1
|
Rawlings SA, Torres F, Wells A, Lisco A, Fitzgerald W, Margolis L, Gianella S, Vanpouille C. Effect of HIV suppression on the cytokine network in blood and seminal plasma. AIDS 2022; 36:621-630. [PMID: 34873090 PMCID: PMC8957508 DOI: 10.1097/qad.0000000000003146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE HIV infection disrupts the cytokine network and this disruption is not completely reversed by antiretroviral therapy (ART). Characterization of cytokine changes in blood and genital secretions is important for understanding HIV pathogenesis and the mechanisms of HIV sexual transmission. Here, we characterized the cytokine network in individuals longitudinally sampled before they began ART and after achieving suppression of HIV RNA. METHODS We measured concentrations of 34 cytokine/chemokines using multiplex bead-based assay in blood and seminal plasma of 19 men with HIV-1 prior to and after viral suppression. We used Partial Least Squares Discriminant Analysis (PLS-DA) to visualize the difference in cytokine pattern between the time points. Any cytokines with VIP scores exceeding 1 were deemed important in predicting suppression status and were subsequently tested using Wilcoxon Signed Rank Tests. RESULTS PLS-DA projections in blood were fairly similar before and after viral suppression. In contrast, the difference in PLS-DA projection observed in semen emphasizes that the immunological landscape and immunological needs are very different before and after ART in the male genital compartment. When tested individually, four cytokines were significantly different across time points in semen (MIG, IL-15, IL-7, I-TAC), and two in blood (MIG and IP-10). CONCLUSION Viral suppression with ART impacts the inflammatory milieu in seminal plasma. In contrast, the overall effect on the network of cytokines in blood was modest but consistent with prior analyses. These results identify specific changes in the cytokine networks in semen and blood as the immune system acclimates to chronic, suppressed HIV infection.
Collapse
Affiliation(s)
| | - Felix Torres
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Alan Wells
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wendy Fitzgerald
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Leonid Margolis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sara Gianella
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Taylor RA, McRaven MD, Carias AM, Anderson MR, Matias E, Araínga M, Allen EJ, Rogers KA, Gupta S, Kulkarni V, Lakhashe S, Lorenzo-Redondo R, Thomas Y, Strickland A, Villinger FJ, Ruprecht RM, Hope TJ. Localization of infection in neonatal rhesus macaques after oral viral challenge. PLoS Pathog 2021; 17:e1009855. [PMID: 34793582 PMCID: PMC8639050 DOI: 10.1371/journal.ppat.1009855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/02/2021] [Accepted: 11/06/2021] [Indexed: 12/24/2022] Open
Abstract
Vertical transmission of human immunodeficiency virus (HIV) can occur in utero, during delivery, and through breastfeeding. We utilized Positron Emission Tomography (PET) imaging coupled with fluorescent microscopy of 64Cu-labeled photoactivatable-GFP-HIV (PA-GFP-BaL) to determine how HIV virions distribute and localize in neonatal rhesus macaques two and four hours after oral viral challenge. Our results show that by four hours after oral viral exposure, HIV virions localize to and penetrate the rectal mucosa. We also used a dual viral challenge with a non-replicative viral vector and a replication competent SHIV-1157ipd3N4 to examine viral transduction and dissemination at 96 hours. Our data show that while SHIV-1157ipd3N4 infection can be found in the oral cavity and upper gastrointestinal (GI) tract, the small and large intestine contained the largest number of infected cells. Moreover, we found that T cells were the biggest population of infected immune cells. Thus, thanks to these novel technologies, we are able to visualize and delineate of viral distribution and infection throughout the entire neonatal GI tract during acute viral infection. Approximately 1.8 million children are currently living with human immunodeficiency virus (HIV). While mother-to-child HIV transmission can occur in utero and during delivery, it most commonly occurs through breastfeeding, creating the need to understand how the virus moves throughout the body and infects the infant once breast milk is consumed. Here, we used multiple imaging techniques and PCR to determine how HIV distributes throughout the gastrointestinal tract after oral viral exposure and in which tissues and cell types become acutely infected. We found that HIV rapidly spreads throughout and penetrates the entire gastrointestinal tract as early as four hours after exposure. We also found that the intestine contained the largest number of infected cells at 96 hours and that most cells infected were T cells. Our study shows that these imaging technologies allow for the examination of viral distribution and infection in a rhesus macaque model.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ann M. Carias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Edgar Matias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Mariluz Araínga
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Edward J. Allen
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kenneth A. Rogers
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Sandeep Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Viraj Kulkarni
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Samir Lakhashe
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ramon Lorenzo-Redondo
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Institute for Global Health, Chicago, Illinois, United States of America
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Amanda Strickland
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Francois J. Villinger
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Ruth M. Ruprecht
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
3
|
Intradermal-delivered DNA vaccine induces durable immunity mediating a reduction in viral load in a rhesus macaque SARS-CoV-2 challenge model. CELL REPORTS MEDICINE 2021; 2:100420. [PMID: 34604818 PMCID: PMC8479327 DOI: 10.1016/j.xcrm.2021.100420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/25/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.
Collapse
|
4
|
MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4 + T Cell Infection in HIV-1-Infected Individuals. Viruses 2020; 12:v12070764. [PMID: 32708557 PMCID: PMC7412276 DOI: 10.3390/v12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.
Collapse
|
5
|
El Hadad S, Zakareya A, Al-Hejin A, Aldahlawi A, Alharbi M. Sustaining exposure to high concentrations of bifidobacteria inhibits gene expression of Mouse's mucosal immunity. Heliyon 2019; 5:e02866. [PMID: 31890933 PMCID: PMC6926234 DOI: 10.1016/j.heliyon.2019.e02866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/23/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Numerous dietary products are supplemented with probiotics that may be beneficial for human health. Recently, bifidobacteria have received increasing attention as a genus of probiotic bacteria with high efficiency and few side effects. To examine potential effects of different bifidobacteria concentrations on the mucosal immune response, we fed mice with (a) 108 colony-forming units (CFU) of bifidobacteria (group 108B), and (b) with 1012 CFU of bifidobacteria (group 1012B) over 42 days and assessed gene expression in intestinal mucosa and immune marker concentrations in serum samples; ten untreated female mice were used as a control. Continuous exposure to 108 CFU of bifidobacteria activated both macrophages and Treg immune cells through significantly increasing the expression of mucosal TLR2 and IL10-mRNA genes, but inhibited Th1 and Th2 cells via significant downregulation of IL4 and IFNγ gene expression, compared to untreated mice. Interestingly, group 1012B showed down-regulated expression of TLR2, IL10, and IL4 genes but up-regulated expression of IFNγ, compared to group 108B and to the control. Also, polyclonal immunoglobulins IgG, IgM, and IgA showed a significant increase in all treated mice compared to the control. We conclude that high concentrations of bifidobacteria reduced innate immune functions. Furthermore, adaptive immunity seemed to be enhanced by increasing stimulation of T and B lymphocytes, suggesting aberration of the immune system following intestinal inflammation due to constant exposure to high concentrations of bifidobacteria. Both experimental bifidobacteria concentrations increased the total levels of circulating Igs, particularly of IgA.
Collapse
Affiliation(s)
- Sahar El Hadad
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Research Center of Genetic Engineering and Bioinformatics, VACSERA, Cairo, Egypt.,Immunolgy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayeshah Zakareya
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Al-Hejin
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Microbiology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Immunolgy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
IP-10 is highly involved in HIV infection. Cytokine 2018; 115:97-103. [PMID: 30472104 DOI: 10.1016/j.cyto.2018.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Interferon-γ (IFN-γ)-induced protein 10 (IP-10 or CXCL-10) is a chemokine involved in trafficking immune cells to inflammatory sites. Numerous studies have reported abnormally high plasma IP-10 levels in the context of human immunodeficiency virus (HIV) infection, and IP-10 is considered an important pro-inflammatory factor in the HIV disease process. The data regarding the roles of IP-10 in HIV infection required collation; this review summarizes the biological characteristics of IP-10, the positive association between plasma IP-10 levels and HIV disease progression, the effect of IP-10 on human immune cells, and potential related mechanisms. This review provides important insights into the role of IP-10 in HIV monitoring and treatment.
Collapse
|
7
|
Ram DR, Kroll K, Reeves RK. Indirect activation of rhesus macaque (Macaca mulatta) NK cells in oral and mucosal draining lymph nodes. J Med Primatol 2018; 47:302-304. [PMID: 30256418 DOI: 10.1111/jmp.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 11/29/2022]
Abstract
The oral mucosae and draining lymph nodes are primary entry points for invading pathogens, particularly during immunosuppressive HIV/SIV infections. Innate immunity against oral stimuli, including natural killer (NK) cells, is understudied. Herein, we demonstrate functional NK cell responses to pathogen-associated molecular patterns (PAMPs) of potential oral pathogens in rhesus macaques.
Collapse
Affiliation(s)
- Daniel R Ram
- Harvard Medical School, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Kyle Kroll
- Harvard Medical School, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - R Keith Reeves
- Harvard Medical School, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
8
|
Sanfilippo C, Pinzone MR, Cambria D, Longo A, Palumbo M, Di Marco R, Condorelli F, Nunnari G, Malaguarnera L, Di Rosa M. OAS Gene Family Expression Is Associated with HIV-Related Neurocognitive Disorders. Mol Neurobiol 2017; 55:1905-1914. [PMID: 28236279 DOI: 10.1007/s12035-017-0460-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders are common in HIV-infected individuals, even in the combination antiretroviral therapy (c-ART) era. Several mechanisms are involved in neuronal damage, including chronic inflammation immune activation. Mammalian 2'-5'-oligoadenylate synthetase (OAS) genes are produced in response to interferon (IFN), mainly by monocytes, and exert their antiviral functions by activation of RNase L that degrades viral and cellular RNAs. In this study, we aimed at exploring OAS gene family RNA expression in simian immunodeficiency virus encephalitis (SIVE), in HIV-associated neurocognitive disorders (HAND), and in HIV-associate dementia (HAD). We analyzed three microarray datasets obtained from the NCBI in order to assess the expression levels of OAS gene family network in brain biopsies of macaques with SIVE vs uninfected animals, as well as post-mortem brain of individuals with HAND (on or off ART) vs uninfected controls and three brain regions of HIV-infected individuals with both neurocognitive impairment (HAD) and encephalitis (HIVE). All OAS genes were upregulated both in SIVE and in HAND. OAS expression was significantly higher in high-viremic individuals; increased expression levels persisted in cART subjects when compared to healthy controls. OAS gene network analysis showed that several genes belonging to the type I IFN pathway, especially CXCL10 and IFIT3, were similarly upregulated in SIVE/HAND. Furthermore, we identified a significant upregulation of OAS gene family RNA expression in basal ganglia, white matter, and frontal cortex of HIV-1, HAD, and HAD/HIVE patients compared to healthy subjects. OAS gene family expression is increased in brain sections from individuals with HAND, HAD, and HIVE as well as macaques with SIVE. OAS family expression is likely to be induced by IFN as a consequence of viral replication in the CNS. Its long-term upregulation may contribute to the chronic inflammatory status and neurocognitive impairment we still observe in virologically suppressed individuals on c-ART.
Collapse
Affiliation(s)
- C Sanfilippo
- Section of Neurosciences, Department G.F. Ingrassia, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - M R Pinzone
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - D Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - A Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Palumbo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - R Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - F Condorelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, A. Avogadro, 28100, Novara, Italy
| | - G Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
9
|
Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 2016; 11:201-8. [PMID: 26845673 DOI: 10.1097/coh.0000000000000238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The review summarizes studies in natural hosts, with a particular focus on the control of immune activation and new insights into viral reservoirs. We discuss why these findings are relevant for HIV research today. RECENT FINDINGS AIDS resistance in natural hosts is characterized by a rapid control of inflammatory processes in response to simian immunodeficiency virus infection despite persistent viremia. Although CD4 T cells are dramatically depleted in the intestine in primary infection, interleukin 17-producing T helper cells (Th17) are preserved and natural hosts lack microbial translocation. Thus, viral replication in the gut is not sufficient to explain mucosal damage, but additional factors are necessary. Natural hosts also display a lower infection rate of stem-cell memory, central memory and follicular helper T cells. The follicles are characterized by a lack of viral trapping and the viral replication in secondary lymphoid organs is rapidly controlled. Hence, the healthy status of natural hosts is associated with preserved lymphoid environments. SUMMARY Understanding the underlying mechanisms of preservation of Th17 and of the low contribution of stem-cell memory, central memory and follicular helper T cells to viral reservoirs could benefit the search for preventive and curative approaches of HIV. Altogether, the complementarity of the model helps to identify strategies aiming at restoring full capacity of the immune system and decreasing the size of the viral reservoirs.
Collapse
|
10
|
Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathog 2016; 12:e1005774. [PMID: 27509048 PMCID: PMC4980058 DOI: 10.1371/journal.ppat.1005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Elevated blood CXCL10/IP-10 levels during primary HIV-1 infection (PHI) were described as an independent marker of rapid disease onset, more robust than peak viremia or CD4 cell nadir. IP-10 enhances the recruitment of CXCR3+ cells, which include major HIV-target cells, raising the question if it promotes the establishment of viral reservoirs. We analyzed data from four cohorts of HIV+ patients, allowing us to study IP-10 levels before infection (Amsterdam cohort), as well as during controlled and uncontrolled viremia (ANRS cohorts). We also addressed IP-10 expression levels with regards to lymphoid tissues (LT) and blood viral reservoirs in patients and non-human primates. Pre-existing elevated IP-10 levels but not sCD63 associated with rapid CD4 T-cell loss upon HIV-1 infection. During PHI, IP-10 levels and to a lesser level IL-18 correlated with cell-associated HIV DNA, while 26 other inflammatory soluble markers did not. IP-10 levels tended to differ between HIV controllers with detectable and undetectable viremia. IP-10 was increased in SIV-exposed aviremic macaques with detectable SIV DNA in tissues. IP-10 mRNA was produced at higher levels in the small intestine than in colon or rectum. Jejunal IP-10+ cells corresponded to numerous small and round CD68neg cells as well as to macrophages. Blood IP-10 response negatively correlated with RORC (Th17 marker) gene expression in the small intestine. CXCR3 expression was higher on memory CD4+ T cells than any other immune cells. CD4 T cells from chronically infected animals expressed extremely high levels of intra-cellular CXCR3 suggesting internalization after ligand recognition. Elevated systemic IP-10 levels before infection associated with rapid disease progression. Systemic IP-10 during PHI correlated with HIV DNA. IP-10 production was regionalized in the intestine during early SIV infection and CD68+ and CD68neg haematopoietic cells in the small intestine appeared to be the major source of IP-10. Chronic immune activation is a hallmark of HIV infection and contributes in multiple ways to HIV persistence. Here, we gained insights on the association between a pro-inflammatory chemokine, CXCL10/IP-10 and HIV infection in four cohorts of HIV+ individuals, studied at distinct stages of infection (before, primary and chronic stage with spontaneous- and treatment-controlled infection). We further analyzed pathogenic and non-pathogenic SIV infections to address IP-10 levels and the presence of infected cells in tissues (lymph nodes, small and large intestine). We found that elevated systemic IP-10 levels before HIV-1 infection associate with a more rapid disease progression. During primary infection, IP-10 in blood strongly correlated with the amount of infected cells in blood. The animal model showed that IP-10 expression was regionalized in the intestine and highest in the small intestine. Studies of aviremic animals suggest that high IP-10 is indicative of viral replication in lymphoid tissues. Haematopoietic cells rather than epithelial/endothelial cells mainly contributed to the IP-10 production in small intestine (jejunum). The receptor of IP-10 was highly expressed on memory CD4+ T cells, i.e. major target cells for the virus. This study contributes to our understanding of the establishment of HIV reservoirs and why IP-10 associates with HIV/AIDS.
Collapse
|
11
|
Long-term control of simian immunodeficiency virus (SIV) in cynomolgus macaques not associated with efficient SIV-specific CD8+ T-cell responses. J Virol 2015; 89:3542-56. [PMID: 25589645 DOI: 10.1128/jvi.03723-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The spontaneous control of human and simian immunodeficiency viruses (HIV/SIV) is typically associated with specific major histocompatibility complex (MHC) class I alleles and efficient CD8(+) T-cell responses, but many controllers maintain viral control despite a nonprotective MHC background and weak CD8(+) T-cell responses. Therefore, the contribution of this response to maintaining long-term viral control remains unclear. To address this question, we transiently depleted CD8(+) T cells from five SIV-infected cynomolgus macaques with long-term viral control and weak CD8(+) T-cell responses. Among them, only one carried the protective MHC allele H6. After depletion, four of five controllers experienced a transient rebound of viremia. The return to undetectable viremia was accompanied by only modest expansion of SIV-specific CD8(+) T cells that lacked efficient SIV suppression capacity ex vivo. In contrast, the depletion was associated with homeostatic activation/expansion of CD4(+) T cells that correlated with viral rebound. In one macaque, viremia remained undetectable despite efficient CD8(+) cell depletion and inducible SIV replication from its CD4(+) T cells in vitro. Altogether, our results suggest that CD8(+) T cells are not unique contributors to the long-term maintenance of low viremia in this SIV controller model and that other mechanisms, such as weak viral reservoirs or control of activation, may be important players in control. IMPORTANCE Spontaneous control of HIV-1 to undetectable levels is associated with efficient anti-HIV CD8(+) T-cell responses. However, in some cases, this response fades over time, although viral control is maintained, and many HIV controllers (weak responders) have very low frequencies of HIV-specific CD8(+) T cells. In these cases, the importance of CD8 T cells in the maintenance of HIV-1 control is questionable. We developed a nonhuman primate model of durable SIV control with an immune profile resembling that of weak responders. Transient depletion of CD8(+) cells induced a rise in the viral load. However, viremia was correlated with CD4(+) T-cell activation subsequent to CD8(+) cell depletion. Regain of viral control to predepletion levels was not associated with restoration of the anti-SIV capacities of CD8(+) T cells. Our results suggest that CD8(+) T cells may not be involved in maintenance of viral control in weak responders and highlight the fact that additional mechanisms should not be underestimated.
Collapse
|
12
|
De Buck J, Shaykhutdinov R, Barkema HW, Vogel HJ. Metabolomic profiling in cattle experimentally infected with Mycobacterium avium subsp. paratuberculosis. PLoS One 2014; 9:e111872. [PMID: 25372282 PMCID: PMC4221196 DOI: 10.1371/journal.pone.0111872] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
The sensitivity of current diagnostics for Johne's disease, a slow, progressing enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), is too low to reliably detect all infected animals in the subclinical stage. The objective was to identify individual metabolites or metabolite profiles that could be used as biomarkers of early MAP infection in ruminants. In a monthly follow-up for 17 months, calves infected at 2 weeks of age were compared with aged-matched controls. Sera from all animals were analyzed by 1H nuclear magnetic resonance spectrometry. Spectra were acquired, processed, and quantified for analysis. The concentration of many metabolites changed over time in all calves, but some metabolites only changed over time in either infected or non-infected groups and the change in others was impacted by the infection. Hierarchical multivariate statistical analysis achieved best separation between groups between 300 and 400 days after infection. Therefore, a cross-sectional comparison between 1-year-old calves experimentally infected at various ages with either a high- or a low-dose and age-matched non-infected controls was performed. Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS DA) yielded distinct separation of non-infected from infected cattle, regardless of dose and time (3, 6, 9 or 12 months) after infection. Receiver Operating Curves demonstrated that constructed models were high quality. Increased isobutyrate in the infected cattle was the most important agreement between the longitudinal and cross-sectional analysis. In general, high- and low-dose cattle responded similarly to infection. Differences in acetone, citrate, glycerol and iso-butyrate concentrations indicated energy shortages and increased fat metabolism in infected cattle, whereas changes in urea and several amino acids (AA), including the branched chain AA, indicated increased protein turnover. In conclusion, metabolomics was a sensitive method for detecting MAP infection much sooner than with current diagnostic methods, with individual metabolites significantly distinguishing infected from non-infected cattle.
Collapse
Affiliation(s)
- Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Rustem Shaykhutdinov
- Biochemistry Research Group, Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVE To study the cytokine/chemokine profiles in response to HIV-1 viremia, and elucidate the pathways leading to HIV-1-induced inflammation. DESIGN/METHODS Plasma levels of 19 cytokines in individuals with early HIV-1 infection and individuals undergoing treatment interruptions were evaluated via multiplex assay. To investigate the cellular sources of relevant cytokines, sorted cells from HIV-1 infected individuals were assessed for mRNA expression. Relevant signaling pathways were assessed by comparing cytokine production patterns of peripheral blood mononuclear cells stimulated with intact HIV-1 or specific Toll-like receptor (TLR) stimulants with and without a TLR7/9 antagonist. RESULTS IP-10 plasma concentration was most significantly associated with HIV-1 viral load and was the most significant contributor in a multivariate model. IP-10 mRNA was highly expressed in monocytes and mDCs and these cells were the dominant producers after in-vitro stimulation with TLR7/8 ligands (CL097 and ssRNAGag1166), AT-2 HIV-1, and HIV-1NL43 virus. Partial least square discriminant analysis of culture supernatants revealed distinct cytokine/chemokine secretion profiles associated with intact viruses compared with TLR7/8 ligands alone, with IP-10 production linked to the former. A TLR7/9 antagonist blocked IP-10 production following whole virus stimulation, suggesting the involvement of TLR7/9 in the recognition of HIV-1 by these cells. CONCLUSION Monocytes and mDCs produce significant amounts of IP-10 in response to HIV-1 viremia and after in-vitro stimulation with HIV-1. Stimulation with HIV-1-derived TLR7/8-ligands versus HIV-1 resulted in distinct cytokine/chemokine profiles, indicating additional pathways other than TLR7/8 that lead to the activation of innate immune cells by HIV-1.
Collapse
|
15
|
Abstract
Systemic chronic immune activation is considered today as the driving force of CD4(+) T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by anti-retroviral therapy, with the extent of this residual immune activation being associated with CD4(+) T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4(+) T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation characteristic of human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to 'show AIDS the door', and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives.
Collapse
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
16
|
Li H, Reeves RK. Functional perturbation of classical natural killer and innate lymphoid cells in the oral mucosa during SIV infection. Front Immunol 2013; 3:417. [PMID: 23316201 PMCID: PMC3539714 DOI: 10.3389/fimmu.2012.00417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022] Open
Abstract
Despite the fact that the majority of human pathogens are transmitted across mucosal surfaces, including the oral mucosae, oral immunity is poorly understood. Furthermore, because the normal flora of the oral cavity is vast and significantly diverse, host immunity must balance a complex system of tolerance and pathogen recognition. Due to the rapid recognition and response to pathogens, the innate immune system, including natural killer (NK) cells, likely plays a critical role in mediating this balance. Because logistical and ethical restraints limit access to significant quantities of human mucosal tissues, non-human primate models offer one of the best opportunities to study mucosal NK cells. In this study we have identified both classical NK cells, as well as innate lymphoid cells (ILCs) in tonsillar and buccal tissues and oral-draining lymph nodes. Identified by mutually exclusive expression of NKG2A and NKp44, NK cells, and ILCs in the oral mucosa are generally phenotypically and functionally analogous to their gut counterparts. NKG2A+ NK cells were more cytotoxic while NKp44+ ILCs produced copious amounts of IL-17 and TNF-α. However, in contrast to gut, oral NK cells and ILCs both produced large quantities of IFN-γ and the beta-chemokine, MIP-1β. Also in contrast to what we have previously found in gut tissues of SIV-infected macaques, we found no reduction in NK cells during chronic SIV infection, but rather an expansion of ILCs in oral-draining lymph nodes and tonsils. These data suggest that the lentivirus-induced depletion of the NK cell/ILC compartment in the gut may be absent in the oral mucosa, but the inherent differences and SIV-induced alterations are likely to have significant impact on preventing oral opportunistic infections in lentiviral disease. Furthermore, these data extend our understanding of the oral innate immune system in general and could aid future studies evaluating the regulation of both normal oral flora and limiting transmission of oral mucosal pathogens.
Collapse
Affiliation(s)
- Haiying Li
- Division of Immunology, New England Primate Research Center, Harvard Medical School, One Pine Hill Drive Southborough, MA, USA
| | | |
Collapse
|
17
|
Jasny E, Geer S, Frank I, Vagenas P, Aravantinou M, Salazar A, Lifson J, Piatak M, Gettie A, Blanchard J, Robbiani M. Characterization of peripheral and mucosal immune responses in rhesus macaques on long-term tenofovir and emtricitabine combination antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 61:425-35. [PMID: 22820802 PMCID: PMC3494791 DOI: 10.1097/qai.0b013e318266be53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to suppress virus replication to limit immune system damage. Some have proposed combining ART with immune therapies to boost antiviral immunity. For this to be successful, ART must not impair physiological immune function. METHODS We studied the impact of ART (tenofovir and emtricitabine) on systemic and mucosal immunity in uninfected and simian immunodeficiency (SIV)-infected Chinese rhesus macaques. Subcutaneous ART was initiated 2 weeks after tonsillar inoculation with SIVmac239. RESULTS There was no evidence of immune dysregulation as a result of ART in either infected or uninfected animals. Early virus-induced alterations in circulating immune cell populations (decreased central memory T cells and myeloid dendritic cells) were detected, but normalized shortly after ART initiation. ART-treated animals showed marginal SIV-specific T-cell responses during treatment, which increased after ART discontinuation. Elevated expression of CXCL10 in oral, rectal, and blood samples and APOBEC3G mRNA in oral and rectal tissues was observed during acute infection and was down regulated after starting ART. ART did not impact the ability of the animals to respond to tonsillar application of polyICLC with increased CXCL10 expression in oral fluids and CD80 expression on blood myeloid dendritic cells. CONCLUSION Early initiation of ART prevented virus-induced damage and did not impede mucosal or systemic immune functions.
Collapse
Affiliation(s)
- E. Jasny
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - S. Geer
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I. Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - P. Vagenas
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - M. Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - J.D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - M Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - A. Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - J. Blanchard
- Tulane National Primate Research Center (TNPRC), Tulane University, Covington, Louisiana, USA
| | - M. Robbiani
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
18
|
Impact of mucosal inflammation on oral simian immunodeficiency virus transmission. J Virol 2012; 87:1750-8. [PMID: 23175379 DOI: 10.1128/jvi.02079-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal tissues are the primary route of transmission for most respiratory and sexually transmitted diseases, including human immunodeficiency virus (HIV). There is epidemiological evidence that genital mucosal inflammation leads to enhanced HIV type 1 (HIV-1) transmission. The objective of this study was to assess the influence of periodontal inflammation on oral HIV transmission using a nonhuman primate model of teeth ligature-induced periodontitis. Simian immunodeficiency virus (SIV) was nontraumatically applied to the gingiva after moderate gingivitis was identified through clinical and immunologic analyses (presence of inflammatory cytokines). Overall oral SIV infection rates were similar in the gingivitis-induced and control groups (5 infections following 12 SIV administrations for each), although more macaques were infected with multiple viral variants in the gingivitis group. SIV infection also affected the levels of antiviral and inflammatory cytokines in the gingival crevicular fluid, and a synergistic effect was observed, with alpha interferon and interferon-inducible protein 10 undergoing significant elevations following SIV infection in macaques with gingivitis compared to controls. These increases in antiviral and inflammatory immune modulators in the SIV-infected gingivitis macaques could also be observed in blood plasma, although the effects at both compartments were generally restricted to the acute phase of the infection. In conclusion, while moderate gingivitis was not associated with increased susceptibility to oral SIV infection, it resulted in elevated levels of cytokines in the oral mucosa and plasma of the SIV-infected macaques. These findings suggest a synergy between mucosal inflammation and SIV infection, creating an immune milieu that impacts the early stages of the SIV infection with potential implications for long-term pathogenesis.
Collapse
|