1
|
Weng W, Zhang B, Deng D. P16 INK4A drives RB1 degradation by UTP14A-catalyzed K810 ubiquitination. iScience 2024; 27:110882. [PMID: 39351198 PMCID: PMC11440251 DOI: 10.1016/j.isci.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.
Collapse
Affiliation(s)
- Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
2
|
Huang YZ, Sang MY, Xi PW, Xu RX, Cai MY, Wang ZW, Zhao JY, Li YH, Wei JF, Ding Q. FANCI Inhibition Induces PARP1 Redistribution to Enhance the Efficacy of PARP Inhibitors in Breast Cancer. Cancer Res 2024; 84:3447-3463. [PMID: 39037758 DOI: 10.1158/0008-5472.can-23-2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer is a global public health concern with high mortality rates, necessitating the development of innovative treatment strategies. PARP inhibitors have shown efficacy in certain patient populations, but their application is largely limited to cancers with homologous recombination deficiency. Here, we identified the suppression of FANCI as a therapeutic strategy to enhance the efficacy of PARP inhibitors in breast cancer. Elevated FANCI expression in breast cancer was associated with poor prognosis and increased cell proliferation and migration. FANCI interacted with PARP1, and suppressing FANCI limited the nuclear localization and functionality of PARP1. Importantly, FANCI inhibition sensitized breast cancer cells to the PARP inhibitor talazoparib in the absence of BRCA mutations. Additionally, the CDK4/6 inhibitor palbociclib enhanced the sensitivity of breast cancer cells to talazoparib through FANCI inhibition. These findings highlight the potential of targeting FANCI to enhance the efficacy of PARP inhibitors in treating breast cancer. Significance: Targeting FANCI is a promising therapeutic strategy for enhancing PARP inhibitor sensitivity in breast cancer that holds potential for broader therapeutic applications beyond cancers harboring BRCA mutations.
Collapse
Affiliation(s)
- Yu-Zhou Huang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Ming-Yi Sang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Pei-Wen Xi
- Health Management Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Ruo-Xi Xu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Meng-Yuan Cai
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Zi-Wen Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Jian-Yi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Yi-Han Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, PR China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
3
|
Conway PJ, De La Peña Avalos B, Dao J, Montagnino S, Kovalskyy D, Dray E, Mahadevan D. Aurkin-A, a TPX2-Aurora A small molecule inhibitor disrupts Alisertib-induced polyploidy in aggressive diffuse large B cell lymphoma. Neoplasia 2024; 55:101014. [PMID: 38875929 PMCID: PMC11225860 DOI: 10.1016/j.neo.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Chemotherapy induced polyploidy is a mechanism of inherited drug resistance resulting in an aggressive disease course in cancer patients. Alisertib, an Aurora Kinase A (AK-A) ATP site inhibitor, induces cell cycle disruption resulting in polyaneuploidy in Diffuse Large B Cell Lymphoma (DLBCL). Propidium iodide flow cytometry was utilized to quantify alisertib induced polyploidy in U2932 and VAL cell lines. In U2932 cells, 1µM alisertib generated 8n+ polyploidy in 48% of the total cell population after 5 days of treatment. Combination of Aurkin A an AK-A/TPX2 site inhibitor, plus alisertib disrupted alisertib induced polyploidy in a dose-dependent manner with associated increased apoptosis. We generated a stable FUCCI U2932 cell line expressing Geminin-clover (S/G2/M) and cdt1-mKO (G1), to monitor cell cycle progression. Using this system, we identified alisertib induces polyploidy through endomitosis, which was eliminated with Aurkin A treatment. In a VAL mouse xenograft model, we show polyploidy generation in alisertib treated mice versus vehicle control or Aurkin A. Aurkin A plus alisertib significantly reduced polyploidy to vehicle control levels. Our in vitro and in vivo studies show that Aurkin A synergizes with alisertib and significantly decreases the alisertib dose needed to disrupt polyploidy while increasing apoptosis in DLBCL cells.
Collapse
Affiliation(s)
- Patrick J Conway
- Department of Molecular Immunology & Microbiology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA; Department of Biomedical Sciences, Keiser University, 2600 N Military Trl, West Palm Beach, Florida, USA
| | - Bárbara De La Peña Avalos
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA
| | - Jonathan Dao
- Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA
| | - Sebastian Montagnino
- Department of Molecular Immunology & Microbiology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA
| | - Eloise Dray
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA.
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, Texas, USA.
| |
Collapse
|
4
|
Rajam SM, Varghese PC, Shirude MB, Syed KM, Devarajan A, Natarajan K, Dutta D. Kinase activity of histone chaperone APLF maintains steady state of centrosomes in mouse embryonic stem cells. Eur J Cell Biol 2024; 103:151439. [PMID: 38968704 DOI: 10.1016/j.ejcb.2024.151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Mayur Balkrishna Shirude
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Khaja Mohieddin Syed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Kathiresan Natarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Transdisciplinary Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
5
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
6
|
Fingerman DF, O'Leary DR, Hansen AR, Tran T, Harris BR, DeWeerd RA, Hayer KE, Fan J, Chen E, Tennakoon M, Meroni A, Szeto JH, Devenport J, LaVigne D, Weitzman MD, Shalem O, Bednarski J, Vindigni A, Zhao X, Green AM. The SMC5/6 complex prevents genotoxicity upon APOBEC3A-mediated replication stress. EMBO J 2024; 43:3240-3255. [PMID: 38886582 PMCID: PMC11294446 DOI: 10.1038/s44318-024-00137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.
Collapse
Affiliation(s)
- Dylan F Fingerman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David R O'Leary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ava R Hansen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Thi Tran
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Brooke R Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina E Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiayi Fan
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Emily Chen
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- School of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Mithila Tennakoon
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alice Meroni
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julia H Szeto
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Devenport
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle LaVigne
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ophir Shalem
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Garyn CM, Bover O, Murray JW, Ma J, Salas-Briceno K, Ross SR, Snoeck HW. G2 arrest primes hematopoietic stem cells for megakaryopoiesis. Cell Rep 2024; 43:114388. [PMID: 38935497 PMCID: PMC11330628 DOI: 10.1016/j.celrep.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.
Collapse
Affiliation(s)
- Corey M Garyn
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Oriol Bover
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - John W Murray
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
8
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Bettin N, Querido E, Gialdini I, Grupelli GP, Goretti E, Cantarelli M, Andolfato M, Soror E, Sontacchi A, Jurikova K, Chartrand P, Cusanelli E. TERRA transcripts localize at long telomeres to regulate telomerase access to chromosome ends. SCIENCE ADVANCES 2024; 10:eadk4387. [PMID: 38865460 PMCID: PMC11168465 DOI: 10.1126/sciadv.adk4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.
Collapse
Affiliation(s)
- Nicole Bettin
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Irene Gialdini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Glenda Paola Grupelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elena Goretti
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Cantarelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Andolfato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eslam Soror
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandra Sontacchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
10
|
Silva JPL, Donaires FS, Gutierrez-Rodrigues F, Martins DJ, Carvalho VS, Santana BA, Cunha RLG, Kajigaya S, Menck CFM, Young NS, Kjeldsen E, Calado RT. RecQ helicase expression in patients with telomeropathies. Mol Biol Rep 2024; 51:754. [PMID: 38874681 DOI: 10.1007/s11033-024-09678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.
Collapse
Affiliation(s)
- João Paulo L Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Flávia S Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Davi J Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius S Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Barbara A Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato L G Cunha
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
11
|
Bachus S, Akkerman N, Fulham L, Graves D, Helwer R, Rempel J, Pelka P. ARGLU1 enhances promoter-proximal pausing of RNA polymerase II and stimulates DNA damage repair. Nucleic Acids Res 2024; 52:5658-5675. [PMID: 38520408 PMCID: PMC11162773 DOI: 10.1093/nar/gkae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Arginine and glutamate rich 1 (ARGLU1) is a poorly understood cellular protein with functions in RNA splicing and transcription. Computational prediction suggests that ARGLU1 contains intrinsically disordered regions and lacks any known structural or functional domains. We used adenovirus Early protein 1A (E1A) to probe for critical regulators of important cellular pathways and identified ARGLU1 as a significant player in transcription and the DNA damage response pathway. Transcriptional effects induced by ARGLU1 occur via enhancement of promoter-proximal RNA polymerase II pausing, likely by inhibiting the interaction between JMJD6 and BRD4. When overexpressed, ARGLU1 increases the growth rate of cancer cells, while its knockdown leads to growth arrest. Significantly, overexpression of ARGLU1 increased cancer cell resistance to genotoxic drugs and promoted DNA damage repair. These results identify new roles for ARGLU1 in cancer cell survival and the DNA damage repair pathway, with potential clinical implications for chemotherapy resistance.
Collapse
Affiliation(s)
- Scott Bachus
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Drayson Graves
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Jordan Rempel
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
12
|
Chowdhury SP, Solley SC, Polishchuk E, Bacal J, Conrad JE, Gardner BM, Acosta-Alvear D, Zappa F. Baseline unfolded protein response signaling adjusts the timing of the mammalian cell cycle. Mol Biol Cell 2024; 35:br12. [PMID: 38656789 PMCID: PMC11238080 DOI: 10.1091/mbc.e23-11-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is a single-copy organelle that cannot be generated de novo, suggesting coordination between the mechanisms overseeing ER integrity and those controlling the cell cycle to maintain organelle inheritance. The Unfolded Protein Response (UPR) is a conserved signaling network that regulates ER homeostasis. Here, we show that pharmacological and genetic inhibition of the UPR sensors IRE1, ATF6, and PERK in unstressed cells delays the cell cycle, with PERK inhibition showing the most penetrant effect, which was associated with a slowdown of the G1-to-S/G2 transition. Treatment with the small molecule ISRIB to bypass the effects of PERK-dependent phosphorylation of the translation initiation factor eIF2α had no such effect, suggesting that cell cycle timing depends on PERK's kinase activity but is independent of eIF2α phosphorylation. Using complementary light and electron microscopy and flow cytometry-based analyses, we also demonstrate that the ER enlarges before mitosis. Together, our results suggest coordination between UPR signaling and the cell cycle to maintain ER physiology during cell division.
Collapse
Affiliation(s)
- Soham P. Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Sabrina C. Solley
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Julia E. Conrad
- Altos Labs Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065
| | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Francesca Zappa
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
13
|
Lubachowski M, VanGenderen C, Valentine S, Belak Z, Davies GF, Arnason TG, Harkness TAA. Activation of the Anaphase Promoting Complex Restores Impaired Mitotic Progression and Chemosensitivity in Multiple Drug-Resistant Human Breast Cancer. Cancers (Basel) 2024; 16:1755. [PMID: 38730707 PMCID: PMC11083742 DOI: 10.3390/cancers16091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.
Collapse
Affiliation(s)
- Mathew Lubachowski
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Sarah Valentine
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Zach Belak
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Gerald Floyd Davies
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Terra Gayle Arnason
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
- Division of Endocrinology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- 320 Heritage Medical Research Centre, University of Alberta, 11207-87 Ave NW, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
14
|
Boddu PC, Gupta AK, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer JT, Chandhok NS, King D, Nannya Y, Ogawa S, Lin H, Simon MD, Dray E, Kupfer GM, Verma A, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol Cell 2024; 84:1475-1495.e18. [PMID: 38521065 PMCID: PMC11061666 DOI: 10.1016/j.molcel.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Collapse
Affiliation(s)
- Prajwal C Boddu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Rahul Roy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Bárbara De La Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Anne Olazabal-Herrero
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Namrata S Chandhok
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Darren King
- Section of Hematology and Medical Oncology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Medicine and Department of Developmental and Molecular Biology, Albert Einstein-Montefiore Cancer Center, New York, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
O'Leary DR, Hansen AR, Fingerman DF, Tran T, Harris BR, Hayer KE, Fan J, Chen E, Tennakoon M, DeWeerd RA, Meroni A, Szeto JH, Weitzman MD, Shalem O, Bednarski J, Vindigni A, Zhao X, Green AM. The SMC5/6 complex prevents genotoxicity upon APOBEC3A-mediated replication stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.568952. [PMID: 38077016 PMCID: PMC10705431 DOI: 10.1101/2023.11.28.568952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.
Collapse
|
17
|
Rafiq A, Aashaq S, Jan I, Ali M, Rakshan R, Bashir A, Haq E, Beigh MA. GSK3β phosphorylates Six1 transcription factor and regulates its APC/C Cdh1 mediated proteosomal degradation. Cell Signal 2024; 115:111030. [PMID: 38163577 DOI: 10.1016/j.cellsig.2023.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Sine oculis homeobox homolog 1 (Six1) is a developmentally important transcription factor that regulates cellular proliferation, apoptosis, and dissemination during embryogenesis. Six1 overexpression as reported in multiple cancers modulates expression of a repertoire of its target genes causing an increase in proliferation, metastasis and survival of cancer cells. Six1 exists as a cell cycle regulated nuclear phosphoprotein and its cellular turnover is regulated by APC/C (Anaphase promoting complex / Cyclosome) complex mediated proteolysis. However, the kinases that regulate Six1 proteolysis have not been identified and the mechanistic details that cause its overproduction in various cancers are lacking. Here, we report that Six1 is a physiological GSK3β substrate. GSK3β interacts with Six1 and phosphorylates it at Ser221 within the conserved consensus sequence in its carboxy terminus. Using pharmacological inhibition, siRNA mediated knockdown and protein overexpression of GSK3β; we show that GSK3β regulates Six1 protein stability. Pulse chase analysis of Six1 revealed that GSK3β regulates its ubiquitin proteolysis such that Six1 phosphomimicking mutant (Six1S221E) for Ser221 site had dramatically increased half-life than its phosphodeficient (Six1S221A) and wild type variants. Furthermore, we demonstrate that GSK3β rescues Six1 from APC dependent proteolysis by regulating its binding with APC/C co-activator protein Cdh1. Importantly, strong positive correlation exists between GSK3β and Six1 protein levels throughout the cell cycle and in multiple cancers indicating that GSK3β activation may in part contribute to Six1 overproduction in a subset of human cancers.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Sabreena Aashaq
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India; Department of Immunology and Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Iqra Jan
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Mahvish Ali
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Rabia Rakshan
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Asma Bashir
- Faculty of Biology, Fatima College of Health Sciences, Al-Raqaib 2, Ajman 3798, United Arab Emirates
| | - Ehtishamul Haq
- Department of Biotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India.
| |
Collapse
|
18
|
Rahn K, Abdallah AT, Gan L, Herbrich S, Sonntag R, Benitez O, Malaney P, Zhang X, Rodriguez AG, Brottem J, Marx G, Brümmendorf TH, Ostareck DH, Ostareck-Lederer A, Crysandt M, Post SM, Naarmann-de Vries IS. Insight into the mechanism of AML del(9q) progression: hnRNP K targets the myeloid master regulators CEBPA (C/EBPα) and SPI1 (PU.1). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195004. [PMID: 38008244 DOI: 10.1016/j.bbagrm.2023.195004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.
Collapse
Affiliation(s)
- Kerstin Rahn
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany; Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lin Gan
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany
| | - Shelley Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashely G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Brottem
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Isabel S Naarmann-de Vries
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
19
|
Mutso M, Brūmele B, Serova E, Väärtnõu F, Suija M, Kurg R. The methyltransferase N6AMT1 participates in the cell cycle by regulating cyclin E levels. PLoS One 2024; 19:e0298884. [PMID: 38394175 PMCID: PMC10889616 DOI: 10.1371/journal.pone.0298884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The methyltransferase N6AMT1 has been associated with the progression of different pathological conditions, such as tumours and neurological malfunctions, but the underlying mechanism is not fully understood. Analysis of N6AMT1-depleted cells revealed that N6AMT1 is involved in the cell cycle and cell proliferation. In N6AMT1-depleted cells, the cell doubling time was increased, and cell progression out of mitosis and the G0/G1 and S phases was disrupted. It was discovered that in N6AMT1-depleted cells, the transcription of cyclin E was downregulated, which indicates that N6AMT1 is involved in the regulation of cyclin E transcription. Understanding the functions and importance of N6AMT1 in cell proliferation and cell cycle regulation is essential for developing treatments and strategies to control diseases that are associated with N6AMT1.
Collapse
Affiliation(s)
- Margit Mutso
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Baiba Brūmele
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Evgeniia Serova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Suija
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Liu H, Fu H, Yu C, Zhang N, Huang C, Lv L, Hu C, Chen F, Xiao Z, Zhang Z, Lu H, Yuan K. Transcriptional pausing induced by ionizing radiation enables the acquisition of radioresistance in nasopharyngeal carcinoma. J Mol Cell Biol 2024; 15:mjad044. [PMID: 37407287 PMCID: PMC10960568 DOI: 10.1093/jmcb/mjad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Lesions on the DNA template can impact transcription via distinct regulatory pathways. Ionizing radiation (IR) as the mainstay modality for many malignancies elicits most of the cytotoxicity by inducing a variety of DNA damages in the genome. How the IR treatment alters the transcription cycle and whether it contributes to the development of radioresistance remain poorly understood. Here, we report an increase in the paused RNA polymerase II (RNAPII), as indicated by the phosphorylation at serine 5 residue of its C-terminal domain, in recurrent nasopharyngeal carcinoma (NPC) patient samples after IR treatment and cultured NPC cells developing IR resistance. Reducing the pool of paused RNAPII by either inhibiting TFIIH-associated CDK7 or stimulating the positive transcription elongation factor b, a CDK9-CycT1 heterodimer, attenuates IR resistance of NPC cells. Interestingly, the poly(ADP-ribosyl)ation of CycT1, which disrupts its phase separation, is elevated in the IR-resistant cells. Mutation of the major poly(ADP-ribosyl)ation sites of CycT1 decreases RNAPII pausing and restores IR sensitivity. Genome-wide chromatin immunoprecipitation followed by sequencing analyses reveal that several genes involved in radiation response and cell cycle control are subject to the regulation imposed by the paused RNAPII. Particularly, we identify the NIMA-related kinase NEK7 under such regulation as a new radioresistance factor, whose downregulation results in the increased chromosome instability, enabling the development of IR resistance. Overall, our results highlight a novel link between the alteration in the transcription cycle and the acquisition of IR resistance, opening up new opportunities to increase the efficacy of radiotherapy and thwart radioresistance in NPC.
Collapse
Affiliation(s)
- Honglu Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huanyi Fu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Na Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Canhua Huang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
22
|
Wei J, Gao W, Yang X, Yu Z, Su F, Han C, Xing X. Machine learning classification of cellular states based on the impedance features derived from microfluidic single-cell impedance flow cytometry. BIOMICROFLUIDICS 2024; 18:014103. [PMID: 38274201 PMCID: PMC10807927 DOI: 10.1063/5.0181287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Mitosis is a crucial biological process where a parental cell undergoes precisely controlled functional phases and divides into two daughter cells. Some drugs can inhibit cell mitosis, for instance, the anti-cancer drugs interacting with the tumor cell proliferation and leading to mitosis arrest at a specific phase or cell death eventually. Combining machine learning with microfluidic impedance flow cytometry (IFC) offers a concise way for label-free and high-throughput classification of drug-treated cells at single-cell level. IFC-based single-cell analysis generates a large amount of data related to the cell electrophysiology parameters, and machine learning helps establish correlations between these data and specific cell states. This work demonstrates the application of machine learning for cell state classification, including the binary differentiations between the G1/S and apoptosis states and between the G2/M and apoptosis states, as well as the classification of three subpopulations comprising a subgroup insensitive to the drug beyond the two drug-induced states of G2/M arrest and apoptosis. The impedance amplitudes and phases used as input features for the model training were extracted from the IFC-measured datasets for the drug-treated tumor cells. The deep neural network (DNN) model was exploited here with the structure (e.g., hidden layer number and neuron number in each layer) optimized for each given cell type and drug. For the H1650 cells, we obtained an accuracy of 78.51% for classification between the G1/S and apoptosis states and 82.55% for the G2/M and apoptosis states. For HeLa cells, we achieved a high accuracy of 96.94% for classification between the G2/M and apoptosis states, both of which were induced by taxol treatment. Even higher accuracy approaching 100% was achieved for the vinblastine-treated HeLa cells for the differentiation between the viable and non-viable states, and between the G2/M and apoptosis states. We also demonstrate the capability of the DNN model for high-accuracy classification of the three subpopulations in a complete cell sample treated by taxol or vinblastine.
Collapse
Affiliation(s)
- Jian Wei
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Road, Chaoyang District, Beijing 100029, China
| | - Wenbing Gao
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Road, Chaoyang District, Beijing 100029, China
| | - Xinlong Yang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhuotong Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Road, Chaoyang District, Beijing 100029, China
| | - Fei Su
- Department of Integrative Oncology, China-Japan Friendship Hospital, No. 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China
| | - Chengwu Han
- Department of Clinical Laboratory, China-Japan Friendship Hospital, No. 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China
| | - Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
23
|
Kiseleva AA, Cheng YC, Smith CL, Katz RA, Poleshko A. PRR14 organizes H3K9me3-modified heterochromatin at the nuclear lamina. Nucleus 2023; 14:2165602. [PMID: 36633363 PMCID: PMC9839372 DOI: 10.1080/19491034.2023.2165602] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The eukaryotic genome is organized in three dimensions within the nucleus. Transcriptionally active chromatin is spatially separated from silent heterochromatin, a large fraction of which is located at the nuclear periphery. However, the mechanisms by which chromatin is localized at the nuclear periphery remain poorly understood. Here we demonstrate that Proline Rich 14 (PRR14) protein organizes H3K9me3-modified heterochromatin at the nuclear lamina. We show that PRR14 dynamically associates with both the nuclear lamina and heterochromatin, and is able to reorganize heterochromatin in the nucleus of interphase cells independent of mitosis. We characterize two functional HP1-binding sites within PRR14 that contribute to its association with heterochromatin. We also demonstrate that PPR14 forms an anchoring surface for heterochromatin at the nuclear lamina where it interacts dynamically with HP1-associated chromatin. Our study proposes a model of dynamic heterochromatin organization at the nuclear lamina via the PRR14 tethering protein.
Collapse
Affiliation(s)
- Anna A. Kiseleva
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Chia Cheng
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheryl L. Smith
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A. Katz
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Andrey Poleshko Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, SCTR 09-188, 3400 Civic Center Blvd. Philadelphia, PA19104
| |
Collapse
|
24
|
Li Y, Wang J, Chen X, Czajkowsky DM, Shao Z. Quantitative Super-Resolution Microscopy Reveals the Relationship between CENP-A Stoichiometry and Centromere Physical Size. Int J Mol Sci 2023; 24:15871. [PMID: 37958853 PMCID: PMC10649757 DOI: 10.3390/ijms242115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.
Collapse
Affiliation(s)
- Yaqian Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| | - Jiabin Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xuecheng Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Daniel M. Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| |
Collapse
|
25
|
Ma B, Wei X, Zhou S, Yang M. MCTS1 enhances the proliferation of laryngeal squamous cell carcinoma via promoting OTUD6B-1 mediated LIN28B deubiquitination. Biochem Biophys Res Commun 2023; 678:128-134. [PMID: 37634410 DOI: 10.1016/j.bbrc.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
The aberrant upregulation of MCTS1 Re-Initiation and Release Factor (also known as Malignant T-cell-amplified sequence 1, MCTS1) can promote laryngeal squamous cell carcinoma (LSCC). It might act as a binding partner of multiple proteins. In this study, we further explored the expression of potential interaction between MCTS1 and OTU domain-containing protein 6B (OTUD6B) and its influence on the ubiquitination and degradation of OTUD6B's substrate in LSCC. LSCC cell lines AMC-HN-8 and TU177 were utilized for assessing protein-protein interaction, protein degradation and tumor growth in vitro and in vivo. The results showed that MCTS1 interacts with OUTD6B isoform 1 (OTUD6B-1) in the cell lines. Higher OTUD6B-1 expression is associated with significantly shorter progression-free interval in LSCC patients. OTUD6B positively modulated the expression of cyclin D1, cyclin E1 and c-Myc and LSCC cell proliferation in vitro and in vivo. MCTS1 negatively modulated the degradation of LIN28B in G1/S cells, via enhancing OTUD6B-mediated cleaving of K48-branched ubiquitin chains from LIN28B. OTUD6B or LIN28B shRNA weakened MCTS1 overexpression-induced cyclin D1 and c-Myc protein expression and LSCC cell proliferation. In summary, this study revealed that MCTS1 could enhance LSCC proliferation partially via the OTUD6B-LIN28B axis.
Collapse
Affiliation(s)
- Binjuan Ma
- Otorhinolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoquan Wei
- Otorhinolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengsheng Yang
- Otorhinolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
26
|
Jeon M, Schmitt DL, Kyoung M, An S. Size-Specific Modulation of a Multienzyme Glucosome Assembly during the Cell Cycle. ACS BIO & MED CHEM AU 2023; 3:461-470. [PMID: 37876499 PMCID: PMC10591302 DOI: 10.1021/acsbiomedchemau.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Enzymes in glucose metabolism have been subjected to numerous studies, revealing the importance of their biological roles during the cell cycle. However, due to the lack of viable experimental strategies for measuring enzymatic activities particularly in living human cells, it has been challenging to address whether their enzymatic activities and thus anticipated glucose flux are directly associated with cell cycle progression. It has remained largely elusive how human cells regulate glucose metabolism at a subcellular level to meet the metabolic demands during the cell cycle. Meanwhile, we have characterized that rate-determining enzymes in glucose metabolism are spatially organized into three different sizes of multienzyme metabolic assemblies, termed glucosomes, to regulate the glucose flux between energy metabolism and building block biosynthesis. In this work, we first determined using cell synchronization and flow cytometric techniques that enhanced green fluorescent protein-tagged phosphofructokinase is adequate as an intracellular biomarker to evaluate the state of glucose metabolism during the cell cycle. We then applied fluorescence single-cell imaging strategies and discovered that the percentage of Hs578T cells showing small-sized glucosomes is drastically changed during the cell cycle, whereas the percentage of cells with medium-sized glucosomes is significantly elevated only in the G1 phase, but the percentage of cells showing large-sized glucosomes is barely or minimally altered along the cell cycle. Should we consider our previous localization-function studies that showed assembly size-dependent metabolic roles of glucosomes, this work strongly suggests that glucosome sizes are modulated during the cell cycle to regulate glucose flux between glycolysis and building block biosynthesis. Therefore, we propose the size-specific modulation of glucosomes as a behind-the-scenes mechanism that may explain functional association of glucose metabolism with the cell cycle and, thereby, their metabolic significance in human cell biology.
Collapse
Affiliation(s)
- Miji Jeon
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Minjoung Kyoung
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Program
in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Songon An
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Program
in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
27
|
Damstra HGJ, Passmore JB, Serweta AK, Koutlas I, Burute M, Meye FJ, Akhmanova A, Kapitein LC. GelMap: intrinsic calibration and deformation mapping for expansion microscopy. Nat Methods 2023; 20:1573-1580. [PMID: 37723243 PMCID: PMC10555834 DOI: 10.1038/s41592-023-02001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy by physically expanding biological specimen in three dimensions. Nonetheless, using ExM for quantitative or diagnostic applications requires robust quality control methods to precisely determine expansion factors and to map deformations due to anisotropic expansion. Here we present GelMap, a flexible workflow to introduce a fluorescent grid into pre-expanded hydrogels that scales with expansion and reports deformations. We demonstrate that GelMap can be used to precisely determine the local expansion factor and to correct for deformations without the use of cellular reference structures or pre-expansion ground-truth images. Moreover, we show that GelMap aids sample navigation for correlative uses of expansion microscopy. Finally, we show that GelMap is compatible with expansion of tissue and can be readily implemented as a quality control step into existing ExM workflows.
Collapse
Affiliation(s)
- Hugo G J Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Josiah B Passmore
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Albert K Serweta
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ioannis Koutlas
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Emmert S, Quargnali G, Thallmair S, Rivera-Fuentes P. A locally activatable sensor for robust quantification of organellar glutathione. Nat Chem 2023; 15:1415-1421. [PMID: 37322101 PMCID: PMC10533397 DOI: 10.1038/s41557-023-01249-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH) is the main determinant of intracellular redox potential and participates in multiple cellular signalling pathways. Achieving a detailed understanding of intracellular GSH homeostasis depends on the development of tools to map GSH compartmentalization and intra-organelle fluctuations. Here we present a GSH-sensing platform for live-cell imaging, termed targetable ratiometric quantitative GSH (TRaQ-G). This chemogenetic sensor possesses a unique reactivity turn-on mechanism, ensuring that the small molecule is only sensitive to GSH in a desired location. Furthermore, TRaQ-G can be fused to a fluorescent protein to give a ratiometric response. Using TRaQ-G fused to a redox-insensitive fluorescent protein, we demonstrate that the nuclear and cytosolic GSH pools are independently regulated during cell proliferation. This sensor was used in combination with a redox-sensitive fluorescent protein to quantify redox potential and GSH concentration simultaneously in the endoplasmic reticulum. Finally, by exchanging the fluorescent protein, we created a near-infrared, targetable and quantitative GSH sensor.
Collapse
Affiliation(s)
- Sarah Emmert
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Gianluca Quargnali
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
| | | | - Pablo Rivera-Fuentes
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland.
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Park SS, Baek KH. Synergistic effect of YOD1 and USP21 on the Hippo signaling pathway. Cancer Cell Int 2023; 23:209. [PMID: 37743467 PMCID: PMC10518088 DOI: 10.1186/s12935-023-03078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) comprise a family of proteases responsible for cleaving the peptide or isopeptide bond between ubiquitin and its substrate proteins. Ubiquitin is essential for regulating diverse cellular functions by attaching to target proteins. The Hippo signaling pathway plays a crucial role in controlling tissue size, cell proliferation, and apoptosis. In a previous study, we discovered that YOD1 regulates the Hippo signaling pathway by deubiquitinating the neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ligase of large tumor suppressor kinase 1 (LATS1). Here, our aim was to investigate potential substrates of YOD1 implicated in the Hippo signaling pathway. METHODS We employed various bioinformatics tools (BioGRID, STRING, and Cytoscape) to identify novel potential substrates of YOD1. Furthermore, we used western blotting, co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pull-down, immunocytochemistry (ICC) assays to investigate cellular interactions. To evaluate cell proliferation, we performed cell counting kit-8 (CCK-8), wound healing, colony forming, and flow cytometry assays using A549, HEK293T, and HeLa cells. Additionally, we assessed the expression levels of YAP and p-YAP in A549, HEK293T, and HeLa cells through western blotting. RESULTS Our investigations revealed that YOD1 interacts with ubiquitin-specific proteases 21 (USP21), a DUB involved in the Hippo signaling pathway, and deubiquitinates the microtubule-affinity regulating kinase (MARK). Intriguingly, YOD1 and USP21 mutually deubiquitinate each other; while YOD1 regulates the protein stability of USP21, USP21 does not exert a regulatory effect on YOD1. Moreover, we observed the synergistic effect of YOD1 and USP21 on cell proliferation through the modulation of the Hippo signaling pathway. CONCLUSIONS Our study revealed multiple cellular interactions between YOD1 and USP21. Moreover, our findings suggest that the combined activities of YOD1 and USP21 synergistically influence cell proliferation in A549 cells by regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Sang-Soo Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
- Department of Bioconvergence, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seoungnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
30
|
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Fu C. Reduced FANCE Confers Genomic Instability and Malignant Behavior by Regulating Cell Cycle Progression in Endometrial Cancer. J Cancer 2023; 14:2670-2685. [PMID: 37779877 PMCID: PMC10539389 DOI: 10.7150/jca.86348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/20/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Fanconi anemia complementation group E (FANCE) is a subunit of fanconi anemia (FA) pathway and plays a key role in repairing DNA interstrand cross-links (ICLs) damage. We investigate detailed functions and mechanisms of FANCE in endometrial cancer (EC). Methods: FANCE protein and RNA expression in EC and non-cancerous tissues were detected by Western blotting (WB), immunohistochemistry (IHC), and real-time polymerase chain reaction (RT-PCR) assays. Using lentiviral transfection and siRNA interference techniques, we constructed overexpressing FANCE (OE-FANCE) and FANCE-knockdown (FANCE-KD) EC cells. We then investigated DNA damage repair capacity of FANCE in EC cells including comet assay and γH2AX immunofluorescence assay. In vitro assays including CCK8, EDU and colony formation for chemoresistance and proliferation, transwell assay for metastasis were performed. Flow cytometer assay, cell cycle synchronization for cell cycle progression and EC cells RNA sequencing were determined. Finally, in vivo mouse models were used to detect tumor growth. Results: We found FANCE RNA and protein expression was significantly decreased in endometrioid adenocarcinoma (EAC) compared with normal and atypical hyperplasia endometrium. FANCE promoted the repair of ICL damage and double-strand break (DSB) in OE-FANCE EC cells. Furthermore, FANCE increased drug resistance in OE-FANCE EC cells by upregulating FA pathway and homologous recombination (HR) associated proteins. FANCE inhibited cell proliferation and metastasis through G2/M cell cycle arrest in vitro and vivo. FANCE participated in regulating several pathways. Conclusion: The study demonstrates the reduction of FANCE expression leads to genomic instability, thereby promoting the development of EC by regulating cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
31
|
Mas AM, Goñi E, Ruiz de Los Mozos I, Arcas A, Statello L, González J, Blázquez L, Lee WTC, Gupta D, Sejas Á, Hoshina S, Armaos A, Tartaglia GG, Waga S, Ule J, Rothenberg E, Gómez M, Huarte M. ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins. Nat Commun 2023; 14:4447. [PMID: 37488096 PMCID: PMC10366126 DOI: 10.1038/s41467-023-40105-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Cells must coordinate the activation of thousands of replication origins dispersed throughout their genome. Active transcription is known to favor the formation of mammalian origins, although the role that RNA plays in this process remains unclear. We show that the ORC1 subunit of the human Origin Recognition Complex interacts with RNAs transcribed from genes with origins in their transcription start sites (TSSs), displaying a positive correlation between RNA binding and origin activity. RNA depletion, or the use of ORC1 RNA-binding mutant, result in inefficient activation of proximal origins, linked to impaired ORC1 chromatin release. ORC1 RNA binding activity resides in its intrinsically disordered region, involved in intra- and inter-molecular interactions, regulation by phosphorylation, and phase-separation. We show that RNA binding favors ORC1 chromatin release, by regulating its phosphorylation and subsequent degradation. Our results unveil a non-coding function of RNA as a dynamic component of the chromatin, orchestrating the activation of replication origins.
Collapse
Affiliation(s)
- Aina Maria Mas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Igor Ruiz de Los Mozos
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aida Arcas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Lorea Blázquez
- RNA Networks Lab, The Francis Crick Institute, NW11BF, London, UK
- Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Wei Ting Chelsea Lee
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Álvaro Sejas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Shoko Hoshina
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Shou Waga
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Jernej Ule
- RNA Networks Lab, The Francis Crick Institute, NW11BF, London, UK
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| |
Collapse
|
32
|
Nowak CM, Quarton T, Bleris L. Impact of variability in cell cycle periodicity on cell population dynamics. PLoS Comput Biol 2023; 19:e1011080. [PMID: 37339124 DOI: 10.1371/journal.pcbi.1011080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 06/22/2023] Open
Abstract
The cell cycle consists of a series of orchestrated events controlled by molecular sensing and feedback networks that ultimately drive the duplication of total DNA and the subsequent division of a single parent cell into two daughter cells. The ability to block the cell cycle and synchronize cells within the same phase has helped understand factors that control cell cycle progression and the properties of each individual phase. Intriguingly, when cells are released from a synchronized state, they do not maintain synchronized cell division and rapidly become asynchronous. The rate and factors that control cellular desynchronization remain largely unknown. In this study, using a combination of experiments and simulations, we investigate the desynchronization properties in cervical cancer cells (HeLa) starting from the G1/S boundary following double-thymidine block. Propidium iodide (PI) DNA staining was used to perform flow cytometry cell cycle analysis at regular 8 hour intervals, and a custom auto-similarity function to assess the desynchronization and quantify the convergence to an asynchronous state. In parallel, we developed a single-cell phenomenological model the returns the DNA amount across the cell cycle stages and fitted the parameters using experimental data. Simulations of population of cells reveal that the cell cycle desynchronization rate is primarily sensitive to the variability of cell cycle duration within a population. To validate the model prediction, we introduced lipopolysaccharide (LPS) to increase cell cycle noise. Indeed, we observed an increase in cell cycle variability under LPS stimulation in HeLa cells, accompanied with an enhanced rate of cell cycle desynchronization. Our results show that the desynchronization rate of artificially synchronized in-phase cell populations can be used a proxy of the degree of variance in cell cycle periodicity, an underexplored axis in cell cycle research.
Collapse
Affiliation(s)
- Chance M Nowak
- Bioengineering Department, The University of Texas at Dallas, Richardson, Texas, United States of America
- Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas, United States of America
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Tyler Quarton
- Bioengineering Department, The University of Texas at Dallas, Richardson, Texas, United States of America
- Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Leonidas Bleris
- Bioengineering Department, The University of Texas at Dallas, Richardson, Texas, United States of America
- Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas, United States of America
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| |
Collapse
|
33
|
Garyn CM, Bover O, Murray JW, Jing M, Salas-Briceno K, Ross SR, Snoeck HW. DNA damage primes hematopoietic stem cells for direct megakaryopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540665. [PMID: 37333356 PMCID: PMC10274687 DOI: 10.1101/2023.05.13.540665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), can self-renew, and generate all cells of the hematopoietic system. 1 Most hematopoietic lineages arise through successive, increasingly lineage-committed progenitors. In contrast, megakaryocytes (MKs), hyperploid cells that generate platelets essential to hemostasis, can derive rapidly and directly from HSCs. 2 The underlying mechanism is unknown however. Here we show that DNA damage and subsequent arrest in the G2 phase of the cell cycle rapidly induce MK commitment specifically in HSCs, but not in progenitors, through an initially predominantly post-transcriptional mechanism. Cycling HSCs show extensive replication-induced DNA damage associated with uracil misincorporation in vivo and in vitro . Consistent with this notion, thymidine attenuated DNA damage, rescued HSC maintenance and reduced the generation of CD41 + MK-committed HSCs in vitro . Similarly, overexpression of the dUTP-scavenging enzyme, dUTPase, enhanced in vitro maintenance of HSCs. We conclude that a DNA damage response drives direct megakaryopoiesis and that replication stress-induced direct megakaryopoiesis, at least in part caused by uracil misincorporation, is a barrier to HSC maintenance in vitro . DNA damage-induced direct megakaryopoiesis may allow rapid generation of a lineage essential to immediate organismal survival, while simultaneously removing damaged HSCs and potentially avoiding malignant transformation of self-renewing stem cells.
Collapse
|
34
|
Groysbeck N, Hanss V, Donzeau M, Strub JM, Cianférani S, Spehner D, Bahri M, Ersen O, Eltsov M, Schultz P, Zuber G. Bioactivated and PEG-Protected Circa 2 nm Gold Nanoparticles for in Cell Labelling and Cryo-Electron Microscopy. SMALL METHODS 2023; 7:e2300098. [PMID: 37035956 DOI: 10.1002/smtd.202300098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
Advances in cryo-electron microscopy (EM) enable imaging of protein assemblies within mammalian cells in a near native state when samples are preserved by cryogenic vitrification. To accompany this progress, specialized EM labelling protocols must be developed. Gold nanoparticles (AuNPs) of 2 nm are synthesized and functionalized to bind selected intracellular targets inside living human cells and to be detected in vitreous sections. As a proof of concept, thioaminobenzoate-, thionitrobenzoate-coordinated gold nanoparticles are functionalized on their surface with SV40 Nuclear Localization Signal (NLS)-containing peptides and 2 kDa polyethyleneglycols (PEG) by thiolate exchange to target the importin-mediated nuclear machinery and facilitate cytosolic diffusion by shielding the AuNP surface from non-specific binding to cell components, respectively. After delivery by electroporation into the cytoplasm of living human cells, the PEG-coated AuNPs diffuse freely in the cytoplasm but do not enter the nucleus. Incorporation of NLS within the PEG coverage promotes a quick nuclear import of the nanoparticles in relation to the density of NLS onto the AuNPs. Cryo-EM of vitreous cell sections demonstrate the presence of 2 nm AuNPs as single entities in the nucleus. Biofunctionalized AuNPs combined with live-cell electroporation procedures are thus potent labeling tools for the identification of macromolecules in cellular cryo-EM.
Collapse
Affiliation(s)
- Nadja Groysbeck
- Université de Strasbourg - CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Boulevard Sebastien Brant, Illkirch, F-67400, France
| | - Victor Hanss
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Mariel Donzeau
- Université de Strasbourg - CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Boulevard Sebastien Brant, Illkirch, F-67400, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, F-67000, France
| | - Danièle Spehner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Mounib Bahri
- Albert Crewe Centre, University of Liverpool, 4. Waterhouse Building, Block C, 1-3 Brownlow Street, London, L69 3GL, UK
| | - Ovidiu Ersen
- Université de Strasbourg - CNRS, UMR 7504, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), 23 rue de Loess, Strasbourg, 67034, France
| | - Mikhael Eltsov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Patrick Schultz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, Illkirch Cedex, F-67404, France
| | - Guy Zuber
- Université de Strasbourg - CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Boulevard Sebastien Brant, Illkirch, F-67400, France
| |
Collapse
|
35
|
Mondal SK, Ahmed MT, Jinka S, Sarkar S, Shukla R, Banerjee R. Progesterone-Cationic Lipid Conjugate-Based Self-Aggregates for Cancer Cell-Selective Uptake through Macropinocytosis and the Antitumour Effect. Mol Pharm 2023. [PMID: 37134112 DOI: 10.1021/acs.molpharmaceut.2c00887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Progesterone (PR) is an endogenous steroid hormone that activates the progesterone receptor (PgR) and is known to play a critical role in cancer progression. Herein, we report the development of cationic lipid-conjugated PR derivatives by covalently conjugating progesterone with cationic lipids of varying hydrocarbon chain lengths (n = 6-18) through a succinate linker. Cytotoxicity studies performed on eight different cancer cell lines reveal that PR10, one of the lead derivatives, exerts notable toxicity (IC50 = 4-12 μM) in cancer cells irrespective of their PgR expression status and remains largely nontoxic to noncancerous cells. Mechanistic studies show that PR10 induces G2/M-phase cell cycle arrest in cancer cells, leading to apoptosis and cell death by inhibiting the PI3K/AKT cell survival pathway and p53 upregulation. Further, in vivo study shows that PR10 treatment significantly reduces melanoma tumor growth and prolongs the overall survival of melanoma tumor-bearing C57BL/6J mice. Interestingly, PR10 readily forms stable self-aggregates of ∼190 nm size in an aqueous environment and exhibits selective uptake into cancerous cell lines. In vitro uptake mechanism studies in various cell lines (cancerous cell lines B16F10, MCF7, PC3, and noncancerous cell line HEK293) using endocytosis inhibition proves that PR10 nanoaggregates enter selectively into the cancer cells predominantly using macropinocytosis and/or caveolae-mediated endocytosis. Overall, this study highlights the development of a self-aggregating cationic derivative of progesterone with anticancer activity, and its cancer cell-selective accumulation in nanoaggregate form holds great potential in the field of targeted drug delivery.
Collapse
Affiliation(s)
- Sujan Kumar Mondal
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammed Tanveer Ahmed
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sudhakar Jinka
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ravi Shukla
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
36
|
Zhang Y, Xu Q, Sun Q, Kong R, Liu H, Yi X, Liang Z, Letcher RJ, Liu C. Ustiloxin A inhibits proliferation of renal tubular epithelial cells in vitro and induces renal injury in mice by disrupting structure and respiratory function of mitochondria. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130791. [PMID: 36706486 DOI: 10.1016/j.jhazmat.2023.130791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Recently, we found that Ustiloxin A (UA, a mycotoxin) was widely detected in paddy environment and rice samples from several countries, and was also detected in human urine samples from China. However, the current knowledge about the health risks of UA are limited. In this research, the cytotoxicity of UA in mice renal tubular epithelial cells (mRTECs) was evaluated, and the results indicated that UA arrested cell cycle in G2/M phase via altering cellular morphology and microtubule, and inhibited the proliferation and division of mRTECs. Furthermore, UA could inhibit mitochondrial respiration via binding to the CoQ-binding site in dihydro-orotate dehydrogenase (DHODH) protein, and resulted in mitochondrial damage. These adverse effects of UA on mitochondria might be responsible for the cytotoxicity observed in vitro. In vivo, UA at concentrations that were comparable to the realistic concentrations of human exposure induced renal insufficiency in mice, and this might be associated with the renal mitochondrial damage in mice. However, exposure to UA at those realistic concentrations did not promote the progression from renal insufficiency to renal fibrosis and chronic kidney disease was not observed in mice.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaolin Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengqi Liang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6, ON, Canada
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
37
|
Walter M, Mayr F, Hanna BMF, Cookson V, Mortusewicz O, Helleday T, Herr P. NUDT22 promotes cancer growth through pyrimidine salvage. Oncogene 2023; 42:1282-1293. [PMID: 36871087 PMCID: PMC10101856 DOI: 10.1038/s41388-023-02643-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
The NUDIX hydrolase NUDT22 converts UDP-glucose into glucose-1-phosphate and the pyrimidine nucleotide uridine monophosphate but a biological significance for this biochemical reaction has not yet been established. Glucose-1-phosphate is an important metabolite for energy and biomass production through glycolysis and nucleotides required for DNA replication are produced through energetically expensive de novo or energy-efficient salvage pathways. Here, we describe p53-regulated pyrimidine salvage through NUDT22-dependent hydrolysis of UDP-glucose to maintain cancer cell growth and to prevent replication stress. NUDT22 expression is consistently elevated in cancer tissues and high NUDT22 expression correlates with worse survival outcomes in patients indicating an increased dependency of cancer cells to NUDT22. Furthermore, we show that NUDT22 transcription is induced after inhibition of glycolysis, MYC-mediated oncogenic stress, and DNA damage directly through p53. NUDT22-deficient cancer cells suffer from growth retardation, S-phase delay, and slower DNA replication fork speed. Uridine supplementation rescues replication fork progression and alleviates replication stress and DNA damage. Conversely, NUDT22 deficiency sensitizes cells to de novo pyrimidine synthesis inhibition in vitro and reduces cancer growth in vivo. In conclusion, NUDT22 maintains pyrimidine supply in cancer cells and depletion of NUDT22 leads to genome instability. Targeting NUDT22 therefore has high potential for therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Melanie Walter
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Florian Mayr
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Victoria Cookson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Patrick Herr
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
38
|
Liu W, Wang Y, Bozi LHM, Fischer PD, Jedrychowski MP, Xiao H, Wu T, Darabedian N, He X, Mills EL, Burger N, Shin S, Reddy A, Sprenger HG, Tran N, Winther S, Hinshaw SM, Shen J, Seo HS, Song K, Xu AZ, Sebastian L, Zhao JJ, Dhe-Paganon S, Che J, Gygi SP, Arthanari H, Chouchani ET. Lactate regulates cell cycle by remodelling the anaphase promoting complex. Nature 2023; 616:790-797. [PMID: 36921622 DOI: 10.1038/s41586-023-05939-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.
Collapse
Affiliation(s)
- Weihai Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Musculoskeletal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Patrick D Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tao Wu
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sanghee Shin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hans-Georg Sprenger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sally Winther
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen M Hinshaw
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Z Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luke Sebastian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Hsieh PH, Phal Y, Prasanth KV, Bhargava R. Cell Phase Identification in a Three-Dimensional Engineered Tumor Model by Infrared Spectroscopic Imaging. Anal Chem 2023; 95:3349-3357. [PMID: 36574385 PMCID: PMC10214899 DOI: 10.1021/acs.analchem.2c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle progression plays a vital role in regulating proliferation, metabolism, and apoptosis. Three-dimensional (3D) cell cultures have emerged as an important class of in vitro disease models, and incorporating the variation occurring from cell cycle progression in these systems is critical. Here, we report the use of Fourier transform infrared (FT-IR) spectroscopic imaging to identify subtle biochemical changes within cells, indicative of the G1/S and G2/M phases of the cell cycle. Following previous studies, we first synchronized samples from two-dimensional (2D) cell cultures, confirmed their states by flow cytometry and DNA quantification, and recorded spectra. We determined two critical wavenumbers (1059 and 1219 cm-1) as spectral indicators of the cell cycle for a set of isogenic breast cancer cell lines (MCF10AT series). These two simple spectral markers were then applied to distinguish cell cycle stages in a 3D cell culture model using four cell lines that represent the main stages of cancer progression from normal cells to metastatic disease. Temporal dependence of spectral biomarkers during acini maturation validated the hypothesis that the cells are more proliferative in the early stages of acini development; later stages of the culture showed stability in the overall composition but unique spatial differences in cells in the two phases. Altogether, this study presents a computational and quantitative approach for cell phase analysis in tissue-like 3D structures without any biomarker staining and provides a means to characterize the impact of the cell cycle on 3D biological systems and disease diagnostic studies using IR imaging.
Collapse
Affiliation(s)
- Pei-Hsuan Hsieh
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yamuna Phal
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
HN1 Is Enriched in the S-Phase, Phosphorylated in Mitosis, and Contributes to Cyclin B1 Degradation in Prostate Cancer Cells. BIOLOGY 2023; 12:biology12020189. [PMID: 36829467 PMCID: PMC9952942 DOI: 10.3390/biology12020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
HN1 has previously been shown as overexpressed in various cancers. In Prostate cancer, it regulates AR signaling and centrosome-related functions. Previously, in two different studies, HN1 expression has been observed as inversely correlated with Cyclin B1. However, HN1 interacting partners and the role of HN1 interactions in cell cycle pathways have not been completely elucidated. Therefore, we used Prostate cancer cell lines again and utilized both transient and stable inducible overexpression systems to delineate the role of HN1 in the cell cycle. HN1 characterization was performed using treatments of kinase inhibitors, western blotting, flow cytometry, immunofluorescence, cellular fractionation, and immunoprecipitation approaches. Our findings suggest that HN1 overexpression before mitosis (post-G2), using both transient and stable expression systems, leads to S-phase accumulation and causes early mitotic exit after post-G2 overexpression. Mechanistically, HN1 interacted with Cyclin B1 and increased its degradation via ubiquitination through stabilized Cdh1, which is a co-factor of the APC/C complex. Stably HN1-expressing cells exhibited a reduced Cdt1 loading onto chromatin, demonstrating an exit from a G1 to S phenotype. We found HN1 and Cdh1 interaction as a new regulator of the Cyclin B1/CDK1 axis in mitotic regulation which can be explored further to dissect the roles of HN1 in the cell cycle.
Collapse
|
41
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
42
|
Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis. Int J Mol Sci 2022; 23:ijms232415831. [PMID: 36555470 PMCID: PMC9782057 DOI: 10.3390/ijms232415831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular metabolism governs the signaling that supports physiological mechanisms and homeostasis in an individual, including neuronal transmission, wound healing, and circadian clock manipulation. Various factors have been linked to abnormal metabolic reprogramming, including gene mutations, epigenetic modifications, altered protein epitopes, and their involvement in the development of disease, including cancer. The presence of multiple distinct hallmarks and the resulting cellular reprogramming process have gradually revealed that these metabolism-related molecules may be able to be used to track or prevent the progression of cancer. Consequently, translational medicines have been developed using metabolic substrates, precursors, and other products depending on their biochemical mechanism of action. It is important to note that these metabolic analogs can also be used for imaging and therapeutic purposes in addition to competing for metabolic functions. In particular, due to their isotopic labeling, these compounds may also be used to localize and visualize tumor cells after uptake. In this review, the current development status, applicability, and limitations of compounds targeting metabolic reprogramming are described, as well as the imaging platforms that are most suitable for each compound and the types of cancer to which they are most appropriate.
Collapse
|
43
|
Molenberghs F, Verschuuren M, Barbier M, Bogers JJ, Cools N, Delputte P, Schelhaas M, De Vos WH. Cells infected with human papilloma pseudovirus display nuclear reorganization and heterogenous infection kinetics. Cytometry A 2022; 101:1035-1048. [PMID: 35668549 DOI: 10.1002/cyto.a.24663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Human papillomaviruses (HPV) are small, non-enveloped DNA viruses, which upon chronic infection can provoke cervical and head-and-neck cancers. Although the infectious life cycle of HPV has been studied and a vaccine is available for the most prevalent cancer-causing HPV types, there are no antiviral agents to treat infected patients. Hence, there is a need for novel therapeutic entry points and a means to identify them. In this work, we have used high-content microscopy to quantitatively investigate the early phase of HPV infection. Human cervical cancer cells and immortalized keratinocytes were exposed to pseudoviruses (PsV) of the widespread HPV type 16, in which the viral genome was replaced by a pseudogenome encoding a fluorescent reporter protein. Using the fluorescent signal as readout, we measured differences in infection between cell lines, which directly correlated with host cell proliferation rate. Parallel multiparametric analysis of nuclear organization revealed that HPV PsV infection alters nuclear organization and inflates promyelocytic leukemia protein body content, positioning these events at the early stage of HPV infection, upstream of viral replication. Time-resolved analysis revealed a marked heterogeneity in infection kinetics even between two daughter cells, which we attribute to differences in viral load. Consistent with the requirement for mitotic nuclear envelope breakdown, pharmacological inhibition of the cell cycle dramatically blunted infection efficiency. Thus, by systematic image-based single cell analysis, we revealed phenotypic alterations that accompany HPV PsV infection in individual cells, and which may be relevant for therapeutic drug screens.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Michaël Barbier
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Simply Complex Lab, UNAM, Bilkent University, Ankara, Turkey
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium.,μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
44
|
Yang S, Chen W, Jin S, Luo G, Jing X, Liu Q, Reinach PS, Qu J, Yan D. SUV39H1 regulates corneal epithelial wound healing via H3K9me3-mediated repression of p27. EYE AND VISION 2022; 9:4. [PMID: 35101125 PMCID: PMC8805298 DOI: 10.1186/s40662-022-00275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Background Corneal epithelial wound healing (CEWH) is vital for maintaining the integrity and barrier function of the cornea. Although histone modifications mediating gene expression patterns is fundamental in some other tissues, it remains unclear whether these gene regulation patterns underlie CEWH. Suppressor of variegation 3-9 homolog 1 (SUV39H1) plays a vital role in mediating gene silencing via histone H3 trimethylation of lysine 9 (H3K9me3). This study aims to characterize the comprehensive signature of epigenetic modifiers and determine the role of SUV39H1 in CEWH. Methods NanoString nCounter technology was used to detect the differentially expressed epigenetic modifiers during CEWH. Bioinformatic analyses were performed to reveal their involvement in this process. After knockdown of SUV39H1 with siRNA transfection, we determined the function of SUV39H1 on cell proliferation and migration in human corneal epithelial cells (HCECs) via MTS, EdU, and wound-healing assay, respectively. Flow cytometry analysis further confirmed the effect of SUV39H1 on the cell cycle of HCECs. Loss-of-function assays for SUV39H1 with siRNA injection or chaetocin assessed the role of SUV39H1 on CEWH in vivo. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting characterized the expression of SUV39H1 and its target genes. Chromatin immunoprecipitation assay was used to evaluate the distributions of H3K9me3 marks at the promoters of SUV39H1 target genes. Results We first identified 92 differentially expressed epigenetic modifiers and revealed their involvement during CEWH. SUV39H1 was confirmed to be upregulated in response to corneal injury. Its downregulation significantly inhibited HCEC proliferation and retarded in vivo CEWH. Furthermore, knockdown of SUV39H1 upregulated the p27 expression level and reduced H3K9me3 marks at p27 promoter in HCECs. In addition, p27 was remarkably downregulated with elevated H3K9me3 marks at its promoter during in vivo CEWH. Conclusions SUV39H1 plays a critical role in regulating corneal epithelial cell proliferation via H3K9me3-mediated suppression of p27 during CEWH. Our findings suggest that epigenetic modifiers such as SUV39H1 can be potential therapeutic approaches to accelerate corneal repair. Supplementary Information The online version contains supplementary material available at 10.1186/s40662-022-00275-5.
Collapse
|
45
|
Kim JH, Youn Y, Hwang JH. NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability. Mol Cells 2022; 45:792-805. [PMID: 36380731 PMCID: PMC9676985 DOI: 10.14348/molcells.2022.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
46
|
Zhu Q, Su M, Wei S, Shi D, Li L, Wang J, Sun H, Wang M, Li C, Guo D, Sun D. Up-regulated 60S ribosomal protein L18 in PEDV N protein-induced S-phase arrested host cells promotes viral replication. Virus Res 2022; 321:198916. [PMID: 36084747 PMCID: PMC9446558 DOI: 10.1016/j.virusres.2022.198916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus subverts the host cell cycle to create a favorable cellular environment that enhances viral replication in host cells. Previous studies have revealed that nucleocapsid (N) protein of the coronavirus porcine epidemic diarrhea virus (PEDV) interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication. However, the mechanism by which viral replication is increased in the PEDV N protein-induced S-phase arrested cells remains unknown. In the current study, the protein expression profiles of PEDV N protein-induced S-phase arrested Vero E6 cells and thymidine-induced S-phase arrested Vero E6 cells were characterized by tandem mass tag-labeled quantitative proteomic technology. The effect of differentially expressed proteins (DEPs) on PEDV replication was investigated. The results indicated that a total of 5709 proteins, including 20,560 peptides, were identified, of which 58 and 26 DEPs were identified in the PEDV N group and thymidine group, respectively (P < 0.05; ratio ≥ 1.2 or ≤ 0.8). The unique DEPs identified in the PEDV N group were mainly involved in DNA replication, transcription, and protein synthesis, of which 60S ribosomal protein L18 (RPL18) exhibited significantly up-regulated expression in the PEDV N protein-induced S-phase arrested Vero E6/IPEC-J2 cells and PEDV-infected IPEC-J2 cells (P < 0.05). Further studies revealed that the RPL18 protein could significantly enhance PEDV replication (P < 0.05). Our findings reveal a mechanism regarding increased viral replication when the PEDV N protein-induced host cells are in S-phase arrest. These data also provide evidence that PEDV maintains its own replication by utilizing protein synthesis-associated ribosomal proteins.
Collapse
Affiliation(s)
- Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shan Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Corresponding author
| |
Collapse
|
47
|
MYBL2 promotes proliferation and metastasis of bladder cancer through transactivation of CDCA3. Oncogene 2022; 41:4606-4617. [PMID: 36071275 DOI: 10.1038/s41388-022-02456-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
The transcription factor MYB proto-oncogene like 2 (MYBL2) is critical in regulating gene expression and tumorigenesis. However, the biological function of MYBL2 in bladder cancer (BLCA) remains to be elucidated. Here, we first revealed that MYBL2 was elevated in BLCA tissues and significantly correlated with clinicopathological parameters and cancer-specific survival in BLCA patients. Phenotypic assays showed that MYBL2 deficiency suppressed the proliferation and migration of BLCA cells in vitro and in vivo, whereas MYBL2 overexpression contributed to the opposite phenotype. Mechanistically, MYBL2 could bind to the promoter of its downstream target gene cell division cycle-associated protein 3 (CDCA3) and transactivate it, which in turn promoted the malignant phenotype of BLCA cells. Further investigations revealed that MYBL2 interacted with forkhead box M1 (FOXM1) to co-regulate the transcription of CDCA3. In addition, MYBL2/FOXM1 and CDCA3 might activate Wnt/β-catenin signaling, thereby promoting the malignant phenotype of BLCA cells. In conclusion, the current study identifies MYBL2 as an oncogene in BLCA. MYBL2 can accelerate the proliferation and metastasis of BLCA through the transactivation of CDCA3.
Collapse
|
48
|
Snyers L, Laffer S, Löhnert R, Weipoltshammer K, Schöfer C. CX-5461 causes nucleolar compaction, alteration of peri- and intranucleolar chromatin arrangement, an increase in both heterochromatin and DNA damage response. Sci Rep 2022; 12:13972. [PMID: 35978024 PMCID: PMC9385865 DOI: 10.1038/s41598-022-17923-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we characterize the changes in nucleolar morphology and its dynamics induced by the recently introduced compound CX-5461, an inhibitor of ribosome synthesis. Time-lapse imaging, immunofluorescence and ultrastructural analysis revealed that exposure of cells to CX-5461 has a profound impact on their nucleolar morphology and function: nucleoli acquired a compact, spherical shape and display enlarged, ring-like masses of perinucleolar condensed chromatin. Tunnels consisting of chromatin developed as transient structures running through nucleoli. Nucleolar components involved in rRNA transcription, fibrillar centres and dense fibrillar component with their major constituents ribosomal DNA, RNA polymerase I and fibrillarin maintain their topological arrangement but become reduced in number and move towards the nucleolar periphery. Nucleolar changes are paralleled by an increased amount of the DNA damage response indicator γH2AX and DNA unwinding enzyme topoisomerase I in nucleoli and the perinucleolar area suggesting that CX-5461 induces torsional stress and DNA damage in rDNA. This is corroborated by the irreversibility of the observed altered nucleolar phenotypes. We demonstrate that incubation with CX-5461, apart from leading to specific morphological alterations, increases senescence and decreases cell replication. We discuss that these alterations differ from those observed with other drugs interfering with nucleolar functions.
Collapse
Affiliation(s)
- Luc Snyers
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Sylvia Laffer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Renate Löhnert
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Cedeno-Rosario L, Honda D, Sunderland AM, Lewandowski MD, Taylor WR, Chadee DN. Phosphorylation of mixed lineage kinase MLK3 by cyclin-dependent kinases CDK1 and CDK2 controls ovarian cancer cell division. J Biol Chem 2022; 298:102263. [PMID: 35843311 PMCID: PMC9399292 DOI: 10.1016/j.jbc.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.
Collapse
Affiliation(s)
- Luis Cedeno-Rosario
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - David Honda
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Autumn M Sunderland
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Mark D Lewandowski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Deborah N Chadee
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
50
|
Kim S, Leem J, Oh JS, Kim JS. Cytotoxicity of 9,10-Phenanthrenequinone Impairs Mitotic Progression and Spindle Assembly Independent of ROS Production in HeLa Cells. TOXICS 2022; 10:toxics10060327. [PMID: 35736935 PMCID: PMC9227850 DOI: 10.3390/toxics10060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
The polycyclic aromatic hydrocarbon quinone derivative 9,10-phenanthrenequinone (9,10-PQ) is one of the most abundant and toxic components found in diesel exhaust particles (DEPs). These DEPs are created during diesel fuel combustion and are considered the main source of urban air pollution. As 9,10-PQ can produce excessive reactive oxygen species (ROS) through redox cycling, it has been shown to exert potent cytotoxic effects against various cell types. However, the mechanisms underlying this cytotoxicity remain unclear. In this study, we showed that 9,10-PQ exerts cytotoxicity by impairing mitotic progression and spindle assembly in HeLa cells. Exposure to 9,10-PQ impaired spindle assembly and chromosome alignment, resulting in delayed mitotic entry and progression in HeLa cells. Furthermore, 9,10-PQ exposure decreased the CEP192 and p-Aurora A levels at the spindle poles. Notably, these mitotic defects induced by 9,10-PQ were not rescued by scavenging ROS, implying the ROS-independent activity of 9,10-PQ. Therefore, our results provide the first evidence that 9,10-PQ exerts its cytotoxicity through specific inhibition of mitotic progression and spindle assembly, independent of ROS.
Collapse
Affiliation(s)
- Seul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Jiyeon Leem
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (J.S.O.); (J.-S.K.)
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
- Correspondence: (J.S.O.); (J.-S.K.)
| |
Collapse
|