1
|
Tamizhmani P, Balamurugan B, Thirunavukarasu K, Shanmugam V, Subramaniam S, Velusamy T. Delineating Notch1 and Notch2: Receptor-Specific Significance and Therapeutic Importance of Pinpoint Targeting Strategies for Hematological Malignancies. Eur J Haematol 2025; 114:213-230. [PMID: 39530322 DOI: 10.1111/ejh.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Notch1 and Notch2, transmembrane receptors belonging to the Notch family, are pivotal mediators of intercellular communication and have profound implications including cell fate determination, embryonic development, and tissue homeostasis in various cellular processes. Despite their structural homology, Notch1 and Notch2 exhibit discrete phenotypic characteristics and functional nuances that necessitate their individualized targeting in specific medical scenarios. Aberrant Notch signaling, often driven by the dysregulated activity of one receptor over the other, is implicated under various pathological conditions. Notch1 dysregulation is frequently associated with T-cell acute lymphoblastic leukemia, whereas Notch2 perturbations are linked to B-cell malignancies and solid tumors, including breast cancer. Hence, tailored therapeutic interventions that selectively inhibit the relevant Notch receptor need to be devised to disrupt the signaling pathways driving the specific disease phenotype. In this review, we emphasize the importance of distinct tissue-specific expression patterns, functional divergence, disease-specific considerations, and the necessity to minimize off-target effects that collectively underscore the significance of "individualized" targeting for Notch1 and Notch2. This comprehensive review sheds light on the receptor-specific characteristics of Notch1 and Notch2, providing insights into their roles in cellular processes and offering opportunities for developing tailored therapeutic interventions in the fields of biomedical research and clinical practice.
Collapse
Affiliation(s)
- Priyadharshini Tamizhmani
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Banumathi Balamurugan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Kishore Thirunavukarasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Velayuthaprabhu Shanmugam
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Selvakumar Subramaniam
- Department of Biochemistry, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
3
|
Alrashdan MS, Al-Shorman H, Bouzid A, Al-Dwairi A, Alazzam M, Alqudah M. The expression of salivary EGF, VEGF, endothelin, and transferrin in waterpipe and cigarette smokers. Odontology 2025; 113:380-389. [PMID: 38710904 DOI: 10.1007/s10266-024-00947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The aim of this study was to evaluate the effects of two forms of tobacco smoking, cigarettes and water pipe smoking (WPS), on the expression of a panel of salivary proteins in healthy adults. Three groups of age and gender-matched participants were enrolled in the study: never-smokers, cigarette smokers and WPS (N = 55 per group). Expression of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), endothelin and transferrin in unstimulated whole saliva was estimated using enzyme-linked immunosorbent assays. Statistical analysis consisted of one-way ANOVA and Tukey's post hoc tests, in addition to bioinformatics analysis. VEGF expression was the least in WPS (51.1 ± 14.5 pg/ml) compared to both controls (150.1 ± 13.8 pg/ml) and cigarette smokers (93 ± 9.9 pg/ml), with a significant difference in WPS (p < 0.001) and cigarette smokers (p < 0.01) compared to controls. Furthermore, transferrin showed the weakest expression in the WPS group (1238 ± 261.4 pg/ml) compared to controls (2205.6 ± 298.6 pg/ml) (p = 0.05) and cigarette smokers (1805.4 ± 244 pg/ml). Neither EGF nor endothelin expression showed any statistical difference between the groups (p > 0.05). Gene-gene interaction network demonstrated that FLT1, TFRC, KDR, VEGFB and PGF genes had the highest potential for interaction with the studied proteins. Further functional annotations on the identified markers in the interaction network were performed to identify HIF-1 pathways among the most relevant pathways. In conclusion, smoking habits alter the expression of salivary VEGF and transferrin, which may correspond to early sub-clinical changes in the oral mucosa. The clinical relevance of these salivary changes requires further research.
Collapse
Affiliation(s)
- Mohammad S Alrashdan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, P.O.Box: 27272, Sharjah, UAE.
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jorda University of Science and Technology, Irbid, Jordan.
| | - Hisham Al-Shorman
- Department of Oral and Maxillofacial Surgery and Periodontics, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Melanie Alazzam
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jorda University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
4
|
Asdemir A, Özgür A. Molecular mechanism of anticancer effect of heat shock protein 90 inhibitor BIIB021 in human bladder cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5167-5177. [PMID: 38240781 PMCID: PMC11166791 DOI: 10.1007/s00210-024-02950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 06/12/2024]
Abstract
Bladder cancer is a type of urologic malignancy that exhibits significant morbidity, mortality, and treatment costs. Inhibition of heat shock protein 90 (HSP90) activity has been a promising pharmacological strategy for blocking of bladder cancer pathogenesis. BIIB021 is a next-generation HSP90 inhibitor which interrupts ATP hydrolysis process of HSP90 and inhibits the stabilization and correct folding of client proteins. In current study, we aimed to investigate the molecular mechanism of the anticancer activity of BIIB021 in human bladder cancer T24 cells. Our results revealed that nanomolar concentration of BIIB021 decreased viability of T24 cell. BIIB021 downregulated HSP90 expression in T24 cells and inhibited the refolding activity of luciferase in the presence of T24 cell lysate. PCR array data indicated a significant alteration in transcript levels of cancer-related genes involved in metastases, apoptotic cell death, cell cycle, cellular senescence, DNA damage and repair mechanisms, epithelial-to-mesenchymal transition, hypoxia, telomeres and telomerase, and cancer metabolism pathways in T24 cells. All findings hypothesize that BIIB021 could exhibit as effective HSP90 inhibitor in the future for treatment of bladder cancer patients.
Collapse
Affiliation(s)
- Aydemir Asdemir
- Faculty of Medicine, Department of Urology, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
5
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
6
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
7
|
Zhang Y, Liu G, Tao M, Ning H, Guo W, Yin G, Gao W, Feng L, Gu J, Xie Z, Huang Z. Integrated transcriptome study of the tumor microenvironment for treatment response prediction in male predominant hypopharyngeal carcinoma. Nat Commun 2023; 14:1466. [PMID: 36928331 PMCID: PMC10020474 DOI: 10.1038/s41467-023-37159-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The efficacy of the first-line treatment for hypopharyngeal carcinoma (HPC), a predominantly male cancer, at advanced stage is only about 50% without reliable molecular indicators for its prognosis. In this study, HPC biopsy samples collected before and after the first-line treatment are classified into different groups according to treatment responses. We analyze the changes of HPC tumor microenvironment (TME) at the single-cell level in response to the treatment and identify three gene modules associated with advanced HPC prognosis. We estimate cell constitutions based on bulk RNA-seq of our HPC samples and build a binary classifier model based on non-malignant cell subtype abundance in TME, which can be used to accurately identify treatment-resistant advanced HPC patients in time and enlarge the possibility to preserve their laryngeal function. In summary, we provide a useful approach to identify gene modules and a classifier model as reliable indicators to predict treatment responses in HPC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China.
| | - Gan Liu
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Minzhen Tao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Hui Ning
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Wen Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Lifei Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China.
| |
Collapse
|
8
|
Sasagawa T, Nagamatsu T, Shibuya M. CRISPR/Cas9-mediated mutations in both a cAMP response element and an ETS-binding site suppress FLT1 gene expression. Exp Cell Res 2023; 424:113500. [PMID: 36720378 DOI: 10.1016/j.yexcr.2023.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The Fms-like tyrosine kinase-1 (FLT1) gene is expressed in various types of cells, including vascular endothelial cells and placental trophoblasts, and regulates angiogenesis, inflammation, and pregnancy. However, the basal transcriptional machinery of FLT1 is still not well understood. In this study, we first examined FLT1 promoter activity in three different types of cells, that is, trophoblast-derived cells, vascular endothelial-related cells, and HEK293 cells, using plasmid-based luciferase reporter assays, and showed that a cAMP-response element (CRE) and an ETS-binding site (EBS) are important for FLT1 expression in all cell types. To further examine the importance of these sites at the chromosomal level using HEK293 cells, we introduced CRISPR/Cas9-mediated mutations in these sites on the genomic DNA. HEK293 cells carrying these mutations clearly showed a significant decrease in endogenous FLT1 gene expression. These results suggest that CRE and EBS transcription regulatory elements are crucial for FLT1 gene expression in human tissues.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Gunma, 370-1393, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, 113-8655, Japan; Department of Obstetrics and Gynecology, Faculty of Medicine, International University of Healthcare and Welfare, Chiba, 286-8686, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma, 370-1393, Japan.
| |
Collapse
|
9
|
Wang YC, Meng WT, Zhang HF, Zhu J, Wang QL, Mou FF, Guo HD. Lymphangiogenesis, a potential treatment target for myocardial injury. Microvasc Res 2023; 145:104442. [PMID: 36206847 DOI: 10.1016/j.mvr.2022.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
The lymphatic vascular system is crucial for the regulation of tissue fluid homeostasis, lipid metabolism, and immune function. Cardiac injury quickly leads to myocardial edema, cardiac lymphatic dysfunction, which ultimately results in myocardial fluid imbalance and cardiac dysfunction. Therefore, lymphangiogenesis-targeted therapy may improve the recovery of myocardial function post cardiac ischemia as observed in myocardial infarction (MI). Indeed, a promising strategy for the clinical treatment of MI relies on vascular endothelial growth factor-C (VEGF-C)-targeted therapy, which promotes lymphangiogenesis. However, much effort is needed to identify the mechanisms of lymphatic transport in response to heart disease. This article reviews regulatory factors of lymphangiogenesis, and discusses the effects of lymphangiogenesis on cardiac function after cardiac injury and its regulatory mechanisms. The involvement of stem cells on lymphangiogenesis was also discussed as stem cells could differentiate into lymphatic endothelial cells (LECs) and stimulate phenotype of LECs.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wan-Ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai-Feng Zhang
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang-Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Zhang Y, Du H, Li T, Li H, Deng Y, Wu R. Krukenberg Tumor of Gastric Origin in Pregnant Women with Preeclampsia. Case Rep Oncol 2023; 16:718-727. [PMID: 37936663 PMCID: PMC10626216 DOI: 10.1159/000531991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 11/09/2023] Open
Abstract
Krukenberg tumor refers to a malignancy in the ovary that metastasizes from a primary site, classically the gastrointestinal tract. Pregnancy complicated with a Krukenberg tumor is very rare. In this report, we present two unusual cases of pregnant women with Krukenberg tumors of gastric origin. One case was a full-term pregnant woman with preeclampsia (PE) who underwent a caesarean section when bilateral enlarged ovaries were incidentally identified. Histopathology of the wedge resection biopsy showed single-ring cell carcinoma; this was followed by gastroscopy, which indicated a gastric origin. The woman received chemotherapy but died 6 months later. Another case was a pregnant woman at 30 gestational weeks with abdominal pain complicated with early-onset PE. Ultrasonography and magnetic resonance imaging showed bilateral enlarged ovaries and elevated tumor markers. Gastroscopy indicated linitis plastica. After an emergency caesarean section, adnexectomy was performed, and postoperative histopathology confirmed a Krukenberg tumor. The woman died 2 months after delivery. Gastrointestinal symptoms during pregnancy may indicate a malignancy of rare gastrointestinal origin. PE complicated with Krukenberg tumors in pregnancy should be considered in future studies.
Collapse
Affiliation(s)
- Yongke Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Taili Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Huan Li
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Yuqing Deng
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
11
|
Wang X, He A, Yip KC, Liu X, Li R. Diagnostic signature and immune characteristic of aging-related genes from placentas in Preeclampsia. Clin Exp Hypertens 2022; 44:1-8. [PMID: 36218052 DOI: 10.1080/10641963.2022.2130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is a serious pregnancy syndrome. Advanced maternal age (≥ 35 years old) is one of the major risk factors of PE and placental aging is considered to be related to this disease. However, the mechanisms underlying these phenomena remain obscured. METHODS Gene expression profiles of PE and non-PE placental samples were curated from the GSE75010 dataset. A diagnostic model was constructed and immune characteristics of PE subtypes were estimated. RESULTS A total of 58 aging-related genes, which may be associated with PE, were identified. Among them, LEP and FLT1 may be key aging-related genes. Based on 5 top genes (PIK3CB, FLT1, LEP, PIK3R1, CSNK1E), a diagnostic nomogram for PE was built (AUC = 0.872 in the GSE75010 dataset). Three molecular subtypes were clustered, which had different immune and angiogenesis characteristics. CONCLUSION The present study suggests the potential implications of aging-related genes in diagnosing PE. Diverse immune characteristics may be involved in the placental aging of PE.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoting Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Momen Razmgah M, Ghahremanloo A, Javid H, AlAlikhan A, Afshari AR, Hashemy SI. The effect of substance P and its specific antagonist (aprepitant) on the expression of MMP-2, MMP-9, VEGF, and VEGFR in ovarian cancer cells. Mol Biol Rep 2022; 49:9307-9314. [PMID: 35960409 DOI: 10.1007/s11033-022-07771-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Substance P (SP) has a crucial role in cancer initiation and progression via binding to its specific receptor (NK1R). Various evidence confirmed the overexpression of NK1R and SP in the tissue of multiple cancers, including ovarian cancer. Despite numerous studies, the mechanism of the SP/NK1R system on migration and angiogenesis of ovarian cancer cells has not yet been deciphered. In this study, considering the critical factors in cell migration (MMP-2, MMP-9) and angiogenesis (VEGF, VEGFR), we investigated the possible mechanism of this system in inducing migration and angiogenesis of ovarian cancer cells. METHODS AND RESULTS First, the resazurin assay was conducted to evaluate the cytotoxic effect of aprepitant (NK1R antagonist) on the viability of A2780 ovarian cancer cells. After that, the impact of this system and aprepitant on the mRNA expression of the factors mentioned above were studied using RT-PCR. Besides, the scratch assay was performed to confirm the effect of the SP/NK-1R system and aprepitant on cell migration. Our results implied that this system induced cell migration and angiogenesis by increasing the mRNA expression of MMP-2, MMP-9, VEGF, and VEGFR. The obtained results from the scratch assay also confirmed the positive effect of this system on cell migration. Meanwhile, the blocking of NK1R by aprepitant suppresses the SP effects on cell migration and angiogenesis. CONCLUSIONS Overall, the SP/NK1R system plays a vital role in ovarian cancer progression, and the inhibition of NK1Rusing aprepitant could inhibit the spread of ovarian cancer cells through metastasis and angiogenesis.
Collapse
Affiliation(s)
- Maryam Momen Razmgah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Abbas AlAlikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Clinical Biochemistry Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Physiological Function of the Dynamic Oxygen Signaling Pathway at the Maternal-fetal Interface. J Reprod Immunol 2022; 151:103626. [DOI: 10.1016/j.jri.2022.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
14
|
Sasagawa T, Nagamatsu T, Yanagisawa M, Fujii T, Shibuya M. Hypoxia-inducible factor-1β is essential for upregulation of the hypoxia-induced FLT1 gene in placental trophoblasts. Mol Hum Reprod 2021; 27:6402014. [PMID: 34665260 PMCID: PMC8633902 DOI: 10.1093/molehr/gaab065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Placental hypoxia and increased levels of maternal blood anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT1), are associated with the pathogenesis of pre-eclampsia. We have demonstrated that hypoxia-inducible factor (HIF)-2α mediates the upregulation of the hypoxia-induced FLT1 gene in trophoblasts and their cell lines. Here, we investigated the involvement of HIF-1β, which acts as a dimerization partner for HIF-α, in the upregulation of the FLT1 gene via hypoxia. We confirmed the interactions between HIF-1β and HIF-2α in the nuclei of BeWo, JAR and JEG-3 cells under hypoxia via co-immunoprecipitation. We found that hypoxia-induced upregulation of the FLT1 gene in BeWo cells and secretion of sFLT1 in human primary trophoblasts were significantly reduced by siRNAs targeting HIF-1β. Moreover, the upregulation of the FLT1 gene in BeWo cells induced by dimethyloxaloylglycine (DMOG) was also inhibited by silencing either HIF-2α or HIF-1β mRNA. It was recently shown that DNA demethylation increases both basal and hypoxia-induced expression levels of the FLT1 gene in three trophoblast-derived cell lines. In the demethylated BeWo cells, siRNAs targeting HIF-2α and HIF-1β suppressed the further increase in the expression levels of the FLT1 gene due to hypoxia or treatment with DMOG. However, luciferase reporter assays and bisulfite sequencing revealed that a hypoxia response element (-966 to -962) of the FLT1 gene is not involved in hypoxia or DMOG-induced upregulation of the FLT1 gene. These findings suggest that HIF-1β is essential for the elevated production of sFLT1 in the hypoxic trophoblasts and that the HIF-2α/HIF-1β complex may be a crucial therapeutic target for pre-eclampsia.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Gunma 370-1393, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Manami Yanagisawa
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma 370-1393, Japan
| |
Collapse
|
15
|
Shibuya M, Matsui H, Sasagawa T, Nagamatsu T. A simple detection method for the serum sFLT1 protein in preeclampsia. Sci Rep 2021; 11:20613. [PMID: 34663835 PMCID: PMC8523687 DOI: 10.1038/s41598-021-00152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
In normal pregnancy, the soluble form of FMS-like tyrosine kinase-1 (sFLT1)/ vascular endothelial growth factor receptor-1 (sVEGFR-1), a VEGF-trapping protein, is expressed in trophoblasts of the placenta, suggesting that it plays an important role in the physiological barrier between fetal and maternal angiogenesis, when stimulated with VEGF-A. In pathological conditions such as preeclampsia (PE), sFLT1 protein is abnormally overexpressed in trophoblasts and secreted into the serum, which could cause hypertension and proteinuria on the maternal side and growth retardation on the fetal side. Detection of an abnormal increase in serum sFLT1 during the early to middle stages of PE is essential for proper initiation of medical care. To carry out this screening for sFLT1, we developed an easier and relatively low-cost sandwich-type ELISA method using a single mixture of human serum sample with an anti-FLT1 antibody and heparin-beads, namely heparin-beads-coupled ELISA (HB-ELISA). This method takes only about 2 h, and the sFLT1 values were similar levels with commercially available recent ELISA kits: the serum sFLT1 protein was approximately 4.3-fold increased in severe PE compared with those in normal pregnancy.
Collapse
Affiliation(s)
- Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan.
| | - Haruka Matsui
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Liu X, Lv Z, Zhou S, Kan S, Liu X, Jing P, Xu W. MTDH in macrophages promotes the vasculogenic mimicry via VEGFA-165/Flt-1 signaling pathway in head and neck squamous cell carcinoma. Int Immunopharmacol 2021; 96:107776. [PMID: 34162144 DOI: 10.1016/j.intimp.2021.107776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Vasculogenic mimicry (VM) refers to vessel-like structures formed by aggressive tumor cells and is closely associated with cancer invasion and metastasis. Here, we investigated the effect of macrophage-derived MTDH on VM formation in head and neck squamous cell carcinoma (HNSCC) and its underlying mechanism. Macrophages with MTDH overexpression (Mac-MTDH) promoted cancer cell VM formation, migration, and invasion in vitro. Moreover, MTDH overexpression triggered macrophage polarization into M2 type tumor-associated macrophages. Analysis of HNSCC clinical samples revealed that MTDH+ macrophages were predominantly located in the tumor-stromal region in proximity to VM and correlated with lymph node metastasis. Mechanistically, Mac-MTDH enhanced the expression and secretion of VEGFA-165 rather than other VEGFA isoforms via ß-catenin. The VEGFA-165/Flt-1 axis was responsible for Mac-MTDH's effects in cancer cells through p-STAT3/Twist1/VE-cadherin pathway. Using mouse model, we further confirmed that Mac-MTDH increased VM formation and cancer metastasis in vivo. Furthermore, in subcutaneous xenograft mouse model, HN6 + Mac-MTDH tumor exhibited elevated expression of p-STAT3 and Twist1 than HN6 + Mac-NC tumors. This study revealed that Mac-MTDH promoted VM formation, cancer cell migration and invasion, and cancer metastasis through VEGFA-165/Flt-1 axis, and that macrophage-derived MTDH could be a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Zhenghua Lv
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Shengli Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Shifeng Kan
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Xianfang Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Peihang Jing
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Wei Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China.
| |
Collapse
|
17
|
Tejera E, Pérez-Castillo Y, Chamorro A, Cabrera-Andrade A, Sanchez ME. A Multi-Objective Approach for Drug Repurposing in Preeclampsia. Molecules 2021; 26:777. [PMID: 33546161 PMCID: PMC7913128 DOI: 10.3390/molecules26040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia is a hypertensive disorder that occurs during pregnancy. It is a complex disease with unknown pathogenesis and the leading cause of fetal and maternal mortality during pregnancy. Using all drugs currently under clinical trial for preeclampsia, we extracted all their possible targets from the DrugBank and ChEMBL databases and labeled them as "targets". The proteins labeled as "off-targets" were extracted in the same way but while taking all antihypertensive drugs which are inhibitors of ACE and/or angiotensin receptor antagonist as query molecules. Classification models were obtained for each of the 55 total proteins (45 targets and 10 off-targets) using the TPOT pipeline optimization tool. The average accuracy of the models in predicting the external dataset for targets and off-targets was 0.830 and 0.850, respectively. The combinations of models maximizing their virtual screening performance were explored by combining the desirability function and genetic algorithms. The virtual screening performance metrics for the best model were: the Boltzmann-Enhanced Discrimination of ROC (BEDROC)α=160.9 = 0.258, the Enrichment Factor (EF)1% = 31.55 and the Area Under the Accumulation Curve (AUAC) = 0.831. The most relevant targets for preeclampsia were: AR, VDR, SLC6A2, NOS3 and CHRM4, while ABCG2, ERBB2, CES1 and REN led to the most relevant off-targets. A virtual screening of the DrugBank database identified estradiol, estriol, vitamins E and D, lynestrenol, mifrepristone, simvastatin, ambroxol, and some antibiotics and antiparasitics as drugs with potential application in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170513, Ecuador;
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170513, Ecuador; (A.C.); (M.E.S.)
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170513, Ecuador;
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170513, Ecuador
| | - Andrea Chamorro
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170513, Ecuador; (A.C.); (M.E.S.)
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170513, Ecuador;
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170513, Ecuador
| | - Maria Eugenia Sanchez
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170513, Ecuador; (A.C.); (M.E.S.)
| |
Collapse
|
18
|
The Effect of MicroRNA-101 on Angiogenesis of Human Umbilical Vein Endothelial Cells during Hypoxia and in Mice with Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5426971. [PMID: 32953883 PMCID: PMC7487113 DOI: 10.1155/2020/5426971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Background Previous studies showed that recanalization and angiogenesis within the infarct region are of vital importance to the survival of myocardial cells during the treatment of acute myocardial infarction (AMI). Methods In this study, EdU cell proliferation assay, Transwell assay, scratch wound assay, and tube formation assay were used. Twelve bioinformatics analysis packages were used to predict the target genes of miR-101. Target genes were verified by luciferase reporter generation and assay, fluorescent quantitative PCR, and western blotting. Animal model and treatments were detected by M-mode echocardiography and immunofluorescent staining of CD31, Ki67, and α-SMA. Results AgomiR-101 significantly enhanced HUVEC proliferation, migration, and tube formation. A double-luciferase reporter assay revealed that the hsa-miR-101 mimic attenuated the activity of the EIF4E3′-UTR-wt type plasmid by 36%. The expression levels of HIF-1α and VEGF-A in the scrambled RNA group were significantly lower than those in the EIF4E3 siRNA and agomiR-101 groups. The left ventricular ejection fraction of the AMI+Adv-miR-101 group was significantly higher than that of the AMI+Adv-null and Sham+Adv-null groups. The proliferation of vessel cells in the peripheral infarcted myocardium was higher in the AMI+Adv-miR-101 group than that in the AMI+Adv-null and Sham+Adv-null groups. Conclusion MiR-101 can promote angiogenesis in the region surrounding the myocardial infarction.
Collapse
|
19
|
Garcia-Peterson LM, Ndiaye MA, Chhabra G, Singh CK, Guzmán-Pérez G, Iczkowski KA, Ahmad N. CRISPR/Cas9-mediated Knockout of SIRT6 Imparts Remarkable Antiproliferative Response in Human Melanoma Cells in vitro and in vivo. Photochem Photobiol 2020; 96:1314-1320. [PMID: 32621766 DOI: 10.1111/php.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most aggressive, potentially fatal forms of skin cancer and has been shown to be associated with solar ultraviolet radiation-dependent initiation and progression. Despite remarkable recent advances with targeted and immune therapeutics, lasting and recurrence-free survival remain significant concerns. Therefore, additional novel mechanism-based approaches are needed for effective melanoma management. The sirtuin SIRT6 appears to have a pro-proliferative function in melanocytic cells. In this study, we determined the effects of genetic manipulation of SIRT6 in human melanoma cells, in vitro and in vivo. Our data demonstrated that CRISPR/Cas9-mediated knockout (KO) of SIRT6 in A375 melanoma cells resulted in a significant (1) decrease in growth, viability and clonogenic survival and (2) induction of G1-phase cell cycle arrest. Further, employing a RT2 Profiler PCR array containing 84 key transformation and tumorigenesis genes, we found that SIRT6 KO resulted in modulation of genes involved in angiogenesis, apoptosis, cellular senescence, epithelial-to-mesenchymal transition, hypoxia signaling and telomere maintenance. Finally, we found significantly decreased tumorigenicity of SIRT6 KO A375 cells in athymic nude mice. Our data provide strong evidence that SIRT6 promotes melanoma cell survival, both in vitro and in vivo, and could be exploited as a target for melanoma management.
Collapse
Affiliation(s)
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | | | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI.,William S. Middleton VA Medical Center, Madison, WI
| |
Collapse
|
20
|
Aspirin enhances trophoblast invasion and represses soluble fms-like tyrosine kinase 1 production: a putative mechanism for preventing preeclampsia. J Hypertens 2020; 37:2461-2469. [PMID: 31335509 DOI: 10.1097/hjh.0000000000002185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recent studies suggested that prophylactic aspirin prior to 16 weeks of gestation in high-risk patients may reduce the risk of developing preeclampsia; however, the exact mechanism of aspirin's effect on the pathophysiology of preeclampsia is not clear. This study was designed to investigate the effect of aspirin on trophoblast cell function and its effect on soluble fms-like tyrosine kinase 1 (sFlt-1) production to elucidate the preventive mechanisms for preeclampsia. METHODS AND RESULTS We used two human trophoblastic cell lines (HTR-8/SVneo and JAR) and freshly isolated cytotrophoblasts from normal and preeclamptic placenta at term to determine the effect of aspirin on trophoblast cell function. Trophoblasts were pretreated with aspirin, and then cell functions and sFlt-1 expression were assessed. Our results showed that aspirin promoted trophoblast invasion not only in HTR-8/SVneo and JAR cells, but also in isolated cytotrophoblasts. sFlt-1 production was repressed by aspirin in a dose-dependent manner. By adding Flt-1 recombinant protein, the trophoblast invasion ability was inhibited in HTR-8/SVneo cells, which was reversed by Flt-1 small interfering ribonucleic acid knockdown. In addition, metalloproteinase 2/9 expression and activity were activated by aspirin but inhibited by sFlt-1. Aspirin also downregulated Akt phosphorylation, and trophoblast invasiveness was facilitated under Akt inhibitor treatment. CONCLUSION Aspirin enhances cell invasiveness and inhibits sFlt-1 production in trophoblasts. Moreover, sFlt-1 itself also inhibits trophoblast invasion. Our novel findings suggest that the preeclampsia prevention effect of aspirin may be exerted through these two mechanisms.
Collapse
|
21
|
Yoshino D, Funamoto K, Sato K, Kenry, Sato M, Lim CT. Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling. Commun Biol 2020; 3:152. [PMID: 32242084 PMCID: PMC7118103 DOI: 10.1038/s42003-020-0881-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular tubulogenesis is tightly linked with physiological and pathological events in the living body. Endothelial cells (ECs), which are constantly exposed to hemodynamic forces, play a key role in tubulogenesis. Hydrostatic pressure in particular has been shown to elicit biophysical and biochemical responses leading to EC-mediated tubulogenesis. However, the relationship between tubulogenesis and hydrostatic pressure remains to be elucidated. Here, we propose a specific mechanism through which hydrostatic pressure promotes tubulogenesis. We show that pressure exposure transiently activates the Ras/extracellular signal-regulated kinase (ERK) pathway in ECs, inducing endothelial tubulogenic responses. Water efflux through aquaporin 1 and activation of protein kinase C via specific G protein–coupled receptors are essential to the pressure-induced transient activation of the Ras/ERK pathway. Our approach could provide a basis for elucidating the mechanopathology of tubulogenesis-related diseases and the development of mechanotherapies for improving human health. Yoshino et al. investigate the mechanism by which exposure to pressure promotes endothelial cells to form tubes and find that Aquaporin-mediated water efflux activates the Ras-ERK pathway via PKC and GPCR activation. These findings may be relevant to understand how blood pressure affects vascular tubulogenesis.
Collapse
Affiliation(s)
- Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan. .,Mechanobiology Institute, National University of Singapore, #10-01 T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan. .,Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Kenichi Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan.,Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kakeru Sato
- Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan.,Tokyo Gas Co., Ltd., 1-5-20 Kaigan, Minato-ku, Tokyo, 105-8527, Japan
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Masaaki Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, #10-01 T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, #14-01 MD6, 14 Medical Drive, Singapore, 117599, Singapore.
| |
Collapse
|
22
|
Mtshali Z, Moodley J, Naicker T. An Insight into the Angiogenic and Lymphatic Interplay in Pre-eclampsia Comorbid with HIV Infection. Curr Hypertens Rep 2020; 22:35. [PMID: 32200445 DOI: 10.1007/s11906-020-01040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To provide insight on the imbalance of angiogenic and lymphangiogenic factors in pre-eclampsia, as well as highlight polymorphism in genes related to angiogenesis and lymphangiogenesis. RECENT FINDINGS The pregnancy-specific disorder pre-eclampsia is diagnosed by the presence of hypertension with/without proteinuria, after 20 weeks of gestation. The pathogenesis of pre-eclampsia remains ambiguous, but research over the years has identified an imbalance in maternal and foetal factors. Familial predisposition and gene variation are also linked to pre-eclampsia development. The sFlt-1/PIGF ratio has attracted great attention over the years; more recently several researchers have reported that a sFlt-1/PIGF ratio of ≤ 38 can be used to predict short-term absence of pre-eclampsia. This ratio has the potential to prevent adverse pregnancy outcomes and reduce healthcare costs significantly. Genome-wide studies have additionally identified variation in the foetal gene near Flt-1. The development of preeclampsia is not limited to the maternal interface, but foetal involvement as well as genetic interplay is associated with the disorder.
Collapse
Affiliation(s)
- Zamahlabangane Mtshali
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| | - Jagidesa Moodley
- Department of Obstetrics and Gynaecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Sasagawa T, Jinno-Oue A, Nagamatsu T, Morita K, Tsuruga T, Mori-Uchino M, Fujii T, Shibuya M. Production of an anti-angiogenic factor sFLT1 is suppressed via promoter hypermethylation of FLT1 gene in choriocarcinoma cells. BMC Cancer 2020; 20:112. [PMID: 32041578 PMCID: PMC7011436 DOI: 10.1186/s12885-020-6598-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Soluble Fms-like tyrosine kinase-1 (sFLT1) as an anti-angiogenic factor is abundantly expressed in placental trophoblasts. Choriocarcinoma, a malignant tumor derived from trophoblasts, is known to be highly angiogenic and metastatic. However, the molecular mechanism underlying angiogenesis in choriocarcinoma pathogenesis remains unclear. We aimed to investigate the mRNA expression and DNA methylation status of the FLT1 gene in human choriocarcinoma cells and trophoblast cells. METHODS qRT-PCR, Western blotting and ELISA were conducted to evaluate the mRNA and protein expression levels of sFLT1. 5-aza-2'-deoxycytidine (5azadC) treatment and bisulfite sequencing were used to study the FLT1 gene promoter methylation. The effect of sFLT1 on choriocarcinoma growth and angiogenesis was evaluated in a xenograft mouse model. RESULTS Expression of the FLT1 gene was strongly suppressed in choriocarcinoma cell lines compared with that in the primary trophoblasts. Treatment of choriocarcinoma cell lines with 5azadC, a DNA methyltransferase inhibitor, markedly increased in mRNA expression of three FLT1 splice variants and secretion of sFLT1 proteins. Bisulfite sequencing revealed that the CpG hypermethylation was observed at the FLT1 promoter region in choriocarcinoma cell lines and a human primary choriocarcinoma tissue but not in human trophoblast cells. Interestingly, in 5azadC-treated choriocarcinoma cell lines, sFLT1 mRNA expression and sFLT1 production were further elevated by hypoxic stimulation. Finally, as expected, sFLT1-expressing choriocarcinoma cells implanted into nude mice showed significantly slower tumor growth and reduced microvessel formation compared with GFP-expressing control choriocarcinoma cells. CONCLUSIONS Inhibition of sFLT1 production by FLT1 silencing occurs via the hypermethylation of its promoter in choriocarcinoma cells. The stable expression of sFLT1 in choriocarcinoma cells resulted in the suppression of tumor growth and tumor vascularization in vivo. We suggest that the FLT1 gene may be a cell-type-specific tumor suppressor in choriocarcinoma cells.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, 270-1 Shin-machi, Takasaki, Gunma, 370-1393, Japan
| | - Atsushi Jinno-Oue
- Bioresource Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuki Morita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, 270-1 Shin-machi, Takasaki, Gunma, 370-1393, Japan.
| |
Collapse
|
24
|
Kasture V, Sundrani D, Dalvi S, Swamy M, Kale A, Joshi S. Maternal omega-3 fatty acids and vitamin E improve placental angiogenesis in late-onset but not early-onset preeclampsia. Mol Cell Biochem 2019; 461:159-170. [PMID: 31420792 DOI: 10.1007/s11010-019-03599-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Abnormal placental vasculature is associated with preeclampsia. Preeclampsia is of two types, i.e., early- and late-onset preeclampsia (LOP), both having different etiologies. We have earlier demonstrated low levels of omega-3 fatty acids and vitamin E in women with preeclampsia. The current study examines the effect of maternal omega-3 fatty acids and vitamin E supplementation on angiogenic factors in a rat model of preeclampsia. Pregnant rats were divided into a total of five groups control, early-onset preeclampsia (EOP); LOP; EOP supplemented with omega-3 fatty acid and vitamin E and LOP supplemented with omega-3 fatty acid and vitamin E. Preeclampsia was induced by administering L-nitroarginine methylester (L-NAME) at the dose of 50 mg/kg body weight/day. The vascular endothelial growth factor gene expression and protein levels were lower (p < 0.01 for both) in animals from both EOP as well as LOP groups (p < 0.01). In the EOP group, the protein levels of VEGF receptor-1 were also lower (p < 0.01). Supplementation of omega-3 fatty acids and vitamin E to LOP improved the levels of VEGF and VEGF receptor-1 only in the LOP but not in the EOP group. In the EOP group, the gene expression of hypoxia inducible factor 1 alpha (HIF-1α) in the placenta was higher (p < 0.05) and supplementation normalized these levels. Our findings indicate that maternal supplementation of omega-3 fatty acids and vitamin E has differential effect on preeclampsia subtypes.
Collapse
Affiliation(s)
- Vaishali Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Pune-Satara Road, Pune, 411043, India
| | - Deepali Sundrani
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Pune-Satara Road, Pune, 411043, India
| | - Surabhi Dalvi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Pune-Satara Road, Pune, 411043, India
| | - Mayur Swamy
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Pune-Satara Road, Pune, 411043, India
| | - Anvita Kale
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Pune-Satara Road, Pune, 411043, India
| | - Sadhana Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Pune-Satara Road, Pune, 411043, India.
| |
Collapse
|
25
|
Lee HM, Kwon SB, Son A, Kim DH, Kim KH, Lim J, Kwon YG, Kang JS, Lee BK, Byun YH, Seong BL. Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. Int J Mol Sci 2019; 20:ijms20112847. [PMID: 31212691 PMCID: PMC6600415 DOI: 10.3390/ijms20112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.
Collapse
Affiliation(s)
- Hye Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Doo Hyun Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Kyun-Hwan Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Jonghyo Lim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jin Sun Kang
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Byung Kyu Lee
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
26
|
Cho HW, Ouh YT, Lee KM, Han SW, Lee JK, Cho GJ, Hong JH. Long-term effect of pregnancy-related factors on the development of endometrial neoplasia: A nationwide retrospective cohort study. PLoS One 2019; 14:e0214600. [PMID: 30921436 PMCID: PMC6438517 DOI: 10.1371/journal.pone.0214600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
Objective By identifying pregnancy-related risk factors for endometrial neoplasia, women’s risk of developing this disease after childbirth can be predicted and high-risk women can be screened for early detection. Methods Study data from women who gave birth in Korea in 2007 were collected from the Korea National Health Insurance (KNHI) claims database between 2007 and 2015. The adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the development of endometrial neoplasia were estimated by multivariate Cox proportional hazards models. Results Data from 386,614 women were collected for this study. By 2015, 3,370 women from the initial cohort had been diagnosed with endometrial neoplasia secondary to delivery. Multivariate Cox proportional hazards regression revealed that preeclampsia (HR 1.55, 95% CI 1.29, 1.86), advanced maternal age (≥ 35; HR 1.52, 95% CI 1.39, 1.66), multifetal pregnancy (HR 1.81, 95% CI 1.46, 2.23), multiparity (HR 1.16, 95% CI 1.08, 1.24), cesarean section (HR 1.15, 95% CI 1.07, 1.23) and delivery of a large-for-gestational-age infant (HR 1.19, 95% CI 1.02, 1.39) were independent risk factors for future endometrial neoplasia. The risk for endometrial neoplasia increased as the number of risk factors increased (risk factors ≥3: HR 2.11, 95% CI 1.86–2.40). Conclusion This study showed that six pregnancy-related factors—advanced maternal age, multiparity, multifetal pregnancy, cesarean section, delivery of a large-for-gestational-age infant, and preeclampsia—are positively correlated with future development of endometrial neoplasia, including endometrial hyperplasia or cancer. Close observation and surveillance are warranted to enable early diagnosis of endometrial diseases, including endometrial cancer after pregnancy in high-risk women. However, due to unavailability of clinical information, many clinical/epidemiological factors can become confounders. Further research is needed on factors associated with the risk of endometrial neoplasia.
Collapse
Affiliation(s)
- Hyun-Woong Cho
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyu-Min Lee
- School of Industrial Management Engineering, Korea University, Seoul, Korea
| | - Sung Won Han
- School of Industrial Management Engineering, Korea University, Seoul, Korea
| | - Jae Kwan Lee
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Geum Jun Cho
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail: (JHH); (GJC)
| | - Jin Hwa Hong
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail: (JHH); (GJC)
| |
Collapse
|
27
|
Sasagawa T, Nagamatsu T, Morita K, Mimura N, Iriyama T, Fujii T, Shibuya M. HIF-2α, but not HIF-1α, mediates hypoxia-induced up-regulation of Flt-1 gene expression in placental trophoblasts. Sci Rep 2018; 8:17375. [PMID: 30478339 PMCID: PMC6255857 DOI: 10.1038/s41598-018-35745-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Placental hypoxia and elevated levels of circulating soluble Fms-like tyrosine kinase-1 (sFlt-1), an anti-angiogenic factor, are closely related to the pathogenesis of preeclampsia. Although sFlt-1 secretion from the placental trophoblasts is increased under hypoxic conditions, the underlying molecular mechanism remains unclear. Previously, an authentic hypoxia response element in the Flt-1 gene promoter was shown to be a potential binding site for hypoxia-inducible factors (HIFs). Here, we investigated the roles of HIF-1α and HIF-2α in Flt-1 gene expression in trophoblast-derived choriocarcinoma cell lines and cytotrophoblasts exposed to hypoxic conditions. In the cell lines, increased expression of sFlt-1 splice variants and nuclear accumulation of HIF-1α and HIF-2α were observed after hypoxic stimulation. A specific small interfering RNA or an inhibitor molecule targeting HIF-2α decreased hypoxia-induced up-regulation of Flt-1 gene expression. Moreover, in cytotrophoblasts, increased sFlt-1 mRNA expression and elevated sFlt-1 production were induced by hypoxic stimulation. Notably, hypoxia-induced elevation of sFlt-1 secretion from the cytotrophoblasts was inhibited by silencing the HIF-2α, but not HIF-1α mRNA. These findings suggest that hypoxia-induced activation of HIF-2α is essential for the increased production of sFlt-1 proteins in trophoblasts. Targeting the HIF-2α may be a novel strategy for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Kazuki Morita
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Nobuko Mimura
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma, Japan.
| |
Collapse
|
28
|
Aoshima K, Fukui Y, Gulay KCM, Erdemsurakh O, Morita A, Kobayashi A, Kimura T. Notch2 signal is required for the maintenance of canine hemangiosarcoma cancer stem cell-like cells. BMC Vet Res 2018; 14:301. [PMID: 30285832 PMCID: PMC6171240 DOI: 10.1186/s12917-018-1624-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells which usually shows poor prognosis due to its high invasiveness, metastatic rate and severe hemorrhage from tumor ruptures. Since the pathogenesis of HSA is not yet complete, further understanding of its molecular basis is required. Results Here, we identified Notch2 signal as a key factor in maintaining canine HSA cancer stem cell (CSC)-like cells. We first cultured HSA cell lines in adherent serum-free condition and confirmed their CSC-like characteristics. Notch signal was upregulated in the CSC-like cells and Notch signal inhibition by a γ-secretase inhibitor significantly repressed their growth. Notch2, a Notch receptor, was highly expressed in the CSC-like cells. Constitutive activation of Notch2 increased clonogenicity and number of cells which were able to survive in serum-free condition. In contrast, inhibition of Notch2 activity showed opposite effects. These results suggest that Notch2 is an important factor for maintaining HSA CSC-like cells. Neoplastic cells in clinical cases also express Notch2 higher than endothelial cells in the normal blood vessels in the same slides. Conclusion This study provides foundation for further stem cell research in HSA and can provide a way to develop effective treatments to CSCs of endothelial tumors. Electronic supplementary material The online version of this article (10.1186/s12917-018-1624-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Yuki Fukui
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Kevin Christian Montecillo Gulay
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Ochbayar Erdemsurakh
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsuya Morita
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
29
|
Park SA, Jeong MS, Ha KT, Jang SB. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep 2018; 51:73-78. [PMID: 29397867 PMCID: PMC5836560 DOI: 10.5483/bmbrep.2018.51.2.233] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor and its receptor (VEGF-VEGFR) system play a critical role in the regulation of angiogenesis and lymphangiogenesis in vertebrates. Each of the VEGF has specific receptors, which it activates by binding to the extracellular domain of the receptors, and, thus, regulates the angiogenic balance in the early embryonic and adult stages. However, de-regulation of the VEGF-VEGFR implicates directly in various diseases, particularly cancer. Moreover, tumor growth needs a dedicated blood supply to provide oxygen and other essential nutrients. Tumor metastasis requires blood vessels to carry tumors to distant sites, where they can implant and begin the growth of secondary tumors. Thus, investigation of signaling systems related to the human disease, such as VEGF-VEGFR, will facilitate the development of treatments for such illnesses. [BMB Reports 2018; 51(2): 73-78].
Collapse
Affiliation(s)
- Seong Ah Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Centre for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
30
|
Sertoglu E, Omma A, Yucel C, Colak S, Sandıkcı SC, Ozgurtas T. The relationship of serum VEGF and sVEGFR-1 levels with vascular involvement in patients with Behçet's disease. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:443-449. [PMID: 30015524 DOI: 10.1080/00365513.2018.1488179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Behçet's disease (BD) is a rare, chronic, inflammatory disorder characterized by multisystemic vasculitis including mucocutaneous, neurologic, and ophthalmic involvement. Our aim is to compare vascular endothelial growth factor (VEGF) and soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) levels in BD, among the patients having or not having organ involvement, disease activation and especially vascular involvement. Fifty-five patients with BD, 25 of which were accompanied by vascular involvement, and 31 control subjects were included in the study. Disease activity was assessed with the Turkish version of Behçet Disease Current Activity Form (BDCAF) and active vasculitis lesions at the time of study were recorded. Age at diagnosis was 32.2 ± 4.6, while the mean duration of BD was 96.3 (72.3) months. The median for BDCAF score was 2.0 (range 0, 3.0), and 29 (52%) of patients had active BD. The serum VEGF and sVEGFR-1 levels in patients with BD were significantly higher than that in controls [(298 (338.5) pg/mL; 93 (93.5) pg/mL in patients and 136.2 (73) pg/mL; 56.5 (48.5) pg/mL in controls, respectively, p < .001 for both values] while difference in VEGF/sVEGFR-1 ratio was obtained close to borderline of significance (p = .03). Our study is the first report indicating elevated serum VEGF, sVEGFR-1, and more importantly VEGF/sVEGFR-1 ratio could play an important role in the development of trombosis in BD. VEGF and/or sVEGFR-1 should not be evaluated independently in the same patient group and the ratio of these two parameters is a more important indicator, especially in the evaluation of BD especially with vascular involvement together with the duration of disease.
Collapse
Affiliation(s)
- Erdim Sertoglu
- a Department of Medical Biochemistry , University of Health Sciences, Gülhane School of Medicine , Ankara , Turkey
| | - Ahmet Omma
- b Department of Rheumatology , Ankara Numune Training and Research Hospital , Ankara , Turkey
| | - Cigdem Yucel
- c Department of Clinical Biochemistry , Ankara Numune Training and Research Hospital , Ankara , Turkey
| | - Seda Colak
- b Department of Rheumatology , Ankara Numune Training and Research Hospital , Ankara , Turkey
| | - Sevinc Can Sandıkcı
- b Department of Rheumatology , Ankara Numune Training and Research Hospital , Ankara , Turkey
| | - Taner Ozgurtas
- a Department of Medical Biochemistry , University of Health Sciences, Gülhane School of Medicine , Ankara , Turkey
| |
Collapse
|
31
|
Cancer astrocytes have a more conserved molecular status in long recurrence free survival (RFS) IDH1 wild-type glioblastoma patients: new emerging cancer players. Oncotarget 2018; 9:24014-24027. [PMID: 29844869 PMCID: PMC5963624 DOI: 10.18632/oncotarget.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/02/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is a devastating disease that despite all the information gathered so far, its optimal management remains elusive due to the absence of validated targets from clinical studies. A better clarification of the molecular mechanisms is needed. In this study, having access to IDH1 wild-type glioblastoma of patients with exceptionally long recurrence free survival (RFS), we decided to compare their mutational and gene expression profile to groups of IDH1 wild-type glioblastoma of patients with shorter RFS, by using NGS technology. The exome analysis revealed that Long-RFS tumors have a lower mutational rate compared to the other groups. A total of 158 genes were found differentially expressed among the groups, 112 of which distinguished the two RFS extreme groups. Overall, the exome data suggests that shorter RFS tumors could be, chronologically, in a more advanced state in the muli-step tumor process of sequential accumulation of mutations. New players in this kind of cancer emerge from the analysis, confirmed at the RNA/DNA level, identifying, therefore, possible oncodrivers or tumor suppressor genes.
Collapse
|
32
|
Saberi-Karimian M, Katsiki N, Caraglia M, Boccellino M, Majeed M, Sahebkar A. Vascular endothelial growth factor: An important molecular target of curcumin. Crit Rev Food Sci Nutr 2017; 59:299-312. [DOI: 10.1080/10408398.2017.1366892] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryam Saberi-Karimian
- Student Research Committee, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “L. Vanvitelli” 7, Via L. De Crecchio 7, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “L. Vanvitelli” 7, Via L. De Crecchio 7, Naples, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ashar-Patel A, Kaymaz Y, Rajakumar A, Bailey JA, Karumanchi SA, Moore MJ. FLT1 and transcriptome-wide polyadenylation site (PAS) analysis in preeclampsia. Sci Rep 2017; 7:12139. [PMID: 28939845 PMCID: PMC5610261 DOI: 10.1038/s41598-017-11639-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
Maternal symptoms of preeclampsia (PE) are primarily driven by excess anti-angiogenic factors originating from the placenta. Chief among these are soluble Flt1 proteins (sFlt1s) produced from alternatively polyadenylated mRNA isoforms. Here we used polyadenylation site sequencing (PAS-Seq) of RNA from normal and PE human placentae to interrogate transcriptome-wide gene expression and alternative polyadenylation signatures associated with early-onset PE (EO-PE; symptom onset < 34 weeks) and late-onset PE (LO-PE; symptom onset > 34 weeks) cohorts. While we observed no general shift in alternative polyadenylation associated with PE, the EO-PE and LO-PE cohorts do exhibit gene expression profiles distinct from both each other and from normal placentae. The only two genes upregulated across all transcriptome-wide PE analyses to date (microarray, RNA-Seq and PAS-Seq) are NRIP1 (RIP140), a transcriptional co-regulator linked to metabolic syndromes associated with obesity, and Flt1. Consistent with sFlt1 overproduction being a significant driver of clinical symptoms, placental Flt1 mRNA levels strongly correlate with maternal blood pressure. For Flt1, just three mRNA isoforms account for > 94% of all transcripts, with increased transcription of the entire locus driving Flt1 upregulation in both EO-PE and LO-PE. These three isoforms thus represent potential targets for therapeutic RNA interference (RNAi) in both early and late presentations.
Collapse
Affiliation(s)
- Ami Ashar-Patel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Boston, MA, USA
| | - Augustine Rajakumar
- Departments of Gynecology and Obstetrics, Emory University, Atlanta, USA.,Departments of Medicine, Obstetrics and Gynecology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Boston, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - S Ananth Karumanchi
- Departments of Medicine, Obstetrics and Gynecology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Bondoc A, Golbar HM, Pervin M, Katou-Ichikawa C, Tanaka M, Izawa T, Kuwamura M, Yamate J. Participation of Tumor-Associated Myeloid Cells in Progression of Amelanotic Melanoma (RMM Tumor Line) in F344 Rats, with Particular Reference to MHC Class II- and CD163-Expressing Cells. CANCER MICROENVIRONMENT 2017. [PMID: 28623530 DOI: 10.1007/s12307-017-0193-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor progression is often influenced by infiltration of myeloid cells; depending on the M1- or M2-like activation status, these cells may have either inhibitory or promoting effects on tumor growth. We investigated the properties of tumor-associated myeloid cells in a previously established homotransplantable amelanotic melanoma (RMM tumor line) in F344 rats. RMM tumor nodules were allowed to reach the sizes of 0.5, 1, 2 and 3 cm, respectively. Immunohistochemistry and flow cytometry was performed for macrophage markers CD68 and CD163, and for the antigen-presenting cell marker, MHC class II. Although no significant change was observed in the number of CD68+ and CD163+ macrophages during RMM progression, the number of MHC class II+ antigen-presenting cells was reduced in 3 cm nodules. Real-time RT-PCR of laser microdissection samples obtained from RMM regions rich in MHC class II+ cells demonstrated high expressions of M1-like factors: IFN-γ, GM-CSF and IL-12a. Furthermore, fluorescence-activated cell sorting, followed by real-time RT-PCR for CD11b+ MHC class II+ (myeloid antigen-presenting cells), CD11b+ CD163+ (M2 type myeloid cells), CD11b+ CD80+ (M1 type myeloid cells) and CD11b+ CD11c+ (dendritic cells) cells was performed. Based on the levels of inflammation- and tumor progression-related factors, MHC class II+ antigen-presenting cells showed polarization towards M1, while CD163+ macrophages, towards M2. CD80+ and CD11c+ myeloid cells did not show clear functional polarization. Our results provide novel information on tumor-associated myeloid cells in amelanotic melanoma, and may become useful in further research on melanoma immunity.
Collapse
Affiliation(s)
- A Bondoc
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - H M Golbar
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - M Pervin
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - C Katou-Ichikawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - M Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - T Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - M Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan
| | - J Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka, 598-8531, Japan.
| |
Collapse
|
35
|
Yamashita M, Kumasawa K, Miyake T, Nakamura H, Kimura T. Soluble Flt-1 Has Cytotoxic Effects on BeWo Choriocarcinoma Cells. Reprod Sci 2017; 25:830-836. [DOI: 10.1177/1933719117698575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michiko Yamashita
- Department of Obstetrics and Gynecology, Osaka University Hospital, Osaka, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Osaka University Hospital, Osaka, Japan
| | - Tatsuya Miyake
- Department of Obstetrics and Gynecology, Osaka University Hospital, Osaka, Japan
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Hospital, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
36
|
Abstract
In this review we note that the placenta and cancer both develop in microenvironments in which there are gradients of oxygen availability. Whilst fundamentally different in that placental development is organised and physiological whilst cancer is chaotic and pathological, there are similarities in their respective capacities to proliferate, invade adjacent tissues, generate a blood supply and avoid rejection by the immune system. We provide a brief description of the hypoxia-inducible factor (HIF) pathway and indicate the ways by which HIF activity can be regulated to achieve oxygen homeostasis. We then exemplify the potential role of the HIF pathway in contributing to those functions shared between the placenta and cancer through effects on cellular proliferation, cell death, angiogenesis, blood vessel co-option, vascular mimicry, cell adhesion molecules, secretion of matrix metalloproteinases, antigen presentation mechanisms and immunosuppressive factors. We advocate future studies to explore these similarities and differences in the hope of improving our understanding of both systems and hence treatments of placental disorders and cancer.
Collapse
|
37
|
Kühnel E, Kleff V, Stojanovska V, Kaiser S, Waldschütz R, Herse F, Plösch T, Winterhager E, Gellhaus A. Placental-Specific Overexpression of sFlt-1 Alters Trophoblast Differentiation and Nutrient Transporter Expression in an IUGR Mouse Model. J Cell Biochem 2017; 118:1316-1329. [PMID: 27859593 DOI: 10.1002/jcb.25789] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022]
Abstract
Since it is known that placental overexpression of the human anti-angiogenic molecule sFlt-1, the main candidate in the progression of preeclampsia, lead to intrauterine growth restriction (IUGR) in mice by lentiviral transduction of mouse blastocysts, we hypothesize that sFlt-1 influence placental morphology and physiology resulting in fetal IUGR. We therefore examined the effect of sFlt-1 on placental morphology and physiology at embryonic day 18.5 with histologic and morphometric analyses, transcript analyses, immunoblotting, and methylation studies. Interestingly, placental overexpression of sFlt-1 leads to IUGR in the fetus and results in lower placental weights. Moreover, we observed altered trophoblast differentiation with reduced expression of IGF2, resulting in a smaller placenta, a smaller labyrinth, and the loss of glycogen cells in the junctional zone. Changes in IGF2 are accompanied by small changes in its DNA methylation, whereas overall DNA methylation is unaffected. In addition, the expression of placental nutrient transporters, such as the glucose diffusion channel Cx26, is decreased. In contrast, the expression of the fatty acid transporter CD36 and the cholesterol transporter ABCA1 is significantly increased. In conclusion, placental sFlt-1 overexpression resulted in a reduction in the differentiation of the spongiotrophoblast into glycogen cells. These findings of a reduced exchange area of the labyrinth and glycogen stores, as well as decreased expression of glucose transporter, could contribute to the intrauterine growth restriction phenotype. All of these factors change the intrauterine availability of nutrients. Thus, we speculate that the alterations triggered by increased anti-angiogenesis strongly affect fetal outcome and programming. J. Cell. Biochem. 118: 1316-1329, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisabeth Kühnel
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Veronika Kleff
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Violeta Stojanovska
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephanie Kaiser
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Ralph Waldschütz
- Central Animal Laboratory, University of Duisburg-Essen, Essen, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Medical Faculty, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
38
|
Fukumura D, Incio J, Shankaraiah RC, Jain RK. Obesity and Cancer: An Angiogenic and Inflammatory Link. Microcirculation 2016; 23:191-206. [PMID: 26808917 DOI: 10.1111/micc.12270] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
Abstract
With the current epidemic of obesity, a large number of patients diagnosed with cancer are overweight or obese. Importantly, this excess body weight is associated with tumor progression and poor prognosis. The mechanisms for this worse outcome, however, remain poorly understood. We review here the epidemiological evidence for the association between obesity and cancer, and discuss potential mechanisms focusing on angiogenesis and inflammation. In particular, we will discuss how the dysfunctional angiogenesis and inflammation occurring in adipose tissue in obesity may promote tumor progression, resistance to chemotherapy, and targeted therapies such as anti-angiogenic and immune therapies. Better understanding of how obesity fuels tumor progression and therapy resistance is essential to improve the current standard of care and the clinical outcome of cancer patients. To this end, we will discuss how an anti-diabetic drug such as metformin can overcome these adverse effects of obesity on the progression and treatment resistance of tumors.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao Incio
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,I3S, Institute for Innovation and Research in Heath, Metabolism, Nutrition and Endocrinology Group, Biochemistry Department, Faculty of Medicine, Porto University, Porto, Portugal.,Department of Internal Medicine, Hospital S. João, Porto, Portugal
| | - Ram C Shankaraiah
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Shi J, Lu Y, Wei P. Xiaotan Sanjie decoction inhibits angiogenesis in gastric cancer through Interleukin-8-linked regulation of the vascular endothelial growth factor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:230-237. [PMID: 27224240 DOI: 10.1016/j.jep.2016.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/30/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interleukin-8 (IL-8) as a pro-angiogenic factor is strongly associated with gastric cancer metastasis. Xiaotan Sanjie (XTSJ) decoction is an empirical compound prescription based on the phlegm theory of traditional Chinese medicine. Previous studies have shown that XTSJ decoction decreases IL-8 level and formation of vasculogenic mimicry of gastric cancer. AIM OF THE STUDY To investigate the link between Xiaotan Sanjie (XTSJ) decoction and IL-8 regulation in the angiogenesis of gastric cancer. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were co-cultured with SGC-7901 human gastric cancer cells and exposed to serum samples containing XTSJ decoction and/or IL-8 (1.0ng/mL). The canalization and migration capacities were evaluated by tube formation and transwell migration assay. Protein (immunofluorescence and Western blot) and mRNA (qPCR) expressions were measured in 24-h-cultured HUVECs for vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor receptor (VEGFR)-1, and VEGFR-2. RESULTS IL-8 significantly promoted and XTSJ decoction inhibited HUVEC tube formation and migration. Links between IL-8 regulation and XTSJ decoction were found in tube formation and migration assays. IL-8 upregulated and XTSJ decoction downregulated VEGF-A, VEGFR-1, and VEGFR-2 protein levels. XTSJ decoction inhibited IL-8-induced VEGF-A and VEGFR-1 protein expressions. Similarly, IL-8 promoted VEGF-A, VEGFR-1, and VEGFR-2 mRNA levels; however, XTSJ decoction inhibited only VEGF-A mRNA. Interestingly, XTSJ decoction inhibited IL-8-induced VEGFR-1 and VEGFR-2 mRNA expression. CONCLUSION XTSJ decoction might inhibit angiogenesis in gastric cancer through IL-8-linked regulation of the VEGF pathway.
Collapse
Affiliation(s)
- Jun Shi
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China.
| | - Ye Lu
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Pinkang Wei
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| |
Collapse
|
40
|
Coordinated expression of TNFα- and VEGF-mediated signaling components by placental macrophages in early and late pregnancy. Placenta 2016; 42:28-36. [PMID: 27238711 DOI: 10.1016/j.placenta.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Mononuclear phagocytes are thought to significantly contribute to cytokine regulation at the maternal-foetal interface, but the role of placental macrophages has been poorly investigated. TNFα and VEGF were demonstrated to have regulatory effects on basic structures of the placenta, particularly the trophoblast and blood vessels. The aims of this study were to determine the expression of TNFα, VEGF and related receptors in placental macrophages, and how does the participation of placental macrophages alter with gestational age in TNFα- and VEGF-mediated signaling. METHODS Macrophages were isolated from placental villous tissue from normal pregnancies at either 9-12 or 38-40 weeks gestation. Cell surface receptors (TNFR1, TNFR2, VEGFR1, and VEGFR2) and intracellular TNFα and VEGF were quantified by flow cytometry after antibody staining. Basal and stimulated secretion of both cytokines and soluble TNF receptors was quantified by cytometric bead arrays. Secreted VEGFR1 was measured by ELISA. RESULTS The expression of TNFR1 and VEGFR1 was remarkably variable and did not change from first to third trimester. There was minimal basal TNFα production in the placental macrophages, but nearly all cells in the population produced VEGF. TNFα and VEGF secretion increased with gestational age accompanied by decreased secretion of the antagonists sTNFR1 and sVEGFR. Macrophages isolated from early term placentas were less effective in responding to bacterial endotoxin. Lipopolysaccharide induced increases in the secretion of TNFα, TNFR1, TNFR2, and VEGFR1 but did not affect the production of VEGF. In late pregnancy, a significant correlation was observed between TNFR1 and VEGFR1. DISCUSSION The progression of pregnancy is accompanied by the concerted increase in TNFα and VEGF secretion and decrease in the production of their soluble receptors, but the expression of cell surface receptors does not depend on gestational age. The observed patterns of basal and stimulated expression of TNFα and VEGF may reflect the dual immune and morphogenetic roles of placental macrophages in gestation. Compatible patterns of TNFR1 and VEGFR1 expression suggest common regulatory pathways for these receptors.
Collapse
|
41
|
Melton DW, Lei X, Gelfond JAL, Shireman PK. Dynamic macrophage polarization-specific miRNA patterns reveal increased soluble VEGF receptor 1 by miR-125a-5p inhibition. Physiol Genomics 2016; 48:345-60. [PMID: 26884460 DOI: 10.1152/physiolgenomics.00098.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 01/04/2023] Open
Abstract
Dynamic, epigenetic mechanisms can regulate macrophage phenotypes following exposure to different stimulating conditions and environments. However, temporal patterns of microRNAs (miRNAs or miRs) across multiple macrophage polarization phenotypes have not been defined. We determined miRNA expression in bone marrow-derived murine macrophages over multiple time points (0.5, 1, 3, 24 h) following exposure to cytokines and/or LPS. We hypothesized that dynamic changes in miRNAs regulate macrophage phenotypes. Changes in macrophage polarization markers were detected as early as 0.5 and as late as 24 h; however, robust responses for most markers occurred within 3 h. In parallel, many polarization-specific miRNAs were also changed by 3 h and expressed divergent patterns between M1 and M2a conditions, with increased expression in M1 (miR-155, 199a-3p, 214-3p, 455-3p, and 125a) or M2a (miR-511 and 449a). Specifically, miR-125a-5p exhibited divergent patterns: increased at 12-24 h in M1 macrophages and decreasing trend in M2a. VEGF in the culture media of macrophages was dependent upon the polarization state, with greatly diminished VEGF in M2a compared with M1 macrophage culture media despite similar VEGF in cell lysates. Inhibition of miR-125a-5p in media-only controls (MO) and M1 macrophages greatly increased expression and secretion of soluble VEGF receptor-1 (sVEGFR1) leading to diminished VEGF in the culture media, partially converting MO and M1 into an M2a phenotype. Thus, the divergent expression patterns of polarization-specific miRNAs led to the identification and demonstrated the regulation of a specific macrophage polarization phenotype, sVEGFR1 by inhibition of miR-125a-5p.
Collapse
Affiliation(s)
- David W Melton
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas; and South Texas Veterans Health Care System, San Antonio, Texas
| | - XiuFen Lei
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas; South Texas Veterans Health Care System, San Antonio, Texas
| | - Jonathan A L Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, Texas; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas; and
| | - Paula K Shireman
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas; and South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
42
|
Incio J, Tam J, Rahbari NN, Suboj P, McManus DT, Chin SM, Vardam TD, Batista A, Babykutty S, Jung K, Khachatryan A, Hato T, Ligibel JA, Krop IE, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Shibuya M, Carmeliet P, Soares R, Duda DG, Jain RK, Fukumura D. PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity. Clin Cancer Res 2016; 22:2993-3004. [PMID: 26861455 DOI: 10.1158/1078-0432.ccr-15-1839] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. EXPERIMENTAL DESIGN We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. RESULTS We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. CONCLUSIONS Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR.
Collapse
Affiliation(s)
- Joao Incio
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. I3S, Institute for Innovation and Research in Heath, Metabolism, Nutrition and Endocrinology group, Biochemistry Department, Faculty of Medicine, Porto University, Porto, Portugal. Department of Internal Medicine, Hospital S. João, Porto, Portugal
| | - Josh Tam
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nuh N Rahbari
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Surgery, Dresden University of Technology, Dresden, Germany
| | - Priya Suboj
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Botany and Biotechnology, St. Xaviers College, Thumba, Trivandrum, Kerala, India
| | - Dan T McManus
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. University of Massachusetts, Boston, Massachusetts
| | - Shan M Chin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Trupti D Vardam
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Mayo Clinic College of Medicine, Scottsdale, Arizona
| | - Ana Batista
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Suboj Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Zoology, Mar Ivanios College, Nalanchira, Trivandrum, Kerala, India
| | - Keehoon Jung
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Khachatryan
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tai Hato
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Surgery, KeioUniversity School of Medicine, Tokyo, Japan
| | - Jennifer A Ligibel
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Stefan B Puchner
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Christopher L Schlett
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Udo Hoffmman
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marek Ancukiewicz
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. PAREXEL International, Billerica, Massachusetts
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, K.U. Leuven and VIB, Leuven, Belgium
| | - Raquel Soares
- I3S, Institute for Innovation and Research in Heath, Metabolism, Nutrition and Endocrinology group, Biochemistry Department, Faculty of Medicine, Porto University, Porto, Portugal
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
43
|
Shi J, Wei PK. Interleukin-8: A potent promoter of angiogenesis in gastric cancer. Oncol Lett 2015; 11:1043-1050. [PMID: 26893688 DOI: 10.3892/ol.2015.4035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a critical process in the development of tumor malignancy and occurs at various stages of tumor progression. Interleukin-8 (IL-8) is a pro-angiogenic factor produced by tumor-infiltrating macrophages that has been revealed to facilitate the development of angiogenesis in various cancers. However, whether IL-8 activates angiogenesis in gastric cancer remains unclear. The present study investigated the effect of IL-8 on the migration and canalization capacities of human umbilical vein endothelial cells (HUVECs). In addition, the protein and messenger RNA (mRNA) expression of selected angiogenesis markers, consisting of vascular endothelial growth factor (VEGF)-A, VEGF receptor (VEGFR)-1 and VEGFR-2, were assessed in the HUVECs. The HUVECs were co-cultured with human gastric cancer SGC7901 cells and exposed to various concentrations of IL-8 (0, 0.2, 0.5, 0.8 and 1.0 ng/ml). The migration and canalization abilities of the cells were detected by Transwell chamber and tube formation assays. Protein expression was detected using immunofluorescence and western blot analysis, and mRNA levels were assessed using reverse transcription quantitative polymerase chain reaction. The protein and mRNA levels of VEGF-A, VEGFR-1 and VEGFR-2 were measured in HUVECs cultured for 24 h. IL-8 at concentrations of 0.5, 0.8 and 1.0 ng/ml significantly promoted HUVEC cell migration (P=0.005, P=0.001 and P<0.001, respectively) and tube formation (P=0.039, P=0.003 and P<0.001, respectively). IL-8 at concentrations of 0.2, 0.5, 0.8 and 1.0 ng/ml significantly elevated the protein levels of VEGF-A (P<0.001) and VEGFR-2 (P=0.034, P<0.001, P<0.001 and P<0.001, respectively). IL-8 at concentrations of 0.8 and 1.0 ng/ml significantly elevated the protein levels of VEGF-1 (P=0.037 and P=0.002, respectively). Similarly, IL-8 at concentrations of 0.5, 0.8 and 1.0 ng/ml significantly upregulated the mRNA levels of VEGF-A (P=0.046, P=0.001 and P<0.001, respectively) and VEGFR-1 (P=0.042, P<0.001 and P<0.001, respectively). IL-8 at concentrations of 0.2, 0.5, 0.8 and 1.0 ng/ml significantly upregulated the mRNA levels of VEGFR-2 (P=0.003, P=0.005, P<0.001 and P<0.001, respectively). In conclusion, IL-8 may be a potent promoter of angiogenesis in gastric cancer.
Collapse
Affiliation(s)
- Jun Shi
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Pin-Kang Wei
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
44
|
Kopp S, Warnke E, Wehland M, Aleshcheva G, Magnusson NE, Hemmersbach R, Corydon TJ, Bauer J, Infanger M, Grimm D. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Sci Rep 2015; 5:16691. [PMID: 26576504 PMCID: PMC4649336 DOI: 10.1038/srep16691] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3–1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity.
Collapse
Affiliation(s)
- Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Elisabeth Warnke
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Ganna Aleshcheva
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Nils E Magnusson
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Ruth Hemmersbach
- DLR German Aerospace Centre, Department of Gravitational Biology, 51147 Cologne, Köln, Germany
| | | | - Johann Bauer
- Max-Planck-Institute of Biochemistry Martinsried, 82152 Martinsried, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
45
|
YEH MINGYANG, SHANG HUNGSHENG, LU HSUFENG, CHOU JASON, YEH CHUN, CHANG JINBIOU, HUNG HSIAOFANG, KUO WANLIN, WU LUNGYUAN, CHUNG JINGGUNG. Chitosan oligosaccharides in combination with Agaricus blazei Murill extract reduces hepatoma formation in mice with severe combined immunodeficiency. Mol Med Rep 2015; 12:133-40. [PMID: 25760985 PMCID: PMC4438976 DOI: 10.3892/mmr.2015.3454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022] Open
Abstract
Chitosan and Agaricus blazei Murill (ABM) extracts possess antitumor activities. The aim of the present study was to investigate whether chitosan, ABM extract or the two in combination were effective against tumors in tumor‑bearing mice. The mice were subcutaneously injected with SK-Hep 1 cells and were then were divided into the following six groups: Group 1, control group; group 2, chitosan 5 mg/kg/day; group 3, chitosan 20 mg/kg/day; group 4, ABM (246 mg/kg/day) and chitosan (5 mg/kg/day) combined; group 5, ABM (984 mg/kg/day) and chitosan (20 mg/kg/day) combined; and group 6, ABM (984 mg/kg/day). The mice were treated with the different concentrations of chitosan, ABM or combinations of the two for 6 weeks. The levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and vascular endothelial growth factor (VEGF), and tissue histopathological features were examined in the surviving animals. Based on the results of the investigation, the treatments performed in groups 2, 3 and 4 were identified as being capable of reducing the weights of the tumors, however, group 4, which was treated with chitosan (5 mg/kg/day) in combination with ABM (246 mg/kg/day) was able to reduce the levels of GOT and VEGF. As a result, treatment with chitosan in combination with ABM may offer potential in cancer therapy and requires further investigation.
Collapse
Affiliation(s)
- MING YANG YEH
- Department of Medical Education and Research, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - HUNG SHENG SHANG
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei 112, Taiwan, R.O.C
| | - HSU FENG LU
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - JASON CHOU
- Departments of Anatomical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - CHUN YEH
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - JIN BIOU CHANG
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei 112, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan, R.O.C
| | - HSIAO FANG HUNG
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan, R.O.C
| | - WAN LIN KUO
- Department of Biology, Ching Cheng High School, Changhua 500, Taiwan, R.O.C
| | - LUNG YUAN WU
- School of Chinese Medicine for Post Baccalaureate, I Shou University, Kaohsiung 840, Taiwan, R.O.C
| | - JING GUNG CHUNG
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
- Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
46
|
Nikuei P, Malekzadeh K, Rajaei M, Nejatizadeh A, Ghasemi N. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2015; 13:251-62. [PMID: 26221124 PMCID: PMC4515231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022]
Abstract
Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF) family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR) are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1) is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member's role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.
Collapse
Affiliation(s)
- Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Kianoosh Malekzadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Minoo Rajaei
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Azim Nejatizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Nasrin Ghasemi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
47
|
Szalai G, Romero R, Chaiworapongsa T, Xu Y, Wang B, Ahn H, Xu Z, Chiang PJ, Sundell B, Wang R, Jiang Y, Plazyo O, Olive M, Tarca AL, Dong Z, Qureshi F, Papp Z, Hassan SS, Hernandez-Andrade E, Than NG. Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice. PLoS One 2015; 10:e0119547. [PMID: 25860260 PMCID: PMC4393117 DOI: 10.1371/journal.pone.0119547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. METHODS Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. RESULTS Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3 ± 51.7 μg/mg vs. 19.3 ± 5.6 μg/mg, p = 4.4 x 10(-2); GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2 x 10(-2)). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR). CONCLUSIONS A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the in vivo pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.
Collapse
Affiliation(s)
- Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Bing Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Hyunyoung Ahn
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Po Jen Chiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Birgitta Sundell
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Rona Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Yang Jiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Olesya Plazyo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Mary Olive
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Faisal Qureshi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
48
|
Szalai G, Xu Y, Romero R, Chaiworapongsa T, Xu Z, Chiang PJ, Ahn H, Sundell B, Plazyo O, Jiang Y, Olive M, Wang B, Jacques SM, Qureshi F, Tarca AL, Erez O, Dong Z, Papp Z, Hassan SS, Hernandez-Andrade E, Than NG. In vivo experiments reveal the good, the bad and the ugly faces of sFlt-1 in pregnancy. PLoS One 2014; 9:e110867. [PMID: 25393290 PMCID: PMC4230935 DOI: 10.1371/journal.pone.0110867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/23/2014] [Indexed: 01/06/2023] Open
Abstract
Objective Soluble fms-like tyrosine kinase (sFlt)-1-e15a, a primate-specific sFlt-1-isoform most abundant in the human placenta in preeclampsia, can induce preeclampsia in mice. This study compared the effects of full-length human (h)sFlt-1-e15a with those of truncated mouse (m)sFlt-1(1-3) used in previous preeclampsia studies on pregnancy outcome and clinical symptoms in preeclampsia. Methods Mice were injected with adenoviruses or fiber-mutant adenoviruses overexpressing hsFlt-1-e15a, msFlt-1(1-3) or control GFP under the CMV or CYP19A1 promoters on gestational day 8 (GD8) and GD11. Placentas and pups were delivered by cesarean section, and dams were monitored postpartum. Blood pressure was telemetrically recorded. Urine samples were collected with cystocentesis and examined for albumin/creatinine ratios. Tissue specimens were evaluated for transgene as well as endogenous mFlt-1 and msFlt-1-i13 expression. H&E-, Jones- and PAS-stained kidney sections were histopathologically examined. Placental GFP expression and aortic ring assays were investigated with confocal microscopy. Results Mean arterial blood pressure (MAP) was elevated before delivery in hsFlt-1-e15a-treated mice compared to controls (GD18: ΔMAP = 7.8 mmHg, p = 0.009), while ΔMAP was 12.8 mmHg (GD18, p = 0.005) in msFlt-1(1-3)-treated mice. Urine albumin/creatinine ratio was higher in hsFlt-1-e15a-treated mice than in controls (GD18, p = 0.04; PPD8, p = 0.03), and msFlt-1(1-3)-treated mice had marked proteinuria postpartum (PPD8, p = 4×10−5). Focal glomerular changes were detected in hsFlt-1-e15a and msFlt-1(1-3)-treated mice. Aortic ring microvessel outgrowth was decreased in hsFlt-1-e15a (p = 0.007) and msFlt-1(1-3)-treated (p = 0.02) mice. Full-length msFlt-1-i13 expression was unique for the placenta. In hsFlt-1-e15a-treated mice, the number of pups (p = 0.046), total weight of living pups (p = 0.04) and maternal weights (p = 0.04) were higher than in controls. These differences were not observed in truncated msFlt-1(1-3)-treated mice. Conclusions Truncated msFlt-1(1-3) simulated the preeclampsia-promoting effects of full-length hsFlt-1. MsFlt-1(1-3) had strong effect on maternal endothelium but not on placentas and embryos. In contrast, hsFlt-1-e15a induced preeclampsia-like symptoms; however, it also increased litter size. In accord with the predominant placental expression of hsFlt-1-e15a and msFlt-1-i13, full-length sFlt-1 may have a role in the regulation of embryonic development. These observations point to the difference in the biological effects of full-length and truncated sFlt-1 and the changes in the effect of full-length sFlt-1 during pregnancy, and may have important implications in the management of preeclampsia.
Collapse
Affiliation(s)
- Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- * E-mail: (RR); (NGT)
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Po Jen Chiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Hyunyoung Ahn
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Birgitta Sundell
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Olesya Plazyo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Yang Jiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Mary Olive
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Bing Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Suzanne M. Jacques
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Faisal Qureshi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (RR); (NGT)
| |
Collapse
|
49
|
Abstract
Vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) system has been shown to play central roles not only in physiological angiogenesis, but also in pathological angiogenesis in diseases such as cancer. Based on these findings, a variety of anti-angiogenic drugs, including anti-VEGF antibodies and VEGFR/multi-receptor kinase inhibitors have been developed and approved for the clinical use. While the clinical efficacy of these drugs has been clearly demonstrated in cancer patients, they have not been shown to be effective in curing cancer, suggesting that further improvement in their design is necessary. Abnormal expression of an endogenous VEGF-inhibitor sFlt-1 has been shown to be involved in a variety of diseases, such as preeclampsia and aged macular degeneration. In addition, various factors modulating angiogenic processes have been recently isolated. Given this complexity then, extensive studies on the interrelationship between VEGF signals and other angiogenesis-regulatory systems will be important for developing future strategies to suppress diseases with an angiogenic component.
Collapse
Affiliation(s)
- Masabumi Shibuya
- Jobu University, Director, Institute of Physiology and Medicine, Gunma 372-8588 ; Tokyo Medical and Dental University, Department of Molecular Oncology, Tokyo 113-8519 ; University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
50
|
Dubova EA, Pavlov KA, Lyapin VM, Shchyogolev AI, Sukhikh GT. Vascular endothelial growth factor and its receptors in the placental villi of pregnant patients with pre-eclampsia. Bull Exp Biol Med 2013; 154:792-5. [PMID: 23658926 DOI: 10.1007/s10517-013-2058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparative morphological study of the placentas from women with pre-eclampsia of different severity was carried out. The expression of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, VEGFR-3) was studied by immunohistochemical methods. Branched angiogenesis processes predominated in the placentas of patients with pre-eclampsia. The syncytiocapillary membranes were thickened, the number of syncytial buds was greater than normally. Immunohistochemical studies showed high expression of VEGF and VEGFR-1 and low expression of VEGFR-2 in the placental villous structures.
Collapse
Affiliation(s)
- E A Dubova
- V. I. Kulakov Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health and Social Development of the Russian Federation, Moscow, Russia.
| | | | | | | | | |
Collapse
|