1
|
Hernandez-Hernandez O, Sabater C, Calvete-Torre I, Doyagüez EG, Muñoz-Labrador AM, Julio-Gonzalez C, de Las Rivas B, Muñoz R, Ruiz L, Margolles A, Mancheño JM, Moreno FJ. Tailoring the natural rare sugars D-tagatose and L-sorbose to produce novel functional carbohydrates. NPJ Sci Food 2024; 8:74. [PMID: 39366963 PMCID: PMC11452612 DOI: 10.1038/s41538-024-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
This multidisciplinary study details the biosynthesis of novel non-digestible oligosaccharides derived from rare sugars, achieved through transfructosylation of D-tagatose and L-sorbose by levansucrase from Bacillus subtilis CECT 39 (SacB). The characterization of these carbohydrates using NMR and molecular docking was instrumental in elucidating the catalytic mechanism and substrate preference of SacB. Tagatose-based oligosaccharides were higher in abundance than L-sorbose-based oligosaccharides, with the most representative structures being: β-D-Fru-(2→6)-β-D-Fru-(2→1)-D-Tag and β-D-Fru-(2→1)-D-Tag. In vitro studies demonstrated the resistance of tagatose-based oligosaccharides to intestinal digestion and their prebiotic properties, providing insights into their structure-function relationship. β-D-Fru-(2→1)-D-Tag was the most resistant structure to small-intestinal digestion after three hours (99.8% remained unaltered). This disaccharide and the commercial FOS clustered in similar branches, indicating comparable modulatory properties on human fecal microbiota, and exerted a higher bifidogenic effect than unmodified tagatose. The bioconversion of selected rare sugars into β-fructosylated species with a higher degree of polymerization emerges as an efficient strategy to enhance the bioavailability of these carbohydrates and promote their interaction with the gut microbiota. These findings open up new opportunities for tailoring natural rare sugars, like D-tagatose and L-sorbose, to produce novel biosynthesized carbohydrates with functional and structural properties desirable for use as emerging prebiotics and low-calorie sweeteners.
Collapse
Affiliation(s)
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Inés Calvete-Torre
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana M Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Cristina Julio-Gonzalez
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - José M Mancheño
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, 28006, Madrid, Spain
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Kukaev E, Kirillova E, Tokareva A, Rimskaya E, Starodubtseva N, Chernukha G, Priputnevich T, Frankevich V, Sukhikh G. Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. Int J Mol Sci 2024; 25:10636. [PMID: 39408965 PMCID: PMC11477200 DOI: 10.3390/ijms251910636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that impacts both the endocrine and metabolic systems, often resulting in infertility, obesity, insulin resistance, and cardiovascular complications. The aim of this study is to investigate the role of intestinal flora and its metabolites, particularly short-chain fatty acids (SCFAs), in the development of PCOS, and to assess the effects of metformin therapy on these components. SCFA levels in fecal and blood samples from women with PCOS (n=69) and healthy controls (n=18) were analyzed using Gas Chromatography-Mass Spectrometry (GC/MS) for precise measurement. Fecal microbiota were quantitatively detected by real-time polymerase chain reaction (PCR). To assess the efficacy of six months of metformin treatment, changes in the microbiota and SCFAs in the PCOS group (n=69) were also evaluated. The results revealed that women with PCOS exhibited a significant reduction in beneficial bacteria (namely, the C. leptum group and Prevotella spp.) alongside a notable overgrowth of opportunistic microorganisms (C. perfringens, C. difficile, Staphylococcus spp., and Streptococcus spp.). An overproduction of acetic acid (AA, FC=0.47, p<0.05) and valeric acid (VA, FC=0.54, p<0.05) suggests a link between elevated SCFAs and the development of obesity and PCOS. Interestingly, AA in the bloodstream might offer a protective effect against PCOS by ameliorating key symptoms such as high body mass index (r=-0.33, p=0.02), insulin resistance (r=-0.39, p=0.02), and chronic inflammation. Although serum SCFA levels showed non-significant changes following metformin treatment (p>0.05), the normalization of AA in the gut underscores that metformin exerts a more pronounced effect locally within the gastrointestinal tract. Furthermore, the study identified the most effective model for predicting the success of metformin therapy, based on serum concentrations of butyric acid (BA) and VA, achieving a 91% accuracy rate, 100% sensitivity, and 80% specificity. These promising findings highlight the potential for developing targeted interventions and personalized treatments, ultimately improving clinical outcomes for women with PCOS.
Collapse
Affiliation(s)
- Evgenii Kukaev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina Kirillova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Elena Rimskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Galina Chernukha
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Tatiana Priputnevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| |
Collapse
|
3
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Wattanathorn J, Tong-un T, Thukham-mee W, Paholpak P, Rangseekhajee P. A Randomized, Double-Blind, Placebo-Controlled Study of an Anthocyanin-Rich Functional Ingredient on Cognitive Function and Eye Dryness in Late Adulthood Volunteers: Roles of Epigenetic and Gut Microbiome Modulations. Nutrients 2023; 15:3499. [PMID: 37630690 PMCID: PMC10459889 DOI: 10.3390/nu15163499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the rising demand for supplements targeting cognitive enhancement and dry eye together with the health benefits of anthocyanins, we have developed a functional soup containing an anthocyanin-rich functional ingredient, or "Anthaplex," and assessed the effects on cognitive function and eye dryness together with the possible mechanisms. A total of 69 male and female health volunteers were randomized and divided into placebo, D2, and D4 groups. All subjects consumed 120 mL of placebo or functional soup containing "Anthaplex" either at 2 or 4 g per serving per day within 5 min in the morning for eight weeks. The cognitive function, working memory, dry eye, AChE, MAO, MAO-A, MAO-B, and GABA-T activities, BDNF, HAC, HDAC, and DNMT activities, pH, and amount of lactic acid-producing bacteria, particularly Lactobacillus and Bifidobacterium spp. in feces, were determined before intervention and after eight weeks of consumption. Subjects who consumed the "Anthaplex" soup had improved cognitive function, working memory, eye dryness, histone acetylation, ACh E suppression, and BDNF with increased Bifidobacterium spp. but decreased pH in feces. These data suggest that "Anthaplex" improves cognitive function and eye dryness via the modulations of the histone acetylation process, gut microbiome, and cholinergic function.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.T.-u.); (W.T.-m.)
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.T.-u.); (W.T.-m.)
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.T.-u.); (W.T.-m.)
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pongsatorn Paholpak
- Department Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.R.)
| | - Poonsri Rangseekhajee
- Department Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.R.)
| |
Collapse
|
5
|
Garnevi-Fávero A, Nascimento-da Silva K, Rodrigues-Ribeiro W, Marcantonio-Ferreira C, Sartorelli P, Cardili L, De Cássia-Sinigaglia R, Bertaglia-Pereira JN, Aparecido-da Silva M, Vilegas W, Dias-Silva MJ, Ribeiro-Paiotti AP. Effects of Mimosa caesalpiniifolia pre-formulation on the intestinal barrier during sodium dextran sulfate-induced colitis in Wistar rats. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:282-295. [PMID: 37433169 PMCID: PMC10552606 DOI: 10.7705/biomedica.6611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION Anti-inflammatories, immunosuppressants, and immunobiological are commonly used in the treatment of inflammatory bowel disease. However, some patients do not present an adequate response or lose effective response during the treatment. A recent study found a potential anti-inflammatory effect of the hydroalcoholic extract of Mimosa caesalpiniifolia on trinitrobenzene sulfonic acid-induced colitis in Wistar rats. OBJECTIVE To evaluate the effects of M. caesalpiniifolia pre-formulation on the intestinal barrier using dextran sulfate sodium-induced colitis model. MATERIALS AND METHODS Leaf extracts were prepared in 70% ethanol and dried with a Buchi B19 Mini-spray dryer using 20% Aerosil® solution. Thirty-two male Wistar rats were randomized into four groups: basal control, untreated colitis, pre-formulation control (125 mg/kg/day), and colitis treated with pre-formulation (125 mg/kg/day). Clinical activity index was recorded daily and all rats were euthanized on the ninth day. Colon fragments were fixed and processed for histological and ultrastructural analyses. Stool samples were collected and processed for analysis of the short-chain fatty acid. RESULTS Treatment with the pre-formulation decreased the clinical activity (bloody diarrhea), inflammatory infiltrate, and the ulcers. Pre-formulation did not repair the epithelial barrier and there were no significant differences in the goblet cells index. There was a significant difference in butyrate levels in the rats treated with the pre-formulation. CONCLUSIONS The pre-formulation minimized the clinical symptoms of colitis and intestinal inflammation, but did not minimize damage to the intestinal barrier.
Collapse
Affiliation(s)
- Aline Garnevi-Fávero
- Laboratory of Hepatology Molecular Applied, Discipline of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Karina Nascimento-da Silva
- Laboratory of Hepatology Molecular Applied, Discipline of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Willian Rodrigues-Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Caroline Marcantonio-Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | - Wagner Vilegas
- Institute of Biosciences, São Paulo State University, São Vicente, São Paulo, Brazil .
| | | | - Ana Paula Ribeiro-Paiotti
- Laboratory of Hepatology Molecular Applied, Discipline of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
7
|
Tajasuwan L, Kettawan A, Rungruang T, Wunjuntuk K, Prombutara P. Role of Dietary Defatted Rice Bran in the Modulation of Gut Microbiota in AOM/DSS-Induced Colitis-Associated Colorectal Cancer Rat Model. Nutrients 2023; 15:nu15061528. [PMID: 36986258 PMCID: PMC10052090 DOI: 10.3390/nu15061528] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Defatted rice bran (DRB) is a by-product of rice bran derived after the oil extraction. DRB contains several bioactive compounds, including dietary fiber and phytochemicals. The supplementation with DRB manifests chemopreventive effects in terms of anti-chronic inflammation, anti-cell proliferation, and anti-tumorigenesis in the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colitis-associated colorectal cancer (CRC) model in rats. However, little is known about its effect on gut microbiota. Herein, we investigated the effect of DRB on gut microbiota and short chain fatty acid (SCFA) production, colonic goblet cell loss, and mucus layer thickness in the AOM/DSS-induced colitis-associated CRC rat model. The results suggested that DRB enhanced the production of beneficial bacteria (Alloprevotella, Prevotellaceae UCG-001, Ruminococcus, Roseburia, Butyricicoccus) and lessened the production of harmful bacteria (Turicibacter, Clostridium sensu stricto 1, Escherichia-Shigella, Citrobacter) present in colonic feces, mucosa, and tumors. In addition, DRB also assisted the cecal SCFAs (acetate, propionate, butyrate) production. Furthermore, DRB restored goblet cell loss and improved the thickness of the mucus layer in colonic tissue. These findings suggested that DRB could be used as a prebiotic supplement to modulate gut microbiota dysbiosis, which decreases the risks of CRC, therefore encouraging further research on the utilization of DRB in various nutritional health products to promote the health-beneficial bacteria in the colon.
Collapse
Affiliation(s)
- Laleewan Tajasuwan
- Graduate Student in Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Aikkarach Kettawan
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kansuda Wunjuntuk
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
9
|
Ochoa KC, Samant S, Liu A, Duysburgh C, Marzorati M, Singh P, Hachuel D, Chey W, Wallach T. In Vitro Efficacy of Targeted Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols Enzymatic Digestion in a High-Fidelity Simulated Gastrointestinal Environment. GASTRO HEP ADVANCES 2022; 2:283-290. [PMID: 39132653 PMCID: PMC11308120 DOI: 10.1016/j.gastha.2022.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Irritable bowel syndrome (IBS) is characterized by abdominal pain and changes in bowel habits. Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) are poorly absorbed short-chain carbohydrates that may drive commensal microbial gas production, promoting abdominal pain in IBS. Low-FODMAP diet can result in symptomatic improvement in 50%-80% of IBS patients. However, this diet is not meant to be sustained long term, with concern for downstream nutrition and microbial issues. In this study, we evaluate the function of a targeted FODMAP enzymatic digestion food supplement FODMAP enzymatic digestion (FODZYME) containing a fructan-hydrolase enzyme (with significant inulinase activity) in a simulated gastrointestinal environment. Methods Using SHIME (Simulator of the Human Intestinal Microbial Ecosystem), a multi-compartment simulator of the human gut, FODZYME dose finding assay in modeled gastrointestinal conditions assessed enzymatic ability to hydrolyze 3 g of inulin. Full intestinal modeling assessing digestion of inulin, absorption of fructose, gas production, and other measures of commensal microbial behavior was completed using 1.125 g of FODZYME. Results After 30 minutes, 90% of the inulin was converted to fructose by 1.125 g of FODZYME. Doubling dosage showed no significant improvement in conversion, whereas a half dose decreased performance to 77.2%. Seventy percent of released fructose was absorbed during simulated small intestinal transit, with a corresponding decrease in microbial gas production, and a small decrease in butyrate and short-chain fatty acid production. Conclusion FODZYME specifically breaks down inulin in representative gastrointestinal conditions, resulting in decreased gas production while substantially preserving short-chain fatty acid and butyrate production in the model colon. Our results suggest dietary supplementation with FODZYME would decrease intestinal FODMAP burden and gas production.
Collapse
Affiliation(s)
- Kenny Castro Ochoa
- Division of Pediatric Gastroenterology, SUNY Downstate Health Sciences University, Brooklyn, New York
| | | | - Anjie Liu
- Kiwi Biosciences, Cambridge, Massachusetts
| | | | | | - Prashant Singh
- Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | | | - William Chey
- Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Thomas Wallach
- Division of Pediatric Gastroenterology, SUNY Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
10
|
Amalia R, Pramono A, Afifah DN, Noer ER, Muniroh M, Kumoro AC. Mangrove fruit ( Bruguiera gymnorhiza) increases circulating GLP-1 and PYY, modulates lipid profiles, and reduces systemic inflammation by improving SCFA levels in obese wistar rats. Heliyon 2022; 8:e10887. [PMID: 36254287 PMCID: PMC9568852 DOI: 10.1016/j.heliyon.2022.e10887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Bruguiera gymnorhiza (BG) has potential as a functional food because of its dietary fibre content and bioactive components such as flavonoids and phenolic compounds. However, it is not studied in the context of diet-related disease prevention. In the present study, we aimed to investigate the effects of Bruguiera gymnorhiza fruit flour (BGF) on satiety hormone, lipid profile, systemic inflammation, body weight, and caecum SCFA levels in diet-induced obese rats. A total of 28 obese male Wistar rats were divided into four groups. Group 1 (K1) was given a standard chow, group 2 (K2) standard chow + orlistat, group 3 (P1) standard chow + BGF 2 g/200 g BW/day, and group 4 (P2) standard chow + BGF 4 g/200 g BW/day for 28 days. The levels of GLP-1, PYY, total cholesterol (TC), triglyceride (TG), HDL, IL-6, TNF-α, and body weight were measured before and after the intervention; meanwhile, the caecum SCFA levels were assessed only after the intervention. In this study, BGF intervention increased the dose-dependent plasma GLP-1 and PYY levels (P < 0.000). In addition, BGF intervention also decreased lipid profiles (TC & TG) (P < 0.000, respectively) and systemic inflammation in a dose-dependent manner. Finally, acetate, propionate, and total SCFA concentrations were higher in the BGF intervention group (P2) compared to the other groups (p < 0.05). The SCFA levels were associated with satiety hormones, lipids, and systemic inflammation (P < 0.05). The BGF intervention improved satiety hormone, lipid profile, systemic inflammation, and SCFA levels.
Collapse
Affiliation(s)
- Rinta Amalia
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Adriyan Pramono
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia,Center of Nutrition Research, Universitas Diponegoro, Semarang, Indonesia,Corresponding author.
| | - Diana Nur Afifah
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia,Center of Nutrition Research, Universitas Diponegoro, Semarang, Indonesia
| | - Etika Ratna Noer
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia,Center of Nutrition Research, Universitas Diponegoro, Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Andri Cahyo Kumoro
- Department of Chemical Engineering, Faculty of Engineering, Semarang, Indonesia
| |
Collapse
|
11
|
Dardi P, dos Santos-Eichler RA, de Oliveira S, Vinolo MAR, Câmara NOS, Rossoni LV. Reduced intestinal butyrate availability is associated with the vascular remodeling in resistance arteries of hypertensive rats. Front Physiol 2022; 13:998362. [PMID: 36246106 PMCID: PMC9558208 DOI: 10.3389/fphys.2022.998362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
During hypertension an unbalance of short-chain fatty acids (SCFAs) production by intestinal bacteria is described. However, no data evaluate the association of SCFAs and vascular remodeling in hypertension, which is an important hallmark of this disease. Thus, the present study aims to evaluate the correlations between SCFAs availability and the resistance arteries remodeling in hypertension, as well as to identify the possible pathway by which the SCFAs could exert a structural and mechanical influence. Hence, male spontaneously hypertensive rats (SHR) and normotensive Wistar rats had blood pressure measured by tail-cuff plethysmography; fecal SCFAs content assessed by gas chromatography; gene expression of SCFAs-transporters in gut epithelium and SCFAs-sensing receptors on mesenteric resistance arteries (MRA) quantified by PCR; and MRA structural and mechanical parameters analyzed by pressure myograph. Reduced butyrate fecal content was found in SHR, with no changes in propionate and acetate, as well as decreased mRNA levels of SCFAs-transporters (MCT1, MCT4, and SMCT1) in the intestinal epithelium. In addition, lower gene expression of SCFAs-sensing receptors (GPR41, GPR43, and GPR109a, but not Olfr78) was identified in MRAs of SHR, which also shows inward eutrophic remodeling with stiffness. Butyrate content presented a negative correlation with systolic blood pressure and with the structural alterations found on MRAs, while a positive correlation between butyrate content and mechanical parameters was detected. Altogether the present study suggests that lower butyrate content due to ineffective SCFA bioavailability, associated with lower SCFAs-sensing receptors expression, could favor MRA remodeling, increasing peripheral vascular resistance and worsening hypertension prognosis.
Collapse
Affiliation(s)
- Patrizia Dardi
- Laboratory of Vascular Physiology, Institute of Biomedical Science, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Institute of Biology, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Institute of Biology, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Science, Department of Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Laboratory of Vascular Physiology, Institute of Biomedical Science, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Luciana Venturini Rossoni,
| |
Collapse
|
12
|
Rodríguez-Mejía UU, Viveros-Paredes JM, Zepeda-Morales ASM, Carrera-Quintanar L, Zepeda-Nuño JS, Velázquez-Juárez G, Delgado-Rizo V, García-Iglesias T, Camacho-Padilla LG, Varela-Navarro E, Anguiano-Sevilla LA, Franco-Torres EM, López-Roa RI. β-Caryophyllene: A Therapeutic Alternative for Intestinal Barrier Dysfunction Caused by Obesity. Molecules 2022; 27:6156. [PMID: 36234691 PMCID: PMC9570618 DOI: 10.3390/molecules27196156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity is an excessive accumulation of fat that exacerbates the metabolic and inflammatory processes. Studies associate these processes with conditions and dysregulation in the intestinal tract, increased concentrations of lipopolysaccharides (LPSs) in the blood, differences in the abundance of intestinal microbiota, and the production of secondary metabolites such as short-chain fatty acids. β-Caryophyllene (BCP) is a natural sesquiterpene with anti-inflammatory properties and with the potential purpose of fighting metabolic diseases. A diet-induced obesity model was performed in 16-week-old C57BL/6 mice administered with BCP [50 mg/kg]. A reduction in the expression of Claudin-1 was observed in the group with a high-fat diet (HFD), which was caused by the administration of BCP; besides BCP, the phylaAkkermansia and Bacteroidetes decreased between the groups with a standard diet (STD) vs. HFD. Nevertheless, the use of BCP in the STD increased the expression of these phyla with respect to fatty acids; a similar effect was observed, in the HFD group that had a decreasing concentration that was restored with the use of BCP. The levels of endotoxemia and serum leptin increased in the HFD group, while in the HFD + BCP group, similar values were found to those of the STD group, attributing the ability to reduce these in conditions of obesity.
Collapse
Affiliation(s)
- Uriel Ulises Rodríguez-Mejía
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Juan Manuel Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Quimícos Clínicos y Bacteriológicos Vinculación, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Lucrecia Carrera-Quintanar
- Laboratorio de Ciencias de los Alimentos, Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Jalisco, Mexico
| | - José Sergio Zepeda-Nuño
- Departamento de Microbiología y Patología, Centro de Investigación y Diagnóstico de Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Jalisco, Mexico
| | - Gilberto Velázquez-Juárez
- Laboratorio de Bioquimíca Estructural, Departamento de Química, Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Vidal Delgado-Rizo
- Departamento de Fisiología, Centro de Investigación en Inmunología y Dermatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Jalisco, Mexico
| | - Trinidad García-Iglesias
- Departamento de Fisiología, Instituto de Investigación en Cáncer de la Infancia y Adolescencia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Jalisco, Mexico
| | - Luisa Guadalupe Camacho-Padilla
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Elizabeth Varela-Navarro
- Laboratorio de Análisis Quimícos Clínicos y Bacteriológicos Vinculación, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Luis Alberto Anguiano-Sevilla
- Laboratorio de Biología Molecular, Genética y Proteómica, Instituto Transdiciplinar de Investigación y Servicios, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 45150, Jalisco, Mexico
| | - Esmeralda Marisol Franco-Torres
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Rocio Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
13
|
Hadinia N, Edalatian Dovom MR, Yavarmanesh M. The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing Short Chain Fatty Acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zhang T, Wu X, Yuan H, Huang S, Park S. Mitigation of Memory Impairment with Fermented Fucoidan and λ-Carrageenan Supplementation through Modulating the Gut Microbiota and Their Metagenome Function in Hippocampal Amyloid-β Infused Rats. Cells 2022; 11:cells11152301. [PMID: 35892598 PMCID: PMC9367263 DOI: 10.3390/cells11152301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Attenuating acetylcholinesterase and insulin/insulin-like growth factor-1 signaling in the hippocampus is associated with Alzheimer’s disease (AD) development. Fucoidan and carrageenan are brown and red algae, respectively, with potent antibacterial, anti-inflammatory, antioxidant and antiviral activities. This study examined how low-molecular-weight (MW) and high-MW fucoidan and λ-carrageenan would improve memory impairment in Alzheimer’s disease-induced rats caused by an infusion of toxic amyloid-β(Aβ). Fucoidan and λ-carrageenan were dissected into low-MW by Luteolibacter algae and Pseudoalteromonas carrageenovora. Rats receiving an Aβ(25–35) infusion in the CA1 region of the hippocampus were fed dextrin (AD-Con), 1% high-MW fucoidan (AD-F-H), 1% low-MW fucoidan (AD-F-L), 1% high-MW λ-carrageenan (AD-C-H), and 1% low-MW λ-carrageenan (AD-C-L) for six weeks. Rats to receive saline infusion (Normal-Con) had an AD-Con diet. The AD-F-L group showed an improved memory function, which manifested as an enhanced Y-maze spontaneous alternation test, water maze, and passive avoidance tests, similar to the Normal-Con group. AD-F-L also potentiated hippocampal insulin signaling and increased the expression of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the hippocampus. AD-C-L improved the memory function mainly by increasing the BDNF content. AD-F-H and AD-C-H did not improve the memory function. Compared to AD-Con, the ascending order of AD-C-H, AD-F-H, AD-C-L, and AD-F-L increased insulin signaling by enhancing the pSTAT3→pAkt→pGSK-3β pathway. AD-F-L improved glucose tolerance the most. Compared to AD-CON, the AD-F-L treatment increased the serum acetate concentrations and compensated for the defect of cerebral glucose metabolism. AD-Con increased Clostridium, Terrisporobacter and Sporofaciens compared to Normal-Con, and AD-F-L and AD-C-L increased Akkermentia. In conclusion, AD-F-L and AD-C-L alleviated the memory function in the rats with induced AD symptoms by modulating.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Xuangao Wu
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Heng Yuan
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Shaokai Huang
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Sunmin Park
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5633; Fax: +82-41-540-5638
| |
Collapse
|
15
|
Escherichia/ Shigella, SCFAs, and Metabolic Pathways-The Triad That Orchestrates Intestinal Dysbiosis in Patients with Decompensated Alcoholic Cirrhosis from Western Mexico. Microorganisms 2022; 10:microorganisms10061231. [PMID: 35744749 PMCID: PMC9229093 DOI: 10.3390/microorganisms10061231] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiota undergoes profound alterations in alcohol cirrhosis. Microbiota-derived products, e.g., short chain fatty acids (SCFA), regulate the homeostasis of the gut-liver axis. The objective was to evaluate the composition and functions of the intestinal microbiota in patients with alcohol-decompensated cirrhosis. Fecal samples of 18 patients and 18 healthy controls (HC) were obtained. Microbial composition was characterized by 16S rRNA amplicon sequencing, SCFA quantification was performed by gas chromatography (GC), and metagenomic predictive profiles were analyzed by PICRUSt2. Gut microbiota in the cirrhosis group revealed a significant increase in the pathogenic/pathobionts genera Escherichia/Shigella and Prevotella, a decrease in beneficial bacteria, such as Blautia, Faecalibacterium, and a decreased α-diversity (p < 0.001) compared to HC. Fecal SCFA concentrations were significantly reduced in the cirrhosis group (p < 0.001). PICRUSt2 analysis indicated a decrease in acetyl-CoA fermentation to butyrate, as well as an increase in pathways related to antibiotics resistance, and aromatic amino acid biosynthesis. These metabolic pathways have been poorly described in the progression of alcohol-related decompensated cirrhosis. The gut microbiota of these patients possesses a pathogenic/inflammatory environment; therefore, future strategies to balance intestinal dysbiosis should be implemented. These findings are described for the first time in the population of western Mexico.
Collapse
|
16
|
Hur HJ, Wu X, Yang HJ, Kim MJ, Lee KH, Hong M, Park S, Kim MS. Beneficial Effects of a Low-Glycemic Diet on Serum Metabolites and Gut Microbiota in Obese Women With Prevotella and Bacteriodes Enterotypes: A Randomized Clinical Trial. Front Nutr 2022; 9:861880. [PMID: 35592630 PMCID: PMC9111978 DOI: 10.3389/fnut.2022.861880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Generalized healthy eating patterns may not benefit everyone due to different genetics and enterotypes. We aimed to compare the effects of a low-glycemic diet representing the Korean traditional balanced diet (Low-GID) and westernized diet as a control diet (CD) on anthropometry, serum metabolites, and fecal bacteria in a randomized clinical trial according to enterotypes. We recruited 52 obese women aged 30-50 years, and they consumed Low-GID and CD meals for 1 month, with a 1-month washout period, in a crossover randomized clinical trial. The Low-GID was mainly composed of whole grains with fish, vegetables, seaweeds, and perilla oil, whereas CD contained refined rice, bread, noodles, meats, and processed foods. Serum lipid profiles, metabolomics, serum short-chain fatty acids, and fecal bacteria were analyzed. The important variables influenced by Low-GID and CD were determined by SHAP value in the XGBoost algorithm according to Bacteroides (ET-B) and Prevotella (ET-P). Low-GID and CD interventions did not change the enterotypes, but they modified serum metabolites and some fecal bacterial species differently according to enterotypes. The 10-fold cross-validation of the XGBoost classifier in the ET-P and ET-B clusters was 0.91 ± 0.04 and 0.8 ± 0.07, respectively. In the ET-P cluster, serum L-homocysteine, glutamate, leucine concentrations, and muscle mass were higher in the CD group than in the Low-GID group, whereas serum 3-hydroxybutyric acid concentration was significantly higher in the Low-GID group than in the CD group (p < 0.05). In fecal bacteria, Gemmiger formicilis, Collinsella aerofaciens, and Escherichia coli were higher in the CD group than in the Low-GID group. In the ET-B cohort, serum tryptophan and total cholesterol concentrations were higher in the CD group than in the Low-GID group, whereas serum glutathione and 3-hydroxybutyric acid concentrations were significantly higher in the Low-GID group than in the CD group (p < 0.05). However, Bifidobacterium longum was higher in CD than Low-GID in the ET-B cluster, but serum butyric acid levels were higher in the Low-GID than in the CD group. In conclusion, Low-GID can be recommended in obese women with both ET-P and ET-B enterotypes, although its efficacy was more effective in ET-P. Clinical Trial Registration [https://cris.nih.go.kr/cris/search/detailSearch.do/17398], identifier [KCT0005340].
Collapse
Affiliation(s)
- Haeng Jeon Hur
- Food Functionality Research Division, Korea Food Research Institute, Wanju, South Korea
| | - Xuangao Wu
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan, South Korea
| | - Hye Jeong Yang
- Food Functionality Research Division, Korea Food Research Institute, Wanju, South Korea
| | - Min Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, South Korea
| | - Kyun-Hee Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, South Korea
| | - Moonju Hong
- Food Functionality Research Division, Korea Food Research Institute, Wanju, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, South Korea
| | - Sunmin Park
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan, South Korea
| | - Myung-Sunny Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, South Korea
| |
Collapse
|
17
|
Yuan H, Zhou J, Li N, Wu X, Huang S, Park S. Isolation and identification of mucin-degrading bacteria originated from human feces and their potential probiotic efficacy according to host-microbiome enterotype. J Appl Microbiol 2022; 133:362-374. [PMID: 35365862 DOI: 10.1111/jam.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
AIM Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS Bacteria with mucin decomposition ability from human feces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analyzed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(B.) animalis SPM01 (CP001606.1, 99%), B. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, B. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the fecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the fecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. B. animalis and L. reuteri increased the butyric acid level in fecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY Probiotics need to be personalized according to the enterotypes in clinical application.
Collapse
Affiliation(s)
- Heng Yuan
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Junyu Zhou
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Nanxin Li
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Xuangao Wu
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Shaokai Huang
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Sunmin Park
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea.,Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
18
|
Zhen Y, Ge L, Xu Q, Hu L, Wei W, Huang J, Loor JJ, Yang Q, Wang M, Zhou P. Normal Light-Dark and Short-Light Cycles Regulate Intestinal Inflammation, Circulating Short-chain Fatty Acids and Gut Microbiota in Period2 Gene Knockout Mice. Front Immunol 2022; 13:848248. [PMID: 35371053 PMCID: PMC8971677 DOI: 10.3389/fimmu.2022.848248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Regular environmental light–dark (LD) cycle-regulated period circadian clock 2 (Per2) gene expression is essential for circadian oscillation, nutrient metabolism, and intestinal microbiota balance. Herein, we combined environmental LD cycles with Per2 gene knockout to investigate how LD cycles mediate Per2 expression to regulate colonic and cecal inflammatory and barrier functions, microbiome, and short-chain fatty acids (SCFAs) in the circulation. Mice were divided into knockout (KO) and wild type (CON) under normal light–dark cycle (NLD) and short-light (SL) cycle for 2 weeks after 4 weeks of adaptation. The concentrations of SCFAs in the serum and large intestine, the colonic and cecal epithelial circadian rhythm, SCFAs transporter, inflammatory and barrier-related genes, and Illumina 16S rRNA sequencing were measured after euthanasia during 10:00–12:00. KO decreased the feeding frequency at 0:00–2:00 but increased at 12:00–14:00 both under NLD and SL. KO upregulated the expression of Per1 and Rev-erbα in the colon and cecum, while it downregulated Clock and Bmal1. In terms of inflammatory and barrier functions, KO increased the expression of Tnf-α, Tlr2, and Nf-κb p65 in the colon and cecum, while it decreased Claudin and Occludin-1. KO decreased the concentrations of total SCFAs and acetate in the colon and cecum, but it increased butyrate, while it had no impact on SCFAs in the serum. KO increased the SCFAs transporter because of the upregulation of Nhe1, Nhe3, and Mct4. Sequencing data revealed that KO improved bacteria α-diversity and increased Lachnospiraceae and Ruminococcaceae abundance, while it downregulated Erysipelatoclostridium, Prevotellaceae UCG_001, Olsenella, and Christensenellaceae R-7 under NLD in KO mice. Most of the differential bacterial genus were enriched in amino acid and carbohydrate metabolism pathways. Overall, Per2 knockout altered circadian oscillation in the large intestine, KO improved intestinal microbiota diversity, the increase in Clostridiales abundance led to the reduction in SCFAs in the circulation, concentrations of total SCFAs and acetate decreased, while butyrate increased and SCFAs transport was enhanced. These alterations may potentially lead to inflammation of the large intestine. Short-light treatment had minor impact on intestinal microbiome and metabolism.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiaoyun Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Human and Animal Physiology, Wageningen University & Research, Wageningen, Netherlands
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiantao Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Qingyong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- *Correspondence: Mengzhi Wang, ; Ping Zhou,
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- *Correspondence: Mengzhi Wang, ; Ping Zhou,
| |
Collapse
|
19
|
Godínez-Méndez LA, Gurrola-Díaz CM, Zepeda-Nuño JS, Vega-Magaña N, Lopez-Roa RI, Íñiguez-Gutiérrez L, García-López PM, Fafutis-Morris M, Delgado-Rizo V. In Vivo Healthy Benefits of Galacto-Oligosaccharides from Lupinus albus (LA-GOS) in Butyrate Production through Intestinal Microbiota. Biomolecules 2021; 11:1658. [PMID: 34827656 PMCID: PMC8615603 DOI: 10.3390/biom11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal digestive systems host microorganism ecosystems, including integrated bacteria, viruses, fungi, and others, that produce a variety of compounds from different substrates with healthy properties. Among these substrates, α-galacto-oligosaccharides (GOS) are considered prebiotics that promote the grow of gut microbiota with a metabolic output of Short Chain Fatty Acids (SCFAs). In this regard, we evaluated Lupinus albus GOS (LA-GOS) as a natural prebiotic using different animal models. Therefore, the aim of this work was to evaluate the effect of LA-GOS on the gut microbiota, SCFA production, and intestinal health in healthy and induced dysbiosis conditions (an ulcerative colitis (UC) model). Twenty C57BL/6 mice were randomly allocated in four groups (n = 5/group): untreated and treated non-induced animals, and two groups induced with 2% dextran sulfate sodium to UC with and without LA-GOS administration (2.5 g/kg bw). We found that the UC treated group showed a higher goblet cell number, lower disease activity index, and reduced histopathological damage in comparison to the UC untreated group. In addition, the abundance of positive bacteria to butyryl-CoA transferase in gut microbiota was significantly increased by LA-GOS treatment, in healthy conditions. We measured the SCFA production with significant differences in the butyrate concentration between treated and untreated healthy groups. Finally, the pH level in cecum feces was reduced after LA-GOS treatment. Overall, we point out the in vivo health benefits of LA-GOS administration on the preservation of the intestinal ecosystem and the promotion of SCFA production.
Collapse
Affiliation(s)
- Lucila A. Godínez-Méndez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - José Sergio Zepeda-Nuño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Natali Vega-Magaña
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Rocio Ivette Lopez-Roa
- Departamento de Farmacobiología, Centro Universitaro de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Pedro M. García-López
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biologíco y Agropecuarias, Universidad de Guadalajara, Guadalajara 45200, Jalisco, Mexico;
| | - Mary Fafutis-Morris
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Vidal Delgado-Rizo
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| |
Collapse
|
20
|
A highly sensitive, simple, and fast gas chromatography-mass spectrometry method for the quantification of serum short-chain fatty acids and their potential features in central obesity. Anal Bioanal Chem 2021; 413:6837-6844. [PMID: 34533599 DOI: 10.1007/s00216-021-03639-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main gut microbe metabolites, which have no more than six carbons. SCFAs are an emerging biomarker in metabolic diseases, including central obesity. Commonly, SCFAs are measured in fecal samples, where they are highly abundant, but here they do not reflect direct interactions with related organs. Serum SCFAs are assumed to be more associated with metabolic disease than fecal SCFAs, albeit at very low concentrations. The aim of the present study is to develop a highly sensitive, simple, and fast method for measuring six SCFAs in the serum by gas chromatography-mass spectrometry (GCMS). The serum is mixed with meta-phosphoric acid and 2,2-dimethylbutyric acid, followed by homogenization and centrifugation. Supernatant is then injected into the fused silica capillary column. The method is linear from 0.12-500 μmol/L for all SCFAs with an accuracy of 90-117%. The total coefficient of variation for precision ranges from 3.8 to 14.1%. A preliminary study is performed with 32 centrally obese subjects and 17 lean subjects. The mean values of all SCFAs, including acetic, propionic, isobutyric, butyric, isovaleric, and valeric acid, in the centrally obese subjects are significantly higher compared with lean subjects. A significant correlation also exists between all SCFAs, with the waist circumference indicating that serum SCFAs have potential features with respect to metabolic diseases, especially central obesity. The validated GCMS method provides highly sensitive, fast, simple, and reliable SCFA quantitation in the serum and demonstrates the potential features of circulating SCFAs in central obesity.
Collapse
|
21
|
Casaro MB, Thomas AM, Mendes E, Fukumori C, Ribeiro WR, Oliveira FA, Crisma AR, Murata GM, Bizzarro B, Sá-Nunes A, Setubal JC, Mayer MPA, Martins FS, Vieira AT, Antiorio ATFB, Tavares-de-Lima W, Camara NOS, Curi R, Dias-Neto E, Ferreira CM. A probiotic has differential effects on allergic airway inflammation in A/J and C57BL/6 mice and is correlated with the gut microbiome. MICROBIOME 2021; 9:134. [PMID: 34112246 PMCID: PMC8194189 DOI: 10.1186/s40168-021-01081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.
Collapse
Affiliation(s)
- Mateus B Casaro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Andrew M Thomas
- Department CIBIO, University of Trento, Trento, Italy
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Mendes
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Claudio Fukumori
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Willian R Ribeiro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Fernando A Oliveira
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC - UFABC, São Bernardo do Campo, SP, Brazil
| | - Amanda R Crisma
- Department of Clinical Analyses, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gilson M Murata
- Department of Medical Clinic, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica T Vieira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana T F B Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences I, Universidade de São Paulo, São Paulo, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil.
| |
Collapse
|
22
|
Mendes E, Casaro MB, Fukumori C, Ribeiro WR, Dos Santos AL, Sartorelli P, Lazarini M, Bogsan CSB, Oliveira MA, Ferreira CM. Preventive oral kefir supplementation protects mice from ovariectomy-induced exacerbated allergic airway inflammation. Benef Microbes 2021; 12:187-197. [PMID: 33789554 DOI: 10.3920/bm2020.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asthma is an inflammatory lung disease that affects more women than men in adulthood. Clinical evidence shows that hormonal fluctuation during the menstrual cycle and menopause are related to increased asthma severity in women. Considering that life expectancy has increased and that most women now undergo menopause, strategies to prevent the worsening of asthma symptoms are particularly important. A recent study from our group showed that re-exposure of ovariectomised allergic mice to antigen (ovalbumin) leads to an exacerbation of lung inflammation that is similar to clinical conditions. However, little is known about the role of probiotics in the prevention of asthma exacerbations during the menstrual cycle or menopause. Thus, our objective was to evaluate the effects of supplementation with kefir, a popular fermented dairy beverage, as a preventive strategy for modulating allergic disease. The results show that the preventive kefir administration decreases the influx of inflammatory cells in the airways and exacerbates the production of mucus and the interleukin 13 cytokine. Additionally, kefir changes macrophage polarisation by decreasing the number of M2 macrophages, as shown by RT-PCR assay. Thus, kefir is a functional food that potentially prevents allergic airway inflammation exacerbations in ovariectomised mice.
Collapse
Affiliation(s)
- E Mendes
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - M B Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - C Fukumori
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - W R Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - A L Dos Santos
- Chemistry Department, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - P Sartorelli
- Chemistry Department, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - M Lazarini
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - C S B Bogsan
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, B-16, Sao Paulo, SP 05508-900, Brazil
| | - M A Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, Av. Prof. Lineu Prestes, 1374, SP 05508-000, Brazil
| | - C M Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| |
Collapse
|
23
|
Wu X, Kim MJ, Yang HJ, Park S. Chitosan alleviated menopausal symptoms and modulated the gut microbiota in estrogen-deficient rats. Eur J Nutr 2020; 60:1907-1919. [PMID: 32910260 DOI: 10.1007/s00394-020-02382-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Menopause disturbs energy, glucose, and lipid metabolisms and changes the composition of the gut microbiota, but dietary fibers without phytoestrogens may ameliorate menopausal metabolic disorders. The objective of the present study was to assess whether consuming the prebiotics chitosan and citrus pectin can improve postmenopausal symptoms, possibly by modulating the gut microbiota in ovariectomized (OVX) rats, and the mechanism of action was examined. METHODS The OVX rats were given 4.5% cellulose (OVX-Control), chitosan (OVX-Chitosan), or citrus pectin (OVX-Pectin) in a 43% fat diet and the sham rats were given the same diet as the OVX-Control for 12 weeks. Sham-operated rats had the same diet as OVX-Control (Normal-Control). Body-weight, visceral fat mass, tail skin temperature, serum 17β-estradiol, glucose intolerance, and insulin tolerance were determined. Gut microbiota in the fecal samples was measured by NGS and analyzed with PICRUSt2. Short-chain fatty acids (SCFA) and metabolomic characteristics of serum were also measured with UPLC-mass spectrometry. RESULTS Chitosan and citrus pectin were selected because the incubation of rat feces with these two prebiotics in vitro had shown increased butyrate production. OVX-Chitosan reduced the weight, visceral fat content, and tail skin temperature, and OVX-Chitosan and OVX-Pectin improved glucose tolerance, compared to the OVX-Control. Both alleviated dyslipidemia, compared to the OVX-Control. OVX-Chitosan and OVX-Pectin elevated serum propionate and butyrate concentrations but only OVX-Chitosan lowered serum acetate concentrations. In PICRUSt2, chitosan upregulated the functional genes of gut microbiota involved in valine, leucine, and isoleucine biosynthesis, whereas the OVX-Control exhibited significantly upregulated lipopolysaccharide biosynthesis. OVX-Pectin exhibited increased α-diversity in the fecal bacteria. Metabolomic analysis revealed higher serum urate concentrations in the OVX-Control group than the other groups, and serum arginine and leucine concentrations were higher in the OVX-Chitosan group (P < 0.05). CONCLUSION Chitosan and citrus pectin consumptions improved menopausal symptoms by improving the diversity and composition of the gut microbiota, and serum metabolites and SCFA originating from fecal bacteria. Chitosan was more effective for improving menopausal symptoms than citrus pectin.
Collapse
Affiliation(s)
- Xuangao Wu
- Department. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea
| | - Min Jung Kim
- Food Functional Research Division, Korea Food Research Institutes, Wanjoo, South Korea
| | - Hye Jeong Yang
- Food Functional Research Division, Korea Food Research Institutes, Wanjoo, South Korea
| | - Sunmin Park
- Department. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea.
| |
Collapse
|
24
|
Zhang T, Qiu J, Wu X, Huang S, Yuan H, Park S. Schizonepeta Tenuifolia with Alpinia Oxyphylla Alleviates Atopic Dermatitis and Improves the Gut Microbiome in Nc/Nga Mice. Pharmaceutics 2020; 12:E722. [PMID: 32751987 PMCID: PMC7465453 DOI: 10.3390/pharmaceutics12080722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that may be related to gut microbes. Schizonepeta Tenuifolia Briquet (STB) and Alpinia Oxyphylla Miquel (AOM) has traditionally been used for anti-inflammatory activity. We evaluated the effects of STB, AOM and STB+AOM extracts on 2,4-dinitro-1-chlorobenzene (DNCB)-induced AD skin lesions in Nc/Nga mice and action mechanism was explored. AD lesions were induced in the dorsal skin of Nc/Nga mice by topical application of 1% followed by 0.2% DNCB. After DNCB was applied, the mice had topical applications of either 30% water, 0.01% dexamethasone, 30% STB, 30% AOM, 15% STB + 15% AOM extracts in butylene glycol (BG). Each group was also fed corresponding high-fat diets with 1% dextrin (AD-Con and AD-Positive), 1% STB (AD-STB), 1% AOM (AD-AOM) and 0.5% STB + 0.5% (AD-MIX). Normal-control mice had no DNCB application. The study evaluated the skin AD severity, scratching behavior and weight changes of AD mice for 5 weeks. Compared with AD-Con, AD-STB, AD-AOM and AD-MIX alleviated the clinical AD symptoms (erythema, pruritus, edema, erosion and lichenification and scratching behaviors), normalized immune chemistry (serum IgE concentration, mast cells and eosinophil infiltration), improved skin hyperplasia and enhanced the gut microbiome. AD-STB, AD-AOM, AD-MIX and AD-positive treatments inhibited cutaneous mRNA expression of TNF-α, IL-4 and IL-13 and serum IgE concentrations. AD-MIX most effectively reduced clinical AD symptoms and proinflammatory cytokines. AD-Positive also reduced them but serum GOT and GPT concentrations were abnormally high. AD-STB and AD-MIX increased the alpha-diversity of fecal bacteria and reduced the serum acetate concentration, compared to the AD-Con. In conclusion, the mixture of STB and AOM is effective for treating AD symptoms locally and systemically without adverse effects and are potential interventions for atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea; (T.Z.); (J.Q.); (X.W.); (S.H.); (H.Y.)
| |
Collapse
|
25
|
Wang CY, Chen YW, Tain YL, Chang SKC, Huang LT, Hsieh CW, Hou CY. Fast quantification of short-chain fatty acids in rat plasma by gas chromatography. J Food Sci 2020; 85:1932-1938. [PMID: 32449963 DOI: 10.1111/1750-3841.15172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites of the intestinal flora and play an important role in the interaction between the intestinal flora and host metabolism. Therefore, reliable methods are needed to accurately measure SCFAs concentrations. SCFAs are commonly analyzed by gas chromatography-mass spectrometry (GC-MS), which requires lengthy sample treatments and a long run time. This study aimed to develop a fast GC method with formic acid pretreatment for SCFAs quantification in the plasma of rat. Baseline chromatographic resolution was achieved for three SCFAs (acetic, propionic, and butyric) within an analysis time of 10.5 min. The method exhibited good recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and interday precision (<10%). We used our method to measure SCFAs levels in plasma samples from rats fed with a high fructose diet (HFD) to test the accuracy of the developed method. It was shown that SCFAs are indeed affected negatively by a HFD (60% fructose). This method was successfully employed to accurately determine SCFAs in the rat plasma with minimum sample preparation. Results showed potential damage of HFD, which produced lower SCFAs. PRACTICAL APPLICATION: Increasingly, microbiota and gut health research are being conducted by many food scientists to elucidate the relationships among the factors of food components, particularly the nondigestible carbohydrates, food processing conditions, and potential health impact. This research provides a useful, rapid, and accurate method that can save time in the analysis of short-chain fatty acids, which are commonly analyzed in gut health research.
Collapse
Affiliation(s)
- Chung-Yi Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 811, ROC
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkou, Taiwan, 333, ROC
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Mississippi, MS, 39567, USA.,Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi, MS, 39762, USA
| | - Li-Tung Huang
- Department of Medicine, Chang Gung University, Linkou, Taiwan, 333, ROC.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, Taiwan, 402, ROC.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, 404, ROC
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 811, ROC
| |
Collapse
|
26
|
Montalvany-Antonucci CC, Duffles LF, de Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira MFM, Fukada SY, Andrade I, Teixeira MM, Mackay C, Vieira AT, Vinolo MA, Silva TA. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. Bone 2019; 125:112-121. [PMID: 31100533 DOI: 10.1016/j.bone.2019.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Short-chain fatty acids (SCFAs) exert a variety of immune and metabolic functions by binding to G-protein-coupled receptors, mainly free fatty acid receptor 2 (FFAR2). However, the effects of SCFAs and FFARs on bone remodeling, especially in alveolar bone, have been less explored. In this study, we investigated the influence of the SCFA/FFAR2 axis on alveolar bone. Bone samples from wild-type (WT) and FFAR2-deficient mice (FFAR2-/-) were analyzed using micro-CT, histology and qPCR. WT and FFAR2-/- animals received a high-fiber diet (HFD) reported to increase circulating levels of SCFAs. Additionally, we analyzed the effects of SCFAs and a synthetic FFAR2 agonist, phenylacetamide-1 (CTMB), on bone cell differentiation. The participation of histone deacetylase inhibitors (iHDACs) in the effects of SCFAs was further assessed in vitro. CTMB treatment was also evaluated in vivo during orthodontic tooth movement (OTM). FFAR2-/- mice exhibited deterioration of maxillary bone parameters. Consistent with this, FFAR2-/- mice exhibited a significant increase of OTM and changes in bone cell numbers and in the expression of remodeling markers. The HFD partially reversed bone loss in the maxillae of FFAR2-/- mice. In WT mice, the HFD induced changes in the bone markers apparently favoring a bone formation scenario. In vitro, bone marrow cells from FFAR2-/- mice exhibited increased differentiation into osteoclasts, while no changes in osteoblasts were observed. In line with this, differentiation of osteoclasts was diminished by SCFAs and CTMB. Moreover, CTMB treatment significantly reduced OTM. Pretreatment of osteoclasts with iHDACs did not modify the effects of SCFAs on these cells. In conclusion, SCFAs function as regulators of bone resorption. The effects of SCFAs on osteoclasts are dependent on FFAR2 activation and are independent of the inhibition of HDACs. FFAR2 agonists may be useful to control bone osteolysis.
Collapse
Affiliation(s)
- C C Montalvany-Antonucci
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil; Department of Orthodontics, Faculty of Dentistry, Pontifical Catholic University, Belo Horizonte, MG, Brazil
| | - L F Duffles
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil
| | - J A A de Arruda
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil
| | - M C Zicker
- Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - S Macari
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo, Bauru, SP, Brazil
| | - M F M Madeira
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S Y Fukada
- Department of Pharmacological Science, Faculty of Pharmacy, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - I Andrade
- Department of Orthodontics, Faculty of Dentistry, Pontifical Catholic University, Belo Horizonte, MG, Brazil
| | - M M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C Mackay
- Department of Immunology, Monash University, Melbourne, Australia
| | - A T Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M A Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - T A Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|