1
|
Palazzi L, Pasquato A, Vicario M, Roulin A, Polverino de Laureto P, Cendron L. C‐terminal tails mimicking bioactive intermediates cause different plasma degradation patterns and kinetics in neuropeptides γ‐MSH, α‐MSH, and neurotensin. J Pept Sci 2020; 26:e3279. [DOI: 10.1002/psc.3279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences and CRIBI University of Padova Padova Italy
| | - Antonella Pasquato
- Institute of Microbiology University Hospital Center and University of Lausanne Lausanne Switzerland
| | | | - Alexandre Roulin
- Department of Ecology and Evolution, Faculty of Biology and Medicine University of Lausanne Lausanne Switzerland
| | | | - Laura Cendron
- Department of Biology University of Padova Padova Italy
| |
Collapse
|
2
|
Malik U, Chan LY, Cai M, Hruby VJ, Kaas Q, Daly NL, Craik DJ. Development of novel frog‐skin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uru Malik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Minying Cai
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
3
|
Abstract
Proopiomelanocortin (POMC) belongs to the opioid/orphanin gene family whose peptide precursors include either opioid (YGGF) or the orphanin/nociceptin core sequences (FGGF). In addition to POMC the family includes the proenkephalin (PENK), prodynorphin (PDYN), and nociceptin/proorphanin (PNOC) precursors. The opioid core sequence in POMC is incorporated by the β-endorphin that occupies the C-terminal region but this propeptide also exhibits at least two "alien" melanocortin core sequences (HFRW). An ACTH/MSH fragment merged into the opioid fragment not earlier than the two tetraploidizations of the vertebrate genome. Therefore, POMC exhibit a complex "evolutionary life" since the gene has coevolved together with two different receptor systems, i.e., opioid and melanocortin following a horse trading system. In this article, we summarize the different evolutionary hypotheses proposed for POMC evolution.
Collapse
Affiliation(s)
- Ana Rocha
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture from Torre la Sal (IATS-CSIC), Castellon, Spain
| | - Alejandra Godino-Gimeno
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture from Torre la Sal (IATS-CSIC), Castellon, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture from Torre la Sal (IATS-CSIC), Castellon, Spain..
| |
Collapse
|
4
|
Yin Y, Hao H, Xu X, Shen L, Wu W, Zhang J, Li Q. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Lipids Health Dis 2019; 18:122. [PMID: 31138220 PMCID: PMC6540458 DOI: 10.1186/s12944-019-1073-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/17/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Melanocortin 3 receptor (MC3R), a rhodopsin-like G protein-coupled receptor, is an important regulator of metabolism. Although MC3R knock-out (KO) mice and rats were generated in earlier studies, the function of MC3R remains elusive. Since pig models have many advantages over rodents in metabolism research, we generated an MC3R-KO pig using a CRSPR/Cas9-based system combined with somatic cell nuclear transfer (SCNT) technology. METHOD Four CRSPR/Cas9 target vectors were constructed and then their cleavage efficiency was tested in porcine fetal fibroblasts (PFFs). The pX330-sgRNA1 and pX330-sgRNA4 vectors were used to co-transfect PFFs to obtain positive colonies. PCR screening and sequencing were conducted to identify the genotype of the colonies. The biallelically modified colonies and wild-type control colonies were used simultaneously as donor cells for SCNT. A total of 1203 reconstructed embryos were transferred into 6 surrogates, of which one became pregnant. The genotypes of the resulting piglets were determined by PCR and sequencing, and off-target effects in the MC3R KO piglets were detected by sequencing. Then, offspring were obtained through breeding and six male KO pigs were used for the growth performance analysis. RESULTS Four vectors were constructed successfully, and their cleavage efficiencies were 27.96, 44.89, 32.72 and 38.86%, respectively. A total of 21 mutant colonies, including 11 MC3R-/- and 10 MC3R+/- clones, were obtained, corresponding to a gene targeting efficiency of 29.17%, with 15.28% biallelic mutations. A total of 6 piglets were born, and only two MC3R KO piglets were generated, one with malformations and a healthy one. No off-target effects were detected by sequencing in the healthy mutant. Six male MC3R KO pigs were obtained in the F2 generation and their body weight and body fat were both increased compared to wild-type full siblings. CONCLUSION A MC3R KO pig strain was generated using the CRSIPR/Cas9-based system, which makes it possible to study the biological function of MC3R in a non-rodent model.
Collapse
Affiliation(s)
- Yajun Yin
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Haiyang Hao
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingbin Xu
- College of life science and biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Liangcai Shen
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenjing Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
- College of life science and biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China.
| | - Qiuyan Li
- State Key Laboratory of Agrobiotechnology & College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Abstract
INTRODUCTION The melanocortin system is a primordial and critical system for survival, involved in a wide variety of physiological functions. It includes melanocortin receptors (MCRs) and melanotropin ligands (MCLs). MCRs are important drug targets that can regulate several key physiological processes. Extensive efforts have been made to develop peptide and peptidomimetics targeting melanocortin receptors including MC1R, MC3R, MC4R and MC5R. Most research is focused on developing potent and selective melanotropins. However, developing bioavailable melanotropins remains challenging. Areas covered: Herein, the authors summarize promising strategies for developing bioavailable MCLs by using cyclized N-methylated melanotropins, and using cyclotide and tetrapeptide as templates. They discuss their unique advantages in oral availability and targeting MCRs in the central nervous system or in peripheral tissues. Finally, they discuss the observed differences in thepharmacology of MCRs between in vitro and in vivo tests. Expert opinion: N-methylated cyclized melanotropins have great potential to become bio- available drugs targeting MCRs in the brain, while MCR-grafted cyclotides tend to target MCRs in peripheral tissue. A better understanding of the biased signaling process is a new challenge and opportunity for the future discovery of bioavailable MCLs.
Collapse
Affiliation(s)
- Yang Zhou
- a Department of Chemistry and Biochemistry , University of Arizona , Tucson , AZ USA
| | - Minying Cai
- a Department of Chemistry and Biochemistry , University of Arizona , Tucson , AZ USA
| |
Collapse
|
6
|
Navarro S, Soletto L, Puchol S, Rotllant J, Soengas JL, Cerdá-Reverter JM. 60 YEARS OF POMC: POMC: an evolutionary perspective. J Mol Endocrinol 2016; 56:T113-8. [PMID: 26671895 DOI: 10.1530/jme-15-0288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
Proopiomelanocortin (POMC) is a complex precursor that comprises several peptidic hormones, including melanocyte-stimulating hormones (MSHs), adrenocorticotropic hormone (ACTH), and β-endorphin. POMC belongs to the opioid/orphanin gene family, whose precursors include either opioid (YGGF) or the orphanin/nociceptin core sequences (FGGF). This gene family diversified during early tetraploidizations of the vertebrate genome to generate four different precursors: proenkephalin (PENK), prodynorphin (PDYN), and nociceptin/proorphanin (PNOC) as well as POMC, although both PNOC and POMC seem to have arisen due to a local duplication event. POMC underwent complex evolutionary processes, including internal tandem duplications and putative coevolutionary events. Controversial and conflicting hypotheses have emerged concerning the sequenced genomes. In this article, we summarize the different evolutionary hypotheses proposed for POMC evolution.
Collapse
Affiliation(s)
- Sandra Navarro
- Control of Food Intake GroupDepartment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Lucia Soletto
- Control of Food Intake GroupDepartment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Sara Puchol
- Control of Food Intake GroupDepartment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Josep Rotllant
- Aquatic Molecular Pathobiology GroupInstituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), Vigo, Spain
| | - Jose Luis Soengas
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jose Miguel Cerdá-Reverter
- Control of Food Intake GroupDepartment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
7
|
Park BL, Kim LH, Namgoong S, Kim JO, Kim JY, Chang HS, Park JS, Jang AS, Park SW, Kim DJ, Kim KU, Kim YG, Uh ST, Seo KH, Kim YH, Park CS, Shin HD. Association analysis of melanocortin 3 receptor polymorphisms with the risk of pulmonary tuberculosis. Lung 2014; 192:857-62. [PMID: 25064630 DOI: 10.1007/s00408-014-9625-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/06/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Melanocortin 3 Receptor (MC3R) is one of the families of seven-transmembrane G-protein-coupled receptors, and a recent study showed that MCR3 promoter polymorphism was significantly associated with the susceptibility of tuberculosis (TB) in South African population. METHODS We analyzed six MC3R polymorphisms to examine the genetic effects on the risk of pulmonary TB in Korean subjects by using TaqMan assays and case-control analyses. RESULTS Using statistical analyses, one common promoter polymorphism (MC3R rs11575886 T > C) was found to be associated with an increased risk of pulmonary TB. The frequency of the C-bearing genotype of rs11575886 was higher in pulmonary TB patients than in normal controls (p = 0.03, OR = 1.46) although the significance was not retained after correction. In silico analysis for the difference of transcription binding factor (TF), motif between C and T allele demonstrated that the TF motif and its threshold scores of C allele were lower than those of T allele. CONCLUSIONS The C allele of rs11575886 could be a risk allele for the pulmonary TB by affecting the binding of TF. Our findings suggest that polymorphisms in MC3R might be one of genetic factors for the risk of pulmonary TB development in Korean subjects.
Collapse
Affiliation(s)
- Byung Lae Park
- Department of Genetic Epidemiology, SNP Genetics, Inc, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stoilova-McPhie S, Ali S, Laezza F. Protein-Protein Interactions as New Targets for Ion Channel Drug Discovery. AUSTIN JOURNAL OF PHARMACOLOGY AND THERAPEUTICS 2013; 1:5. [PMID: 25485305 PMCID: PMC4255474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein-protein interactions (PPI) are key molecular elements that provide the basis of signaling in virtually all cellular processes. The precision and specificity of these molecular interactions have ignited a strong interest in pursuing PPI surfaces as new targets for drug discovery, especially against ion channels in the central nervous system (CNS) where selectivity and specificity are vital for developing drugs with limited side effects. Ion channels are large transmembrane domain proteins assembled with multiple regulatory proteins binding to the intracellular portion of channels. These macromolecular complexes are difficult to isolate, purify and reconstitute, posing a significant barrier in targeting these PPI for drug discovery purposes. Here, we will provide a short overview of salient features of PPI and discuss successful studies focusing on protein-channel interactions that could inspire new drug discovery campaigns targeting ion channel complexes.
Collapse
Affiliation(s)
- Svetla Stoilova-McPhie
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Syed Ali
- Department Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fernanda Laezza
- Department Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Barkey NM, Preihs C, Cornnell HH, Martinez G, Carie A, Vagner J, Xu L, Lloyd MC, Lynch VM, Hruby VJ, Sessler JL, Sill KN, Gillies RJ, Morse DL. Development and in vivo quantitative magnetic resonance imaging of polymer micelles targeted to the melanocortin 1 receptor. J Med Chem 2013; 56:6330-8. [PMID: 23863078 DOI: 10.1021/jm4005576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent emphasis has focused on the development of rationally designed polymer-based micelle carriers for drug delivery. The current work tests the hypothesis that target specificity can be enhanced by micelles with cancer-specific ligands. In particular, we describe the synthesis and characterization of a new gadolinium texaphyrin (Gd-Tx) complex encapsulated in an IVECT micellar system, stabilized through Fe(III) cross-linking and targeted with multiple copies of a specific ligand for the melanocortin 1 receptor (MC1R), which has been evaluated as a cell-surface marker for melanoma. On the basis of comparative MRI experiments, we have been able to demonstrate that these Gd-Tx micelles are able to target MC1R-expressing xenograft tumors in vitro and in vivo more effectively than various control systems, including untargeted or un-cross-linked Gd-Tx micelles. Taken in concert, the findings reported herein support the conclusion that appropriately designed micelles are able to deliver contrast agent payloads to tumors expressing the MC1R.
Collapse
Affiliation(s)
- Natalie M Barkey
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hruby VJ, Cai M. Design of peptide and peptidomimetic ligands with novel pharmacological activity profiles. Annu Rev Pharmacol Toxicol 2013; 53:557-80. [PMID: 23294313 DOI: 10.1146/annurev-pharmtox-010510-100456] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide hormones and neurotransmitters are of central importance in most aspects of intercellular communication and are involved in virtually all degenerative diseases. In this review, we discuss physicochemical approaches to the design of novel peptide and peptidomimetic agonists, antagonists, inverse agonists, and related compounds that have unique biological activity profiles, reduced toxic side effects, and, if desired, the ability to cross the blood-brain barrier. Designing ligands for specific biological and medical needs is emphasized, as is the close collaboration of chemists and biologists to maximize the chances for success. Special emphasis is placed on the use of conformational (ϕ-ψ space) and topographical (χ space) considerations in design.
Collapse
Affiliation(s)
- Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
11
|
Tafreshi NK, Silva A, Estrella VC, McCardle TW, Chen T, Jeune-Smith Y, Lloyd MC, Enkemann SA, Smalley KSM, Sondak VK, Vagner J, Morse DL. In vivo and in silico pharmacokinetics and biodistribution of a melanocortin receptor 1 targeted agent in preclinical models of melanoma. Mol Pharm 2013; 10:3175-85. [PMID: 23763620 DOI: 10.1021/mp400222j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The melanocortin 1 receptor (MC1R) is overexpressed in most melanoma metastases, making it a promising target for imaging of melanomas. In this study, the expression of MC1R in a large fraction of patients with melanoma was confirmed using mRNA and tissue microarray. Here, we have characterized the in vivo tumor and tissue distribution and pharmacokinetics (PK) of uptake and clearance of a MC1R specific peptidomimetic ligand conjugated to a near-infrared fluorescent dye. We propose an interdisciplinary framework to bridge the different time and space scales of ligand-tumor-host interactions: intravital fluorescence microscopy to quantify probe internalization at the cellular level, a xenograft tumor model for whole body pharmacokinetics, and a computational pharmacokinetic model for integration and interpretation of experimental data. Administration of the probe into mice bearing tumors with high and low MC1R expression demonstrated normalized image intensities that correlated with expression levels (p < 0.05). The biodistribution study showed high kidney uptake as early as 30 min postinjection. The PK computational model predicted the presence of receptors in the kidneys with a lower affinity, but at higher numbers than in the tumors. As the mouse kidney is known to express the MC5R, this hypothesis was confirmed by both coinjection of a ligand with higher MC5R affinity compared to MC1R and by injection of lower probe concentrations (e.g., 1 nmol/kg), both leading to decreased kidney accumulation of the MC1R ligand. In addition, through this interdisciplinary approach we could predict the rates of ligand accumulation and clearance into and from organs and tumors, and the amount of injected ligand required to have maximum specific retention in tumors. These predictions have potential to aid in the translation of a targeted agent from lab to the clinic. In conclusion, the characterized MC1R-specific probe has excellent potential for in vivo detection of melanoma metastases. The process of cell-surface marker validation, targeted imaging probe development, and in vitro, in vivo, and in silico characterization described in this study can be generally applied to preclinical development of targeted agents.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eggert M, Pfob M, Steinlein OK. Melanocortin-3-receptor promoter polymorphism associated with tuberculosis susceptibility does not influence protein expression. BMC Res Notes 2013; 6:99. [PMID: 23497691 PMCID: PMC3605127 DOI: 10.1186/1756-0500-6-99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The melanocortin-3-receptor (MC3R) is a member of the G-protein coupled receptor family that mediate cellular response through the cyclic adenosine monophosphate signalling pathway. In the promoter region of MC3R the polymorphism rs6127698 has previously been shown to be strongly associated with tuberculosis susceptibility. It is predicted to generate an alternative transcription factor binding site. FINDINGS We investigated the functional impact of rs6127698 by luciferase assay to assess if this polymorphism is capable of altering protein expression. Our results did not show any significant protein expression changes when comparing the two alleles of rs6127698. CONCLUSIONS Our experiments demonstrate that the rs6127698 polymorphism does not influence protein translation. A functional role of the predicted alternative transcription factor binding site could therefore not be confirmed. These results suggest rs6127698 has no direct role in tuberculosis susceptibility. The possibility remains that this polymorphism is linked to an adjacent functional genetic variant, acting as a surrogate marker for disease risk.
Collapse
Affiliation(s)
- Marlene Eggert
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | |
Collapse
|
13
|
Mayorov AV, Cai M, Palmer ES, Tanaka DK, Cain JP, Dedek MM, Tan B, Trivedi D, Hruby VJ. Cyclic lactam hybrid α-MSH/Agouti-related protein (AGRP) analogues with nanomolar range binding affinities at the human melanocortin receptors. Bioorg Med Chem Lett 2011; 21:3099-102. [PMID: 21486697 DOI: 10.1016/j.bmcl.2011.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
Abstract
A novel hybrid melanocortin pharmacophore was designed based on the topographical similarities between the pharmacophores of Agouti related protein (AGRP) an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. When employed in two different 23-membered macrocyclic lactam peptide templates, the designed hybrid AGRP/MSH pharmacophore yielded non-competitive ligands with nanomolar range binding affinities. The topography-based pharmacophore hybridization strategy will prove useful in development of unique non-competitive melanocortin receptor modulators.
Collapse
Affiliation(s)
- Alexander V Mayorov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jóźków P, Słowińska-Lisowska M, Łaczmański Ł, Jakubiec D, Mędraś M. Melanocortin-4 receptor gene polymorphism and the level of physical activity in men (HALS Study). Endocrine 2011; 39:62-8. [PMID: 21046283 DOI: 10.1007/s12020-010-9412-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
Melanocortin plays an important role in the energy balance in humans. Actions of melanocortin are exerted through activation of five receptors among which the melanocortin-4 receptor (MC4R) is especially abundant within the central nervous system (CNS). It has been proved that genetic variations of the MC4R gene are associated with the energy intake. Recent data has suggested that MC4R gene polymorphism might influence physical activity/energy expenditure as well. Our aim was to search for associations between MC4R polymorphisms and the level of physical activity. We genotyped MC4R in a population-based cohort of 311 men. The level of physical activity was determined with use of the International Physical Activity Questionnaire. We have found that physical effort expressed as log METs-min/week (corrected for age, BMI and educational status) was 6.61 in men declaring low, 7.56-moderate and 8.96-high level of physical activity. We have not found any associations between the C-2745T MC4R polymorphism and the level of physical activity (P = 0.53). There were no interactions between the level of physical activity and the C-2745T polymorphisms either (P = 0.47). We conclude that the C-2745T genetic polymorphism of the MC4R gene does not influence the level of physical activity in healthy, adult men.
Collapse
Affiliation(s)
- Paweł Jóźków
- Department of Sports Medicine & Nutrition, University School of Physical Education, ul. Paderewskiego 35, Wrocław, Poland.
| | | | | | | | | |
Collapse
|
15
|
Humphreys MH, Ni XP, Pearce D. Cardiovascular effects of melanocortins. Eur J Pharmacol 2011; 660:43-52. [PMID: 21199648 DOI: 10.1016/j.ejphar.2010.10.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/02/2010] [Accepted: 10/12/2010] [Indexed: 01/04/2023]
Abstract
Melanocortins (MSH's) are three structurally related peptides derived from proopiomelanocortin. They regulate several physiologic functions including energy metabolism, appetite, and inflammation. Recent work in rodents has also identified important effects of MSH's, particularly γ-MSH, on sodium metabolism and blood pressure regulation. Normal rats and mice respond to a high sodium diet with an increase in the plasma concentration of γ-MSH, and remain normotensive, while those with genetic or pharmacologic γ-MSH deficiency become hypertensive on a high sodium diet. This hypertension is corrected by exogenous administration of the peptide. Mice lacking the γ-MSH receptor (the melanocortin 3 receptor, Mc3r) also become hypertensive on a high sodium diet but remain so when administered γ-MSH, and infusions of physiologic levels of the peptide stimulate urinary sodium excretion in normal rats and mice, but not in mice with deletion of Mc3r. The salt-sensitive hypertension in rodents with impaired γ-MSH signaling appears due to stimulation of noradrenergic activity, since plasma noradrenaline is increased and the hypertension is rapidly corrected with infusion of the α-adrenoceptor antagonist phentolamine. In contrast to the antihypertensive property of physiologic levels of γ-MSH, intravenous or intracerebroventricular injections of high levels of the peptide raise blood pressure. This occurs in mice lacking Mc3r, indicating an interaction with some other central receptor. Finally, the salt-sensitive hypertension in rodents with disruption of γ-MSH signaling is accompanied by insulin resistance, an observation which offers a new window into the study of the association of salt-sensitive hypertension with insulin resistance and type II diabetes.
Collapse
Affiliation(s)
- Michael H Humphreys
- Division of Nephrology, San Francisco General Hospital and Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
16
|
Mayorov AV, Cai M, Palmer ES, Liu Z, Cain JP, Vagner J, Trivedi D, Hruby VJ. Solid-phase peptide head-to-side chain cyclodimerization: discovery of C(2)-symmetric cyclic lactam hybrid α-melanocyte-stimulating hormone (MSH)/agouti-signaling protein (ASIP) analogues with potent activities at the human melanocortin receptors. Peptides 2010; 31:1894-905. [PMID: 20688117 PMCID: PMC3041174 DOI: 10.1016/j.peptides.2010.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 02/05/2023]
Abstract
A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the agouti-signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities. The direct on-resin peptide lactam cyclodimerization yielded nanomolar range (25-120 nM) hMC1R-selective full and partial agonists in the cyclodimeric lactam series which demonstrates an improvement over the previous attempts at hybridization of MSH and agouti protein sequences. The secondary structure-oriented pharmacophore hybridization strategy will prove useful in development of unique allosteric and orthosteric melanocortin receptor modulators. This report also illustrates the utility of peptide cyclodimerization for the development of novel GPCR peptide ligands.
Collapse
Affiliation(s)
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Erin S. Palmer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Zhihua Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - James P. Cain
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Josef Vagner
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Dev Trivedi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
17
|
Doedens L, Opperer F, Cai M, Beck JG, Dedek M, Palmer E, Hruby VJ, Kessler H. Multiple N-methylation of MT-II backbone amide bonds leads to melanocortin receptor subtype hMC1R selectivity: pharmacological and conformational studies. J Am Chem Soc 2010; 132:8115-28. [PMID: 20496895 PMCID: PMC2895553 DOI: 10.1021/ja101428m] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple N-methylation is a novel technology to improve bioavailability of peptides and increase receptor subtype selectivity. This technique has been applied here to the superpotent but nonselective cyclic peptide MT-II. A library of all possible 31 backbone N-methylated derivatives has been synthesized and tested for binding and activation at melanocortin receptor subtypes 1, 3, 4, and 5. It turned out that selectivity is improved with every introduced N-methyl group, resulting in several N-methylated selective and potent agonists for the hMC1R. The most potent of these derivatives is N-methylated on four out of five amide bonds in the cyclic structure. Its solution structure indicates a strongly preferred backbone conformation that resembles other alpha-MSH analogs but possesses much less flexibility and in addition distinct differences in the spatial arrangement of individual amino acid side chains.
Collapse
Affiliation(s)
- Lucas Doedens
- Institute for Advanced Study and Center for Integrated Protein Science at the Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Florian Opperer
- Institute for Advanced Study and Center for Integrated Protein Science at the Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, U.S.A
| | - Johannes G. Beck
- Institute for Advanced Study and Center for Integrated Protein Science at the Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Matt Dedek
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, U.S.A
| | - Erin Palmer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, U.S.A
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, U.S.A
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science at the Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
18
|
Yang Y, Hruby VJ, Chen M, Crasto C, Cai M, Harmon CM. Novel binding motif of ACTH analogues at the melanocortin receptors. Biochemistry 2009; 48:9775-84. [PMID: 19743876 DOI: 10.1021/bi900634e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin receptor (MCR) subtype family is a member of the GPCR superfamily, and each of them has a different pharmacological profile with regard to the relative potency of the endogenous and synthetic melanocortin peptides. Alpha-MSH and ACTH are endogenous nonselective agonists for MC1R, MC3R, MC4R, and MC5R. In this study, we examined the role of Phe(7) in ACTH on human (h) MC1R, MC3R, and MC4R binding and signaling. Our results indicate that substitution of Phe(7) with d-Nal(2')(7) in ACTH1-24 yields a pharmacological profile different from that for substitution of Phe(7) with d-Nal(2')(7) in MSH in hMC1R, hMC3R, and hMC4R. N-d-Nal(2')(7)-ACTH1-24 is an agonist at hMC3R and hMC4R which did not change the peptide from an agonist to an antagonist at hMC3R and hMC4R. Further experiments indicate that N-d-Nal(2')(7)-ACTH1-17 is the minimal peptide required for hMC3R and hMC4R activation. Single-amino acid substitution studies of d-Nal(2')(7)-ACTH1-17 indicate that amino acid residues 15-17 in N-d-Nal(2')(7)-ACTH1-17 are crucial for hMC3R and hMC4R activation. Substitutions of these amino acid residues reduced or abolished agonist activity at hMC3R and hMC4R. Conformational studies revealed a new beta-turn (Arg(8)-Trp(9)-Gly(10)-Lys(11)) in N-d-Nal(2')(7)-ACTH1-17, compared to the beta-turn-like structure at NDP-alpha-MSH (His(6)-d-Phe(7)-Arg(8)-Trp(9)). Our results suggest that NDP-alpha-MSH and N-d-Nal(2')(7)-ACTH1-17 do not share the same binding site; the highly basic C-terminal fragment (Lys(15)-Lys(16)-Arg(17)) of N-d-Nal(2')(7)-ACTH1-17 induced a new beta-turn, and this shift contributed the selective agonist activity at hMC3R and hMC4R.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama, Birmingham, Alabama 35233, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Cai M, Nyberg J, Hruby VJ. Melanotropins as drugs for the treatment of obesity and other feeding disorders: potential and problems. Curr Top Med Chem 2009; 9:554-63. [PMID: 19689365 PMCID: PMC4608742 DOI: 10.2174/156802609788897817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current biological and pharmacological evidence suggests that the melanocortin 4 and melanocortin 3 receptors which are seven transmembrane G-protein coupled receptors (GPCRs) are involved in various aspects of energy balance and feeding behaviors in animals including humans. The natural endogenous ligands for these receptors are products of the gene pro-opiomelanocortin (POMC), and include alpha-melanocyte stimulating hormone, gamma-melanocyte stimulating hormone and perhaps other modified products of POMC. Thus well designed agonists and antagonists of these ligands might serve as drugs for the treatment of feeding disorders. However, these melanotropin peptides also can have other biological activities that involve the MC3R and MC4R, and these other biological properties will need to be modulated in ligands that are likely to be useful drugs for feeding disorders. Current progress in these areas with special emphasis on the MC3R will be discussed along with possible new directions that might be fruitful in these important aspects of contemporary biology and medicine.
Collapse
MESH Headings
- Animals
- Anti-Obesity Agents/chemistry
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Drug Evaluation, Preclinical
- Feeding Behavior/drug effects
- Feeding Behavior/physiology
- Humans
- Melanocyte-Stimulating Hormones/chemistry
- Melanocyte-Stimulating Hormones/pharmacology
- Melanocyte-Stimulating Hormones/therapeutic use
- Nutrition Disorders/drug therapy
- Nutrition Disorders/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/chemistry
- Receptor, Melanocortin, Type 3/physiology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Joel Nyberg
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Mayorov AV, Cai M, Palmer ES, Dedek MM, Cain JP, Van Scoy AR, Tan B, Vagner J, Trivedi D, Hruby VJ. Structure-activity relationships of cyclic lactam analogues of alpha-melanocyte-stimulating hormone (alpha-MSH) targeting the human melanocortin-3 receptor. J Med Chem 2008; 51:187-95. [PMID: 18088090 PMCID: PMC2587288 DOI: 10.1021/jm070461w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A variety of dicarboxylic acid linkers introduced between the alpha-amino group of Pro(6) and the -amino group of Lys(10) of the cyclic lactam alpha-melanocyte-stimulating hormone (alpha-MSH)-derived Pro(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)-Lys(10)-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro(6) residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a beta-turn-like structure with the D-Phe/D-Nal(2') residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH 2)2-CO-Nle-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic gamma-melanocyte-stimulating hormone (gamma-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor.
Collapse
MESH Headings
- Binding, Competitive
- Cell Line
- Cyclic AMP/biosynthesis
- Humans
- Lactams/chemical synthesis
- Lactams/pharmacology
- Models, Molecular
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Radioligand Assay
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/chemistry
- Structure-Activity Relationship
- alpha-MSH/analogs & derivatives
- alpha-MSH/chemical synthesis
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
| | - Minying Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Erin S. Palmer
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Matthew M. Dedek
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - James P. Cain
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - April R. Van Scoy
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Bahar Tan
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Josef Vagner
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Dev Trivedi
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Victor J. Hruby
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|