1
|
Hasan S, Naseer S, Zamzam M, Mohilldean H, Van Wagoner C, Hasan A, Saleh ES, Uhley V, Kamel-ElSayed S. Nutrient and Hormonal Effects on Long Bone Growth in Healthy and Obese Children: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:817. [PMID: 39062266 PMCID: PMC11276385 DOI: 10.3390/children11070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Longitudinal bone growth is mediated through several mechanisms including macro- and micronutrients, and endocrine and paracrine hormones. These mechanisms can be affected by childhood obesity as excess adiposity may affect signaling pathways, place undue stress on the body, and affect normal physiology. This review describes the physiology of the epiphyseal growth plate, its regulation under healthy weight and obesity parameters, and bone pathology following obesity. A literature review was performed utilizing PubMed, PMC, NIH, and the Cochrane Database of Systematic Reviews pertinent to hormonal and nutritional effects on bone development, child obesity, and pathologic bone development related to weight. The review indicates a complex network of nutrients, hormones, and multi-system interactions mediates long bone growth. As growth of long bones occurs during childhood and the pubertal growth spurt, pediatric bones require adequate levels of minerals, vitamins, amino acids, and a base caloric supply for energy. Recommendations should focus on a nutrient-dense dietary approach rather than restrictive caloric diets to maintain optimal health. In conclusion, childhood obesity has profound multifaceted effects on the developing musculoskeletal system, ultimately causing poor nutritional status during development. Weight loss, under medical supervision, with proper nutritional guidelines, can help counteract the ill effects of childhood obesity.
Collapse
Affiliation(s)
- Sazid Hasan
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Shahrukh Naseer
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Mazen Zamzam
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Hashem Mohilldean
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Colin Van Wagoner
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Ahmad Hasan
- Department of Orthopedic Surgery, Detroit Medical Center, Detroit, MI 48201, USA
| | - Ehab S. Saleh
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
- Department of Orthopedic Surgery, Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Virginia Uhley
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Suzan Kamel-ElSayed
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| |
Collapse
|
2
|
Detweiler P, Wu P, Li CJ, Yong SB. Comment on "Estrogen deficiency induces bone loss through the gut microbiota". Pharmacol Res 2024; 202:107132. [PMID: 38442798 DOI: 10.1016/j.phrs.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Affiliation(s)
- Priscilla Detweiler
- College of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Patrick Wu
- College of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung, Taiwan; Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Lawson Y, Mpasi P, Young M, Comerford K, Mitchell E. A review of dairy food intake for improving health among black children and adolescents in the US. J Natl Med Assoc 2024; 116:241-252. [PMID: 38360503 DOI: 10.1016/j.jnma.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Adequate nutrition during childhood and adolescence is crucial for proper neurological, musculoskeletal, immunological, and cardiometabolic health and development. Yet, disparities among socially underserved racial/ethnic groups in the United States (US) provide significant challenges to achieving adequate nutrition during these years of rapid growth and maturation. For example, Black children and adolescents are at greater risk for having food insecurity, lower-quality diets, obesity, and numerous associated health challenges that result from these disparities compared to their White peers. A growing body of evidence indicates that improving diet quality is critical for improving childhood and adolescent health and well-being, and that the diverse nutritional profile and bioactive compounds found within dairy foods may play multiple roles in promoting proper growth and development during these life stages. Therefore, to support overall health and development among Black youth, greater education and implementation efforts are needed to help this population meet the national dietary recommendations of 2.5 to 3 servings of dairy foods per day. Continuing to fall short of these recommendations puts Black children and adolescents at risk of multiple nutrient inadequacies and health disparities that can have lifelong impacts on disease development, mental health, and quality of life. This review presents the state of knowledge on health disparities and modifiable nutritional strategies involving milk and dairy foods to support the growth and maturation of children and adolescents, with a special focus on Black youth in the US.
Collapse
Affiliation(s)
- Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Michal Young
- Emeritus, Howard University College of Medicine, Department of Pediatrics and Child Health, Washington D.C., United States
| | - Kevin Comerford
- OMNI Nutrition Science, California Dairy Research Foundation, Davis, CA, United States.
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
4
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
5
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
6
|
Drobyshev A, Gurganchova Z, Redko N, Komissarov A, Bazhenov V, Statnik ES, Sadykova IA, Sviridov E, Salimon AI, Korsunsky AM, Zayratyants O, Ushmarov D, Yanushevich O. An In Vivo Rat Study of Bioresorbable Mg-2Zn-2Ga Alloy Implants. Bioengineering (Basel) 2023; 10:bioengineering10020273. [PMID: 36829768 PMCID: PMC9952904 DOI: 10.3390/bioengineering10020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In the present study, pins made from the novel Mg-2Zn-2Ga alloy were installed within the femoral bones of six Wistar rats. The level of bioresorption was assessed after 1, 3, and 6 months by radiography, histology, SEM, and EDX. Significant bioresorption was evident after 3 months, and complete dissolution of the pins occurred at 6 months after the installation. No pronounced gas cavities could be found at the pin installation sites throughout the postoperative period. The animals' blood parameters showed no signs of inflammation or toxication. These findings are sufficiently encouraging to motivate further research to broaden the experimental coverage to increase the number of observed animals and to conduct tests involving other, larger animals.
Collapse
Affiliation(s)
- Alexey Drobyshev
- Laboratory of Medical Bioresorption and Bioresistance, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Zaira Gurganchova
- Laboratory of Medical Bioresorption and Bioresistance, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Nikolay Redko
- Laboratory of Medical Bioresorption and Bioresistance, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Correspondence: ; Tel.: +7-916-954-44-44
| | - Alexander Komissarov
- Laboratory of Medical Bioresorption and Bioresistance, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Laboratory of Hybrid Nanostructured Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Viacheslav Bazhenov
- Casting Department, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Eugene S. Statnik
- HSM Laboratory, Center for Digital Engineering, Skoltech, 121205 Moscow, Russia
| | - Iuliia A. Sadykova
- HSM Laboratory, Center for Digital Engineering, Skoltech, 121205 Moscow, Russia
| | - Eugeny Sviridov
- Laboratory of Medical Bioresorption and Bioresistance, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexey I. Salimon
- HSM Laboratory, Center for Digital Engineering, Skoltech, 121205 Moscow, Russia
| | - Alexander M. Korsunsky
- HSM Laboratory, Center for Digital Engineering, Skoltech, 121205 Moscow, Russia
- Trinity College, Oxford OX1 3BH, UK
| | - Oleg Zayratyants
- Laboratory of the Clinical Medical Center, Moscow State University of Medicine and Dentistry, 111398 Moscow, Russia
| | - Denis Ushmarov
- Educational and Production Department, Kuban State Medical University, 350912 Krasnodar, Russia
| | - Oleg Yanushevich
- Laboratory of Medical Bioresorption and Bioresistance, Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
7
|
Wang C, Zhu Y, Long H, Ou M, Zhao S. Relationship between blood manganese and bone mineral density and bone mineral content in adults: A population-based cross-sectional study. PLoS One 2022; 17:e0276551. [PMID: 36269752 PMCID: PMC9586363 DOI: 10.1371/journal.pone.0276551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE It has been reported that bone is the primary organ for manganese (Mn) accumulation, but the association between manganese and bone loss remains debatable. Therefore, this study aimed to evaluate the relationship between blood manganese and bone mineral density/bone mineral content (BMD/BMC) by using a representative sample from the National Health and Nutrition Examination Survey (NHANES). METHODS A total of 9732 subjects over the age of 18 with available data were enrolled in this study. The relationship between blood manganese and BMD/BMC of the total body, spine and femoral regions was evaluated using multivariate linear regression models. Subgroup analyses were also performed. RESULTS We observed a negative association between blood manganese and BMD/BMC in the femoral neck and total body in the fully adjusted model, especially femoral neck BMD in women aged 50-70 years. CONCLUSION In brief, people exposed to manganese should be aware of the increased risk of osteopenia or osteoporosis. Besides, due to the lack of available data, there are no definite values for the tolerable upper intake level (UL), average requirement (AR) and population reference intake (PRI) of manganese. The results of our study may provide some references for the establishment of AR, PRI and UL of Mn.
Collapse
Affiliation(s)
- Chao Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingning Ou
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
8
|
Habibi Ghahfarrokhi S, Mohammadian-Hafshejani A, Sherwin CMT, Heidari-Soureshjani S. Relationship between serum vitamin D and hip fracture in the elderly: a systematic review and meta-analysis. J Bone Miner Metab 2022; 40:541-553. [PMID: 35639176 DOI: 10.1007/s00774-022-01333-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION This study investigated the relationship between serum 25-hydroxyvitamin D (25OHD) levels and the occurrence of hip fractures in the elderly using a systematic review and meta-analysis approach. MATERIALS AND METHODS PubMed, Web of Science, and Scopus were used to identify studies that outlined an association between serum 25OHD and the occurrence of a hip fracture in a geriatric patient. The analysis calculated odds ratios (OR) for a hip fracture using a random-effects model. RESULTS In this study, 28 studies were included, 61,744 elderlies and 9767 cases (15.81%) of hip fractures. In the lowest vs. highest categories of vitamin D in the elderly, pooled OR of hip fractures was 1.80 (95% CI 1.56-2.07, P ≤ 0.001), and modified OR was equal to 1.40 (95% CI 1.20-1.63 P ≤ 0.001). A subgroup analysis showed that the OR of a hip fracture was 2.16 (1.49-3.11, P ≤ 0.001) in case-control studies; 1.52 (1.29-1.79, P = 0.001) in cohort studies; and 1.41 (1.18-1.70, P ≤ 0.001) in case-cohort studies. CONCLUSION Low serum vitamin D levels in the elderly are associated with an increase in the odds of hip fracture.
Collapse
Affiliation(s)
- Shahrzad Habibi Ghahfarrokhi
- Department of Social Medicine, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Social Determinants of Health Research Center, Shahrekord, Iran
- Deputy of Research and Technology Kashani Boulevard, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdollah Mohammadian-Hafshejani
- Deputy of Research and Technology Kashani Boulevard, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Catherine M T Sherwin
- Pediatric Clinical Pharmacology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, Dayton, OH, USA
- Dayton Children's Hospital, 1 Childrens Plz, Dayton, OH, 45404-1873, USA
| | - Saeid Heidari-Soureshjani
- Deputy of Research and Technology Kashani Boulevard, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Circuit of Research and Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Kraljević Pavelić S, Saftić Martinović L, Simović Medica J, Žuvić M, Perdija Ž, Krpan D, Eisenwagen S, Orct T, Pavelić K. Clinical Evaluation of a Defined Zeolite-Clinoptilolite Supplementation Effect on the Selected Blood Parameters of Patients. Front Med (Lausanne) 2022; 9:851782. [PMID: 35712111 PMCID: PMC9197155 DOI: 10.3389/fmed.2022.851782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The natural clinoptilolite material is an inorganic crystal mineral called zeolite. It has been extensively studied and used in industrial applications and veterinary and human medicine due to positive effects on health. Limited data is available in the scientific literature about its effects on the levels of physiologically relevant minerals in the human organism. Accordingly, we performed a comprehensive and controlled monitoring of the relevant mineral and contaminants levels in human subjects supplemented with a certified clinoptilolite material within three clinical trials with different supplementation regimens. Effects of a registered and certified clinoptilolite material PMA-zeolite on selected mineral and metal levels were determined by standard biochemical methods and inductively coupled plasma mass spectrometry (ICP-MS) in the blood of subjects enrolled in three clinical trials: short-term (28 days, Mineral Metabolism and selected Blood Parameters study MMBP), medium-term (12 weeks, Morbus Crohn study), and long-term (4 years, Osteoporosis TOP study) supplementation. Lower concentrations were observed for copper (Cu) in patients with osteoporosis, which normalized again in the long-term supplementation trial, whereas sodium (Na) and calcium (Ca) levels diminished below the reference values in patients with osteoporosis. In the short- and long-term supplementation trials, increased levels of lead (Pb) were observed in PMA-zeolite-supplemented subjects, which decreased in the continued long-term supplementation trial. Increased levels of aluminum (Al) or Pb attributable to eventual leakage from the material into the bloodstream were not detected 1 h after intake in the short-term supplementation trial. Nickel (Ni) and Al were statistically significantly decreased upon long-term 4-year supplementation within the long-term supplementation trial, and arsenic (As) was statistically significantly decreased upon 12-weeks supplementation in the medium-term trial. Alterations in the measured levels for Na and Ca, as well as for Pb, in the long-term trial are probably attributable to the bone remodeling process. Checking the balance of the minerals Cu, Ca, and Na after 1 year of supplementation might be prescribed for PMA-supplemented patients with osteoporosis. Clinical Trial Registration [https://clinicaltrials.gov], identifiers [NCT03901989, NCT05178719, NCT04370535, NCT04607018].
Collapse
Affiliation(s)
| | | | | | - Marta Žuvić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Dalibor Krpan
- Polyclinic “K—Center” for Internal Medicine, Gynaecology, Radiology, Physical Medicine and Rehabilitation, Zagreb, Croatia
| | | | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
10
|
Kaur M, Santhiya D. Fabrication of soy film with in-situ mineralized bioactive glass as a functional food for bone health. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Escobedo-Monge MF, Barrado E, Parodi-Román J, Escobedo-Monge MA, Marcos-Temprano M, Marugán-Miguelsanz JM. Magnesium Status and Calcium/Magnesium Ratios in a Series of Cystic Fibrosis Patients. Nutrients 2022; 14:1793. [PMID: 35565764 PMCID: PMC9104329 DOI: 10.3390/nu14091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Magnesium (Mg) is an essential micronutrient that participates in various enzymatic reactions that regulate vital biological functions. The main aim was to assess the Mg status and its association with nutritional indicators in seventeen cystic fibrosis (CF) patients. The serum Mg and calcium (Ca) levels were determined using standardized methods and the dietary Mg intake by prospective 72 h dietary surveys. The mean serum Ca (2.45 mmol/L) and Mg (0.82 mmol/L) had normal levels, and the mean dietary intake of the Ca (127% DRI: Dietary Reference Intake) and Mg (125% DRI) were high. No patients had an abnormal serum Ca. A total of 47% of the subjects had hypomagnesemia and 12% insufficient Mg consumption. One patient had a serum Mg deficiency and inadequate Mg intake. A total of 47 and 82% of our series had a high serum Ca/Mg ratio of >4.70 (mean 4.89) and a low Ca/Mg intake ratio of <1.70 (mean 1.10), respectively. The likelihood of a high Ca/Mg ratio was 49 times higher in patients with a serum Mg deficiency than in normal serum Mg patients. Both Ca/Mg ratios were associated with the risk of developing cardiovascular disease (CVD), type 2 diabetes (T2D), metabolic syndrome (MetS), and even several cancers. Therefore, 53% of the CF patients were at high risk of a Mg deficiency and developing other chronic diseases.
Collapse
Affiliation(s)
- Marlene Fabiola Escobedo-Monge
- Department of Pediatrics of the Faculty of Medicine, Valladolid University, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - Enrique Barrado
- Department of Analytical Chemistry, Science Faculty, Campus Miguel Delibes, University of Valladolid, Calle Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | | | | - Marianela Marcos-Temprano
- Pediatric Service, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain;
| | - José Manuel Marugán-Miguelsanz
- Department of Pediatrics of the Faculty of Medicine, Valladolid University, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain;
- Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 3, 47003 Valladolid, Spain
| |
Collapse
|
12
|
Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1376. [PMID: 35458084 PMCID: PMC9024560 DOI: 10.3390/nano12081376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Mounting evidence shows that supplementation with vitamin D and K or their analogs induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis. The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based dietary supplements and drugs produced by the food and pharmaceutical industries overcome the issues associated with vitamin administration, such as stability, absorption or low bioavailability. Consequently, there is a continuous interest in optimizing the carriers' systems in order to make them more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparticles for vitamin D and K transportation, and critically address their benefits and disadvantages.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Sovrea
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Aurelian Lucian Masalar
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Brigitta Ifju
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Eugen Linga
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Lidia Neamti
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Zsolt Fekete
- Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| |
Collapse
|
13
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
14
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
15
|
Klíma K, Ulmann D, Bartoš M, Španko M, Dušková J, Vrbová R, Pinc J, Kubásek J, Vlk M, Ulmannová T, Foltán R, Brizman E, Drahoš M, Beňo M, Machoň V, Čapek J. A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. Int J Mol Sci 2021; 22:ijms222413444. [PMID: 34948238 PMCID: PMC8706155 DOI: 10.3390/ijms222413444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure—the removal of the plates and screws—can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.
Collapse
Affiliation(s)
- Karel Klíma
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Dan Ulmann
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Martin Bartoš
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Michal Španko
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
- Department of Anatomy, 1st Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Jaroslava Dušková
- Department of Pathology, 1st Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic;
| | - Radka Vrbová
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Jan Pinc
- Department of Functional Materials, FZU-The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Marek Vlk
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Tereza Ulmannová
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - René Foltán
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Eitan Brizman
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Milan Drahoš
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Michal Beňo
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Vladimír Machoň
- Department of Stomatology, General Teaching Hospital, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic; (K.K.); (D.U.); (M.B.); (M.Š.); (R.V.); (M.V.); (T.U.); (R.F.); (E.B.); (M.D.); (M.B.); (V.M.)
| | - Jaroslav Čapek
- Department of Functional Materials, FZU-The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
- Correspondence:
| |
Collapse
|
16
|
Yedekçi B, Tezcaner A, Yılmaz B, Demir T, Evis Z. 3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2021; 125:104941. [PMID: 34749203 DOI: 10.1016/j.jmbbm.2021.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolymer were successfully synthesized. PCL-PEG-PCL composite scaffolds containing different amounts of hydroxyapatite (HA) (10% and 20 wt%) were produced with the desired porosity (50% and 60%) by compression-molding and particulate leaching method. The porosity of the scaffolds was determined between 47% and 59%. HA/PCL-PEG-PCL composite scaffolds were subjected to a 3-week degradation test and showed negligible (0.2-0.5%) degradation. The water uptake percentage of the composite scaffolds with 60% porosity was the highest among all groups. Presence of HA in the scaffolds improved the water adsorption and the mechanical properties. Compressive strength of the scaffolds was between 9.32 and 24.27 MPa and 20% 2Sr0.5BHA scaffolds were found to have the maximum compressive strength. Compressive strength of 50% porous samples was higher than that of 60% porous samples. In the relative cell viability (%) test, the highest viability was observed on the scaffolds with HA and 2Sr0.5BHA. The specific ALP activity level of the cells on the scaffolds containing 2Sr0.5BHA was significantly higher (2.6 times) than that of the control group. The amount of porosity did not make a significant difference in cellular response. It was concluded that PCL-PEG-PCL composite scaffolds with 2Sr0.5BHA have the potential to be used in BTE.
Collapse
Affiliation(s)
- Buşra Yedekçi
- Middle East Technical University, Department of Engineering Sciences, Ankara, Turkey
| | - Ayşen Tezcaner
- Middle East Technical University, Department of Engineering Sciences, Ankara, Turkey
| | - Bengi Yılmaz
- University of Health Sciences Turkey, Department of Biomaterials, Istanbul, Turkey
| | - Teyfik Demir
- TOBB University of Economics and Technology, Department of Mechanical Engineering, Ankara, Turkey
| | - Zafer Evis
- Middle East Technical University, Department of Engineering Sciences, Ankara, Turkey.
| |
Collapse
|
17
|
Zanaty MI, Abdel-Moneim A, Kitani Y, Sekiguchi T, Suzuki N. Effect of Omeprazole on Osteoblasts and Osteoclasts in vivo and in the in vitro Model Using Fish Scales. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1192-1200. [PMID: 34903151 DOI: 10.1134/s0006297921100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.
Collapse
Affiliation(s)
- Mohamed I Zanaty
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
18
|
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021; 9:606-621. [PMID: 34242583 DOI: 10.1016/s2213-8587(21)00119-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Osteoporotic or fragility fractures affect one in two women and one in five men who are older than 50. These events are associated with substantial morbidity, increased mortality, and an impaired quality of life. Recommended general measures for fragility fracture prevention include a balanced diet with an optimal protein and calcium intake and vitamin D sufficiency, together with regular weight-bearing physical exercise. In this narrative Review, we discuss the role of nutrients, foods, and dietary patterns in maintaining bone health. Much of this information comes from observational studies. Bone mineral density, microstructure-estimated bone strength, and trabecular and cortical microstructure are positively associated with total protein intake. Several studies indicate that fracture risk might be lower with a higher dietary protein intake, provided that the calcium supply is sufficient. Dairy products are a valuable source of these two nutrients. Hip fracture risk appears to be lower in consumers of dairy products, particularly fermented dairy products. Consuming less than five servings per day of fruit and vegetables is associated with a higher hip fracture risk. Adherence to a Mediterranean diet or to a prudent diet is associated with a lower fracture risk. These various nutrients and dietary patterns influence gut microbiota composition or function, or both. The conclusions of this Review emphasise the importance of a balanced diet including minerals, protein, and fruit and vegetables for bone health and in the prevention of fragility fractures.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
The Effect of Endurance and Endurance-Strength Training on Bone Mineral Density and Content in Abdominally Obese Postmenopausal Women: A Randomized Trial. Healthcare (Basel) 2021; 9:healthcare9081074. [PMID: 34442211 PMCID: PMC8391265 DOI: 10.3390/healthcare9081074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
The optimal type of exercise that simultaneously decreases body weight and preserves bone health in people with obesity is unknown. This parallel randomized trial aimed to compare the effect of endurance and endurance-strength training on bone mineral density (BMD) and content (BMC) in abdominally obese postmenopausal women. A total of 101 women were recruited and randomly assigned to endurance or endurance-strength training groups. Participants trained for 60 min per day, three times per week for 12 weeks. The endurance exercises were performed at an intensity of 50–75% of the maximum heart rate, whereas the strength exercises were at 50–60% of the one-repetition maximum. Pre- and post-intervention BMD and BMC of the total body, lumbar spine, and femoral neck and physical capacity were measured. There were no differences among the densitometric parameters in the endurance group, but a significant increase in whole-body BMD in the endurance-strength group was found. Moreover, there was a significant difference between the groups in the changes in the lumbar spine BMC. Furthermore, both training programs significantly improved physical capacity with no differences between groups. Endurance training was more effective in maintaining BMC at the lumbar spine. However, both groups did not differ in effect on BMD. Further studies with a long-term follow-up should be considered to confirm these findings. The study was registered with the German Clinical Trials Register within the number DRKS00019832, and the date of registration was 26 February 2020 (retrospective registration).
Collapse
|
20
|
Grzejszczak P, Kurnatowska I. Role of Vitamin K in CKD: Is Its Supplementation Advisable in CKD Patients? Kidney Blood Press Res 2021; 46:523-530. [PMID: 34247173 DOI: 10.1159/000516611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients with CKD are at an increased risk of developing vascular calcification (VC) and bone complications which translate into a higher morbidity and mortality. The dephosphorylated and uncarboxylated matrix Gla protein (dp-ucMGP) is considered to be an indicator of vitamin K2 status and correlates with markers of VC. It is activated by γ-glutamyl carboxylase that converts inactive MGP into an active form, and vitamin K2 is a cofactor of this reaction. The active form of MGP is a known inhibitor of arterial wall calcification and plays an important role in bone turnover. Recent studies show poor vitamin K2 status in CKD patients. We aimed to review the literature for the association between vitamin K2 status and calcification and bone disease risk and the efficacy of vitamin K2 supplementation in CKD population. SUMMARY Most CKD patients, including those on renal replacement therapy, have vitamin K2 deficiency. The dp-ucMGP level, a marker of vitamin K2 status, is decreased by vitamin K2 supplementation in CKD patients, but there is no unequivocal proof that it influences arterial calcification progression and bone complications. Key Messages: CKD population are at risk of vitamin K deficiency. Supplementation of vitamin K2 is safe and improves the serum markers of its deficiency. There is lack of strong evidence that vitamin K2 supplementation slows progression of calcification or reduces the frequency of bone complications. More prospective studies are needed.
Collapse
Affiliation(s)
- Patrycja Grzejszczak
- Department of Internal Medicine and Nephrology Transplantation, 1st Chair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Ilona Kurnatowska
- Department of Internal Medicine and Nephrology Transplantation, 1st Chair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Trujillo-Mayol I, Guerra-Valle M, Casas-Forero N, Sobral MMC, Viegas O, Alarcón-Enos J, Ferreira IM, Pinho O. Western Dietary Pattern Antioxidant Intakes and Oxidative Stress: Importance During the SARS-CoV-2/COVID-19 Pandemic. Adv Nutr 2021; 12:670-681. [PMID: 33439972 PMCID: PMC7929475 DOI: 10.1093/advances/nmaa171] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The importance of balanced dietary habits, which include appropriate amounts of antioxidants to maintain the immune system, has become increasingly relevant during the current SARS-CoV-2/COVID-19 pandemic, because viral infections are characterized by high oxidative stress. Furthermore, the measures taken by governments to control the pandemic have led to increased anxiety, stress, and depression, which affect physical and mental health, all of which are influenced by nutritional status, diet, and lifestyle. The Mediterranean diet (MD), Atlantic diet (AD), and the Dietary Guidelines for Americans all provide the essential vitamins, minerals, and phenolic compounds needed to activate enzymatic and nonenzymatic antioxidant responses. However, viral pandemics such as the current COVID-19 crisis entail high oxidative damage caused by both the infection and the resultant social stresses within populations, which increases the probability and severity of infection. Balanced dietary patterns such as the MD and the AD are characterized by the consumption of fruit, vegetables, legumes, olive oil, and whole grains with low intakes of processed foods and red meat. For a healthy lifestyle in young adults, the MD in particular provides the required amount of antioxidants per day for vitamins D (0.3-3.8 μg), E (17.0 mg), C (137.2-269.8 mg), A (1273.3 μg), B-12 (1.5-2.0 μg), and folate (455.1-561.3 μg), the minerals Se (120.0 μg), Zn (11.0 mg), Fe (15.0-18.8 mg), and Mn (5.2-12.5 mg), and polyphenols (1171.00 mg) needed to maintain an active immune response. However, all of these diets are deficient in the recommended amount of vitamin D (20 μg/d). Therefore, vulnerable populations such as elders and obese individuals could benefit from antioxidant supplementation to improve their antioxidant response. Although evidence remains scarce, there is some indication that a healthy diet, along with supplemental antioxidant intake, is beneficial to COVID-19 patients.
Collapse
Affiliation(s)
- Igor Trujillo-Mayol
- Departamento de Ingeniería de Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - María Guerra-Valle
- Departamento de Ingeniería de Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Nidia Casas-Forero
- Departamento de Ingeniería de Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - M Madalena C Sobral
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Olga Viegas
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição Alimentação da Universidade do Porto, Porto, Portugal
| | - Julio Alarcón-Enos
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Facultad de Ciencia, Universidad del Bío-Bío, Chillán, Chile
| | - Isabel Mplvo Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Olívia Pinho
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Yedekçi B, Tezcaner A, Alshemary AZ, Yılmaz B, Demir T, Evis Z. Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization. J Mech Behav Biomed Mater 2021; 115:104230. [DOI: 10.1016/j.jmbbm.2020.104230] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
|
23
|
Bertrand L, Shaw KA, Ko J, Deprez D, Chilibeck PD, Zello GA. The impact of the coronavirus disease 2019 (COVID-19) pandemic on university students' dietary intake, physical activity, and sedentary behaviour. Appl Physiol Nutr Metab 2021; 46:265-272. [PMID: 33449864 DOI: 10.1139/apnm-2020-0990] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
University students are a vulnerable group for poor dietary intake, insufficient physical activity and sedentary behaviour. The purpose of this study was to examine the impact of coronavirus disease (COVID-19) on university students' dietary intake, physical activity, and sedentary behaviour. Participants were students (n = 125) from the Universities of Saskatchewan and Regina. An online questionnaire was administered retrospectively (for prepandemic) and prospectively (during the pandemic) to examine students' dietary intake, physical activity, and sedentary behaviour. Overall, nutrient and caloric intakes were significantly reduced (p < 0.05) during the pandemic, and alcohol intake increased (p = 0.03). Before the pandemic, 16% and 54% of the participants were meeting the Canadian 24-Hour Movement Guidelines for Adults (18-64 years) of 150 min of moderate-vigorous physical activity and 8 h or less of sedentary activity, respectively. Only 10% met the guidelines for physical activity while 30% met the guidelines for sedentary behaviour during the pandemic. The minutes per week spent engaging in moderate to vigorous physical activity during the pandemic decreased by approximately 20% (p < 0.001). The hours spent in sedentary activities increased by 3 h per day (p < 0.001). Our findings confirm that during the pandemic, students' inadequate dietary intake, high alcohol consumption, low physical activity, and high sedentary behaviour were significantly compounded. Novelty: During COVID-19, the nutrient and caloric intakes of university students decreased, and alcohol intake increased significantly. University students' physical activity levels decreased, and sedentary activity increased significantly during COVID-19. During COVID-19 students did not engage in sufficient physical activity to offset the increased sedentary behaviour.
Collapse
Affiliation(s)
- Leandy Bertrand
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Keely A Shaw
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Jongbum Ko
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Dalton Deprez
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Gordon A Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
24
|
Little-Letsinger SE, Pagnotti GM, McGrath C, Styner M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 2020; 18:774-789. [PMID: 33068251 PMCID: PMC7736569 DOI: 10.1007/s11914-020-00634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.
Collapse
Affiliation(s)
- Sarah E Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA.
| | - Gabriel M Pagnotti
- Department of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Burrow K, Young W, Hammer N, Safavi S, Scholze M, McConnell M, Carne A, Barr D, Reid M, Bekhit AED. The Effect of the Supplementation of a Diet Low in Calcium and Phosphorus with Either Sheep Milk or Cow Milk on the Physical and Mechanical Characteristics of Bone using A Rat Model. Foods 2020; 9:E1070. [PMID: 32784633 PMCID: PMC7466322 DOI: 10.3390/foods9081070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
This study assessed the effect of cow milk (CM) and sheep milk (SM) consumption on the micro-structure, mechanical function, and mineral composition of rat femora in a male weanling rat model. Male weanling rats were fed a basal diet with a 50% reduction in calcium and phosphorus content (low Ca/P-diet) supplemented with either SM or CM. Rats were fed for 28 days, after which the femora were harvested and stored. The femora were analyzed by μ-CT, three-point bending, and inductively coupled plasma-mass spectrometry (ICP-MS). The addition of either milk to the low Ca/P-diet significantly increased (p < 0.05) trabecular bone volume, trabecular bone surface density, trabecular number, cortical bone volume, and maximum force, when compared to rats that consumed only the low Ca/P-diet. The consumption of either milk resulted in a significant decrease (p < 0.05) in trabecular pattern factor, and cortical bone surface to volume ratio when compared to rats that consumed only the low Ca/P-diet. The results were achieved with a lower consumption of SM compared to that of CM (p < 0.05). This work indicates that SM and CM can help overcome the effects on bone of a restriction in calcium and phosphorus intake.
Collapse
Affiliation(s)
- Keegan Burrow
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Wayne Young
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Manawatu Mail Centre, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Niels Hammer
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria;
- Department of Orthopaedic and Trauma Surgery, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Fraunhofer IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany
| | - Sarah Safavi
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand;
| | - Mario Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Straße der Nationen, 62, 09111 Chemnitz, Germany;
| | - Michelle McConnell
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand;
| | - Alan Carne
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand;
| | - David Barr
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (D.B.); (M.R.)
| | - Malcolm Reid
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (D.B.); (M.R.)
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Erdogmus S, Ates D, Nemli S, Yagmur B, Asciogul TK, Ozkuru E, Karaca N, Yilmaz H, Esiyok D, Tanyolac MB. Genome-wide association studies of Ca and Mn in the seeds of the common bean (Phaseolus vulgaris L.). Genomics 2020; 112:4536-4546. [PMID: 32763354 DOI: 10.1016/j.ygeno.2020.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
SNP markers linked to genes controlling Ca and Mn uptake were identified in the common bean seeds using DArT-based association mapping (AM). The Ca concentration in the seeds varied between 475 and 3,100 mg kg-1 with an average of 1,280.9 mg kg-1 and the Mn concentration ranged from 4.87 to 27.54 mg kg-1 with a mean of 11.76 mg kg-1. A total of 19,204 SNP markers were distributed across 11 chromosomes that correspond to the haploid genome number of the common bean. The highest value of ΔK was determined as K = 2, and 173 common bean genotypes were split into two main subclusters as POP1 (Mesoamerican) and POP2 (Andean). The results of the UPGMA dendrogram and PCA confirmed those of STRUCTURE analysis. MLM based on the Q + K model identified a large number of markers-trait associations. Of the 19,204 SNPs, five (on Pv2, 3, 8, 10 and 11) and four (on Pv2, 3, 8 and 11) SNPs were detected to be significantly related to the Ca content of the beans grown in Bornova and Menemen, respectively in 2015. In 2016, six SNPs (on Pv1-4, 8 and 10) were identified to be significantly associated with the Ca content of the seeds obtained from Bornova and six SNPs (on Pv1-4, 8 and 10) from Menemen. Eight (on Pv3, 5 and 11) and four (on Pv2, 5 and 11) SNPs had a significant association with Mn content in Bornova in 2015 and 2016, respectively. In Menemen, eight (on Pv3, 5, 8 and 11) and 11 (on Pv1, 2, 5, 10 and 11) SNPs had a significant correlation with Mn content in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Semih Erdogmus
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Seda Nemli
- Ege University, Faculty of Fisheries, Bornova-Izmir 35100, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Science and Plant Nutrition, Bornova-Izmir 35100, Turkey
| | | | - Esin Ozkuru
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Nur Karaca
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Dursun Esiyok
- Ege University, Department of Horticulture, Bornova-Izmir, 35040, Turkey
| | | |
Collapse
|
27
|
Jeong JY, Baek YC, Ji SY, Oh YK, Cho S, Seo HW, Kim M, Lee HJ. Nuclear magnetic resonance-based metabolomics analysis and characteristics of beef in different fattening periods. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:321-333. [PMID: 32568257 PMCID: PMC7288232 DOI: 10.5187/jast.2020.62.3.321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/14/2020] [Accepted: 03/15/2020] [Indexed: 01/30/2023]
Abstract
Beef quality is influenced by the fattening period. Therefore, meat metabolomics profiles from the different fattening periods (e.g., short-term vs. long-term) were analyzed for identify potential indicators using nuclear magnetic resonance. Additionally, blood, free fatty acid, sensory, and mineral compositions in Korean steers were determined. Blood, free fatty acid, and mineral concentrations showed significant differences between short-term and long-term groups that were fed different diets. However, there were no sensory differences in the two fattening groups. Additionally, the metabolic profiles of meats were clearly separated based on multivariate orthogonal partial least square discriminant analysis. Six metabolites of variable importance in the projection plot were identified and showed high sensitivity as candidate markers for meat characteristics. In particular, lactate, carnosine, and creatine could be directly linked to scientific indicators of the fattening stage (31 vs. 28 mo) of meat. Our findings suggest that the metabolomics approach could be a powerful method for the detection of novel signatures underlying the managing period of beef.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Wanju 55365, Korea
| | - Youl-Chang Baek
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Wanju 55365, Korea
| | - Young Kyun Oh
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Wanju 55365, Korea
| | - Soohyun Cho
- Animal Production Utilization Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Hyun-Woo Seo
- Animal Production Utilization Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Minseok Kim
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Hyun-Jeong Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Wanju 55365, Korea.,Division of Dairy Science, National Institute of Animal Science, Cheonan 31000, Korea
| |
Collapse
|
28
|
Abstract
Athletes should pay more attention to their bone health, whether this relates to their longer-term bone health (e.g. risk of osteopenia and osteoporosis) or their shorter-term risk of bony injuries. Perhaps the easiest way to do this would be to modify their training loads, although this advice rarely seems popular with coaches and athletes for obvious reasons. As such, other possibilities to support the athletes’ bone health need to be explored. Given that bone is a nutritionally modified tissue and diet has a significant influence on bone health across the lifespan, diet and nutritional composition seem like obvious candidates for manipulation. The nutritional requirements to support the skeleton during growth and development and during ageing are unlikely to be notably different between athletes and the general population, although there are some considerations of specific relevance, including energy availability, low carbohydrate availability, protein intake, vitamin D intake and dermal calcium and sodium losses. Energy availability is important for optimising bone health in the athlete, although normative energy balance targets are highly unrealistic for many athletes. The level of energy availability beyond which there is no negative effect for the bone needs to be established. On the balance of the available evidence it would seem unlikely that higher animal protein intakes, in the amounts recommended to athletes, are harmful to bone health, particularly with adequate calcium intake. Dermal calcium losses might be an important consideration for endurance athletes, particularly during long training sessions or events. In these situations, some consideration should be given to pre-exercise calcium feeding. The avoidance of vitamin D deficiency and insufficiency is important for the athlete to protect their bone health. There remains a lack of information relating to the longer-term effects of different dietary and nutritional practices on bone health in athletes, something that needs to be addressed before specific guidance can be provided.
Collapse
|
29
|
Muire PJ, Mangum LH, Wenke JC. Time Course of Immune Response and Immunomodulation During Normal and Delayed Healing of Musculoskeletal Wounds. Front Immunol 2020; 11:1056. [PMID: 32582170 PMCID: PMC7287024 DOI: 10.3389/fimmu.2020.01056] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Single trauma injuries or isolated fractures are often manageable and generally heal without complications. In contrast, high-energy trauma results in multi/poly-trauma injury patterns presenting imbalanced pro- and anti- inflammatory responses often leading to immune dysfunction. These injuries often exhibit delayed healing, leading to fibrosis of injury sites and delayed healing of fractures depending on the intensity of the compounding traumas. Immune dysfunction is accompanied by a temporal shift in the innate and adaptive immune cells distribution, triggered by the overwhelming release of an arsenal of inflammatory mediators such as complements, cytokines and damage associated molecular patterns (DAMPs) from necrotic cells. Recent studies have implicated this dysregulated inflammation in the poor prognosis of polytraumatic injuries, however, interventions focusing on immunomodulating inflammatory cellular composition and activation, if administered incorrectly, can result in immune suppression and unintended outcomes. Immunomodulation therapy is promising but should be conducted with consideration for the spatial and temporal distribution of the immune cells during impaired healing. This review describes the current state of knowledge in the spatiotemporal distribution patterns of immune cells at various stages during musculoskeletal wound healing, with a focus on recent advances in the field of Osteoimmunology, a study of the interface between the immune and skeletal systems, in long bone fractures. The goals of this review are to (1) discuss wound and fracture healing processes of normal and delayed healing in skeletal muscles and long bones; (2) provide a balanced perspective on temporal distributions of immune cells and skeletal cells during healing; and (3) highlight recent therapeutic interventions used to improve fracture healing. This review is intended to promote an understanding of the importance of inflammation during normal and delayed wound and fracture healing. Knowledge gained will be instrumental in developing novel immunomodulatory approaches for impaired healing.
Collapse
Affiliation(s)
- Preeti J. Muire
- Orthopaedic Trauma Research Department, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | | | | |
Collapse
|
30
|
Liu Y, Munteanu CR, Yan Q, Pedreira N, Kang J, Tang S, Zhou C, He Z, Tan Z. Machine learning classification models for fetal skeletal development performance prediction using maternal bone metabolic proteins in goats. PeerJ 2019; 7:e7840. [PMID: 31649832 PMCID: PMC6802673 DOI: 10.7717/peerj.7840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background In developing countries, maternal undernutrition is the major intrauterine environmental factor contributing to fetal development and adverse pregnancy outcomes. Maternal nutrition restriction (MNR) in gestation has proven to impact overall growth, bone development, and proliferation and metabolism of mesenchymal stem cells in offspring. However, the efficient method for elucidation of fetal bone development performance through maternal bone metabolic biochemical markers remains elusive. Methods We adapted goats to elucidate fetal bone development state with maternal serum bone metabolic proteins under malnutrition conditions in mid- and late-gestation stages. We used the experimental data to create 72 datasets by mixing different input features such as one-hot encoding of experimental conditions, metabolic original data, experimental-centered features and experimental condition probabilities. Seven Machine Learning methods have been used to predict six fetal bone parameters (weight, length, and diameter of femur/humerus). Results The results indicated that MNR influences fetal bone development (femur and humerus) and fetal bone metabolic protein levels (C-terminal telopeptides of collagen I, CTx, in middle-gestation and N-terminal telopeptides of collagen I, NTx, in late-gestation), and maternal bone metabolites (low bone alkaline phosphatase, BALP, in middle-gestation and high BALP in late-gestation). The results show the importance of experimental conditions (ECs) encoding by mixing the information with the serum metabolic data. The best classification models obtained for femur weight (Fw) and length (FI), and humerus weight (Hw) are Support Vector Machines classifiers with the leave-one-out cross-validation accuracy of 1. The rest of the accuracies are 0.98, 0.946 and 0.696 for the diameter of femur (Fd), diameter and length of humerus (Hd, Hl), respectively. With the feature importance analysis, the moving averages mixed ECs are generally more important for the majority of the models. The moving average of parathyroid hormone (PTH) within nutritional conditions (MA-PTH-experim) is important for Fd, Hd and Hl prediction models but its removal for enhancing the Fw, Fl and Hw model performance. Further, using one feature models, it is possible to obtain even more accurate models compared with the feature importance analysis models. In conclusion, the machine learning is an efficient method to confirm the important role of PTH and BALP mixed with nutritional conditions for fetal bone growth performance of goats. All the Python scripts including results and comments are available into an open repository at https://gitlab.com/muntisa/goat-bones-machine-learning.
Collapse
Affiliation(s)
- Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain.,Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña, Spain
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Nieves Pedreira
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
| | - Jinhe Kang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
31
|
Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. Int J Mol Sci 2019; 20:ijms20174150. [PMID: 31450694 PMCID: PMC6747195 DOI: 10.3390/ijms20174150] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Vitamin K is a multifunctional micronutrient implicated in age-related diseases such as cardiovascular diseases, osteoarthritis and osteoporosis. Although vitamin K-dependent proteins (VKDPs) are described to have a crucial role in the pathogenesis of these diseases, novel roles have emerged for vitamin K, independently of its role in VKDPs carboxylation. Vitamin K has been shown to act as an anti-inflammatory by suppressing nuclear factor κB (NF-κB) signal transduction and to exert a protective effect against oxidative stress by blocking the generation of reactive oxygen species. Available clinical evidences indicate that a high vitamin K status can exert a protective role in the inflammatory and mineralization processes associated with the onset and progression of age-related diseases. Also, vitamin K involvement as a protective super-micronutrient in aging and ‘inflammaging’ is arising, highlighting its future use in clinical practice. In this review we summarize current knowledge regarding clinical data on vitamin K in skeletal and cardiovascular health, and discuss the potential of vitamin K supplementation as a health benefit. We describe the clinical evidence and explore molecular aspects of vitamin K protective role in aging and age-related diseases, and its involvement as a modulator in the interplay between pathological calcification and inflammation processes.
Collapse
|
32
|
Vidé J, Bonafos B, Fouret G, Casas F, Jover B, Jouy N, Feillet-Coudray C, Gaillet S, Coudray C. Effect of spirulina and silicon-enriched spirulina on metabolic syndrome features, oxidative stress and mitochondrial activity in Zucker fatty rats. J Food Biochem 2019; 43:e12979. [PMID: 31489676 DOI: 10.1111/jfbc.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 11/30/2022]
Abstract
The use of Spirulina platensis (Sp) as a functional food was suggested decades ago. Biological incorporation of Silicon (Si) into Sp increases its bioavailability for potential food supplement applications. This work aimed at determining the effects of Sp and Si-enriched Sp (Sp+Si) on metabolic syndrome features in Zucker fatty rats. Thirty Zucker fatty rats were divided into three groups and supplemented with placebo or Sp or Sp+Si croquettes for 12 weeks. Food consumption, glucose intolerance, hepatic steatosis, and mitochondrial and oxidative stress were determined. Zucker fatty rats exhibited several hepatic metabolic alterations as well as mitochondrial and oxidative stress perturbations. The intake of Sp increased plasma TG levels and decreased the hepatic NADPH oxidase activity and ameliorated transitorily the glucose intolerance. However, Si-spirulina does not appear to have more beneficial effects than spirulina alone. Other experiments with different species of rats/mice, different diets, or durations of diet intake should be undertaken to confirm or infirm these results. PRACTICAL APPLICATIONS: Glucose intolerance and hepatic steatosis, two major components of metabolic syndrome, are increasing and becomes a major public health issue. Use of Spirulina platensis (Sp) as a functional food was suggested as a protein-dense food source. Bioavailable silicon (Si) may be an essential nutrient for higher animals, including humans. Sp but not Sp+Si decreased liver NADPH oxidase activity and improved transitorily glucose tolerance. This is the first study where Sp and Sp+Si effect on glucose intolerance is reported in Zucker rat. Other experiments should be undertaken to confirm or infirm invalidate the beneficial effects of Sp+Si supplement in the metabolic syndrome features.
Collapse
Affiliation(s)
- Joris Vidé
- DMEM, INRA, University of Montpellier, Montpellier, France
| | | | - Gilles Fouret
- DMEM, INRA, University of Montpellier, Montpellier, France
| | - François Casas
- DMEM, INRA, University of Montpellier, Montpellier, France
| | - Bernard Jover
- PhyMedExp, INSERM, CNRS, Université Montpellier, Montpellier, France
| | | | | | - Sylvie Gaillet
- DMEM, INRA, University of Montpellier, Montpellier, France
| | | |
Collapse
|
33
|
Vidé J, Bonafos B, Fouret G, Benlebna M, Poupon J, Jover B, Casas F, Jouy N, Feillet-Coudray C, Gaillet S, Coudray C. Spirulina platensis and silicon-enriched spirulina equally improve glucose tolerance and decrease the enzymatic activity of hepatic NADPH oxidase in obesogenic diet-fed rats. Food Funct 2019; 9:6165-6178. [PMID: 30431036 DOI: 10.1039/c8fo02037j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of metabolic syndrome components, such as obesity, glucose intolerance and hepatic steatosis, is rapidly increasing and becoming a major issue of public health. The present work was designed to determine the effects of Spirulina platensis (Sp) algae and silicon-enriched Sp on major metabolic syndrome components in obesogenic diet-fed rats. Forty male Wistar rats were divided into 4 groups. Ten rats were fed a control diet and 30 rats were fed a high fat (HF) diet. The HF groups were divided into three groups and supplemented with placebo or Sp or Si-enriched Sp for 12 weeks. Dietary intake and body weight were recorded. Oral glucose tolerance test and surrogate metabolic syndrome (insulin, leptin, adiponectin and lipids), mitochondrial function (enzymatic activity of respiratory chain complexes and β-hydroxyacyl-CoA dehydrogenase), NADPH oxidase activity and several long-established oxidative stress markers were measured in the blood and liver. The HF diet induced obesity, glucose intolerance, hepatic steatosis and huge metabolic alterations, associated with higher NADPH oxidase activity and lower hepatic sulfhydryl group and glutathione contents. Otherwise, the Sp and Sp + Si supplements showed some interesting effects on rat characteristics and particularly on blood and hepatic metabolic parameters. Indeed, the intake of Sp or Sp + Si mainly improved glucose tolerance and decreased the enzymatic activity of hepatic NADPH oxidase. Overall, Si supplementation of spirulina does not appear to have more beneficial effects than spirulina alone. Other experiments with different species of rats/mice, different diets or different durations of diet intake should be undertaken to confirm or invalidate these results.
Collapse
Affiliation(s)
- Joris Vidé
- DMEM, INRA, Univ. Montpellier, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fevrier-Paul A, Soyibo AK, Mitchell S, Voutchkov M. Role of Toxic Elements in Chronic Kidney Disease. J Health Pollut 2018; 8:181202. [PMID: 30560001 PMCID: PMC6285682 DOI: 10.5696/2156-9614-8.20.181202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/23/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The kidney is central to many complex pathways in the body and kidney injury can precipitate multiple negative clinical outcomes. The resultant effect on nutrition and elemental body burden is bi-directional, confounding the very complex pathways that maintain homeostasis. These elemental changes themselves increase the risk of nutritional and biochemical disturbances. OBJECTIVES The aim of the present study was to describe how toxic elements interface with complications of chronic kidney disease (CKD). METHODS The present review included studies focusing on the molecular mechanisms induced by exposure to elements with known nephrotoxic effects and associated health complications in CKD patients. DISCUSSION Many non-essential elements have nephrotoxic activity. Chronic injury can involve direct tubular damage, activation of mediators of oxidative stress, genetic modifications that predispose poor cardiovascular outcomes, as well as competitive uptake and element mobilization with essential elements, found to be deficient in CKD. Cardiovascular disease is the most common cause of mortality among CKD patients. Oxidative stress, a common denominator of both deficient and excess element body constitution, underlies many pathological derivatives of chronic kidney disease. Bone disorders, hematological dysfunction and dysregulation of acid-base balance are also prevalent in kidney patients. The largest contribution of toxic element body burden results from environmental exposure and lifestyle practices. However, standard medical therapies may also potentiate toxic element accumulation and re-injury of vulnerable tissue. CONCLUSIONS For CKD patients, the cumulative effect of toxic elements persists throughout the disease and potentiates complications of CKD. Medical management should be coordinated between a medical team, dietitians and clinical researchers to mitigate those harmful effects. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
| | - Adedamola K. Soyibo
- Department of Medicine, University Hospital of the West Indies, Kingston, Jamaica
| | - Sylvia Mitchell
- Biotechnology Centre, The University of the West Indies, Kingston, Jamaica
| | - Mitko Voutchkov
- Department of Physics, The University of West Indies, Kingston, Jamaica
| |
Collapse
|
35
|
Hurley DL, Binkley N, Camacho PM, Diab DL, Kennel KA, Malabanan A, Tangpricha V. THE USE OF VITAMINS AND MINERALS IN SKELETAL HEALTH: AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND THE AMERICAN COLLEGE OF ENDOCRINOLOGY POSITION STATEMENT. Endocr Pract 2018; 24:915-924. [PMID: 30035621 DOI: 10.4158/ps-2018-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABBREVIATIONS 25(OH)D = 25-hydroxyvitamin D; BMD = bone mineral density; CV = cardiovascular; GI = gastrointestinal; IOM = Institute of Medicine; PTH = parathyroid hormone; RCT = randomized controlled trial; αTF = α-tocopherol; ucOC = undercarboxylated osteocalcin; VKA = vitamin K antagonist; WHI = Women's Health Initiative.
Collapse
|
36
|
QTL Mapping of Genome Regions Controlling Manganese Uptake in Lentil Seed. G3-GENES GENOMES GENETICS 2018; 8:1409-1416. [PMID: 29588380 PMCID: PMC5940135 DOI: 10.1534/g3.118.200259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study evaluated Mn concentration in the seeds of 120 RILs of lentil developed from the cross “CDC Redberry” × “ILL7502”. Micronutrient analysis using atomic absorption spectrometry indicated mean seed manganese (Mn) concentrations ranging from 8.5 to 26.8 mg/kg, based on replicated field trials grown at three locations in Turkey in 2012 and 2013. A linkage map of lentil was constructed and consisted of seven linkage groups with 5,385 DNA markers. The total map length was 973.1 cM, with an average distance between markers of 0.18 cM. A total of 6 QTL for Mn concentration were identified using composite interval mapping (CIM). All QTL were statistically significant and explained 15.3–24.1% of the phenotypic variation, with LOD scores ranging from 3.00 to 4.42. The high-density genetic map reported in this study will increase fundamental knowledge of the genome structure of lentil, and will be the basis for the development of micronutrient-enriched lentil genotypes to support biofortification efforts.
Collapse
|
37
|
Saeedi P, Shavandi A, Meredith-Jones K. Nail Properties and Bone Health: A Review. J Funct Biomater 2018; 9:jfb9020031. [PMID: 29690604 PMCID: PMC6023356 DOI: 10.3390/jfb9020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
Abstract
Physicochemical properties of nail may offer valuable insight into the health of bone. Currently, dual-energy X-ray absorptiometry (DXA) is the gold standard technique for evaluating bone health through bone mineral density (BMD). However, only 70% of fractures are explained by low BMD according to DXA. Therefore, the World Health Organisation recommended the need for the development of alternative methods of assessing bone health. Keratin and collagen type I are major proteins in nail and bone, respectively. Both of these proteins undergo post-translational modifications, with a possible correlation between the degree of post-translational modifications in keratin and collagen. Raman spectroscopy is a technique used to detect changes in protein composition and structure. As changes in protein function and structure may be associated with the development of osteoporosis, Raman spectroscopy may be a valuable adjunct to assess bone health and fracture risk. This review critically evaluates various methods and techniques to identify the link between nail properties and bone health. The strengths and limitations of various studies and the potential use of nail protein and minerals to evaluate bone health have been also presented.
Collapse
Affiliation(s)
- Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand.
| | - Amin Shavandi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
- Centre for Bioengineering & Nanomedicine, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
38
|
Ścibior A, Gołębiowska D, Adamczyk A, Kurus J, Staniszewska M, Sadok I. Evaluation of lipid peroxidation and antioxidant defense mechanisms in the bone of rats in conditions of separate and combined administration of vanadium (V) and magnesium (Mg). Chem Biol Interact 2018; 284:112-125. [PMID: 29453945 DOI: 10.1016/j.cbi.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/13/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
The impact of vanadium (V) and magnesium (Mg) applied as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on oxidative stress markers in bone of male Wistar rats was investigated. Some of them were also measured in the liver, e.g. l-ascorbic acid (hepatic L-AA). Additionally, relationships between selected indices determined in bone were examined. SMV alone (Group II) did not significantly alter the level of TBARS and the activity of SOD, compared with the control (Group I), but it slightly reduced the GR activity (by 13%) and the L-AA level (by 15.5%). It also markedly lowered the activity of CAT and GPx (by 34% and 29%), and to some degree elevated the activity of GST (by 16%) and the hepatic L-AA level (by 119%). MS alone (Group III) decreased the TBARS level (by 49%), slightly lowered the L-AA concentration (by 14%), and reduced the SOD, GPx, and GR activities (by 31%, 40%, and 28%), but did not change the activity of CAT, compared with the control. Additionally, it elevated the GST activity (by 56%) and the hepatic L-AA level (by 40%). In turn, the SMV + MS combination (Group IV) reduced the TBARS level (by 38%) and the SOD, CAT, GPx, and GR activities (by 61%, 58%, 72%, and 40%) but elevated the GST activity (by 66%), compared with the control. The activity of SOD and GPx in the rats in Group IV was also reduced, compared with Group II (by 61% and 61%) and Group III (by 44% and 54%). In turn, the activities of CAT and GR were decreased, compared with Group III (by 55%) and Group II (by 31%), and the L-AA level was lowered, in comparison with Groups II and III (by 53% and 54%). Further, the concentration of V in the bone of rats in Groups II and IV increased, whereas the concentration of Mg decreased, compared with Groups I and III, in which the V and Mg levels dropped and were not altered, respectively, compared with Group I. The total content of Fe in the bone of rats in Groups II and IV increased, compared with Group III, in which the total Fe content did not change, compared with Group I. In turn, the total bone Cu content significantly decreased in the rats in Groups III and IV, compared with Groups I and II, whereas the total Zn content and the Ca concentration did not change markedly. The results provided evidence that the concentration of V used as SMV did not enhance LPO in bone, whereas Mg, at the selected level, markedly reduced LPO in this tissue. On the other hand, both elements administered separately and in combination disrupted the antioxidant defense mechanisms and homeostasis of some metals in bone tissue, which consequently may have contributed to disturbances in the balance in the activities of osteoblastic and osteoclastic cells, and thereby negatively affected bone health.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| | - Dorota Gołębiowska
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Agnieszka Adamczyk
- Department of Zoology and Invertebrate Ecology, Laboratory of Physiology and Animal Biochemistry, The John Paul II Catholic University of Lublin, Kraśnicka Ave. 102, 20-718, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Methods Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Methods Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| |
Collapse
|
39
|
Alshafei MM, Kassem SS, Ramadan MM, Hanafi EM, Saber MM, Saber LM, Elgendy A. Innovative Food Supplement of Functional Seeds Mixture Improved Bone Mineral Density in Menopausal Egyptian Women. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.1055.1062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Patel U, Moss R, Hossain K, Kennedy A, Barney E, Ahmed I, Hannon A. Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications. Acta Biomater 2017; 60:109-127. [PMID: 28684335 DOI: 10.1016/j.actbio.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 11/26/2022]
Abstract
Neutron diffraction, 23Na and 31P NMR, and FTIR spectroscopy have been used to investigate the structural effects of substituting CaO with SrO in a 40P2O5·(16-x)CaO·20Na2O·24MgO·xSrO glass, where x is 0, 4, 8, 12 and 16mol%. The 31P solid-state NMR results showed similar amounts of Q1 and Q2 units for all of the multicomponent glasses investigated, showing that the substitution of Sr for Ca has no effect on the phosphate network. The M-O coordinations (M=Mg, Ca, Sr, Na) were determined for binary alkali and alkaline earth metaphosphates using neutron diffraction and broad asymmetric distributions of bond length were observed, with coordination numbers that were smaller and bond lengths that were shorter than in corresponding crystals. The Mg-O coordination number was determined most reliably as 5.0(2). The neutron diffraction results for the multicomponent glasses are consistent with a structural model in which the coordination of Ca, Sr and Na is the same as in the binary metaphosphate glass, whereas there is a definite shift of Mg-O bonds to longer distance. There is also a small but consistent increase in the Mg-O coordination number and the width of the distribution of Mg-O bond lengths, as Sr substitutes for Ca. Functional properties, including glass transition temperatures, thermal processing windows, dissolution rates and ion release profiles were also investigated. Dissolution studies showed a decrease in dissolution rate with initial addition of 4mol% SrO, but further addition of SrO showed little change. The ion release profiles followed a similar trend to the observed dissolution rates. The limited changes in structure and dissolution rates observed for substitution of Ca with Sr in these fixed 40mol% P2O5 glasses were attributed to their similarities in terms of ionic size and charge. STATEMENT OF SIGNIFICANCE Phosphate based glasses are extremely well suited for the delivery of therapeutic ions in biomedical applications, and in particular strontium plays an important role in the treatment of osteoporosis. We show firstly that the substitution of strontium for calcium in bioactive phosphate glasses can be used to control the dissolution rate of the glass, and hence the rate at which therapeutic ions are delivered. We then go on to examine in detail the influence of Sr/Ca substitution on the atomic sites in the glass, using advanced structural probes, especially neutron diffraction. The environments of most cations in the glass are unaffected by the substitution, with the exception of Mg, which becomes more disordered.
Collapse
|
41
|
Raatz SK, Jahns L, Johnson LK, Scheett A, Carriquiry A, Lemieux A, Nakajima M, al'Absi M. Smokers report lower intake of key nutrients than nonsmokers, yet both fall short of meeting recommended intakes. Nutr Res 2017; 45:30-37. [PMID: 29037329 PMCID: PMC5659353 DOI: 10.1016/j.nutres.2017.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022]
Abstract
Smoking is a major risk factor in the development of preventable disease which may be due to a poorer diet and the reduced nutrient intake of smokers. Our objective was to compare and evaluate the reported intake of current smokers with that of nonsmokers among participants of a study evaluating stress and smoking. We hypothesized (1) that overall energy and nutrient intake would be reduced in smokers compared with nonsmokers and (2) that smokers would have increased noncompliance with Dietary Reference Intakes (DRIs). Men and women (smokers n=138, nonsmokers n=46) completed a 3-day diet record at baseline. Mean energy and nutrient intakes were stratified by smoking status and compared with DRI levels. The mean body mass index was 28.3±0.5kg/m2 for smokers and 27.2±1.0kg/m2 for nonsmokers. Compared with nonsmokers, the smokers reported lower intakes of energy, total polyunsaturated fatty acids, linolenic acid, docosahexaenoic acid, total sugars, calcium, iron, magnesium, phosphorus, potassium, vitamin C, riboflavin, niacin, pantothenic acid, vitamin B6, folate, vitamin A, and vitamin E. Smokers reported reduced compliance with the DRIs for iron, phosphorus, vitamin C, riboflavin, and folate compared with nonsmokers. Unlike other evaluations of smokers vs nonsmokers, we observed no difference in body weight between groups. Smokers and nonsmokers alike reported dietary intakes lower than the DRIs for many nutrients. However, the reported nutrient intake of the smokers was substantially lower than nonsmokers for key nutrients, and they were more likely to not comply with the DRIs for essential nutrients, placing them at increased risk of chronic disease.
Collapse
Affiliation(s)
- Susan K Raatz
- USDA, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, ND; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN.
| | - Lisa Jahns
- USDA, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | - LuAnn K Johnson
- USDA, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | - Angela Scheett
- USDA, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | | | - Andrine Lemieux
- Department of Biobehavioral Health and Population Sciences, University of Minnesota Medical School, Duluth, MN
| | - Motohiro Nakajima
- Department of Biobehavioral Health and Population Sciences, University of Minnesota Medical School, Duluth, MN
| | - Mustafa al'Absi
- Department of Biobehavioral Health and Population Sciences, University of Minnesota Medical School, Duluth, MN
| |
Collapse
|
42
|
Kogan M, Cheng S, Rao S, DeMocker S, Koroma Nelson M. Integrative Medicine for Geriatric and Palliative Care. Med Clin North Am 2017; 101:1005-1029. [PMID: 28802465 DOI: 10.1016/j.mcna.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
More than 80% of people in the United States who are older than 65 years have 1 or more chronic medical problems, and 50% have 2 or more. The cost of care for the elderly is at least 3 to 4 times that of younger populations and is rapidly growing, mostly because of a lack of preventive approaches and overly medicalized and fragmented care. This article summarizes the most up-to-date evidence for specific integrative modalities for common geriatric conditions, including falls, frailty, osteoporosis, and end-of-life palliative care.
Collapse
Affiliation(s)
- Mikhail Kogan
- Center for Integrative Medicine, George Washington University, School of Medicine, 908 New Hampshire Avenue, Suite 200, Washington, DC 20037, USA.
| | - Stephanie Cheng
- Division of Geriatrics, Department of Medicine, University of California, 3333 California Street, Suite 380, Box 1265, San Francisco, CA 94143, USA
| | - Seema Rao
- 11686 Wannacut Place, San Diego, CA 92131, USA
| | - Sharon DeMocker
- War Related Illness & Injury Study Center, VA Medical Center, 50 Irving Street Northwest, MS 127, Washington, DC 20422, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- Callum Livingstone
- Clinical Biochemistry Department, Royal Surrey County Hospital, NHS Foundation Trust, Guildford, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
44
|
Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 2017; 66:391-402. [PMID: 28248532 DOI: 10.33549/physiolres.933454] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.
Collapse
Affiliation(s)
- I Zofkova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
45
|
Abstract
Osteoporosis is a major public health problem affects many millions of people around the world. It is a metabolic bone disease characterized by loss of bone mass and strength, resulting in increased risk of fractures. Several lifestyle factors are considered to be important determinants of it and nutrition can potentially have a positive impact on bone health, in the development and maintenance of bone mass and in the prevention of osteoporosis. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients. In the last decade, epidemiological studies and clinical trials showed micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Consequently, optimizing micronutrients intake might represent an effective and low-cost preventive measure against osteoporosis.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, "Federico II" University, Napoli, Italy
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
46
|
JafariNasabian P, Inglis JE, Kelly OJ, Ilich JZ. Osteosarcopenic obesity in women: impact, prevalence, and management challenges. Int J Womens Health 2017; 9:33-42. [PMID: 28144165 PMCID: PMC5245917 DOI: 10.2147/ijwh.s106107] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteosarcopenic obesity syndrome (OSO) has recently been identified as a condition encompassing osteopenia/osteoporosis, sarcopenia and obesity. OSO is especially deleterious in older adults (even if they are not obese by conventional measures), due to age-related redistribution of fat and its infiltration into bone and muscle. Osteoporosis and bone fractures in elderly increase the risk of sarcopenia, which, through decreased mobility, increases the risk of more falls and fractures, creating a vicious cycle. Obesity plays a dual role: to a certain extent, it promotes bone and muscle gains through mechanical loading; in contrast, increased adiposity is also a source of pro-inflammatory cytokines and other endocrine factors that impair bone and muscle. As the elderly population increases, changes in lifestyle to delay the onset of OSO, or prevent OSO, are warranted. Among these changes, dietary patterns and physical activity modifications are the first ones to be implemented. The typical Western diet (and lifestyle) promotes several chronic diseases including OSO, by facilitating a pro-inflammatory state, largely via the imbalance in omega-6/omega-3 fatty acid ratio and low-fiber and high-processed food consumption. Nutritional modifications to prevent and/or alleviate the OSO syndrome include adequate intake of protein, calcium, magnesium and vitamin D and increasing consumptions of foods containing omega-3 polyunsaturated fatty acids and fiber. Certain types of physical activity, often decreased in overweight/obese women and in elderly, might preserve bone and muscle, as well as help in reducing body fat accrual and fat infiltration. Habitual daily activities and some alternative modes of exercise may be more appropriate for older adults and play a crucial role in preventing bone and muscle loss and maintaining optimal weight. In conclusion, older adults who suffer from OSO syndrome may benefit from combined efforts to improve diet and physical activity, and such recommendations should be fostered as part of public health programs.
Collapse
Affiliation(s)
- Pegah JafariNasabian
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL
| | - Julia E Inglis
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL
| | | | - Jasminka Z Ilich
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL
| |
Collapse
|
47
|
Marone PA, Heimbach JT, Nemzer B, Hunter JM. Subchronic and genetic safety evaluation of a calcium fructoborate in rats. Food Chem Toxicol 2016; 95:75-88. [PMID: 27350145 DOI: 10.1016/j.fct.2016.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022]
Abstract
A branded calcium fructoborate product, a nature-identical calcium salt of bis (fructose) ester of boric acid found in plants and a natural source of boron in the human diet and sold under the trade name FruiteX-B(®) Brand Calcium Fructoborate ("FrxB"), was evaluated in a 90-day dietary toxicity study and two genotoxicity studies. In the 90-day study, four groups of 10 male and 10 female Crl:SD CD(®) IGS rats were fed diets with FrxB admixtures of 0.56, 1.12, and 1.68% dietary concentration, providing mean overall daily intakes of FrxB in male rats of 385.8, 774.9, and 1161.3 mg/kg bw/day, and 392.1, 784.4, and 1171.1 mg/kg bw/day in female rats. There were no mortalities, no clinical or ophthalmologic signs, body weight, body weight gain, food consumption, food efficiency, Functional Observational Battery (FOB), or Motor Activity (MA) findings associated with the administration of FrxB. There were no adverse changes in hematology, coagulation, clinical chemistry, or urinalysis parameters in male or female rats considered the result of test substance administration. At necropsy, there were no macroscopic, histopathological findings, or organ weight changes deemed related to administration of the test substance. Under the conditions of this study, based on the toxicological endpoints evaluated, the no-observed-adverse-effect level (NOAEL) for FrxB in the diet was 1161.3 and 1171.1 mg/kg bw/day in male and female rats, respectively. Bacterial mutagenicity studies and a micronucleus test using Chinese hamster V79 cells demonstrated no mutagenic or genotoxic potential of the tested brand of calcium fructoborate.
Collapse
Affiliation(s)
- Palma Ann Marone
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - James T Heimbach
- JHeimbach LLC, 923 Water Street, Box 66, Port Royal, VA 22535, USA.
| | - Boris Nemzer
- VDF FutureCeuticals, Inc., 2692 N. State Rt. 1-17, Momence, IL 60954, USA.
| | - John M Hunter
- VDF FutureCeuticals, Inc., 2692 N. State Rt. 1-17, Momence, IL 60954, USA.
| |
Collapse
|
48
|
Nghiem N, Blakely T, Cobiac LJ, Cleghorn CL, Wilson N. The health gains and cost savings of dietary salt reduction interventions, with equity and age distributional aspects. BMC Public Health 2016; 16:423. [PMID: 27216490 PMCID: PMC4877955 DOI: 10.1186/s12889-016-3102-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Background A “diet high in sodium” is the second most important dietary risk factor for health loss identified in the Global Burden of Disease Study 2013. We therefore aimed to model health gains and costs (savings) of salt reduction interventions related to salt substitution and maximum levels in bread, including by ethnicity and age. We also ranked these four interventions compared to eight other modelled interventions. Methods A Markov macro-simulation model was used to estimate QALYs gained and net health system costs for four dietary sodium reduction interventions, discounted at 3 % per annum. The setting was New Zealand (NZ) (2.3 million adults, aged 35+ years) which has detailed individual-level administrative cost data. Results The health gain was greatest for an intervention where most (59 %) of the sodium in processed foods was replaced by potassium and magnesium salts. This intervention gained 294,000 QALYs over the remaining lifetime of the cohort (95 % UI: 238,000 to 359,000; 0.13 QALY per 35+ year old). Such salt substitution also produced the highest net cost-savings of NZ$ 1.5 billion (US$ 1.0 billion) (95 % UI: NZ$ 1.1 to 2.0 billion). All interventions generated relatively larger per capita QALYs for men vs women and for the indigenous Māori population vs non-Māori (e.g., 0.16 vs 0.12 QALYs per adult for the 59 % salt substitution intervention). Of relevance to workforce productivity, in the first 10 years post-intervention, 22 % of the QALY gain was among those aged <65 years (and 37 % for those aged <70). Conclusions The benefits are consistent with the international literature, with large health gains and cost savings possible from some, but not all, sodium reduction interventions. Health gain appears likely to occur among working-age adults and all interventions contributed to reducing health inequalities. Electronic supplementary material The online version of this article (doi:10.1186/s12889-016-3102-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nhung Nghiem
- University of Otago, PO Box 7343, Wellington, Wellington South, New Zealand
| | - Tony Blakely
- University of Otago, PO Box 7343, Wellington, Wellington South, New Zealand
| | - Linda J Cobiac
- British Heart Foundation Centre on Population Approaches to NCD Prevention, Oxford University, Oxford, UK
| | | | - Nick Wilson
- University of Otago, PO Box 7343, Wellington, Wellington South, New Zealand.
| |
Collapse
|
49
|
Wachsmann J, Peng F. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma. World J Gastroenterol 2016; 22:221-31. [PMID: 26755872 PMCID: PMC4698487 DOI: 10.3748/wjg.v22.i1.221] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/18/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC.
Collapse
|
50
|
Donaldson AA, Gordon CM. Skeletal complications of eating disorders. Metabolism 2015; 64:943-51. [PMID: 26166318 PMCID: PMC4546560 DOI: 10.1016/j.metabol.2015.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness with profound medical consequences. Among the many adverse physical sequelae of AN, bone health is impacted by starvation and can be permanently impaired over the course of the illness. In this review of skeletal complications associated with eating disorders, we discuss the epidemiology, neuroendocrine changes, adolescent vs. adult skeletal considerations, orthopedic concerns, assessment of bone health, and treatment options for individuals with AN. The focus of the review is the skeletal sequelae associated with anorexia nervosa, but we also briefly consider other eating disorders that may afflict adolescents and young adults. The review presents updates to the field of bone health in AN, and also suggests knowledge gaps and areas for future investigation.
Collapse
Affiliation(s)
- Abigail A Donaldson
- Hasbro Children's Hospital and Alpert Medical School of Brown University, Providence, RI.
| | - Catherine M Gordon
- Hasbro Children's Hospital and Alpert Medical School of Brown University, Providence, RI.
| |
Collapse
|