:373-95. [PMID: 21930182 DOI: 10.1016/j.pneurobio.2011.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
Silent information regulator two proteins (sirtuins or SIRTs) are a group of histone deacetylases whose activities are dependent on and regulated by nicotinamide adenine dinucleotide (NAD(+)). They suppress genome-wide transcription, yet upregulate a select set of proteins related to energy metabolism and pro-survival mechanisms, and therefore play a key role in the longevity effects elicited by calorie restriction. Recently, a neuroprotective effect of sirtuins has been reported for both acute and chronic neurological diseases. The focus of this review is to summarize the latest progress regarding the protective effects of sirtuins, with a focus on SIRT1. We first introduce the distribution of sirtuins in the brain and how their expression and activity are regulated. We then highlight their protective effects against common neurological disorders, such as cerebral ischemia, axonal injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Finally, we analyze the mechanisms underlying sirtuin-mediated neuroprotection, centering on their non-histone substrates such as DNA repair enzymes, protein kinases, transcription factors, and coactivators. Collectively, the information compiled here will serve as a comprehensive reference for the actions of sirtuins in the nervous system to date, and will hopefully help to design further experimental research and expand sirtuins as therapeutic targets in the future.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|