1
|
Auti A, Tathode M, Marino MM, Vitiello A, Ballini A, Miele F, Mazzone V, Ambrosino A, Boccellino M. Nature's weapons: Bioactive compounds as anti-cancer agents. AIMS Public Health 2024; 11:747-772. [PMID: 39416904 PMCID: PMC11474324 DOI: 10.3934/publichealth.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer represents a major global health burden, prompting continuous research for effective therapeutic strategies. Natural compounds derived from plants have emerged as potential strategies for preventing cancer and treatment because of their inherent pharmacological properties. This comprehensive review aimed to evaluate the therapeutic potential of five key natural compounds: apigenin, quercetin, piperine, curcumin, and resveratrol in cancer prevention and therapy. By examining their molecular mechanisms and preclinical evidence, this review seeks to elucidate their role as potential adjuvants or stand-alone therapies in cancer management. The exploration of natural compounds as cancer therapeutics offers several advantages, including low toxicity, wide availability, and compatibility with conventional chemotherapeutic agents. We highlighted the current understanding of their anticancer mechanisms and clinical applications for advancing personalized cancer care to improve patient outcomes. We discussed the empirical findings from in vitro, in vivo, and clinical studies reporting biological activity and therapeutic efficacy in antioxidant, immunomodulatory, anti-carcinogenic, and chemo-sensitizing modes. Innovative delivery systems and personalized treatment approaches may further enhance their bioavailability and therapeutic utility in a synergistic approach with chemo- and radiotherapeutic disease management. This review underscores the importance of natural compounds in cancer prevention and treatment, promoting a multidisciplinary approach to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Madhura Tathode
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, 00144 Rome, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122, Foggia, Italy
| | - Francesco Miele
- General Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Valeria Mazzone
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessia Ambrosino
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
2
|
Inchingolo F, Inchingolo AM, Piras F, Ferrante L, Mancini A, Palermo A, Inchingolo AD, Dipalma G. The interaction between gut microbiome and bone health. Curr Opin Endocrinol Diabetes Obes 2024; 31:122-130. [PMID: 38587099 PMCID: PMC11062616 DOI: 10.1097/med.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This review critically examines interconnected health domains like gut microbiome, bone health, interleukins, chronic periodontitis, and coronavirus disease 2019 (COVID-19), offering insights into fundamental mechanisms and clinical implications, contributing significantly to healthcare and biomedical research. RECENT FINDINGS This review explores the relationship between gut microbiome and bone health, a growing area of study. It provides insights into skeletal integrity and potential therapeutic avenues. The review also examines interleukins, chronic periodontitis, and COVID-19, highlighting the complexity of viral susceptibility and immune responses. It highlights the importance of understanding genetic predispositions and immune dynamics in the context of disease outcomes. The review emphasizes experimental evidence and therapeutic strategies, aligning with evidence-based medicine and personalized interventions. This approach offers actionable insights for healthcare practitioners and researchers, paving the way for targeted therapeutic approaches and improved patient outcomes. SUMMARY The implications of these findings for clinical practice and research underscore the importance of a multidisciplinary approach to healthcare that considers the complex interactions between genetics, immune responses, oral health, and systemic diseases. By leveraging advances in biomedical research, clinicians can optimize patient care and improve health outcomes across diverse patient populations.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | | | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
3
|
Santacroce L, Bottalico L, Charitos IA, Haxhirexha K, Topi S, Jirillo E. Healthy Diets and Lifestyles in the World: Mediterranean and Blue Zone People Live Longer. Special Focus on Gut Microbiota and Some Food Components. Endocr Metab Immune Disord Drug Targets 2024; 24:1774-1784. [PMID: 38566378 DOI: 10.2174/0118715303271634240319054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 04/04/2024]
Abstract
Longevity has been associated with healthy lifestyles, including some dietary regimens, such as the Mediterranean diet (MedDiet) and the Blue Zone (BZ) diets. MedDiet relies on a large consumption of fruit, vegetables, cereals, and extra-virgin olive oil, with less red meat and fat intake. Four major BZ have been recognized in the world, namely, Ogliastra in Sardinia (Italy), Ikaria (Greece), the Peninsula of Nicoya (Costa Rica), and Okinawa (Japan). Extreme longevity in these areas has been associated with correct lifestyles and dietary regimens. Fibers, polyphenols, beta-glucans, and unsaturated fatty acids represent the major constituents of both MedDiet and BZ diets, given their anti-inflammatory and antioxidant activities. Particularly, inhibition of the NF-kB pathway, with a reduced release of pro-inflammatory cytokines, and induction of T regulatory cells, with the production of the anti-inflammatory cytokine, interleukin- 10, are the main mechanisms that prevent or attenuate the "inflammaging." Notably, consistent physical activity, intense social interactions, and an optimistic attitude contribute to longevity in BZD areas. Commonalities and differences between MedDIet and BZ diets will be outlined, with special reference to microbiota and food components, which may contribute to longevity.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy
| | - Kastriot Haxhirexha
- General Surgery, Medical Faculty, Clinical Hospital of Tetovo, University of Tetovo, 1230 Tetovo, North Macedonia
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
4
|
Inchingolo F, Inchingolo AM, Avantario P, Settanni V, Fatone MC, Piras F, Di Venere D, Inchingolo AD, Palermo A, Dipalma G. The Effects of Periodontal Treatment on Rheumatoid Arthritis and of Anti-Rheumatic Drugs on Periodontitis: A Systematic Review. Int J Mol Sci 2023; 24:17228. [PMID: 38139057 PMCID: PMC10743440 DOI: 10.3390/ijms242417228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases that widely spread and share the same patterns of pro-inflammatory cytokines. This systematic review aims to evaluate the effects of non-surgical periodontal treatment (NSPT) on RA and, conversely, the impact of disease-modifying anti-rheumatic drugs (DMARDs) on periodontitis. PubMed, Embase, and Web of Science were searched using the MESH terms "periodontitis" and "rheumatoid arthritis" from January 2012 to September 2023. A total of 49 articles was included in the final analysis, 10 of which were randomized controlled trials. A total of 31 records concerns the effect of NSPT on parameters of RA disease activity, including a 28-joint disease activity score, anti-citrullinated protein antibodies, rheumatoid factor, C reactive protein, erythrocyte sedimentation rate, pro-inflammatory cytokines and acute phase proteins in serum, saliva, gingival crevicular fluid, and synovial fluid. A total of 18 articles investigated the effect of DMARDs on periodontal indexes and on specific cytokine levels. A quality assessment and risk-of-bias of the studies were also performed. Despite some conflicting results, there is evidence that RA patients and periodontitis patients benefit from NSPT and DMARDs, respectively. The limitations of the studies examined are the small samples and the short follow-up (usually 6 months). Further research is mandatory to evaluate if screening and treatment of periodontitis should be performed systematically in RA patients, and if the administration of DMARDs is useful in reducing the production of cytokines in the periodontium.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Pasquale Avantario
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| |
Collapse
|
5
|
Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, Santacroce L. Microbiota revolution: How gut microbes regulate our lives. World J Gastroenterol 2023; 29:4368-4383. [PMID: 37576701 PMCID: PMC10415973 DOI: 10.3748/wjg.v29.i28.4368] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The human intestine is a natural environment ecosystem of a complex of diversified and dynamic microorganisms, determined through a process of competition and natural selection during life. Those intestinal microorganisms called microbiota and are involved in a variety of mechanisms of the organism, they interact with the host and therefore are in contact with the organs of the various systems. However, they play a crucial role in maintaining host homeostasis, also influencing its behaviour. Thus, microorganisms perform a series of biological functions important for human well-being. The host provides the microorganisms with the environment and nutrients, simultaneously drawing many benefits such as their contribution to metabolic, trophic, immunological, and other functions. For these reasons it has been reported that its quantitative and qualitative composition can play a protective or harmful role on the host health. Therefore, a dysbiosis can lead to an association of unfavourable factors which lead to a dysregulation of the physiological processes of homeostasis. Thus, it has pre-viously noted that the gut microbiota can participate in the pathogenesis of autoimmune diseases, chronic intestinal inflammation, diabetes mellitus, obesity and atherosclerosis, neurological disorders (e.g., neurological diseases, autism, etc.) colorectal cancer, and more.
Collapse
Affiliation(s)
- Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Ioannis Alexandros Charitos
- Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia - Division of Pneumology and Respiratory Rehabilitation, Scientific Institute of Bari, Bari 70124, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, Frosinone 03100, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, Elbasan 3001, Albania
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
6
|
Esfanjani MT, Gilani N, Esfanjani AT, Nourizadeh AM, Faramarzi E, Hekmatfar S. Are oral health behaviors associated with metabolic syndrome in the Azar cohort population? BMC Oral Health 2023; 23:370. [PMID: 37291532 PMCID: PMC10251534 DOI: 10.1186/s12903-023-03003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE Considering the rising prevalence of metabolic syndrome (MetS), this study aimed to investigate the relationship between MetS and its components with oral and dental health in the adult population of the Azar cohort. METHODS In this cross-sectional study oral health care behaviors, DMFT (decayed, missing, and filled teeth) index, and demographic data related to 15,006 patients (5112 in the MetS group and 9894 in the healthy group) of the Azar Cohort population aging from 35 to 70 were collected using appropriate questionnaires. The definition of MetS was based on the National Cholesterol Education Program Adult Treatment Panel III (ATP III) criteria. Then, the risk factors of MetS related to oral health behaviors were determined by proper statistical analysis. RESULTS The majority of MetS patients were female (66%) and uneducated (23%) (P < 0.001). In the MetS group, the DMFT index (22.15 ± 8.89) was significantly (p < 0.001) higher (20.81 ± 8.94) than the no MetS group. Not brushing at all was associated with increased odds of MetS (unadjusted OR = 1.12, adjusted OR = 1.18). Flossing less than once a day was associated with increased odds of abdominal obesity (unadjusted OR = 1.17, 95%CI = 1.03-1.32) and hyperglycemia (unadjusted OR = 1.88, 95%CI = 1.61-2.20). CONCLUSIONS This study showed that in MetS patients of the Azar cohort study, oral hygiene was worse compared to that in the no MetS group. Further studies are suggested to encourage oral hygiene among the general population which has more beneficiary effects than has been known before.
Collapse
Affiliation(s)
| | - Neda Gilani
- Statistics and Epidemiology department, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan Iran
| | - Ali Tarighat Esfanjani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammad Nourizadeh
- Liver and Gastrointestinal Diseases Research center, Tabriz University of Medical Sciences, Tabriz, 51683343 Iran
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research center, Tabriz University of Medical Sciences, Tabriz, 51683343 Iran
| | - Somayeh Hekmatfar
- Faculty of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pediatric Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Ballini A, Charitos IA, Cantore S, Topi S, Bottalico L, Santacroce L. About Functional Foods: The Probiotics and Prebiotics State of Art. Antibiotics (Basel) 2023; 12:antibiotics12040635. [PMID: 37106999 PMCID: PMC10135203 DOI: 10.3390/antibiotics12040635] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Poor diet, obesity and a sedentary lifestyle have a significant impact on natural microbiota disorders; specifically, the intestinal one. This in turn can lead to a multitude of organ dysfunctions. The gut microbiota contains more than 500 species of bacteria and constitutes 95% of the total number of cells in the human body, thus contributing significantly to the host's resistance to infectious diseases. Nowadays, consumers have turned to purchased foods, especially those containing probiotic bacteria or prebiotics, that constitute some of the functional food market, which is constantly expanding. Indeed, there are many products available that incorporate probiotics, such as yogurt, cheese, juices, jams, cookies, salami sausages, mayonnaise, nutritional supplements, etc. The probiotics are microorganisms that, when taken in sufficient amounts, contribute positively to the health of the host and are the focus of interest for both scientific studies and commercial companies. Thus, in the last decade, the introduction of DNA sequencing technologies with subsequent bioinformatics processing contributes to the in-depth characterization of the vast biodiversity of the gut microbiota, their composition, their connection with the physiological function-known as homeostasis-of the human organism, and their involvement in several diseases. Therefore, in this study, we highlighted the extensive investigation of current scientific research for the association of those types of functional foods containing probiotics and prebiotics in the diet and the composition of the intestinal microbiota. As a result, this study can form the foundation for a new research path based on reliable data from the literature, acting a guide in the continuous effort to monitor the rapid developments in this field.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ioannis Alexandros Charitos
- National Poisoning Center, Emergency/Urgent Department, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
| | - Stefania Cantore
- Independent Researcher, Regional Dental Community Service "Sorriso & Benessere-Ricerca e Clinica", 70129 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Luigi Santacroce
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
8
|
de Lemos GM, Resende CMM, Campello CP, Ribeiro IS, Mendes AK, de Lima ELS, de Oliveira RMDC, Barbosa Filho VC, Correia MJ, Muniz MTC. Is oral microbiota associated with overweight and obesity in children and adolescents? A systematic review. Crit Rev Food Sci Nutr 2022; 64:4275-4285. [PMID: 36419361 DOI: 10.1080/10408398.2022.2140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article aims to verify the relationship between the composition and diversity of oral microbiota with overweight and obese children and adolescents. This systematic review was registered in PROSPERO, followed PRISMA 2020, and included an electronic search until March 2022, in PubMed/MEDLINE, Web of Science, Scopus, and The Cochrane Library databases. Studies were eligible if they compared the oral microbiota according to nutrition status among children and adolescents. Independent peers using JBI Critical Appraisal Checklists assessed the quality of studies. Eleven studies were eligible to be included in this review, with a total of 1,695 children and adolescents, 224 were obese, 190 were overweight, 1,154 were eutrophics and 127 were underweight. The most frequent phyla in overweight and obese children and adolescents, in comparison to their counterparts were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria. It was identified that nine of the eleven articles selected showed an association between oral microbiota and overweight and obesity in children and adolescents. We observed that there is an important association between oral bacterial composition diversity and overweight and obesity. This finding indicates the relevance of the evaluation and surveillance in oral health to control cases of overweight and obesity in children and adolescents.
Collapse
Affiliation(s)
- Geisy Muniz de Lemos
- Graduate Program in Biotechnology, Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Camilla Porto Campello
- Laboratory of Molecular Biology, Hospital Universitário Oswaldo Cruz, University of Pernambuco, Recife, Brazil
| | - Isabela Silva Ribeiro
- Graduate Program in Molecular and Cell Biology, University of Pernambuco, Recife, Brazil
| | - Ana Karina Mendes
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Portuguese Catholic University, Viseu, Portugal
| | | | | | | | - Maria José Correia
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Portuguese Catholic University, Viseu, Portugal
| | - Maria Tereza Cartaxo Muniz
- Graduate Program in Biotechnology, Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
Kalemaj Z, Marino MM, Santini AC, Tomaselli G, Auti A, Cagetti MG, Borsello T, Costantino A, Inchingolo F, Boccellino M, Di Domenico M, Tartaglia GM. Salivary microRNA profiling dysregulation in autism spectrum disorder: A pilot study. Front Neurosci 2022; 16:945278. [PMID: 36340774 PMCID: PMC9629840 DOI: 10.3389/fnins.2022.945278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION Autism spectrum disorders (ASD) are the most prevalent neurobiological disorders in children. The etiology comprises genetic, epigenetic, and environmental factors such as dysfunction of the immune system. Epigenetic mechanisms are mainly represented by DNA methylation, histone modifications, and microRNAs (miRNA). The major explored epigenetic mechanism is mediated by miRNAs which target genes known to be involved in ASD pathogenesis. Salivary poly-omic RNA measurements have been associated with ASD and are helpful to differentiate ASD endophenotypes. This study aims to comprehensively examine miRNA expression in children with ASD and to reveal potential biomarkers and possible disease mechanisms so that they can be used to improve faction between individuals by promoting more personalized therapeutic approaches. MATERIALS AND METHODS Saliva samples were collected from 10 subjects: 5 samples of children with ASD and 5 from healthy controls. miRNAs were analyzed using an Illumina Next-Generation-Sequencing (NGS) system. RESULTS Preliminary data highlighted the presence of 365 differentially expressed miRNAs. Pathway analysis, molecular function, biological processes, and target genes of 41 dysregulated miRNAs were assessed, of which 20 were upregulated, and 21 were downregulated in children with ASD compared to healthy controls. CONCLUSION The results of this study represent preliminary but promising data, as the identified miRNA pathways could represent useful biomarkers for the early non-invasive diagnosis of ASD.
Collapse
Affiliation(s)
- Zamira Kalemaj
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Giovanni Tomaselli
- Pharmacological Research Institute Mario Negri-IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy
| | - Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Science, Università di Milano, Milan, Italy
| | - Tiziana Borsello
- Pharmacological Research Institute Mario Negri-IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy
| | - Antonella Costantino
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Inchingolo
- Section of Dental Medicine, Department of Interdisciplinary Medicine, Università di Bari “Aldo Moro”, Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Bugălă NM, Carsote M, Stoica LE, Albulescu DM, Ţuculină MJ, Preda SA, Boicea AR, Alexandru DO. New Approach to Addison Disease: Oral Manifestations Due to Endocrine Dysfunction and Comorbidity Burden. Diagnostics (Basel) 2022; 12:diagnostics12092080. [PMID: 36140482 PMCID: PMC9497746 DOI: 10.3390/diagnostics12092080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review highlights oral anomalies with major clinical impact in Addison disease (AD), including dental health and dermatologic features, through a dual perspective: pigmentation issues and AD comorbidities with oral manifestations. Affecting 92% of AD patients, cutaneomucosal hyperpigmentation is synchronous with or precedes general manifestations by up to a decade, underlying melanocytic infiltration of the basal epidermal layer; melanophages in the superficial dermis; and, rarely, acanthosis, perivascular lymphocytic infiltrate, and hyperkeratosis. Intraoral pigmentation might be the only sign of AD; thus, early recognition is mandatory, and biopsy is helpful in selected cases. The buccal area is the most affected location; other sites are palatine arches, lips, gums, and tongue. Pigmented oral lesions are patchy or diffuse; mostly asymptomatic; and occasionally accompanied by pain, itchiness, and burn-like lesions. Pigmented lingual patches are isolated or multiple, located on dorsal and lateral areas; fungiform pigmented papillae are also reported in AD individuals. Dermoscopy examination is particularly indicated for fungal etiology; yet, it is not routinely performed. AD’s comorbidity burden includes the cluster of autoimmune polyglandular syndrome (APS) type 1 underlying AIRE gene malfunction. Chronic cutaneomucosal candidiasis (CMC), including oral CMC, represents the first sign of APS1 in 70–80% of cases, displaying autoantibodies against interleukin (IL)-17A, IL-17F ± IL-22, and probably a high mucosal concentration of interferon (IFN)-γ. CMC is prone to systemic candidiasis, representing a procarcinogenic status due to Th17 cell anomalies. In APS1, the first cause of mortality is infections (24%), followed by oral and esophageal cancers (15%). Autoimmune hypoparathyroidism (HyP) is the earliest endocrine element in APS1; a combination of CMC by the age of 5 years and dental enamel hypoplasia (the most frequent dental complication of pediatric HyP) by the age of 15 is an indication for HyP assessment. Children with HyP might experience short dental roots, enamel opacities, hypodontia, and eruption dysfunctions. Copresence of APS-related type 1 diabetes mellitus (DM) enhances the risk of CMC, as well as periodontal disease (PD). Anemia-related mucosal pallor is related to DM, hypothyroidism, hypogonadism, corresponding gastroenterological diseases (Crohn’s disease also presents oral ulceration (OU), mucogingivitis, and a 2–3 times higher risk of PD; Biermer anemia might cause hyperpigmentation by itself), and rheumatologic diseases (lupus induces OU, honeycomb plaques, keratotic plaques, angular cheilitis, buccal petechial lesions, and PD). In more than half of the patients, associated vitiligo involves depigmentation of oral mucosa at different levels (palatal, gingival, alveolar, buccal mucosa, and lips). Celiac disease may manifest xerostomia, dry lips, OU, sialadenitis, recurrent aphthous stomatitis and dental enamel defects in children, a higher prevalence of caries and dentin sensitivity, and gingival bleeding. Oral pigmented lesions might provide a useful index of suspicion for AD in apparently healthy individuals, and thus an adrenocorticotropic hormone (ACTH) stimulation is useful. The spectrum of autoimmune AD comorbidities massively complicates the overall picture of oral manifestations.
Collapse
Affiliation(s)
- Narcis Mihăiţă Bugălă
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- C.I. Parhon National Institute of Endocrinology, Aviatorilor Ave. 34–38, Sector 1, 011683 Bucharest, Romania
- Correspondence: ; Tel.: +40-744851934
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dana Maria Albulescu
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Jana Ţuculină
- Department of Odontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Smaranda Adelina Preda
- Department of Odontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ancuta-Ramona Boicea
- Department of Occupational Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoș Ovidiu Alexandru
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
11
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
12
|
Wahab S, Almaghaslah D, Mahmood SE, Ahmad MF, Alsayegh AA, Abu Haddash YM, Rahman MA, Ahamd I, Ahmad W, Khalid M, Usmani S, Ahmad MP, Hani U. Pharmacological Efficacy of Probiotics in Respiratory Viral Infections: A Comprehensive Review. J Pers Med 2022; 12:1292. [PMID: 36013241 PMCID: PMC9409792 DOI: 10.3390/jpm12081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2023] Open
Abstract
Mortality and morbidity from influenza and other respiratory viruses are significant causes of concern worldwide. Infections in the respiratory tract are often underappreciated because they tend to be mild and incapacitated. On the other hand, these infections are regarded as a common concern in clinical practice. Antibiotics are used to treat bacterial infections, albeit this is becoming more challenging since many of the more prevalent infection causes have acquired a wide range of antimicrobial resistance. Resistance to frontline treatment medications is constantly rising, necessitating the development of new antiviral agents. Probiotics are one of several medications explored to treat respiratory viral infection (RVI). As a result, certain probiotics effectively prevent gastrointestinal dysbiosis and decrease the likelihood of secondary infections. Various probiotic bacterias and their metabolites have shown immunomodulating and antiviral properties. Unfortunately, the mechanisms by which probiotics are effective in the fight against viral infections are sometimes unclear. This comprehensive review has addressed probiotic strains, dosage regimens, production procedures, delivery systems, and pre-clinical and clinical research. In particular, novel probiotics' fight against RVIs is the impetus for this study. Finally, this review may explore the potential of probiotic bacterias and their metabolites to treat RVIs. It is expected that probiotic-based antiviral research would be benefitted from this review's findings.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Yahya M. Abu Haddash
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Irfan Ahamd
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Shazia Usmani
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, Uttar Pradesh, India
| | - Md Parwez Ahmad
- Department of Pharmacology, School of Medicine, Maldives National University, Male 20402, Maldives
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
13
|
Inchingolo AD, Malcangi G, Semjonova A, Inchingolo AM, Patano A, Coloccia G, Ceci S, Marinelli G, Di Pede C, Ciocia AM, Mancini A, Palmieri G, Barile G, Settanni V, De Leonardis N, Rapone B, Piras F, Viapiano F, Cardarelli F, Nucci L, Bordea IR, Scarano A, Lorusso F, Palermo A, Costa S, Tartaglia GM, Corriero A, Brienza N, Di Venere D, Inchingolo F, Dipalma G. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1014. [PMID: 35883998 PMCID: PMC9323959 DOI: 10.3390/children9071014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
Abstract
The oral microbiota plays a vital role in the human microbiome and oral health. Imbalances between microbes and their hosts can lead to oral and systemic disorders such as diabetes or cardiovascular disease. The purpose of this review is to investigate the literature evidence of oral microbiota dysbiosis on oral health and discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis; both have enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches as ORALBIOTICA for oral diseases such as demineralization. PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, EMBEDDED, Dentistry & Oral Sciences Source via EBSCO, APA PsycINFO, APA PsyArticles, and DRUGS@FDA were searched for publications that matched our topic from January 2017 to 22 April 2022, with an English language constraint using the following Boolean keywords: ("microbio*" and "demineralization*") AND ("oral microbiota" and "demineralization"). Twenty-two studies were included for qualitative analysis. As seen by the studies included in this review, the balance of the microbiota is unstable and influenced by oral hygiene, the presence of orthodontic devices in the oral cavity and poor eating habits that can modify its composition and behavior in both positive and negative ways, increasing the development of demineralization, caries processes, and periodontal disease. Under conditions of dysbiosis, favored by an acidic environment, the reproduction of specific bacterial strains increases, favoring cariogenic ones such as Bifidobacterium dentium, Bifidobacterium longum, and S. mutans, than S. salivarius and A. viscosus, and increasing of Firmicutes strains to the disadvantage of Bacteroidetes. Microbial balance can be restored by using probiotics and prebiotics to manage and treat oral diseases, as evidenced by mouthwashes or dietary modifications that can influence microbiota balance and prevent or slow disease progression.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Filippo Cardarelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B46BN, UK;
| | - Stefania Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Orthodontics, School of Dentistry, University of Messina, 98125 Messina, Italy;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
- Department of Orthodontics, Faculty of Medicine, University of Milan, 20100 Milan, Italy
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| |
Collapse
|
14
|
Xu X, Ying J. Gut Microbiota and Immunotherapy. Front Microbiol 2022; 13:945887. [PMID: 35847121 PMCID: PMC9283110 DOI: 10.3389/fmicb.2022.945887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is the largest microbiota in the body, which is closely related to the immune state of the body. A number of studies have shown that gut microbiota and its metabolites are involved in host immune regulation. Immune checkpoint inhibitors have become an important drug for the treatment of many malignant tumors, which can significantly improve the prognosis of tumor patients. However, a considerable number of patients cannot benefit from immune checkpoint inhibitors. At present, the known treatment methods of microbiota manipulation mainly include fecal microbiota transplantation, dietary regulation, prebiotics and so on. Therefore, this paper will discuss the possibility of improving the anti-tumor efficacy of immunotherapy from the perspectives of the gut microbiota and immunotherapy.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary and Gastric Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Jieer Ying,
| |
Collapse
|
15
|
Cirulli N, Inchingolo AD, Patano A, Ceci S, Marinelli G, Malcangi G, Coloccia G, Montenegro V, Di Pede C, Ciocia AM, Barile G, Mancini A, Palmieri G, Azzollini D, Rapone B, Nucci L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Nuzzolese M, Cardarelli F, Di Venere D, Inchingolo AM, Dipalma G, Inchingolo F. Innovative Application of Diathermy in Orthodontics: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127448. [PMID: 35742704 PMCID: PMC9224328 DOI: 10.3390/ijerph19127448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
Abstract
Introduction: Several strategies have been proposed in the literature to accelerate tooth movement, many of which are invasive and have numerous side effects, such as surgical techniques (corticotomy and piezocision technique). This research investigates to what extent diathermy can accelerate the orthodontic alignment phase. Materials and Methods: A patient with lower teeth crowding index of the same magnitude was selected. The orthodontic treatment with Nickel–Titanium (NiTi) thermal arc 0.015 in the lower arch was performed, associated with a weekly application of diathermy using the intraoral handpiece. The total duration of treatment was three weeks. During each session, an intraoral transducer was employed to stimulate the hard and soft tissues of the left dental hemiarch, which was also orthodontically aligned like the right one. Results: Comparing the tooth movements of four elements of the two hemiarchies, it was found that, overall, the two teeth examined on the treated side underwent a more significant number of changes than on the untreated side, although not by a significant amount. Conclusions: The use of diathermy, according to the authors, is a non-invasive approach that may speed up the orthodontic alignment phase and reduce treatment duration, resulting in a lower risk of caries, gingival recessions, root resorptions, and patient compliance improvement, without side effects. Further studies and an adequate sample size will be needed to confirm the findings.
Collapse
Affiliation(s)
- Nunzio Cirulli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via L. De Crecchio 6, 80138 Naples, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (I.R.B.); (F.L.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (I.R.B.); (F.L.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (C.M.)
| | - Cinzia Maspero
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (C.M.)
| | | | - Filippo Cardarelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.D.I.); (A.P.); (S.C.); (G.M.); (G.M.); (G.C.); (V.M.); (C.D.P.); (A.M.C.); (G.B.); (A.M.); (G.P.); (D.A.); (B.R.); (F.C.); (D.D.V.); (A.M.I.); (G.D.); (F.I.)
| |
Collapse
|
16
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
17
|
Charitos IA, Topi S, Gagliano-Candela R, De Nitto E, Polimeno L, Montagnani M, Santacroce L. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA). A review. Endocr Metab Immune Disord Drug Targets 2022; 22:716-727. [PMID: 35339192 DOI: 10.2174/1871530322666220325114045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence have shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases. AIM OF THE STUDY finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health. RESULTS evidence from several experimental settings show that both low and high doses of BPA, interfere with the hormonal, homeostatic and reproductive systems in both animals and human systems. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterize PBA as an environmental contributor to type II diabetes, metabolic syndrome, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (µg/kg bw/day) to 4 µg/kg bw/day. CONCLUSIONS Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and declare any appreciable health risk.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- National Poison Center, OO. RR. University Hospital of Foggia, Foggia, Italy
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Skender Topi
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Roberto Gagliano-Candela
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
| | - Emanuele De Nitto
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, Section of Biochemistry, School of Medicine, University of Bari, Bari, Italy
| | - Lorenzo Polimeno
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari, Bari, Italy
| | - Luigi Santacroce
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| |
Collapse
|
18
|
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal Colonization and Infections-Interactions with Other Human Diseases. Pathogens 2022; 11:212. [PMID: 35215155 PMCID: PMC8875122 DOI: 10.3390/pathogens11020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host-fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs.
Collapse
Affiliation(s)
- Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
20
|
Inchingolo AD, Patano A, Coloccia G, Ceci S, Inchingolo AM, Marinelli G, Malcangi G, Montenegro V, Laudadio C, Palmieri G, Bordea IR, Ponzi E, Orsini P, Ficarella R, Scarano A, Lorusso F, Dipalma G, Corsalini M, Gentile M, Venere DD, Inchingolo F. Genetic Pattern, Orthodontic and Surgical Management of Multiple Supplementary Impacted Teeth in a Rare, Cleidocranial Dysplasia Patient: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1350. [PMID: 34946295 PMCID: PMC8709258 DOI: 10.3390/medicina57121350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Background: Cleidocranial dysplasia (CCD) is a rare, autosomal dominant skeletal dysplasia with a prevalence of one per million births. The main causes of CCD are mutations in the core-binding factor alpha-1 (CBFA1) or runt-related transcription factor-2 (RUNX2), located at the 6p21 chromosomal region. RUNX2 plays important roles in osteoblast differentiation, chondrocyte proliferation and differentiation, and tooth formation. The disease is characterized by clavicular aplasia or hypoplasia, Wormian bones, delayed closure of cranial suture, brachycephalic head, maxillary deficiency, retention of primary teeth, inclusion of permanent teeth, and multiple supernumerary teeth. Materials and Methods: A 22-year-old girl suffering from cleidocranial dysplasia with short stature, narrow shoulders, craniofacial manifestations (short face, broad forehead, etc.) and dental anomalies (different lower dental elements under eruption, supernumerary and impacted multiple teeth, etc.) was examined at our service (Complex Operative Unit of Odontostomatology of Policlinico of Bari). RX Orthopantomography (OPG) and cone beam computed tomography (CBCT) were requested to better assess the position of the supernumerary teeth and their relationships with others and to evaluate the bone tissue. Results: Under eruption was probably caused by dental interferences with supernumerary teeth; hence, extractions of supernumerary upper canines and lower premolars were performed under general anaesthesia. Surgery outcome was excellent with good tissue healing and improvements in the therapeutic possibilities with future orthodontics. Conclusions: The objective of this article is to give an update about radiological, clinical, and molecular features of CCD and to alert the health team about the importance of establishing an early diagnosis and an appropriate treatment in these patients to prevent impacted teeth complications and to offer them a better quality of life.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Claudia Laudadio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Emanuela Ponzi
- Medical Genetics Unit, Department of Human Reproductive Medicine, ASL Bari, 70121 Bari, Italy; (E.P.); (P.O.); (R.F.); (M.G.)
| | - Paola Orsini
- Medical Genetics Unit, Department of Human Reproductive Medicine, ASL Bari, 70121 Bari, Italy; (E.P.); (P.O.); (R.F.); (M.G.)
| | - Romina Ficarella
- Medical Genetics Unit, Department of Human Reproductive Medicine, ASL Bari, 70121 Bari, Italy; (E.P.); (P.O.); (R.F.); (M.G.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Massimo Corsalini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Mattia Gentile
- Medical Genetics Unit, Department of Human Reproductive Medicine, ASL Bari, 70121 Bari, Italy; (E.P.); (P.O.); (R.F.); (M.G.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (A.P.); (G.C.); (S.C.); (A.M.I.); (G.M.); (G.M.); (V.M.); (C.L.); (G.P.); (G.D.); (M.C.); (D.D.V.)
| |
Collapse
|
21
|
Khadija B, Badshah L, Siddiqa A, Rehman B, Anjum S, Saeed A, Hussain S, Faryal R. Dysbiosis in salivary bacterial diversity of postpartum females and its association with oral health problems and APOs. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100032. [PMID: 34841323 PMCID: PMC8610344 DOI: 10.1016/j.crmicr.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
The present study investigates the dysbiosis in salivary bacterial diversity by culture-dependent and independent methods. Culturable aerobic and facultative anaerobic bacterial diversity was studied in saliva collected from 267 postpartum and 54 nonpregnant females by using standard microbiological methods. For unculturable bacterial diversity, DNA from saliva samples of four selected females was sequenced by targeting V4 region of 16S rRNA. In postpartum females, S. mutans was significantly more prevalent. Its colonization was also seen significant among females having gingivitis (P < 0.01), dental caries (P < 0.01), and in those giving birth to low weight baby. In postpartum group, 65.16% females were culture positive for Staphylococcus, 12.73% Gram positive rods, 10.48% N. meningitides, 6.36% K. pneumoniae, 5.61% Enterobacter species and 2.62% E. coli. Isolates showed high biofilm forming ability and antibiotic resistance. Upon analysis of unculturable bacterial diversity, a total of 16 phyla and 156 genera were observed. Alpha diversity was decrease in postpartum female having oral health issues with pre-term low weight birth, compared to females with full term birth. Bray-Curtis dissimilarity was highest between female with dental issues and different pregnancy outcomes. Bacterial diversity and abundance altered among females with different oral health conditions and pregnancy outcomes, and also have pathogenic potential.
Collapse
Affiliation(s)
- Bibi Khadija
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Medical Laboratory Technology, University of Haripur, Haripur, KPK, Pakistan
| | - Lal Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Siddiqa
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samiaa Anjum
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Saeed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shahzad Hussain
- Drug Control and Traditional Medicine Department, National Institute of Health (NIH), Islamabad, Pakistan
| | - Rani Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
22
|
Tourelle KM, Boutin S, Weigand MA, Schmitt FCF. Sepsis and the Human Microbiome. Just Another Kind of Organ Failure? A Review. J Clin Med 2021; 10:jcm10214831. [PMID: 34768350 PMCID: PMC8585089 DOI: 10.3390/jcm10214831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Next-generation sequencing (NGS) has been further optimised during the last years and has given us new insights into the human microbiome. The 16S rDNA sequencing, especially, is a cheap, fast, and reliable method that can reveal significantly more microorganisms compared to culture-based diagnostics. It might be a useful method for patients suffering from severe sepsis and at risk of organ failure because early detection and differentiation between healthy and harmful microorganisms are essential for effective therapy. In particular, the gut and lung microbiome in critically ill patients have been probed by NGS. For this review, an iterative approach was used. Current data suggest that an altered microbiome with a decreased alpha-diversity compared to healthy individuals could negatively influence the individual patient’s outcome. In the future, NGS may not only contribute to the diagnosis of complications. Patients at risk could also be identified before surgery or even during their stay in an intensive care unit. Unfortunately, there is still a lack of knowledge to make precise statements about what constitutes a healthy microbiome, which patients exactly have an increased perioperative risk, and what could be a possible therapy to strengthen the microbiome. This work is an iterative review that presents the current state of knowledge in this field.
Collapse
Affiliation(s)
- Kevin M. Tourelle
- Department of Anesthesiology, Heidelberg University Hospital, 420, Im Neuenheimer Feld, 69120 Heidelberg, Germany; (K.M.T.); (M.A.W.)
| | - Sebastien Boutin
- Department of Infectious Disease, Medical Microbiology and Hygiene, University Hospital, 324, Im Neuenheimer Feld, 69120 Heidelberg, Germany;
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 420, Im Neuenheimer Feld, 69120 Heidelberg, Germany; (K.M.T.); (M.A.W.)
| | - Felix C. F. Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, 420, Im Neuenheimer Feld, 69120 Heidelberg, Germany; (K.M.T.); (M.A.W.)
- Correspondence:
| |
Collapse
|
23
|
Anti-Inflammatory Potential of Complex Extracts of Ligularia stenocephala Matsum. & Koidz. and Secale cereale L. Sprout in Chronic Gingivitis: In Vitro Investigation and Randomized Clinical Trial. Antioxidants (Basel) 2021; 10:antiox10101586. [PMID: 34679720 PMCID: PMC8533477 DOI: 10.3390/antiox10101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Complex extracts of Ligularia stenocephala Matsum. & Koidz. (LSE) and Secale cereale L. sprout (SCSE) (TEES-10®) were prepared. The purposes of the study were to evaluate anti-inflammatory activities of TEES-10® in vitro and to observe resolution of gingivitis in human with oral administration of TEES-10®. The effects of TEES-10® on normal periodontal ligament (PDL) cell viability, lipopolysaccharide (LPS) induced PDL cell viability and the changes of inflammatory mediator expression were evaluated in vitro. In the clinical trial, 150 mg of TEES-10® powder containing capsule was administered twice daily to the test group, while the control group administered placebos in a total 100 participants with gingivitis. Probing depth (PD), bleeding on probing (BOP), clinical attachment loss, gingival index (GI) and plaque index (PI) were measured at baseline and 4 weeks. Administering TEES-10® showed significant increase in PDL cell viability compared to administering LSE or SCSE alone. In addition, treating TEES-10® to LPS induced PDL cell significantly increased PDL cell viability compared to control. TEES-10® suppressed expression of NF-κB, p-ERK, ERK, COX-2, c-Fos and p-STAT and promoted expression of PPARγ in LPS induced PDL cells. In the clinical trial, significant improvement of GI and BOP was observed in the test group at 4 weeks. In addition, the number of patients diagnosed with gingivitis was significantly reduced in the test group at 4 weeks. Salivary MMP-8 and MMP-9 was also significantly decreased compared to placebo group. Within the limitations of this study, the TEES-10® would have an anti-inflammatory potential clinically in the chronic gingivitis patients.
Collapse
|
24
|
Bellocchio L, Inchingolo AD, Inchingolo AM, Lorusso F, Malcangi G, Santacroce L, Scarano A, Bordea IR, Hazballa D, D’Oria MT, Isacco CG, Nucci L, Serpico R, Tartaglia GM, Giovanniello D, Contaldo M, Farronato M, Dipalma G, Inchingolo F. Cannabinoids Drugs and Oral Health-From Recreational Side-Effects to Medicinal Purposes: A Systematic Review. Int J Mol Sci 2021; 22:ijms22158329. [PMID: 34361095 PMCID: PMC8347083 DOI: 10.3390/ijms22158329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background: marijuana, the common name for cannabis sativa preparations, is one of the most consumed drug all over the world, both at therapeutical and recreational levels. With the legalization of medical uses of cannabis in many countries, and even its recreational use in most of these, the prevalence of marijuana use has markedly risen over the last decade. At the same time, there is also a higher prevalence in the health concerns related to cannabis use and abuse. Thus, it is mandatory for oral healthcare operators to know and deal with the consequences and effects of cannabis use on oral cavity health. This review will briefly summarize the components of cannabis and the endocannabinoid system, as well as the cellular and molecular mechanisms of biological cannabis action in human cells and biologic activities on tissues. We will also look into oropharyngeal tissue expression of cannabinoid receptors, together with a putative association of cannabis to several oral diseases. Therefore, this review will elaborate the basic biology and physiology of cannabinoids in human oral tissues with the aim of providing a better comprehension of the effects of its use and abuse on oral health, in order to include cannabinoid usage into dental patient health records as well as good medicinal practice. Methods: the paper selection was performed by PubMed/Medline and EMBASE electronic databases, and reported according to the PRISMA guidelines. The scientific products were included for qualitative analysis. Results: the paper search screened a total of 276 papers. After the initial screening and the eligibility assessment, a total of 32 articles were considered for the qualitative analysis. Conclusions: today, cannabis consumption has been correlated to a higher risk of gingival and periodontal disease, oral infection and cancer of the oral cavity, while the physico-chemical activity has not been completely clarified. Further investigations are necessary to evaluate a therapeutic efficacy of this class of drugs for the promising treatment of several different diseases of the salivary glands and oral diseases.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Department of Medical and Biological Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology at Pham Chau Trinh, University of Medicine, Hoi An 51300, Vietnam
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (M.F.)
| | - Delia Giovanniello
- Hospital A.O.S.G. Moscati, Contrada Amoretta, cap, 83100 Avellino, Italy;
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (M.F.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| |
Collapse
|
25
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
26
|
Di Cosola M, Cazzolla AP, Charitos IA, Ballini A, Inchingolo F, Santacroce L. Candida albicans and Oral Carcinogenesis. A Brief Review. J Fungi (Basel) 2021; 7:jof7060476. [PMID: 34204731 PMCID: PMC8231483 DOI: 10.3390/jof7060476] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Current medical knowledge and research on patients’ management are still evolving, and several protocols on minimizing risk of infection by Candida spp. among the population have developed. The aim of this work is to review the epidemiological and biomolecular characteristics and the various histopathological carcinogenesis hypothesis mechanisms that can occur during Candida albicans infections. Current evidence from the literature on the role of C. albicans during potentially malignant oral disorders and oral cancer has been sought. Thus, these biomolecular processes can give or contribute to benign lesions, also in precancerous or cancerous situations. Alongside this, the physiological microorganism oral flora (microbiota) can play a crucial role in maintaining oral health during those infections and therefore avoid carcinogenesis.
Collapse
Affiliation(s)
- Michele Di Cosola
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy; (M.D.C.); (A.P.C.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy; (M.D.C.); (A.P.C.)
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
- Correspondence: (I.A.C.); (A.B.)
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario Ernesto Quagliariello, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro” School of Medicine, 70124 Bari, Italy; (F.I.); (L.S.)
- Correspondence: (I.A.C.); (A.B.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro” School of Medicine, 70124 Bari, Italy; (F.I.); (L.S.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro” School of Medicine, 70124 Bari, Italy; (F.I.); (L.S.)
| |
Collapse
|
27
|
Chatzopoulos GS, Cisneros A, Sanchez M, Wolff LF. Association between Periodontal Disease and Systemic Inflammatory Conditions Using Electronic Health Records: A Pilot Study. Antibiotics (Basel) 2021; 10:antibiotics10040386. [PMID: 33916511 PMCID: PMC8066908 DOI: 10.3390/antibiotics10040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
AIMS To investigate the association between periodontal disease and systemic inflammatory conditions and examine the link between medical conditions and the extent of missing teeth in a large population. METHODS In this retrospective study, a total of 4890 randomly selected patients who had attended the University of Minnesota dental clinics were analyzed. Severity of periodontal disease was determined based on the percentage of bone loss, evaluated through the examination of a full-mouth intraoral series of radiographs. The number of missing teeth was calculated from the examined radiographs, while ten systemic inflammatory conditions were extracted from patients' self-reported medical histories. RESULTS Moderate bone loss was observed in 730 (14.9%) and severe in 323 (6.6%) patients of the total population, while the mean number of missing teeth was 3.54 ± 3.93. The prevalence of systemic conditions and tobacco use were gender-dependent (p < 0.05). Regression analysis showed that hypertension, arthritis, asthma, diabetes and HIV were associated significantly with the severity of bone loss, while diabetes and lupus with the extent of missing teeth. CONCLUSIONS The findings reported in our study add to this body of knowledge, strengthening the association between periodontal disease with systemic inflammatory conditions.
Collapse
|
28
|
Abstract
Background: Various microorganisms such as bacteria, virus, and fungi can infect humans and cause not just a simple infection but septic conditions, organ dysfunction, and precancerous conditions or cancer involving various organ systems. After the discovery of the microscope, it was easier to discover and study such microorganisms, as in the case of Helicobacter pylori, a pathogen that was seen in the distant era of the nineteenth century but without being recognized as such. It took 100 years to later discover the pathogenesis and the cancer that this bacterium can cause. Since it was discovered, until today, there has been a continuous search for the understanding of its pathogenetic mechanisms, and the therapeutic approach is continuously updated. Methods: We investigated how diagnosis and therapy were dealt with in the past and how researchers sought to understand, exactly, the pathogenetic biomolecular mechanisms of H. pylori, from the genesis of the infection to the current knowledge, with an analysis of carcinogenic mechanisms in the stomach. We have examined the scientific evolution of the knowledge of the disease over these 40 years in the gastroenterological and pharmacological fields. This was possible through a search in the databases of Medline, the WHO website, the Centers for Disease Control and Prevention (CDC) website, PubMed, and Web of Science to analyze the earlier and the latest data regarding H. pylori. Results: With the scientific discoveries over time, thanks to an increasing number of progressions in scientific research in the analysis of the gastric mucosa, the role of Helicobacter pylori in peptic ulcer, carcinogenesis, and in some forms of gastric lymphoma was revealed. Furthermore, over the years, the biomolecular mechanism involvement in some diseases has also been noted (such as cardiovascular ones), which could affect patients positive for H. pylori. Conclusions: Thanks to scientific and technological advances, the role of the bacterium H. pylori in carcinogenesis has been discovered and demonstrated, and new prospective research is currently attempting to investigate the role of other factors in the stomach and other organs. Cancer from H. pylori infection had a high incidence rate compared to various types of cancer, but in recent years, it is improving thanks to the techniques developed in the detection of the bacterium and the evolution of therapies. Thus, although it has become an increasingly treatable disease, there is still continuous ongoing research in the field of treatment for resistance and pharma compliance. Furthermore, in this field, probiotic therapy is considered a valid adjuvant.
Collapse
|
29
|
Oka S, Li X, Zhang F, Tewari N, Kim IS, Chen C, Zhong L, Hamada N, Oi Y, Makishima M, Liu Y, Bhawal UK. Loss of Dec1 prevents autophagy in inflamed periodontal ligament fibroblast. Mol Biol Rep 2021; 48:1423-1431. [PMID: 33507476 DOI: 10.1007/s11033-021-06162-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Periodontal ligament fibroblasts (PDLFs) are integral to the homeostasis of periodontal tissue. The transcription factor Dec1 functions to modulate Porphyromonas gingivalis-induced periodontal inflammation. Here, we aimed to characterize the Dec1-mediated autophagy in PDLFs under inflammatory conditions. Human PDLFs were subjected to an inflammatory environment using P. gingivalis Lipopolysaccaride (LPS) along with Dec1 siRNA in vitro. Quantitative real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression levels of autophagy-related genes and their upstream AKT/mTOR signaling pathways. An experimental P. gingivalis-treated Dec1 knockout (Dec1KO) mouse model was used to confirm the expression of autophagy in PDLFs in vivo. Treatment with P. gingivalis LPS induced the expression of ATG5, Beclin1 and microtubule-associated protein 1 light chain 3 (LC3) and elevated the expression of pro-inflammatory cytokine IL-1β and Dec1 in human PDLFs. Knockdown of Dec1 partly reversed the detrimental influences of LPS on these autophagy markers in human PDLFs. The inhibition of autophagy with Dec1 siRNA suppressed the inflammatory effect of AKT/mTOR signaling pathways following treatment with P. gingivalis LPS. P. gingivalis-treated Dec1KO mice partly reduced autophagy expression. These findings suggest that a Dec1 deficiency can modulate the interaction between autophagy and inflammation in PDLFs.
Collapse
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.
| | - Fengzhu Zhang
- Department of Anesthesiology, Nihon University School of Dentistry At Matsudo, Chiba, Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Il-Shin Kim
- Department of Dental Hygiene, Honam University, Gwangju, Republic of Korea
| | - Chongchong Chen
- Department of Stomatology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Liangjun Zhong
- Department of Stomatology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshiyuki Oi
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry At Matsudo, Chiba, Japan.
| |
Collapse
|
30
|
Santacroce L, Inchingolo F, Topi S, Del Prete R, Di Cosola M, Charitos IA, Montagnani M. Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective. Diabetes Metab Syndr 2021; 15:295-301. [PMID: 33484986 PMCID: PMC7804381 DOI: 10.1016/j.dsx.2020.12.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Probiotics can support the body's systems in fighting viral infections. This review is aimed to focus current knowledge about the use of probiotics as adjuvant therapy for COVID-19 patients. METHODS We performed an extensive research using the PubMed-LitCovid, Cochrane Library, Embase databases, and conducting manual searches on Google Scholar, Elsevier Connect, Web of Science about this issue. RESULTS We have found several papers reporting data about the potential role of probiotics as well as contrasting experimental data about it. CONCLUSIONS Most data show good results demonstrating that probiotics can play a significant role in fighting SARS-CoV-2 infection, also compared with their use in the past for various diseases. They seem effective in lowering inflammatory status, moreover in patients with chronic comorbidities such as cancer and diabetes, improving clinical outcomes.
Collapse
Affiliation(s)
- Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy; Department of Clinical Disciplines, School of Technical Medical Sciences, "A. Xhuvani" University of Elbasan, Rruga Ismail Zyma, 3001, Elbasan, Albania
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Dentistry Unit, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "A. Xhuvani" University of Elbasan, Rruga Ismail Zyma, 3001, Elbasan, Albania
| | - Raffaele Del Prete
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Viale Luigi Pinto 1, 71122, Foggia, Italy
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Center, Riuniti University Hospital of Foggia, Viale Luigi Pinto 1, 71122, Foggia, Italy.
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
31
|
Santacroce L, Charitos IA, Carretta DM, De Nitto E, Lovero R. The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. J Mol Med (Berl) 2021; 99:93-106. [PMID: 33269412 PMCID: PMC7710368 DOI: 10.1007/s00109-020-02012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
In humans, coronaviruses can cause infections of the respiratory system, with damage of varying severity depending on the virus examined: ranging from mild-to-moderate upper respiratory tract diseases, such as the common cold, pneumonia, severe acute respiratory syndrome, kidney failure, and even death. Human coronaviruses known to date, common throughout the world, are seven. The most common-and least harmful-ones were discovered in the 1960s and cause a common cold. Others, more dangerous, identified in the early 2000s and cause more severe respiratory tract infections. Among these the SARS-CoV, isolated in 2003 and responsible for the severe acute respiratory syndrome (the so-called SARS), which appeared in China in November 2002, the coronavirus 2012 (2012-nCoV) cause of the Middle Eastern respiratory syndrome (MERS) from coronavirus, which exploded in June 2012 in Saudi Arabia, and actually SARS-CoV-2. On December 31, 2019, a new coronavirus strain was reported in Wuhan, China, identified as a new coronavirus beta strain ß-CoV from group 2B, with a genetic similarity of approximately 70% to SARS-CoV, the virus responsible of SARS. In the first half of February, the International Committee on Taxonomy of Viruses (ICTV), in charge of the designation and naming of the viruses (i.e., species, genus, family, etc.), thus definitively named the new coronavirus as SARS-CoV-2. This article highlights the main knowledge we have about the biomolecular and pathophysiologic mechanisms of SARS-CoV-2.
Collapse
Affiliation(s)
- Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Laboratory, University Hospital of Bari, Università degli Studi di Bari, p.zza G. Cesare, 11, 70124, Bari, Italy.
| | - Ioannis A Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, viale Pinto, 1, Foggia, 71122, Italy
| | - Domenico M Carretta
- Syncope Unit at Cardio-Thoracic Department, Policlinico Consorziale, U.O.S. Coronary Unit and Electrophysiology/Pacing Unit, p.zza G. Cesare 11, Bari, 70124, Italy
| | - Emanuele De Nitto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Biochemistry, University of Bari "Aldo Moro", p.zza G. Cesare, 11, 70124, Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, p.zza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
32
|
Ballini A, Scacco S, Boccellino M, Santacroce L, Arrigoni R. Microbiota and Obesity: Where Are We Now? BIOLOGY 2020; 9:biology9120415. [PMID: 33255588 PMCID: PMC7761345 DOI: 10.3390/biology9120415] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Emerging new data reported in the international scientific literature show that specific alterations in the human gut microbiota are characteristic in obesity and obesity-related metabolic diseases. Obesity is conditioned by a multitude of factors, and the microbiota is certainly an important player. The analysis of the data obtained from experimental studies allow us to hypothesize that changes in the composition of the microbiota may be the cause, and not simply the consequence, of alterations in human metabolism. Clinical trials on wide samples that investigate the role of diet-induced modulation of the gut microbiota on the host metabolism are needed to understand the interactions at the molecular level for the observed correlations between metabolism and microbiota changes. Abstract Genetic and environmental factors are underlying causes of obesity and other metabolic diseases, so it is therefore difficult to find suitable and effective medical treatments. However, without a doubt, the gut microbiota—and also the bacteria present in the oral cavity—act as key factors in the development of these pathologies, yet the mechanisms have not been fully described. Certainly, a more detailed knowledge of the structure of the microbiota—composition, intra- and inter-species relationships, metabolic functions—could be of great help in counteracting the onset of obesity. Identifying key bacterial species will allow us to create a database of “healthy” bacteria, making it possible to manipulate the bacterial community according to metabolic and clinical needs. Targeting gut microbiota in clinical care as treatment for obesity and health-related complications—even just for weight loss has become a real possibility. In this topical review we provide an overview of the role of the microbiota on host energy homeostasis and obesity-related metabolic diseases, therefore addressing the therapeutic potential of novel and existing strategies (impact of nutrition/dietary modulation, and fecal microbiota transplantation) in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (S.S.); (M.B.); (R.A.)
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (S.S.); (M.B.); (R.A.)
| | - Luigi Santacroce
- Microbiology and Virology Laboratory, Ionian Department, Policlinico University Hospital, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence: (S.S.); (M.B.); (R.A.)
| |
Collapse
|
33
|
Mallia A, Gianazza E, Zoanni B, Brioschi M, Barbieri SS, Banfi C. Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:diagnostics10100843. [PMID: 33086718 PMCID: PMC7588996 DOI: 10.3390/diagnostics10100843] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV’s origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.
Collapse
|
34
|
Santacroce L, Charitos IA, Ballini A, Inchingolo F, Luperto P, De Nitto E, Topi S. The Human Respiratory System and its Microbiome at a Glimpse. BIOLOGY 2020; 9:E318. [PMID: 33019595 PMCID: PMC7599718 DOI: 10.3390/biology9100318] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
The recent COVID-19 pandemic promoted efforts to better understand the organization of the respiratory microbiome and its evolution from birth to adulthood and how it interacts with external pathogens and the host immune system. This review aims to deepen understanding of the essential physiological functions of the resident microbiome of the respiratory system on human health and diseases. First, the general characteristics of the normal microbiota in the different anatomical sites of the airways have been reported in relation to some factors such as the effect of age, diet and others on its composition and stability. Second, we analyze in detail the functions and composition and the correct functionality of the microbiome in the light of current knowledge. Several studies suggest the importance of preserving the micro-ecosystem of commensal, symbiotic and pathogenic microbes of the respiratory system, and, more recently, its relationship with the intestinal microbiome, and how it also leads to the maintenance of human health, has become better understood.
Collapse
Affiliation(s)
- Luigi Santacroce
- Ionian Department, Microbiology and Virology Laboratory, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Clinical Disciplines, University of Elbasan, Rruga Ismail Zyma, 3001 Elbasan, Albania;
| | | | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Paolo Luperto
- ENT Service, Brindisi Local Health Agency, Via Dalmazia 3, 72100 Brindisi, Italy;
| | - Emanuele De Nitto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University of Elbasan, Rruga Ismail Zyma, 3001 Elbasan, Albania;
| |
Collapse
|
35
|
Greabu M, Giampieri F, Imre MM, Mohora M, Totan A, Pituru SM, Ionescu E. Autophagy, One of the Main Steps in Periodontitis Pathogenesis and Evolution. Molecules 2020; 25:E4338. [PMID: 32971808 PMCID: PMC7570503 DOI: 10.3390/molecules25184338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis represents a complex inflammatory disease that compromises the integrity of the tooth-supporting tissue through the interaction of specific periodontal pathogens and the host's immune system. Experimental data help to outline the idea that the molecular way towards periodontitis initiation and progression presents four key steps: bacterial infection, inflammation, oxidative stress, and autophagy. The aim of this review is to outline the autophagy involvement in the pathogenesis and evolution of periodontitis from at least three points of view: periodontal pathogen invasion control, innate immune signaling pathways regulation and apoptosis inhibition in periodontal cells. The exact roles played by reactive oxygen species (ROS) inside the molecular mechanisms for autophagy initiation in periodontitis still require further investigation. However, clarifying the role and the mechanism of redox regulation of autophagy in the periodontitis context may be particularly beneficial for the elaboration of new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Francesca Giampieri
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy;
| | - Marina Melescanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Mohora
- Department of Biochemistry, Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ecaterina Ionescu
- Department of Orthodontics and Dento-Facial Orthopedics’, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|