1
|
Su JG, Aslebagh S, Shahriary E, Barrett M, Balmes JR. Impacts from air pollution on respiratory disease outcomes: a meta-analysis. Front Public Health 2024; 12:1417450. [PMID: 39444957 PMCID: PMC11497638 DOI: 10.3389/fpubh.2024.1417450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Air pollution is widely acknowledged as a significant factor in respiratory outcomes, including coughing, wheezing, emergency department (ED) visits, and even death. Although several literature reviews have confirmed the association between air pollution and respiratory outcomes, they often did not standardize associations across different studies and overlooked other increasingly impactful pollutants such as trace metals. Recognizing the importance of consistent comparison and emissions of non-exhaust particles from road traffic, this study aims to comprehensively evaluate the standardized effects of various criteria pollutants and trace metals on respiratory health. Methods We conducted a comprehensive meta-analysis of peer-reviewed journal articles on air pollution and respiratory outcomes published between 1 January 2000, and 1 June 2024. The study included children (age < 18 years), adults (age ≥ 18 years), and all age groups exposed to criteria pollutants established by the US Environmental Protection Agency National Ambient Air Quality Standards and over 10 trace metals. Using databases, such as PubMed, MEDLINE, Web of Science Core Collection, and Google Scholar, we identified 579 relevant articles. After rigorous screening and quality assessment using the Newcastle-Ottawa Scale, 50 high-quality studies were included. We converted various reported outcomes (e.g., odds ratios, relative risk, and percent increase) to a standardized odds ratio (OR) for comparability and performed meta-analyses using R 4.4.0 and related packages, ensuring the robustness of our findings. Results Our meta-analysis indicated significant associations between air pollutants and respiratory outcomes. For particulate matter with diameter ≤ 2.5 μm (PM2.5), the overall ORs for children, adults, and combined age groups were 1.31, 1.10, and 1.26, respectively, indicating a consistent positive association. Similar positive associations were observed for particulate matter with diameter ≤ 10 μm (PM10) and other pollutants, with children showing higher susceptibility than adults. The analysis of trace metals also showed significant associations; however, these findings require cautious interpretation due to the small number of studies. Conclusion Our study supports associations between air pollutants, including non-exhaust trace metals, and respiratory outcomes across different age groups. The findings underscore the need for stringent environmental health policies and further research, especially in regions with higher pollution levels. The future studies should consider long-term and short-term exposures separately and include diverse populations to improve the accuracy and generalizability of the results.
Collapse
Affiliation(s)
- Jason G. Su
- School of Public Health, University of California, Berkeley, CA, United States
| | - Shadi Aslebagh
- School of Public Health, University of California, Berkeley, CA, United States
| | - Eahsan Shahriary
- School of Public Health, University of California, Berkeley, CA, United States
| | | | | |
Collapse
|
2
|
Okui T, Nakashima N. Effects of ambient air pollution on the risk of small- and large-for-gestational-age births: an analysis using national birth data in Japan. Int Arch Occup Environ Health 2024; 97:545-555. [PMID: 38602525 DOI: 10.1007/s00420-024-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES Small-for-gestational-age (SGA) and large-for-gestational-age (LGA) births are major adverse birth outcomes related to newborn health. In contrast, the association between ambient air pollution levels and SGA or LGA births has not been investigated in Japan; hence, the purpose of our study is to investigate this association. METHODS We used birth data from Vital Statistics in Japan from 2017 to 2021 and municipality-level data on air pollutants, including nitrogen dioxide (NO2), sulfur dioxide (SO2), photochemical oxidants, and particulate matter 2.5 (PM2.5). Ambient air pollution levels throughout the first, second, and third trimesters, as well as the whole pregnancy, were calculated for each birth. The association between SGA/LGA and ambient levels of the air pollutants was investigated using crude and adjusted log-binomial regression models. In addition, a regression model with spline functions was also used to detect the non-linear association. RESULTS We analyzed data from 2,434,217 births. Adjusted regression analyses revealed statistically significant and positive associations between SGA birth and SO2 level, regardless of the exposure period. Specifically, the risk ratio for average SO2 values throughout the whole pregnancy was 1.014 (95% confidence interval [CI] 1.009, 1.019) per 1 ppb increase. In addition, regression analysis with spline functions indicated that an increase in risk ratio for SGA birth depending on SO2 level was linear. Furthermore, statistically significant and negative associations were observed between LGA birth and SO2 except for the third trimester. CONCLUSIONS It was suggested that ambient level of SO2 during the pregnancy term is a risk factor for SGA birth in Japan.
Collapse
Affiliation(s)
- Tasuku Okui
- Medical Information Center, Kyushu University Hospital, Maidashi 3-1-1 Higashi-ku, Fukuoka City , Fukuoka prefecture, 812-8582, Japan.
| | - Naoki Nakashima
- Medical Information Center, Kyushu University Hospital, Maidashi 3-1-1 Higashi-ku, Fukuoka City , Fukuoka prefecture, 812-8582, Japan
| |
Collapse
|
3
|
Yatera K, Nishida C. Contemporary Concise Review 2023: Environmental and occupational lung diseases. Respirology 2024; 29:574-587. [PMID: 38826078 DOI: 10.1111/resp.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Air pollutants have various effects on human health in environmental and occupational settings. Air pollutants can be a risk factor for incidence, exacerbation/aggravation and death due to various lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), hypersensitivity pneumonitis or pneumonia (HP), pulmonary fibrosis such as pneumoconiosis and malignant respiratory diseases such as lung cancer and malignant pleural mesothelioma. Environmental and occupational respiratory diseases are crucial clinical and social issues worldwide, although the burden of respiratory disease due to environmental and occupational causes varies depending on country/region, demographic variables, geographical location, industrial structure and socioeconomic situation. The correct recognition of environmental and occupational lung diseases and taking appropriate measures are essential to their effective prevention.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
4
|
Murakami M, Ono K, Takebayashi Y, Tsubokura M, Nomura S. Comparing the risks of environmental carcinogenic chemicals in Japan using the loss of happy life expectancy indicator. ENVIRONMENTAL RESEARCH 2024; 251:118637. [PMID: 38462082 DOI: 10.1016/j.envres.2024.118637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
In this study, we aimed to use the loss of happy life expectancy (LHpLE), an indicator that enables risk assessment considering wellbeing, to compare the risks of environmental carcinogenic chemicals in Japan. First, we surveyed Japanese people to determine their emotional happiness by age and sex and evaluated whether cancer incidence reduced emotional happiness. Questionnaires were administered to a general population panel and a panel of patients with cancer in 2022, recruiting a predetermined number of responses of 5000 and 850, respectively. Second, using the survey data, LHpLE was calculated for radon, arsenic, and fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) and compared to psychological distress, considering increased mortality and decreased emotional happiness due to these risks. We discovered no significant decrease in emotional happiness due to cancer incidence and no significant associations between emotional happiness and cancer type, history, or stage. LHpLE was calculated to be 6.4 × 10-3 years for radon, 2.6 × 10-3 years for arsenic, 1.1 × 10-2 years (2012 exposure) and 8.6 × 10-4 years (2020 exposure) for PM2.5, and 9.7 × 10-1 years for psychological distress. The fraction of losses caused by these carcinogenic chemicals to HpLE exceeded 10-5, suggesting that risk reduction for these chemicals is important in environmental policies. The LHpLE indicator allows for comparing different types of risks, such as environmental chemicals and psychological distress. This is the first study to compare chemical risks using the LHpLE indicator.
Collapse
Affiliation(s)
- Michio Murakami
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| | - Kyoko Ono
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yoshitake Takebayashi
- Department of Health Risk Communication, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuhei Nomura
- Department of Health Policy and Management, School of Medicine, Keio University, Tokyo, Japan; Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Tokyo Foundation for Policy Research, Tokyo, Japan
| |
Collapse
|
5
|
Sathitsamitphong L, Chitapanarux I, Srikummoon P, Thongsak N, Nakharutai N, Thumronglaohapun S, Supasri T, Hemwan P, Traisathit P. Ambient air pollution as a time-varying covariate in the survival probability of childhood cancer patients in the upper Northern Thailand. PLoS One 2024; 19:e0303182. [PMID: 38728338 PMCID: PMC11086912 DOI: 10.1371/journal.pone.0303182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study is to determine the possible association between exposure to air pollution and the risk of death from cancer during childhood in upper northern Thailand. Data were collected on children aged 0-15 years old diagnosed with cancer between January 2003 and December 2018 from the Chiang Mai Cancer Registry. Survival rates were determined by using Kaplan-Meier curves. Cox proportional hazard models were used to investigate associations of potential risk factors with the time-varying air pollution level on the risk of death. Of the 540 children with hematologic cancer, 199 died from any cause (overall mortality rate = 5.3 per 100 Person-Years of Follow-Up (PYFU); 95%CI = 4.6-6.0). Those aged less than one year old (adjusted hazard ratio [aHR] = 2.07; 95%CI = 1.25-3.45) or ten years old or more (aHR = 1.41; 95%CI = 1.04-1.91) at the time of diagnosis had a higher risk of death than those aged one to ten years old. Those diagnosed between 2003 and 2013 had an increased risk of death (aHR = 1.65; 95%CI = 1.13-2.42). Of the 499 children with solid tumors, 214 died from any cause (5.9 per 100 PYFU; 95%CI = 5.1-6.7). Only the cancer stage remained in the final model, with the metastatic cancer stage (HR = 2.26; 95%CI = 1.60-3.21) and the regional cancer stage (HR = 1.53; 95%CI = 1.07-2.19) both associated with an increased risk of death. No association was found between air pollution exposure and all-cause mortality for either type of cancer. A larger-scale analytical study might uncover such relationships.
Collapse
Affiliation(s)
| | - Imjai Chitapanarux
- Northern Thai Research Group of Therapeutic Radiology and Oncology (NTRG-TRO), Divisions of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Marín-Palma D, Tabares-Guevara JH, Taborda N, Rugeles MT, Hernandez JC. Coarse particulate matter (PM10) induce an inflammatory response through the NLRP3 activation. J Inflamm (Lond) 2024; 21:15. [PMID: 38698414 PMCID: PMC11064351 DOI: 10.1186/s12950-024-00388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1β; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1β and IL-18, within lung tissue. CONCLUSION Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1β. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.
Collapse
Affiliation(s)
- Damariz Marín-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jorge H Tabares-Guevara
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
7
|
Al Okla SM, Al Rasbi FAZK, Al Marhubi HS, Al Mataani SS, Al Sawai YM, Mohammed HI, Al Mamari MAS, Al Balushi SAA, Abbady AQ. The Impact of Air Pollution on Asthma Severity among Residents Living near the Main Industrial Complex in Oman: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:553. [PMID: 38791768 PMCID: PMC11121288 DOI: 10.3390/ijerph21050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Asthma is a widespread chronic respiratory disease that poses a significant public health challenge. The current study investigated the associations between air pollution and asthma severity among individuals residing near the Sohar industrial port (SIP) in Oman. Despite the presence of multiple major industrial complexes in Oman, limited knowledge regarding their impact on respiratory health is accredited. Hence, the primary objective of this study is to offer valuable insights into the respiratory health consequences of industrial air pollution in Al Batinah North. METHODS The state health clinics' records for patient visits related to asthma were collected for the timeframe spanning 2014 to 2022. Exposure was defined as the distance from the SIP, Majan Industerial Area (MIA), and Sohar Industerial Zone (SIZ) to determine high-, intermediate-, and low-exposure zones (<6 km, 6-12 km and >12 km, respectively). Exposure effect modifications by age, gender, and smoking status were also examined. RESULTS The conducted cross-sectional study of 410 patients (46.1% males and 53.9% females) living in over 17 areas around SIP revealed that 73.2% of asthmatics were under 50 years old, with severity significantly associated with closeness to the port. Risk ratios were estimated to be (RR:2.42; CI95%: 1.01-5.78), (RR:1.91; CI95%: 1.01-3.6), and (RR:1.68; CI95%: 0.92-3.09) for SIP, MIP, and SIZ areas, respectively, compared to the control area. Falaj Al Qabail (6.4 km) and Majees (6 km) had the highest number of asthma patients (N 69 and N 72) and highest percentages of severe asthma cases among these patients (28% and 24%) with significant risk ratios (RR:2.97; CI95%: 1.19-7.45 and RR:2.55; CI95%: 1.00-6.48), correspondingly. Moreover, severe asthma prevalence peaked in the 25-50 age group (RR:2.05; CI95%: 1.26-3.33), and this linkage between asthma and age was much more pronounced in males than females. Smoking and exposure to certain contaminants (dust and smoke) also increased the risk of severe asthma symptoms, but their effects were less important in the high-risk zone, suggesting much more important risk factors. A neural network model accurately predicted asthma risk (94.8% accuracy), with proximity to SIP as the most influential predictor. CONCLUSIONS This study highlights the high asthma burden near SIP, linked to port proximity, smoking, and wind direction as major risk factors. These findings inform vital public health policies to reduce air pollution and improve respiratory health in the region, prompting national policy review.
Collapse
Affiliation(s)
- Souad Mahmoud Al Okla
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
- Department of Biology, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria
| | - Fatima Al Zahra Khamis Al Rasbi
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Hawida Said Al Marhubi
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Shima Salim Al Mataani
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Yusra Mohammed Al Sawai
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Hasa Ibrahim Mohammed
- Liwa Extended Health Center, Ministry of Health, Liwa 325, Oman; (H.I.M.); (M.A.S.A.M.)
| | | | | | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus P.O. Box 6091, Syria;
- Department of Biology and Medical Science, Faculty of Pharmacy, International University for Science and Technology (IUST), Damascus, Syria
| |
Collapse
|
8
|
Ramamoorthy T, Nath A, Singh S, Mathew S, Pant A, Sheela S, Kaur G, Sathishkumar K, Mathur P. Assessing the Global Impact of Ambient Air Pollution on Cancer Incidence and Mortality: A Comprehensive Meta-Analysis. JCO Glob Oncol 2024; 10:e2300427. [PMID: 38513187 DOI: 10.1200/go.23.00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.
Collapse
Affiliation(s)
- Thilagavathi Ramamoorthy
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Anita Nath
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Shubhra Singh
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Stany Mathew
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Apourv Pant
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Samvedana Sheela
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Gurpreet Kaur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Krishnan Sathishkumar
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Prashant Mathur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| |
Collapse
|
9
|
Gholami H, Mohammadifar A, Behrooz RD, Kaskaoutis DG, Li Y, Song Y. Intrinsic and extrinsic techniques for quantification uncertainty of an interpretable GRU deep learning model used to predict atmospheric total suspended particulates (TSP) in Zabol, Iran during the dusty period of 120-days wind. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123082. [PMID: 38061429 DOI: 10.1016/j.envpol.2023.123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Total suspended particulates (TSP), as a key pollutant, is a serious threat for air quality, climate, ecosystems and human health. Therefore, measurements, prediction and forecasting of TSP concentrations are necessary to mitigate their negative effects. This study applies the gated recurrent unit (GRU) deep learning model to predict TSP concentrations in Zabol, Iran, during the dust period of the 120-day wind (3 June - 4 October 2014). Three uncertainty quantification (UQ) techniques consisting of the blackbox metamodel, heteroscedastic regression and infinitesimal jackknife were applied to quantify the uncertainty associated with GRU model. Permutation feature importance measure (PFIM), based on the game theory, was employed for the interpretability of the predictive model's outputs. A total of 80 TSP samples were collected and were randomly divided as training (70%) and validation (30%) datasets, while eight variables were used in the TSP prediction model. Our findings showed that GRU performed very well for TSP prediction (with r and Nash Sutcliffe coefficient (NSC) values above 0.99 for both datasets, and RMSE of 57 μg m-3 and 73 μg m-3 for training and validation datasets, respectively). Among the three UQ techniques, the infinitesimal jackknife was the most accurate one, while all the observed and predicted TSP values fell within the continence limitation estimated by the model. PFIM plots showed that wind speed and air humidity were the most and least important variables, respectively, impacting the predictive model's outputs. This is the first attempt of using an interpretable DL model for TSP prediction modelling, recommending that future research should involve aspects of uncertainty and interpretability of the predictive models. Overall, UQ and interpretability techniques have a key role in reducing the impact of uncertainties during optimization and decision making, resulting in better understanding of sophisticated mechanisms related to the predictive model.
Collapse
Affiliation(s)
- Hamid Gholami
- Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran.
| | - Aliakbar Mohammadifar
- Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran
| | - Reza Dahmardeh Behrooz
- Department of Environmental Science, Faculty of Natural Resources, University of Zabol, P.O. Box 98615-538, Zabol, Iran
| | - Dimitris G Kaskaoutis
- Department of Chemical Engineering, University of Western Macedonia, Kozani, 50100, Greece
| | - Yue Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Laoshan Laboratory, Qingdao, 266061, China
| | - Yougui Song
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Laoshan Laboratory, Qingdao, 266061, China.
| |
Collapse
|
10
|
Mimura T, Ichinose T, Inoue KI, Yoshida Y, Fujishima H. Airborne Suspended Particulate Matter and the Prevalence of Allergic Conjunctivitis in Japan. Cureus 2024; 16:e53292. [PMID: 38435920 PMCID: PMC10906130 DOI: 10.7759/cureus.53292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Background This study aimed to examine the association of suspended particulate matter (SPM) with outpatient attendance for allergic conjunctivitis. Methodology The information on air pollution, encompassing total hydrocarbons, non-methane hydrocarbons, methane, carbon monoxide, nitrogen oxide, nitric oxide, oxidants, and SPM alongside data concerning daily weather conditions such as temperature, wind speed, and humidity, was gathered. Subsequently, the weekly mean values for outpatient visits, air pollution, and weather parameters were computed. Results The number of outpatient visits for allergic conjunctivitis was significantly associated with SPM levels (r = 0.70, p = 0.0037), oxidant levels (r = 0.70, p = 0.0038), wind speed (r = 0.48, p = 0.0472), and humidity (r = 0.77, p = 0.0009) from January to March, as well as SPM levels (r = 0.53, p = 0.0309) and carbon monoxide (r = 0.56, p = 0.0230) from April to June. Multivariate analysis showed that SPM (odds ratio = 1.37, p = 0.0161) and wind velocity (odds ratio = 1.52, p = 0.0038) were significant predictors of the number of outpatient visits from January to December. Conclusions SPM levels were the only independent predictor of outpatient visits for allergic conjunctivitis, suggesting that SPM contributes to the pathophysiology of this condition.
Collapse
Affiliation(s)
- Tatsuya Mimura
- Ophthalmology, Teikyo University School of Medicine, Tokyo, JPN
| | - Takamichi Ichinose
- Department of Health Science, Oita University of Nursing and Health Sciences, Oita, JPN
| | - Ken-Ichiro Inoue
- Graduate School of Nursing, University of Shizuoka, Shizuoka, JPN
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka, JPN
| | | |
Collapse
|
11
|
Huang W, Zhou Y, Chen X, Zeng X, Knibbs LD, Zhang Y, Jalaludin B, Dharmage SC, Morawska L, Guo Y, Yang X, Zhang L, Shan A, Chen J, Wang T, Heinrich J, Gao M, Lin L, Xiao X, Zhou P, Yu Y, Tang N, Dong G. Individual and joint associations of long-term exposure to air pollutants and cardiopulmonary mortality: a 22-year cohort study in Northern China. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 36:100776. [PMID: 37547049 PMCID: PMC10398602 DOI: 10.1016/j.lanwpc.2023.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 08/08/2023]
Abstract
Background Evidence on the associations between long-term exposure to multiple air pollutants and cardiopulmonary mortality is limited, especially for developing regions with higher pollutant levels. We aimed to characterise the individual and joint (multi-pollutant) associations of long-term exposure to air pollutants with cardiopulmonary mortality, and to identify air pollutant that primarily contributes to the mortality risk. Methods We followed 37,442 participants with a mean age of 43.5 years in four cities in northern China (Tianjin, Shenyang, Taiyuan, and Rizhao) from January 1998 to December 2019. Annual particulate matter (PM) with diameters ≤2.5 μm (PM2.5), ≤10 μm (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) were estimated using daily average values from satellite-derived machine learning models and monitoring stations. Time-varying Cox proportional hazards model was used to evaluate the individual association between air pollutants and mortality from non-accidental causes, cardiovascular diseases (CVDs), non-malignant respiratory diseases (RDs) and lung cancer, accounting for demographic and socioeconomic factors. Effect modifications by age, sex, income and education level were also examined. Quantile-based g-Computation integrated with time-to-event data was additionally applied to evaluate the co-effects and the relative weight of contributions for air pollutants. Findings During 785,807 person-years of follow-up, 5812 (15.5%) died from non-accidental causes, among which 2932 (7.8%) were from all CVDs, 479 (1.3%) from non-malignant RDs, and 552 (1.4%) from lung cancer. Long-term exposure to PM10 (mean [baseline]: 136.5 μg/m3), PM2.5 (mean [baseline]: 70.2 μg/m3), SO2 (mean [baseline]: 113.0 μg/m3) and NO2 (mean [baseline]: 39.2 μg/m3) were adversely and consistently associated with all mortality outcomes. A 10 μg/m3 increase in PM2.5 was associated with higher mortality from non-accidental causes (hazard ratio 1.20; 95% confidence interval 1.17-1.23), CVDs (1.23; 1.19-1.28), non-malignant RDs (1.37; 1.25-1.49) and lung cancer (1.14; 1.05-1.23). A monotonically increasing curve with linear or supra-linear shape with no evidence of a threshold was observed for the exposure-response relationship of mortality with individual or joint exposure to air pollutants. PM2.5 consistently contributed most to the elevated mortality risks related to air pollutant mixture, followed by SO2 or PM10. Interpretation There was a strong and positive association of long-term individual and joint exposure to PM10, PM2.5, SO2, and NO2 with mortalities from non-accidental causes, CVDs, non-malignant RDs and lung cancer in high-exposure settings, with PM2.5 potentially being the main contributor. The shapes of associations were consistent with a linear or supra-linear exposure-response relationship, with no lower threshold observed within the range of concentrations in this study. Funding National Key Research and Development Program of China, the China Scholarship Council, the National Natural Science Foundation of China, Natural Science Foundation of Guangdong Province.
Collapse
Affiliation(s)
- Wenzhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Luke D. Knibbs
- Faculty of Medicine and Health, School of Public Health, The University of Sydney, NSW 2006, Australia
- Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Yunting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW 2037, Australia
- Ingham Institute for Applied Medial Research, Liverpool, NSW 2170, Australia
- School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich 80336, Germany
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xiao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Peien Zhou
- Department of Public Health & Primary Care, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Wang D, Zeng Z, Shen M, Okazaki R, Miyata H, Yonezawa T, Yoshida Y. ATP Consumption Is Coupled with Endocytosis in Exudated Neutrophils. Int J Mol Sci 2023; 24:ijms24109039. [PMID: 37240384 DOI: 10.3390/ijms24109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophil energy metabolism during phagocytosis has been previously reported, and adenosine triphosphate (ATP) plays a crucial role in endocytosis. Neutrophils are prepared by intraperitoneal injection of thioglycolate for 4 h. We previously reported a system established for measuring particulate matter endocytosis by neutrophils using flow cytometry. In this study, we utilized this system to investigate the relationship between endocytosis and energy consumption in neutrophils. A dynamin inhibitor suppressed ATP consumption triggered by neutrophil endocytosis. In the presence of exogenous ATP, neutrophils behave differently during endocytosis depending on ATP concentration. The inhibition of ATP synthase and nicotinamide adenine dinucleotide phosphate oxidase but not phosphatidylinositol-3 kinase suppresses neutrophil endocytosis. The nuclear factor kappa B was activated during endocytosis and inhibited by I kappa B kinase (IKK) inhibitors. Notably, IKK inhibitors restored endocytosis-triggered ATP consumption. Furthermore, data from the NLR family pyrin domain containing three knockout mice suggest that inflammasome activation is not involved in neutrophil endocytosis or concomitant ATP consumption. To summarize, these molecular events occur via endocytosis, which is closely related to ATP-centered energy metabolism.
Collapse
Affiliation(s)
- Duo Wang
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Zirui Zeng
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Mengyue Shen
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
- Department of Medical Teaching, West China Center of Medical Sciences of Sichuan University, Chengdu 610041, China
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hironori Miyata
- Laboratory Animal Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Tomo Yonezawa
- Division of Functional Genomics and Therapeutic Innovation, Research Center for Advanced Genomics, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
13
|
Cani M, Turco F, Butticè S, Vogl UM, Buttigliero C, Novello S, Capelletto E. How Does Environmental and Occupational Exposure Contribute to Carcinogenesis in Genitourinary and Lung Cancers? Cancers (Basel) 2023; 15:2836. [PMID: 37345174 PMCID: PMC10216822 DOI: 10.3390/cancers15102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Environmental and occupational exposures have been associated with an increased risk of different types of cancers, although the exact mechanisms of higher carcinogenesis risk are not always well understood. Lung cancer is the leading cause of global cancer mortality, and, also, genitourinary neoplasms are among the main causes of cancer-related deaths in Western countries. The purpose of this review is to describe the main environmental and occupational factors that increase the risk of developing lung and genitourinary cancers and to investigate carcinogenesis mechanisms that link these agents to cancer onset. Further objectives are to identify methods for the prevention or the early detection of carcinogenic agents and, therefore, to reduce the risk of developing these cancers or to detect them at earlier stages.
Collapse
Affiliation(s)
- Massimiliano Cani
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Fabio Turco
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Simona Butticè
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Consuelo Buttigliero
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Silvia Novello
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| | - Enrica Capelletto
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (M.C.); (F.T.); (C.B.); (E.C.)
| |
Collapse
|
14
|
Wang J, Yan Y, Si H, Li J, Zhao Y, Gao T, Pi J, Zhang R, Chen R, Chen W, Zheng Y, Jiang M. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114702. [PMID: 36950983 DOI: 10.1016/j.ecoenv.2023.114702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The influence of air pollution on human health has sparked widespread concerns across the world. Previously, we found that exposure to ambient fine particulate matter (PM2.5) in our "real-ambient exposure" system can result in reduced lung function. However, the mechanism of organ-specific toxicity is still not fully elucidated. The balance of the microbiome contributes to maintaining lung and gut health, but the changes in the microbiome under PM2.5 exposure are not fully understood. Recently, crosstalk between nuclear factor E2-related factor 2 (Nrf2) and the microbiome was reported. However, it is unclear whether Nrf2 affects the lung and gut microbiomes under PM2.5 exposure. In this study, wild-type (WT) and Nrf2-/- (KO) mice were exposed to filtered air (FA) and real ambient PM2.5 (PM) in the " real-ambient exposure" system to examine changes in the lung and gut microbiomes. Here, our data suggested microbiome dysbiosis in lung and gut of KO mice under PM2.5 exposure, and Nrf2 ameliorated the microbiome disorder. Our study demonstrated the detrimental impacts of PM2.5 on the lung and gut microbiome by inhaled exposure to air pollution and supported the protective role of Nrf2 in maintaining microbiome homeostasis under PM2.5 exposure.
Collapse
Affiliation(s)
- Jianxin Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yongwei Yan
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea fisheries research institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Honglin Si
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yaseen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Wang Y, Du Z, Zhang Y, Chen S, Lin S, Hopke PK, Rich DQ, Zhang K, Romeiko XX, Deng X, Qu Y, Liu Y, Lin Z, Zhu S, Zhang W, Hao Y. Long-term exposure to particulate matter and COPD mortality: Insights from causal inference methods based on a large population cohort in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160808. [PMID: 36502970 DOI: 10.1016/j.scitotenv.2022.160808] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Evidence of the association between long-term exposure to particulate matter (PM) and chronic obstructive pulmonary disease (COPD) mortality from large population-based cohort study is limited and often suffers from residual confounding issues with traditional statistical methods. We hereby assessed the casual relationship between long-term PM (PM2.5, PM10 and PM10-2.5) exposure and COPD mortality in a large cohort of Chinese adults using state-of-the-art causal inference approaches. METHODS A total of 580,757 participants in southern China were enrolled in a prospective cohort study from 2009 to 2015 and followed up until December 2020. Exposures to PM at each residential address were obtained from the Long-term Gap-free High-resolution Air Pollutant Concentration dataset. Marginal structural Cox models were used to investigate the association between COPD mortality and annual average exposure levels of PM exposure. RESULTS During an average follow-up of 8.0 years, 2250 COPD-related deaths occurred. Under a set of causal inference assumptions, the hazard ratio (HR) for COPD mortality was estimated to be 1.046 (95 % confidence interval: 1.034-1057), 1.037 (1.028-1.047), and 1.032 (1.006-1.058) for each 1-μg/m3 increase in annual average concentrations of PM2.5, PM10, and PM10-2.5 respectively. Additionally, the detrimental effects appeared to be more pronounced among the elderly (age ≥ 65) and inactive participants. The effect estimates of PM2.5, PM10, and PM10-2.5 tend to be greater among participants who were generally exposed to PM10 concentrations below 70 μg/m3 than that among the general population. CONCLUSION Our results support causal links between long-term PM exposure and COPD mortality, highlighting the urgency for more effective strategies to reduce PM exposure, with particular attention on protecting potentially vulnerable groups.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, University at Albany, the State University of New York, Rensselaer, NY, USA
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, the State University of New York, Rensselaer, NY, USA
| | - Xiaobo X Romeiko
- Department of Environmental Health Sciences, School of Public Health, University at Albany, the State University of New York, Rensselaer, NY, USA
| | - Xinlei Deng
- Department of Environmental Health Sciences, School of Public Health, University at Albany, the State University of New York, Rensselaer, NY, USA
| | - Yanji Qu
- Department of Cardiovascular Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Liu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ziqiang Lin
- Department of Psychiatry, New York University School of Medicine, NY, USA
| | - Shuming Zhu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, China.
| |
Collapse
|
16
|
Wang Y, Wei J, Zhang Y, Guo T, Chen S, Wu W, Chen S, Li Z, Qu Y, Xiao J, Deng X, Liu Y, Du Z, Zhang W, Hao Y. Estimating causal links of long-term exposure to particulate matters with all-cause mortality in South China. ENVIRONMENT INTERNATIONAL 2023; 171:107726. [PMID: 36638656 DOI: 10.1016/j.envint.2022.107726] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The association between long-term particulate matter (PM) exposure and all-cause mortality has been well-documented. However, evidence is still limited from high-exposed cohorts, especially for PM1 which is smaller while more toxic than other commonly investigated particles. We aimed to examine the potential casual links of long-term PMs exposure with all-cause mortality in high-exposed areas. METHODS A total of 580,757 participants in southern China were enrolled during 2009-2015 and followed up to 2020. The annual average concentration of PM1, PM2.5, and PM10 at 1 km2 spatial resolution was assessed for each residential address through validated spatiotemporal models. We used marginal structural Cox models to estimate the PM-mortality associations which were further stratified by sociodemographic, lifestyle factors and general exposure levels. RESULTS 37,578 deaths were totally identified during averagely 8.0 years of follow-up. Increased exposure to all 3 PM size fractions were significantly associated with increased risk of all-cause mortality, with hazard ratios (HRs) of 1.042 (95 % confidence interval (CI): 1.037-1.046), 1.031 (95 % CI: 1.028-1.033), and 1.029 (95 % CI: 1.027-1.031) per 1 μg/m3 increase in PM1, PM2.5, and PM10 concentrations, respectively. We observed greater effect estimates among the elderly (age ≥ 65 years), unmarried participants, and those with low education attainment. Additionally, the effect of PM1, PM2.5, and PM10 tend to be higher in the low-exposure group than in the general population. CONCLUSIONS We provided comprehensive evidence for the potential causal links betweenlong-term PM exposureand all-cause mortality, and suggested stronger links for PM1compared to large particles and among certain vulnerable subgroups.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Tong Guo
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ziqiang Li
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xinlei Deng
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yu Liu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, Beijing, China.
| |
Collapse
|
17
|
Min KD, Kim SY, Cho SI. Ambient PM 2.5 exposures could increase risk of tuberculosis recurrence. Environ Health Prev Med 2023; 28:48. [PMID: 37648454 PMCID: PMC10480611 DOI: 10.1265/ehpm.23-00131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The effect of ambient PM2.5 on the incidence of tuberculosis (TB) has been investigated in epidemiological studies. However, they did not separately study new and relapsed TB infection and focused on relatively short-term effects of PM2.5. In this regard, we examined the associations of long-term PM2.5 exposures with both new and relapsed TB incidences in South Korea, where the disease burden of TB is greatest among high-income countries. METHODS An area-level ecological study of 250 districts was conducted from 2015 to 2019. Age- and sex-standardized TB incidence ratios for each district and year were used as outcome variables, and their associations with PM2.5 concentrations for one to five-year average were examined. Negative binomial regression models incorporating spatiotemporal autocorrelation were employed using integrated nested Laplace approximations. Stratified analyses were conducted by type of TB (total, new, and relapsed cases). RESULTS Districts with higher PM2.5 concentrations tended to have significantly higher TB recurrence rate. The relative risks per 10 µg/m3 PM2.5 increase were 1.218 (95% credible interval 1.051-1.411), 1.260 (1.039-1.527) and 1.473 (1.015-2.137) using the two, three and five-year average PM2.5 exposures, respectively. CONCLUSIONS The results imply that interventions for reducing air pollution might help prevent TB recurrence.
Collapse
Affiliation(s)
- Kyung-Duk Min
- College of Veterinary Medicine, Chungbuk National University
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center
| | - Sung-il Cho
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University
| |
Collapse
|
18
|
Zou K, Sun P, Huang H, Zhuo H, Qie R, Xie Y, Luo J, Li N, Li J, He J, Aschebrook-Kilfoy B, Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:216-225. [PMID: 39036545 PMCID: PMC11256564 DOI: 10.1016/j.jncc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and mortality worldwide. While smoking, radon, air pollution, as well as occupational exposure to asbestos, diesel fumes, arsenic, beryllium, cadmium, chromium, nickel, and silica are well-established risk factors, many lung cancer cases cannot be explained by these known risk factors. Over the last two decades the incidence of adenocarcinoma has risen, and it now surpasses squamous cell carcinoma as the most common histologic subtype. This increase warrants new efforts to identify additional risk factors for specific lung cancer subtypes as well as a comprehensive review of current evidence from epidemiologic studies to inform future studies. Given the myriad exposures individuals experience in real-world settings, it is essential to investigate mixture effects from complex exposures and gene-environment interactions in relation to lung cancer and its subtypes.
Collapse
Affiliation(s)
- Kaiyong Zou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyuan Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhuo
- Yale School of Public Health, New Haven, United States of America
| | - Ranran Qie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Luo
- Department of Public Health Sciences, the University of Chicago, Chicago, United States of America
| | - Ni Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Peng J, Han H, Yi Y, Huang H, Xie L. Machine learning and deep learning modeling and simulation for predicting PM2.5 concentrations. CHEMOSPHERE 2022; 308:136353. [PMID: 36084831 DOI: 10.1016/j.chemosphere.2022.136353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) pollution greatly endanger human physical and mental health, and it is of great practical significance to predict PM concentrations accurately. This study measured one-year monitoring data of six main meteorological parameters and PM2.5 concentrations independently at two monitoring sites in central China's Hunan Province. These datasets were then employed to train, validate, and evaluate the proposed extreme gradient boosting (XGBoost) machine learning model and the fully connected neural network deep learning model, respectively. The performances of the two models were compared, analyzed, and optimized through model parameter tuning. The XGBoost model had better prediction ability with R2 higher than 0.761 in the complete test dataset. When the complete dataset was divided into stratified sub-sets by daytime-nighttime periods, the value of R2 increased to 0.856 in the nighttime test dataset. The feature importance and influential mechanism of meteorological variables on PM2.5 concentrations were analyzed and discussed.
Collapse
Affiliation(s)
- Jian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yong Yi
- Atmospheric Environment Monitoring Department, Changsha Environmental Monitoring Centre of Hunan Province, Changsha, 410001, China
| | - Huimin Huang
- Atmospheric Environment Monitoring Department, Changsha Environmental Monitoring Centre of Hunan Province, Changsha, 410001, China
| | - Le Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
20
|
STOIAN IM, PARVU S, NEAMTU A, CALOTA V, VOINOIU A, PISTOL A, CUCUIU R, MINCA DG. PM10 and NO2 Air Pollution and Evolution of COVID-19 Cases in Romania. MAEDICA 2022; 17:777-784. [PMID: 36818269 PMCID: PMC9923075 DOI: 10.26574/maedica.2022.17.4.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Objectives:Based on the correlation between air pollution and COVID-19 incidence/mortality already existing in the literature, we aimed to develop a study to investigate the link between the average level of PM10 (particulate matter 10 - particulate matter 10 microns in diameter) and NO2 (nitrogen dioxide) concentration over five years and the cumulative incidence of COVID-19 cases per 1000 people in Romania. Methods: To assess PM10 and NO2 exposure, we determined the average value of annual PM10 and NO2 concentration for each city over five years (2015-2019). For this purpose, the average of annual PM10 and NO2 concentrations collected from monitoring stations in selected cities was calculated. Then, the annual values over five years were averaged to finally obtain the average PM10 and NO2 concentration for each city. Data on the cumulative number of confirmed cases of COVID-19 up to the 28th of September 2020 were provided by the National Centre for Surveillance and Control of Communicable Diseases (CNSCBT) of the National Institute of Public Health (INSP). The study used the cumulative incidence/hour per 1000 population on 28.09.2020. Results:According to Law no. 104/2011, the annual permissible limit value of PM10 concentration of 40 μg/m³ was not exceeded in any of the 43 cities in our study. The average for all cities was 24.0±4.8 ìg/m³, with a minimum value of average PM10 concentration of 13.9 μg/m3 measured in Alba Iulia and a maximum value of 39.1 μg/m³ in Iasi. The regression model shows that, in Bucharest, 77.9% of the variation in case incidence is explained by the variation in PM10 concentration. In order to find the number of new cases that would correspond to a cumulative incidence of 0.166, taking as an example one of the districts with a population of 259,084, the above regression model shows that an increase in the average PM10 concentration by one unit is associated with 43 new cases. Conclusion:The study demonstrates that an exposure of the population to particulate matter in atmospheric air, at low values, below the permissible limit values but for a long time (the follow-up period in our study was five years, between 2015 and 2019), can have effects on the health status of the population, which becomes much more vulnerable to external agents, in our case pathogenic microorganisms (viruses).
Collapse
Affiliation(s)
- Irina Mihaela STOIAN
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,National Institute of Public Health, Bucharest, Romania
| | - Simona PARVU
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,National Institute of Public Health, Bucharest, Romania
| | - Andra NEAMTU
- National Institute of Public Health, Bucharest, Romania
| | | | | | - Adriana PISTOL
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,National Institute of Public Health, Bucharest, Romania
| | - Radu CUCUIU
- National Institute of Public Health, Bucharest, Romania
| | - Dana Galieta MINCA
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania,National Institute of Public Health, Bucharest, Romania
| |
Collapse
|
21
|
Luciani A, Blasi M, Provenzano L, Zonato S, Ferrari D. Recent advances in small cell lung cancer: the future is now? Minerva Endocrinol (Torino) 2022; 47:460-474. [PMID: 33331739 DOI: 10.23736/s2724-6507.20.03213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small cell lung cancer is a relevant clinical issue as it is a highly malignant cancer, often diagnosed in advanced stage. Similarly to non-small cell lung cancer, tobacco smoking is currently the main risk factor. Its incidence, at least in males, has declined over the past decades, due to the worldwide decreased percentage of active smokers. The typical small cells of this tumor type are characterized by a high Proliferation Index, chromosomal deletions such as 3p(14-23) involving the tumor-suppressor gene FHIT, alterations of the MYC or Notch family proteins and the frequent expression of neuroendocrine markers. The combination of thoracic radiotherapy and chemotherapy is the standard treatment for limited stage disease, while platinum-based chemotherapy is the most effective choice for extensive stage disease. Unfortunately, whatever chemotherapy is used, the results are disappointing. No regimen has proved to be effective in the long run, indeed small cell lung cancer rapidly progresses after a frequent initial strong response, and the mortality rate remains still high. The advent of immunotherapy is actually changing the landscape in oncology. As well as in other cancers, recent trials have demonstrated the efficacy of the combination of immune checkpoint inhibitors and chemotherapy, opening new perspectives for the future of our patients.
Collapse
Affiliation(s)
- Andrea Luciani
- Unit of Medical Oncology, San Paolo Hospital, Milan, Italy -
| | - Miriam Blasi
- Unit of Medical Oncology, San Paolo Hospital, Milan, Italy
| | | | - Sabrina Zonato
- Unit of Medical Oncology, San Paolo Hospital, Milan, Italy
| | - Daris Ferrari
- Unit of Medical Oncology, San Paolo Hospital, Milan, Italy
| |
Collapse
|
22
|
Wang L, Sun W, Moudon AV, Zhu YG, Wang J, Bao P, Zhao X, Yang X, Jia Y, Zhang S, Wu S, Cai Y. Deciphering the impact of urban built environment density on respiratory health using a quasi-cohort analysis of 5495 non-smoking lung cancer cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158014. [PMID: 35981573 DOI: 10.1016/j.scitotenv.2022.158014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Lung cancer is a major health concern and is influenced by air pollution, which can be affected by the density of urban built environment. The spatiotemporal impact of urban density on lung cancer incidence remains unclear, especially at the sub-city level. We aimed to determine cumulative effect of community-level density attributes of the built environment on lung cancer incidence in high-density urban areas. METHODS We selected 78 communities in the central city of Shanghai, China as the study site; communities included in the analysis had an averaged population density of 313 residents per hectare. Using data from the city cancer surveillance system, an age-period-cohort analysis of lung cancer incidence was performed over a five-year period (2009-2013), with a total of 5495 non-smoking/non-secondhand smoking exposure lung cancer cases. Community-level density measures included the density of road network, facilities, buildings, green spaces, and land use mixture. RESULTS In multivariate models, built environment density and the exposure time duration had an interactive effect on lung cancer incidence. Lung cancer incidence of birth cohorts was associated with road density and building coverage across communities, with a relative risk of 1·142 (95 % CI: 1·056-1·234, P = 0·001) and 1·090 (95 % CI: 1·053-1·128, P < 0·001) at the baseline year (2009), respectively. The relative risk increased exponentially with the exposure time duration. As for the change in lung cancer incidence over the five-year period, lung cancer incidence of birth cohorts tended to increase faster in communities with a higher road density and building coverage. CONCLUSION Urban planning policies that improve road network design and building layout could be important strategies to reduce lung cancer incidence in high-density urban areas.
Collapse
Affiliation(s)
- Lan Wang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat, Shanghai, China.
| | - Wenyao Sun
- College of Architecture and Urban Planning, Tongji University, Shanghai, China; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat, Shanghai, China
| | - Anne Vernez Moudon
- Department of Urban Design and Planning and Urban Form Laboratory, University of Washington, Seattle, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System (LREIS), Institute of Geographic Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Pingping Bao
- Shanghai Center for Disease Prevention and Control, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoming Yang
- Jing'an District Center for Disease Control and Prevention, Shanghai 200072, China
| | - Yinghui Jia
- College of Architecture and Urban Planning, Tongji University, Shanghai, China; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat, Shanghai, China
| | - Surong Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat, Shanghai, China
| | - Shuang Wu
- College of Architecture and Urban Planning, Tongji University, Shanghai, China; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat, Shanghai, China
| | - Yuxi Cai
- College of Architecture and Urban Planning, Tongji University, Shanghai, China; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat, Shanghai, China
| |
Collapse
|
23
|
Chen Z, Liu N, Tang H, Gao X, Zhang Y, Kan H, Deng F, Zhao B, Zeng X, Sun Y, Qian H, Liu W, Mo J, Zheng X, Huang C, Sun C, Zhao Z. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. INDOOR AIR 2022; 32:e13170. [PMID: 36437665 DOI: 10.1111/ina.13170] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease attributed to the indoor exposure to sulfur dioxide (SO2 ), nitrogen dioxide (NO2 ), ozone (O3 ), and carbon monoxide (CO) is not clear, and the quantitative concentration-response relationship is a prerequisite. This is a systematic review to summarize the quantitative concentration-response relationships by screening and analyzing the polled effects of population-based epidemiological studies. After collecting literature published between 1980 and 2019, a total of 19 health outcomes in 101 studies with 182 health risk estimates were recruited. By meta-analysis, the leave-one-out sensitivity analysis and Egger's test for publication bias, the robust and reliable effects were found for SO2 (per 10 μg/m3 ) with chronic obstructive pulmonary diseases (COPD) (pooled relative risks [RRs] 1.016, 95% CI: 1.012-1.021) and cardiovascular diseases (CVD) (RR 1.012, 95%CI: 007-1.018), respectively. NO2 (per 10 μg/m3 ) had the pooled RRs for childhood asthma, preterm birth, lung cancer, diabetes, and COPD by 1.134 (1.084-1.186), 1.079 (1.007-1.157), 1.055 (1.010-1.101), 1.019 (1.009-1.029), and 1.016 (1.012-1.120), respectively. CO (per 1 mg/m3 ) was significantly associated with Parkinson's disease (RR 1.574, 95% CI: 1.069-2.317) and CVD (RR 1.024, 95% CI: 1.011-1.038). No robust effects were observed for O3 . This study provided evidence and basis for further estimation of the health burden attributable to the four gaseous pollutants.
Collapse
Affiliation(s)
- Zhuoru Chen
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
| | - Hao Tang
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xuehuan Gao
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Wang W, Meng L, Hu Z, Yuan X, Zeng W, Li K, Luo H, Tang M, Zhou X, Tian X, Luo C, He Y, Yang S. The association between outdoor air pollution and lung cancer risk in seven eastern metropolises of China: Trends in 2006-2014 and sex differences. Front Oncol 2022; 12:939564. [PMID: 36248970 PMCID: PMC9556871 DOI: 10.3389/fonc.2022.939564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
There is a positive association between air pollution and lung cancer burden. This study aims to identify and examine lung cancer risks and mortality burdens associated with air pollutants, including PM10, NO2 and SO2, in seven eastern metropolises of China. The study population comprised a population from seven eastern metropolises of China. The yearly average values (YAV, μg/m3) of the PM10, NO2 and SO2 levels were extracted from China Statistical Yearbook (CSYB) for each selected city from 2006 to 2014. Data collected in the China Cancer Registry Annual Report (CCRAR) provide lung cancer incidence and mortality information. A two-level normal random intercept regression model was adopted to analyze the association between the lung cancer rates and individual air pollutant concentration within a five-year moving window of past exposure. The yearly average values of PM10, SO2 and NO2 significantly decreased from 2006 to 2014. Consistently, the male age-adjusted incidence rate (MAIR) and male age-adjusted mortality rate (MAMR) decreased significantly from 2006 to 2014.Air pollutants have a lag effect on lung cancer incidence and mortality for 2-3 years. NO2 has the significant association with MAIR (RR=1.57, 95% CI: 1.19-2.05, p=0.002), MAMR (RR=1.70, 95% CI: 1.32-2.18, p=0.0002) and female age-adjusted mortality rate (FAMR) (RR=1.27, 95% CI: 1.08-1.49, p=0.003). Our findings suggested that air pollutants may be related to the occurrence and mortality of lung cancer. NO2 was significantly associated with the risk of lung cancer, followed by SO2. Air pollutants have the strongest lag effect on the incidence and mortality of lung cancer within 2-3 years.
Collapse
Affiliation(s)
- Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha, China
- *Correspondence: Wei Wang,
| | - Liu Meng
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheyu Hu
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha, China
| | - Weisi Zeng
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunlun Li
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanjia Luo
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Tang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiao Zhou
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoqiong Tian
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenhui Luo
- Scientifc Research Office, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha, China
| | - Shuo Yang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha, China
| |
Collapse
|
25
|
Impacts of Outdoor Particulate Matter Exposure on the Incidence of Lung Cancer and Mortality. Medicina (B Aires) 2022; 58:medicina58091159. [PMID: 36143834 PMCID: PMC9501799 DOI: 10.3390/medicina58091159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/03/2023] Open
Abstract
Background and objectives: Long-term exposure to air pollution has been associated with lung cancer. This study aimed to evaluate the relative risk (RR) and hazard ratio (HR) of lung cancers and the prognostic implication of outdoor particulate matter (PM) pollution using a meta-analysis. Materials and Methods: We performed the meta-analysis using 19 eligible studies and evaluated the PMs, dividing into PM smaller than 2.5 µm (PM2.5) and PM smaller than 10 µm (PM10). In addition, subgroup analyses, based on the increment of PM exposure, location, sex, smoking history, and tumor histology, were performed. Results: Lung cancer was significantly increased by exposure to PM2.5 (RR 1.172, 95% confidence interval (CI) 1.002–1.371), but not PM10 exposure. However, there was no significant correlation between PM10 exposure and the incidence of lung cancers (RR 1.062, 95% CI 0.932–1.210). The all-cause and lung-cancer-specific mortalities were significantly increased by PM2.5 exposure (HR 1.1.43, 95% CI 1.011–1.291 and HR 1.144, 95% CI 1.002–1.307, respectively). However, PM10 exposure significantly increased the all-cause mortality, but not the lung-cancer-specific mortality. The lung-cancer-specific mortality was significantly increased by PM10 per 12.1 μg/m3 increment and in the Europe area. Conclusions: PM2.5 significantly increased lung cancer and the all-cause and lung-cancer-specific mortalities, whereas PM10 did not increase lung cancer or lung-cancer-specific mortality. However, PM10 increased the all-cause mortality and the PM10 per 12.1 μg/m3 increment and PM10 in the Europe area may increase the lung-cancer-specific mortality.
Collapse
|
26
|
Liu S, Lim YH, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel KH, Jørgensen JT, So R, Amini H, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault MC, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, van der Schouw YT, Schramm S, Sørensen M, Stafoggia M, Tjønneland A, Katsouyanni K, Huang W, Samoli E, Brunekreef B, Hoek G, Andersen ZJ. Long-term Air Pollution Exposure and Pneumonia-related Mortality in a Large Pooled European Cohort. Am J Respir Crit Care Med 2022; 205:1429-1439. [PMID: 35258439 DOI: 10.1164/rccm.202106-1484oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 μg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Institute for Risk Assessment Sciences and
| | - Maciek Strak
- Institute for Risk Assessment Sciences and.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopolou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tom Bellander
- Institute of Environmental Medicine.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science.,iClimate, Interdisciplinary Centre for Climate Change, and
| | - Hans Concin
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria.,Department of Internal Medicine 3, Landeskrankenhaus Feldkirch, Feldkirch, Austria
| | - Daniela Fecht
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/Azienda Sanitaria Locale Roma 1, Rome, Italy.,Science Policy & Epidemiology Environmental Research Group King's College London, London, United Kingdom
| | - John Gulliver
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Roskilde, Denmark, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | | | - Rina So
- Section of Environmental Health
| | | | | | - Amar J Mehta
- Section of Epidemiology, and.,Statistics Denmark, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, and.,Statistics Denmark, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science.,Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | | | | | - Petter Ljungman
- Institute of Environmental Medicine.,Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Gianluca Severi
- University Paris-Saclay, University of Versailles Saint-Quentin, Inserm, Gustave Roussy, "Exposome and Heredity" team, The Centre de Recherche en Epidémiologie et Santé des Populations UMR1018, Villejuif, France.,Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Marie-Christine Boutron-Ruault
- University Paris-Saclay, University of Versailles Saint-Quentin, Inserm, Gustave Roussy, "Exposome and Heredity" team, The Centre de Recherche en Epidémiologie et Santé des Populations UMR1018, Villejuif, France
| | | | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Epidemiology, Ludwig Maximilians Universität München, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.,Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine.,Department of Epidemiology, Lazio Region Health Service/Azienda Sanitaria Locale Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Diet, Genes and Environment (DGE), Copenhagen, Denmark; and
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Science Policy & Epidemiology Environmental Research Group King's College London, London, United Kingdom
| | - Wei Huang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Euphorbiasteroid Abrogates EGFR and Wnt/β-Catenin Signaling in Non-Small-Cell Lung Cancer Cells to Impart Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123824. [PMID: 35744950 PMCID: PMC9227563 DOI: 10.3390/molecules27123824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
EGFR and Wnt/β-catenin signaling pathways play a prominent role in tumor progression in various human cancers including non-small-cell lung carcinoma (NSCLC). Transactivation and crosstalk between the EGFR and Wnt/β-catenin pathways may contribute to the aggressiveness of cancers. Targeting these oncogenic pathways with small molecules is an attractive approach to counteract various types of cancers. In this study, we demonstrate the effect of euphorbiasteroid (EPBS) on the EGFR and Wnt/β-catenin pathways in NSCLC cells. EPBS induced preferential cytotoxicity toward A549 (wildtype EGFR-expressing) cells over PC-9 (mutant EGFR-expressing) cells. EPBS suppressed the expression of EGFR, Wnt3a, β-catenin, and FZD-1, and the reduction in β-catenin levels was found to be mediated through the activation of GSK-3β. EPBS reduced the phosphorylation of GSK-3βS9 with a parallel increase in β-TrCP and phosphorylation of GSK-3βY216. Lithium chloride treatment increased the phosphorylation of GSK-3βS9 and nuclear localization of β-catenin, whereas EPBS reverted these effects. Forced expression or depletion of EGFR in NSCLC cells increased or decreased the levels of Wnt3a, β-catenin, and FZD-1, respectively. Overall, EPBS abrogates EGFR and Wnt/β-catenin pathways to impart its anticancer activity in NSCLC cells.
Collapse
|
28
|
Yu P, Xu R, Li S, Coelho MSZS, Saldiva PHN, Sim MR, Abramson MJ, Guo Y. Associations between long-term exposure to PM 2.5 and site-specific cancer mortality: A nationwide study in Brazil between 2010 and 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119070. [PMID: 35231538 DOI: 10.1016/j.envpol.2022.119070] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/21/2023]
Abstract
Long-term exposure to PM2.5 has been linked to lung cancer incidence and mortality, but limited evidence existed for other cancers. This study aimed to assess the association between PM2.5 on cancer specific mortality. An ecological study based on the cancer mortality data collected from 5,565 Brazilian cities during 2010-2018 using a difference-in-differences approach with quasi-Poisson regression, was applied to examine PM2.5-cancer mortality associations. Globally gridded annual average surface PM2.5 concentration was extracted and linked with the residential municipality of participants in this study. Sex, age stratified and exposure-response estimations were also conducted. Totalling 1,768,668 adult cancer deaths records of about 208 million population living across 5,565 municipalities were included in this study. The average PM2.5 concentration was 7.63 μg/m3 (standard deviation 3.32) with range from 2.95 μg/m3 to 28.5 μg/m3. With each 10 μg/m3 increase in three-year-average (current year and previous two years) concentrations of PM2.5, the relative risks (RR) of cancer mortality were 1.16 (95% confidence interval [CI]: 1.11-1.20) for all-site cancers. The PM2.5 exposure was significantly associated with several cancer-specific mortalities including oral, nasopharynx, oesophagus, and stomach, colon rectum, liver, gallbladder, larynx, lung, bone, skin, female breast, cervix, prostate, brain and leukaemia. No safe level of PM2.5 exposure was observed in the exposure-response curve for all types of cancer. In conclusion, with nationwide cancer death records in Brazil, we found that long-term exposure to ambient PM2.5 increased risks of mortality for many cancer types. Even low level PM2.5 concentrations had significant impacts on cancer mortality.
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
29
|
Predicting Daily PM2.5 Exposure with Spatially Invariant Accuracy Using Co-Existing Pollutant Concentrations as Predictors. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spatiotemporal variation of PM2.5 should be accurately estimated for epidemiological studies. However, the accuracy of prediction models may change over geographical space, which is not conducive for proper exposure assessment. In this study, we developed a prediction model to estimate daily PM2.5 concentrations from 2010 to 2017 in the Kansai region of Japan with co-existing pollutant concentrations as predictors. The overall objective was to obtain daily estimates over the study domain with spatially homogeneous accuracy. We used random forest algorithm to model the relationship between the daily PM2.5 concentrations and various predictors. The model performance was evaluated via spatial and temporal cross-validation and the daily PM2.5 surface was estimated from 2010 to 2017 at a 1 km × 1 km resolution. We achieved R2 values of 0.91 and 0.92 for spatial and temporal cross-validation, respectively. The prediction accuracy for each monitoring site was found to be consistently high, regardless of the distance to the nearest monitoring location, up to 10 km. Even for distances greater than 10 km, the mean R2 value was 0.88. Our approach yielded spatially homogeneous prediction accuracy, which is beneficial for epidemiological studies. The daily PM2.5 estimates will be used in a related birth cohort study to evaluate the potential impact on human health.
Collapse
|
30
|
Guo C, Yu T, Bo Y, Lin C, Chang LY, Wong MCS, Yu Z, Lau AKH, Tam T, Lao XQ. Long-term Exposure to Fine Particulate Matter and Mortality A Longitudinal Cohort Study of 400,459 Adults. Epidemiology 2022; 33:309-317. [PMID: 35067568 DOI: 10.1097/ede.0000000000001464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cohort studies on the association between long-term exposure to fine particulate matter (PM2.5) and mortality have been well established for America and Europe, but limited and inconsistent in Asia with much higher air pollution. This study aims to investigate the associations between ambient PM2.5 and all-cause and cause-specific mortality over a period of rising and then declining PM2.5. METHODS We enrolled a total of 400,459 adults from an open cohort between 2001 and 2016, and followed them up until 31 May 2019. We obtained mortality data from the National Death Registry maintained by the Ministry of Health and Welfare in Taiwan. We estimated ambient PM2.5 exposures using a satellite-based spatiotemporal model. We performed a Cox regression model with time-dependent covariates to investigate the associations of PM2.5 with deaths from all causes and specific causes. RESULTS This study identified 14,627 deaths and had a total of 5 million person-years of follow-up. Each 10 µg/m3 increase in PM2.5 was associated with an increased hazard risk of 29% (95% confidence interval: 24%-35%) in all-cause mortality. Risk of death increased by 30% for natural causes, 20% for cancer, 42% for cardiovascular disease (CVD) causes, and 53% for influenza and pneumonia causes, for each 10 µg/m3 increase in PM2.5. Sensitivity analyses generally yielded similar results. CONCLUSION Long-term exposure to ambient PM2.5 was associated with increased risks of all-cause mortality and deaths from cancers, natural causes, CVD, and influenza and pneumonia. Longitudinal study design should be encouraged for air pollution epidemiologic investigation.
Collapse
Affiliation(s)
- Cui Guo
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsung Yu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Yacong Bo
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Martin C S Wong
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- The School of Public Health, The Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing, China
- The School of Public Health, The Peking University, Beijing, China
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Henan, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tony Tam
- Department of Sociology, the Chinese University of Hong Kong, Hong Kong
| | - Xiang Qian Lao
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
31
|
Eum KD, Honda TJ, Wang B, Kazemiparkouhi F, Manjourides J, Pun VC, Pavlu V, Suh H. Long-term nitrogen dioxide exposure and cause-specific mortality in the U.S. Medicare population. ENVIRONMENTAL RESEARCH 2022; 207:112154. [PMID: 34634310 PMCID: PMC8810665 DOI: 10.1016/j.envres.2021.112154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Since 1971, the annual National Ambient Air Quality Standard (NAAQS) for nitrogen dioxide (NO2) has remained at 53 ppb, the impact of long-term NO2 exposure on mortality is poorly understood. OBJECTIVES We examined associations between long-term NO2 exposure (12-month moving average of NO2) below the annual NAAQS and cause-specific mortality among the older adults in the U.S. METHODS Cox proportional-hazard models were used to estimate Hazard Ratio (HR) for cause-specific mortality associated with long-term NO2 exposures among about 50 million Medicare beneficiaries living within the conterminous U.S. from 2001 to 2008. RESULTS A 10 ppb increase in NO2 was associated with increased mortality from all-cause (HR: 1.06; 95% CI: 1.05-1.06), cardiovascular (HR: 1.10; 95% CI: 1.10-1.11), respiratory disease (HR: 1.09; 95% CI: 1.08-1.11), and cancer (HR: 1.01; 95% CI: 1.00-1.02) adjusting for age, sex, race, ZIP code as strata ZIP code- and state-level socio-economic status (SES) as covariates, and PM2.5 exposure using a 2-stage approach. NO2 was also associated with elevated mortality from ischemic heart disease, cerebrovascular disease, congestive heart failure, chronic obstructive pulmonary disease, pneumonia, and lung cancer. We found no evidence of a threshold, with positive and significant HRs across the range of NO2 exposures for all causes of death examined. Exposure-response curves were linear for all-cause, supra-linear for cardiovascular-, and sub-linear for respiratory-related mortality. HRs were highest consistently among Black beneficiaries. CONCLUSIONS Long-term NO2 exposure is associated with elevated risks of death by multiple causes, without evidence of a threshold response. Our findings raise concerns about the sufficiency of the annual NAAQS for NO2.
Collapse
Affiliation(s)
- Ki-Do Eum
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA.
| | | | - Bingyu Wang
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | | | - Justin Manjourides
- Bouvè College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Vivian C Pun
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Virgil Pavlu
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Helen Suh
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
32
|
Long-Term Exposure to Air Pollution Associates the Risk of Benign Brain Tumor: A Nationwide, Population-Based, Cohort Study in Taiwan. TOXICS 2022; 10:toxics10040176. [PMID: 35448437 PMCID: PMC9028167 DOI: 10.3390/toxics10040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Air pollutants as risk factors for benign brain tumor (BBT) remain unclear. Therefore, we conducted a nationwide retrospective cohort study by integrating the patients’ clinical data and daily air quality data to assess the environmental risk factors of BBT in Taiwan.Daily air quality data were categorized into quartiles (Q1 to Q4). The adjusted hazard ratio (aHR) was evaluated by comparing the BBT incidence rate of the subjects in Q2–Q4 with that of the subjects in Q1 (the lowest concentration of air pollutants). A total of 161,213 subjects were enrolled in the study. Among the air pollutants tested, the aHR of BBT was significantly higher in the subjects who were exposed to the highest level (Q4) of CO (aHR 1.37, 95% CI 1.08–1.74), NO2 (aHR 1.40, 95% CI 1.09–1.78), and PM2.5 (aHR 1.30, 95% CI 1.02–1.65) than that in the subjects who were exposed to the lowest level (Q1). No significant risk association of BBT with SO2 and PM10 exposure was observed. The results revealed that long-term exposure to air pollutants, particularly CO, NO2, and PM2.5, is associated with the risk of BBT.
Collapse
|
33
|
Sawada N, Nakaya T, Kashima S, Yorifuji T, Hanibuchi T, Charvat H, Yamaji T, Iwasaki M, Inoue M, Iso H, Tsugane S. Long-term exposure to fine particle matter and all-cause mortality and cause-specific mortality in Japan: the JPHC Study. BMC Public Health 2022; 22:466. [PMID: 35260115 PMCID: PMC8905772 DOI: 10.1186/s12889-022-12829-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many epidemiological studies have reported the association between exposure to particulate matter and mortality, but long-term prospective studies from Asian populations are sparse. Furthermore, associations at low levels of air pollution are not well clarified. Here, we evaluated associations between long-term exposure to particulate matter <2.5 µg/m3 (PM2.5) and mortality in a Japanese cohort with a relatively low exposure level. METHODS The Japan Public Health Center-based Prospective Study (JPHC Study) is a prospective cohort study of men and women aged 40-69 years in 1990 who were followed up through 2013 for mortality. In this cohort of 87,385 subjects who did not move residence during follow-up, average PM2.5 levels from 1998 to 2013 by linkage with 1-km2 grids of PM2.5 concentration were assigned to the residential addresses of all participants. To avoid exposure misclassification, we additionally evaluated the association between 5-year (1998-2002) cumulative exposure level and mortality during the follow-up period from 2003 to 2013 in 79,078 subjects. Cox proportional hazards models were used to calculate the association of long-term exposure to PM2.5 on mortality, with adjustment for several individual confounding factors. RESULTS Average PM2.5 was 11.6 µg/m3. Average PM2.5 exposure was not associated with all-cause mortality or cancer and respiratory disease mortality. However, average PM2.5 was positively associated with mortality from cardiovascular disease (hazard ratio (HR) of 1.23 (95%CI=1.08-1.40) per 1-µg/m3 increase; in particular, HR in mortality from cerebrovascular disease was 1.34 (95%CI=1.11-1.61) per 1-µg/m3 increase. Additionally, these results using cumulative 5-year PM2.5 data were similar to those using average PM2.5 over 15 years. CONCLUSIONS We found evidence for a positive association between PM2.5 exposure and mortality from cardiovascular disease in a Japanese population, even in an area with relatively low-level air pollution.
Collapse
Affiliation(s)
- Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan.
| | - Tomoki Nakaya
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Saori Kashima
- Environmental Health Sciences Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Takashi Yorifuji
- Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomoya Hanibuchi
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hadrien Charvat
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Hiroyasu Iso
- Public Health Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| |
Collapse
|
34
|
Nishida C, Yatera K. The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2788. [PMID: 35270479 PMCID: PMC8910713 DOI: 10.3390/ijerph19052788] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ambient pollutants and occupational pollutants may cause and exacerbate various lung and respiratory diseases. This review describes lung and respiratory diseases in relation to ambient pollutants, particularly particulate matter (PM2.5), and occupational air pollutants, excluding communicable diseases and indoor pollutants, including tobacco smoke exposure. PM2.5 produced by combustion is an important ambient pollutant. PM2.5 can cause asthma attacks and exacerbations of chronic obstructive pulmonary disease in the short term. Further, it not only carries a risk of lung cancer and death, but also hinders the development of lung function in children in the long term. It has recently been suggested that air pollution, such as PM2.5, is a risk factor for severe coronavirus disease (COVID-19). Asbestos, which causes asbestosis, lung cancer, and malignant mesothelioma, and crystalline silica, which cause silicosis, are well-known traditional occupational pollutants leading to pneumoconiosis. While work-related asthma (WRA) is the most common occupational lung disease in recent years, many different agents cause WRA, including natural and synthetic chemicals and irritant gases. Primary preventive interventions that increase awareness of pollutants and reduce the development and exacerbation of diseases caused by air pollutants are paramount to addressing ambient and occupational pollution.
Collapse
Affiliation(s)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan;
| |
Collapse
|
35
|
Nguyen PT, Katanoda K, Saito E, Hori M, Nakayama T, Matsuda T. Trends in lung cancer incidence by gender, histological type and stage at diagnosis in Japan, 1993-2015: A multiple imputation approach. Int J Cancer 2022; 151:20-32. [PMID: 35138642 PMCID: PMC9303961 DOI: 10.1002/ijc.33962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
Continued decrease in smoking prevalence and increasing use of sensitive diagnostic procedures necessitate updated monitoring of trends in lung cancer incidence in Japan. We analyzed histology- and stage-specific trends in 1993-2015 using data from 62,870 diagnosed cases from the Monitoring of Cancer Incidence in Japan project. After applying a multiple imputation approach to impute missing/unknown values of stage and histology, we estimated age-standardized incidence rates and applied joinpoint regression analyses. We observed long-term growth trends in adenocarcinoma (ADC) and localized cancer among both genders, long-term declining trends among men and leveling-off trends among women in small-cell carcinoma (SMC) and squamous cell carcinoma (SQC). Stratifying by gender, we observed an increase in localized ADC with average annual percentage changes (AAPC) of 4.5 (95% confidence interval: 3.9 to 5.0) and 5.7 (5.0 to 6.4), a decrease in regional ADC with AAPC of -1.5 (-2.5 to -0.6) and -2.3 (-4.6 to 0.0), but an increase in distant ADC with AAPC of 1.5 (1.1 to 1.9) and 1.6 (0.9 to 2.3) among males and females, respectively. Additionally, increasing trends in female-to-male incidence rate ratios were observed in localized ADC with significantly above one in the most recent diagnosis period. Our results revealed evidence for a partial shift from advanced to early cancer stage, which may suggest the modest effectiveness of nationwide organized screening programs. The observed increasing localized and distant ADC may be linked to improved diagnostic procedures, especially for metastasis detection. Further investigation is needed for more accurate quantification of these factors.
Collapse
Affiliation(s)
- Phuong The Nguyen
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan.,National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Kota Katanoda
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Eiko Saito
- Institute for Global Health Policy Research, National Center for Global Health and Medicine, Tokyo, Japan
| | - Megumi Hori
- School of Nursing, University of Shizuoka, Shizuoka, Japan
| | - Tomio Nakayama
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Tomohiro Matsuda
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
36
|
Influence of Carbon Sorbent Quantity on Breakthrough Time in Absorbent Filters for Antismog Half Mask Application. MATERIALS 2022; 15:ma15020584. [PMID: 35057301 PMCID: PMC8781268 DOI: 10.3390/ma15020584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
In this article, we present polymer non-woven fabrics with the addition of carbon sorbents being tested to estimate the breakthrough time and efficient protection against vapors present in smog. For this purpose, three substances were selected, which constitute an inhalation hazard and are smog components: cyclohexane, toluene, and sulfur dioxide. It was demonstrated that an increased quantity of carbon sorbent in polymeric filters significantly prolongs the breakthrough time. However, high sorbent quantities may increase the filter surface mass and air flow resistance. To optimize the protective parameters with functionality, a compromise between the two has to be found. By comparing the breakthrough times for different carbon sorbent quantities, the optimal filter composition was elaborated. The analyzed non-woven fabrics were manufactured by the melt-blown process and filled with ball-milled carbon sorbents supplied directly into the fabric blowing nozzle. Both protective performance and textural properties were analyzed for two commercially available carbon sorbents. Furthermore, it was proven that high values of sorbent-specific surface area translates directly into greater filter performance.
Collapse
|
37
|
Liu X, Mubarik S, Wang F, Yu Y, Wang Y, Shi F, Wen H, Yu C. Lung Cancer Death Attributable to Long-Term Ambient Particulate Matter (PM 2.5) Exposure in East Asian Countries During 1990-2019. Front Med (Lausanne) 2021; 8:742076. [PMID: 34722581 PMCID: PMC8553966 DOI: 10.3389/fmed.2021.742076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Ambient particulate matter is a public health concern in East Asia as it contributes to a growing number of all-cause and cancer deaths. This study aimed to estimate lung cancer death attributable to ambient particulate matter (PM) < 2.5 μm (PM2.5) in East Asia countries. Methods: The attributable death rates of lung cancer were estimated based on the calculation of population attributable fraction. We performed joinpoint regression analysis and age-period-cohort (APC) model to estimate temporal trends of the attributable death to PM2.5. Results: In 2019, PM2.5 was estimated to have caused 42.2% (nearly 0.13 million) of lung cancer deaths in East Asia men. During 1990–2019, the increase in age-standardized death rates of lung cancer attributable to PM2.5 was highest in China, which increased by 3.50% in males and 3.71% in females. The death rate caused by PM2.5 also significantly increased in the Democratic People's Republic of Korea (2.16% in males; 3.06% in females). Joinpoint analysis showed that the rates generally increased in younger and older people in both the Democratic People's Republic of Korea and Mongolia, while it only increased in elderly people in other countries'. Age effect from APC analysis demonstrated the risk of lung cancer death attributable to PM2.5 generally increased from young to old age. Period effect indicated that from 1994–1998 to 2019–2023 period risk continuously increased by 1.77, 1.68, and 1.72 times in China, the Democratic People's Republic of Korea, and Japan, respectively. The period risk decreased from 1999 to 2009 and subsequently increased from 2009 to 2019 in both the Republic of Korea and Mongolia. Conclusions: The death rate of lung cancer attributable to PM2.5 is increasing in the Democratic People's Republic of Korea, Mongolia, and China. In East Asia, China is facing the highest attributable death rate in recent decades. The period effect suggested a remarkably increased risk of lung cancer death caused by PM2.5 in China, the Democratic People's Republic of Korea, and Japan during the long-term period. It is recommended that the governments of these countries should continuously concentrate on particulate matter pollution governance and improvement.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Fang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Yong Yu
- School of Public Health and Management, University of Medicine, Shiyan, China
| | - Yafeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Fang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Haoyu Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Ikuta T, Tamaki T, Masai H, Nakanishi R, Endo K, Terao J, Maehashi K. Electrical detection of ppb region NO 2 using Mg-porphyrin-modified graphene field-effect transistors. NANOSCALE ADVANCES 2021; 3:5793-5800. [PMID: 36132664 PMCID: PMC9417097 DOI: 10.1039/d1na00519g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 06/16/2023]
Abstract
The trace detection of NO2 through small sensors is essential for air quality measurement and the health field; however, small sensors based on electrical devices cannot detect NO2 with the desired selectivity and quantitativity in the parts per billion (ppb) concentration region. In this study, we fabricated metalloporphyrin-modified graphene field-effect transistors (FETs). Mg-, Ni-, Cu-, and Co-porphyrins were deposited on the graphene FETs, and the transfer characteristics were measured. With the introduction of NO2 in the ppb concentration region, the FETs of pristine graphene and Ni-, Cu-, and Co-porphyrin-modified graphene showed an insufficient response, whereas the Mg-porphyrin-modified graphene exhibited large voltage shifts in the transport characteristics. This indicates that Mg-porphyrin acts as an adsorption site for NO2 molecules. An analysis of the Dirac-point voltage shifts with the introduction of NO2 indicates that the shifts were well-fitted with the Langmuir adsorption isotherm model, and the limit of detection for NO2 was found to be 0.3 ppb in N2. The relationship between the mobility and the Dirac-point voltage shift with the NO2 concentration shows that the complex of NO2 and Mg-porphyrin behaves as a point-like charge impurity. Moreover, the Mg-porphyrin-modified graphene FETs show less response to other gases (O2, H2, acetic acid, trimethylamine, methanol, and hexane), thus indicating high sensitivity for NO2 detection. Furthermore, we successfully demonstrated the quantitative detection of NO2 in air, which is near the environmental standards. In conclusion, the results of the Mg-porphyrin-modified graphene FETs enable a rapid, easy, and selective detectability.
Collapse
Affiliation(s)
- Takashi Ikuta
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology 2-24-16, Nakacho Koganei Tokyo 184-8588 Japan
| | - Takashi Tamaki
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1, Komaba Meguro-ku Tokyo 153-8902 Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1, Komaba Meguro-ku Tokyo 153-8902 Japan
| | - Ryudai Nakanishi
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology 2-24-16, Nakacho Koganei Tokyo 184-8588 Japan
| | - Kitaro Endo
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology 2-24-16, Nakacho Koganei Tokyo 184-8588 Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1, Komaba Meguro-ku Tokyo 153-8902 Japan
| | - Kenzo Maehashi
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology 2-24-16, Nakacho Koganei Tokyo 184-8588 Japan
| |
Collapse
|
39
|
Wang D, Cheng J, Zhang J, Zhou F, He X, Shi Y, Tao Y. The Role of Respiratory Microbiota in Lung Cancer. Int J Biol Sci 2021; 17:3646-3658. [PMID: 34512172 PMCID: PMC8416743 DOI: 10.7150/ijbs.51376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, the impact of microorganisms on tumor growth and metastasis has attracted great attention. The pathogenesis and progression of lung cancer are related to an increase in respiratory bacterial load as well as changes in the bacterial community because the microbiota affects tumors in many ways, including canceration, metastasis, angiogenesis, and treatment. The microbiota may increase tumor susceptibility by altering metabolism and immune responses, promoting inflammation, and increasing toxic effects. The microbiota can regulate tumor metastasis by altering multiple cell signaling pathways and participate in tumor angiogenesis through vascular endothelial growth factors (VEGF), endothelial cells (ECs), inflammatory factors and inflammatory cells. Tumor angiogenesis not only maintains tumor growth at the primary site but also promotes tumor metastasis and invasion. Therefore, angiogenesis is an important mediator of the interaction between microorganisms and tumors. The microbiota also plays a part in antitumor therapy. Alteration of the microbiota caused by antibiotics can regulate tumor growth and metastasis. Moreover, the microbiota also influences the efficacy and toxicity of tumor immunotherapy and chemotherapy. Finally, the effects of air pollution, a risk factor for lung cancer, on microorganisms and the possible role of respiratory microorganisms in the effects of air pollution on lung cancer are discussed.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jingyi Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jia Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Fangyu Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiao He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
40
|
Araki S, Hasunuma H, Yamamoto K, Shima M, Michikawa T, Nitta H, Nakayama SF, Yamazaki S. Estimating monthly concentrations of ambient key air pollutants in Japan during 2010-2015 for a national-scale birth cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117483. [PMID: 34261212 DOI: 10.1016/j.envpol.2021.117483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ambient air pollution is associated with maternal and child health. Some air pollutants exhibit similar behavior in the atmosphere, and some interact with each other; thus, comprehensive assessments of individual air pollutants are required. In this study, we developed national-scale monthly models for six air pollutants (NO, NO2, SO2, O3, PM2.5, and suspended particulate matter (SPM)) to obtain accurate estimates of pollutant concentrations at 1 km × 1 km resolution from 2010 through 2015 for application to the Japan Environment and Children's Study (JECS), which is a large-scale birth cohort study. We developed our models in the land use regression framework using random forests in conjunction with kriging. We evaluated the model performance via 5-fold location-based cross-validation. We successfully predicted monthly NO (r2 = 0.65), NO2 (r2 = 0.84), O3 (r2 = 0.86), PM2.5 (r2 = 0.79), and SPM (r2 = 0.64) concentrations. For SO2, a satisfactory model could not be developed (r2 = 0.45) because of the low SO2 concentrations in Japan. The performance of our models is comparable to those reported in previous studies at similar temporal and spatial scales. The model predictions in conjunction with the JECS will reveal the critical windows of prenatal and infancy exposure to ambient air pollutants, thus contributing to the development of environmental policies on air pollution.
Collapse
Affiliation(s)
- Shin Araki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
| | - Hideki Hasunuma
- Department of Public Health, Hyogo College of Medicine, Hyogo, 663-8501, Japan.
| | - Kouhei Yamamoto
- Graduate School of Energy Science, Kyoto University, Kyoto, 606-8501, Japan.
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Hyogo, 663-8501, Japan.
| | - Takehiro Michikawa
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Hiroshi Nitta
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| |
Collapse
|
41
|
Yu P, Guo S, Xu R, Ye T, Li S, Sim MR, Abramson MJ, Guo Y. Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. Innovation (N Y) 2021; 2:100143. [PMID: 34557780 PMCID: PMC8454739 DOI: 10.1016/j.xinn.2021.100143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/11/2021] [Indexed: 11/11/2022] Open
Abstract
Robust evidence is needed for the hazardous effects of outdoor particulate matter (PM) on mortality and morbidity from all types of cancers. To summarize and meta-analyze the association between PM and cancer, published articles reporting associations between outdoor PM exposure and any type of cancer with individual outcome assessment that provided a risk estimate in cohort studies were identified via systematic searches. Of 3,256 records, 47 studies covering 13 cancer sites (30 for lung cancer, 12 for breast cancer, 11 for other cancers) were included in the quantitative evaluation. The pooled relative risks (RRs) for lung cancer incidence or mortality associated with every 10-μg/m3 PM2.5 or PM10 were 1.16 (95% confidence interval [CI], 1.10–1.23; I2 = 81%) or 1.22 (95% CI, 1.02–1.45; I2 = 96%), respectively. Increased but non-significant risks were found for breast cancer. Other cancers were shown to be associated with PM exposure in some studies but not consistently and thus warrant further investigation. Updated evidence for the association between PM and lung cancer risk has been provided Associations between PM and cancer risks from 13 sites were summarized Further studies should be conducted to fill the research gaps
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Suying Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai 200025, China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
42
|
Lin CY, Chen WL, Chen TZ, Lee SH, Liang HJ, Chou CCK, Tang CH, Cheng TJ. Lipid changes in extrapulmonary organs and serum of rats after chronic exposure to ambient fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147018. [PMID: 34088028 DOI: 10.1016/j.scitotenv.2021.147018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) is able to pass through the respiratory barrier to enter the circulatory system and can consequently spread to the whole body to cause toxicity. Although our previous studies have revealed significantly altered levels of phosphorylcholine-containing lipids in the lungs of rats after chronic inhalation exposure to PM2.5, the effects of PM2.5 on phosphorylcholine-containing lipids in the extrapulmonary organs have not yet been elucidated. In this study, we examined the lipid effects of chronic PM2.5 exposure on various organs and serum by using a rat inhalation model followed by a mass spectrometry-based lipidomic approach. Male Sprague-Dawley rats were continuously exposed at the whole body level to nonfiltered and nonconcentrated ambient air from the outside environment of Taipei city for 8 months, while the control rats inhaled filtered air simultaneously. After exposure, serum samples and various organs, including the testis, pancreas, heart, liver, kidney, spleen, and epididymis, were collected for lipid extraction and analysis to examine the changes in phosphorylcholine-containing lipids after exposure. The results from the partial least squares discriminant analysis models demonstrated that the lipid profiles in the PM2.5 exposure group were different from those in the control group in the rat testis, pancreas, heart, liver, kidney and serum. The greatest PM2.5-induced lipid effects were observed in the testes. Decreased lyso-phosphatidylcholines (PCs) as well as increased unsaturated diacyl-PCs and sphingomyelins in the testes may be related to maintaining the membrane integrity of spermatozoa, antioxidation, and cell signaling. Additionally, our results showed that decreased PC(16:0/18:1) was observed in both the serum and testes. In conclusion, exposure to chronic environmental concentrations of PM2.5 caused lipid perturbation, especially in the testes of rats. This study highlighted the susceptibility of the testes and suggested possible molecular events for future study.
Collapse
Affiliation(s)
- Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Wen-Ling Chen
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ting-Zhen Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Guo C, Hasan F, Lay D, Dela Cruz ALN, Ghimire A, Lomnicki SM. Phytosampling-a supplementary tool for particulate matter (PM) speciation characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39310-39321. [PMID: 33755885 PMCID: PMC8713460 DOI: 10.1007/s11356-021-13292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Ambient air particulate matter (PM) and PM-associated environmentally persistent free radicals (EPFRs) have been documented to contribute to pollution-related health effects. Studies of ambient air PM potentially bear artifacts stemming from the collection methods. We have investigated the applicability of PM phytosampling (PHS) as a supplementary tool to a classic PM sampler in respect of achieving better PM chemical composition assessment (primarily organic fraction). Phytosampling is a static PM collection method relying on the particle entrapment by the plant's leaf through electrostatic forces and surface trichomes. We have investigated the differences in the EPFR and polycyclic aromatic hydrocarbon (PAH) speciation and concentration on ambient air PM for PHS and high-volume PM sampler (HVS). The advantages of PHS are easy particle recovery from the matrix, collection under natural environmental conditions, and the ability to apply a dense collection network to accurately represent spatial pollutant distribution. The experimental results show that the PHS can provide valuable speciation information, sometimes different from that observed for HVS. For PM collected by PHS, we detected the larger contribution of oxygen-centered EPFRs, different decay behavior, and more consistent PAH distribution between different PM sizes compared to the PM from HVS. These results indicate that the isolation of samples from the ambient during HVS sampling and exposure to high-volume airflow may alter the chemical composition of the samples, while the PHS method could provide details on the original speciation and concentration and be more representative of the PM surface. However, PHS cannot evaluate an absolute air concentration of PM, so it serves as an excellent supplementary tool to work in conjunction with the standard PM collection method.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Dean Lay
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Albert Leo N Dela Cruz
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ajit Ghimire
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Slawo M Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
44
|
Huang S, Li H, Wang M, Qian Y, Steenland K, Caudle WM, Liu Y, Sarnat J, Papatheodorou S, Shi L. Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145968. [PMID: 33640547 PMCID: PMC8499020 DOI: 10.1016/j.scitotenv.2021.145968] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ambient air pollution is among the greatest environmental risks to human health. However, little is known about the health effects of nitrogen dioxide (NO2), a traffic-related air pollutant. Herein, we aimed to conduct a meta-analysis to investigate the long-term effects of NO2 on mortality. METHODS We conducted a systematic search for studies that were published up to February 2020 and performed a meta-analysis of all available epidemiologic studies evaluating the associations between long-term exposure to NO2 with all-cause, cardiovascular, and respiratory mortality. Overall pooled effect estimates as well as subgroup-specific pooled estimates (e.g. location, exposure assessment method, exposure metric, study population, age at recruitment, and key confounder adjustment) and 95% confidence intervals were calculated using random-effects models. Risk of bias assessment was accessed by following WHO global air quality guidelines. Publication bias was accessed by visually inspecting funnel plot and Egger's liner regression was used to test of asymmetry. RESULTS Our search initially retrieved 1349 unique studies, of which 34 studies met the inclusion criteria. The pooled hazard ratio (HR) for all-cause mortality was 1.06 (95%CI: 1.04-1.08, n = 28 studies, I2 = 98.6%) per 10 ppb increase in annual NO2 concentrations. The pooled HRs for cardiovascular and respiratory mortality per 10 ppb increment were 1.11 (95%CI: 1.07-1.16, n = 20 studies, I2 = 99.2%) and 1.05 (95%CI: 1.02-1.08, n = 17 studies, I2 = 94.6%), respectively. The sensitivity analysis pooling estimates from multi-pollutant models suggest an independent effect of NO2 on mortality. Funnel plots indicate that there is no evidence for publication bias in our study. CONCLUSION We provide robust epidemiological evidence that long-term exposure to NO2, a proxy for traffic-sourced air pollutants, is associated with a higher risk of all-cause, cardiovascular, and respiratory mortality that might be independent of other common air pollutants.
Collapse
Affiliation(s)
- Shiwen Huang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Haomin Li
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mingrui Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yaoyao Qian
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - William Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeremy Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
45
|
Zheng J, Qiu Z, Gao HO, Li B. Commuter PM exposure and estimated life-expectancy loss across multiple transportation modes in Xi'an, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112117. [PMID: 33690005 DOI: 10.1016/j.ecoenv.2021.112117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Commuters are reportedly exposed to severe traffic-related air pollution (TRAP) during their commuting trips. This study was designed and implemented to (1) compare particulate matter (PM) exposure across four common transportation modes; (2) examine and analyze various determining factors; and (3) estimate public health effects caused by commuting exposure to PM. All analyses and calculations were based on the experimental data collected from 13 volunteers, including heart-rate data on 336 commuting trips in four travel modes in Xi'an China. The results indicate highest PM exposure associated with cycling (average PM10, PM2.5 and PM1.0 of 114.35, 72.37 and 56.51 μg/m3, respectively), followed by riding transit buses (116.29, 67.60 and 51.12 μg/m3 for the same pollutants, respectively), then taking a taxi (97.61, 58.87 and 45.11 μg/m3), and the lowest exposure onboard subways (55.86, 46.20 and 40.20 μg/m3). A multivariable linear regression model was used to examine major influences on PM concentration variations, with results corroborating significant PM variance across commuting modes, which is also affected by background pollution concentration and relative humidity. Further, years of life expectancy (YLE) loss were estimated using an inhalation dose model together with the life table method: cycling commuters experienced the greatest YLE loss (5.51-6.43 months per capita for the studied age group). During severe pollution periods, substituting other modes (like subway) for cycling could effectively avoid acute exposure. PM2.5 levels in taxi cabins powered by CNG or methanol were comparatively lower, indicating that implementing alternative energy strategies could effectively lower traffic emissions and population exposure.
Collapse
Affiliation(s)
- Jinlong Zheng
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064 Shaanxi, PR China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064 Shaanxi, PR China.
| | - H Oliver Gao
- School of Civil and Environmental Engineering, Cornell University, 468 Hollister Hall, Ithaca, 14853 NY, USA
| | - Bing Li
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064 Shaanxi, PR China
| |
Collapse
|
46
|
Ciabattini M, Rizzello E, Lucaroni F, Palombi L, Boffetta P. Systematic review and meta-analysis of recent high-quality studies on exposure to particulate matter and risk of lung cancer. ENVIRONMENTAL RESEARCH 2021; 196:110440. [PMID: 33181136 DOI: 10.1016/j.envres.2020.110440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Several aspects of the association between exposure to air pollution and risk of lung cancer remain unclear. OBJECTIVE We aimed at performing a meta-analysis of high-quality cohort studies on exposure to particulate matter (PM) 10 and PM2.5 and risk of lung cancer. METHODS We identified cohort studies published since 2004, that reported risk estimates of lung cancer for exposure to PM2.5 and PM10 adjusted for tobacco smoking and socioeconomic status, and conducted a meta-analysis based on random-effects models, including stratification by outcome, sex, country, tobacco smoking, and age. RESULTS Results on PM2.5 exposure were available from 15 studies; the summary relative risk (RR) for an increase of 10 μg/m3 was 1.16 (95% confidence interval [CI] 1.09, 1.23). The corresponding RR for PM10 exposure was 1.23 (95 CI 1.05, 1.40; seven studies). A higher risk was suggested in studies based on lung cancer mortality and in studies conducted in East Asia, while no difference was shown according to sex, smoking status or age. There was no suggestion of publication bias. CONCLUSIONS Our meta-analysis supported the hypothesis of an association between exposure to PM2.5 or PM10 and risk of lung cancer, and provided evidence that the magnitude of the risk might be higher than previously estimated, and might be modified by outcome and geographic region.
Collapse
Affiliation(s)
- Marco Ciabattini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emanuele Rizzello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
47
|
Wang F, Chen T, Chang Q, Kao YW, Li J, Chen M, Li Y, Shia BC. Respiratory diseases are positively associated with PM2.5 concentrations in different areas of Taiwan. PLoS One 2021; 16:e0249694. [PMID: 33886613 PMCID: PMC8062073 DOI: 10.1371/journal.pone.0249694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The health effects associated with fine particulate matter (PM2.5) have attracted considerable public attention in recent decades. It has been verified that PM2.5 can damage the respiratory and cardiovascular systems and cause various diseases. While the association between diseases and PM2.5 has been widely studied, this work aims to analyze the association between PM2.5 and hospital visit rates for respiratory diseases in Taiwan. To this end, a disease mapping model that considers spatial effects is applied to estimate the association. The results show that there is a positive association between hospital visit rates and the PM2.5 concentrations in the Taiwanese population in 2012 after controlling for other variables, such as smoking rates and the number of hospitals in each region. This finding indicates that control of PM2.5 could decrease hospital visit rates for respiratory diseases in Taiwan.
Collapse
Affiliation(s)
- Feifei Wang
- Center for Applied Statistics, Renmin University of China, Beijing, China
- School of Statistics, Renmin University of China, Beijing, China
| | - Tianyi Chen
- School of Statistics, Renmin University of China, Beijing, China
| | - Qian Chang
- School of Statistics, Renmin University of China, Beijing, China
| | - Yi-Wei Kao
- College of Management, Fu Jen Catholic University, Taipei, Taiwan
| | - Jian Li
- College of Management, Fu Jen Catholic University, Taipei, Taiwan
| | - Mingchih Chen
- College of Management, Fu Jen Catholic University, Taipei, Taiwan
| | - Yang Li
- Center for Applied Statistics, Renmin University of China, Beijing, China
- School of Statistics, Renmin University of China, Beijing, China
- * E-mail: (YL); (BCS)
| | - Ben-Chang Shia
- College of Management, Fu Jen Catholic University, Taipei, Taiwan
- * E-mail: (YL); (BCS)
| |
Collapse
|
48
|
Smith JW, O'Meally RN, Ng DK, Chen JG, Kensler TW, Cole RN, Groopman JD. Biomonitoring of Ambient Outdoor Air Pollutant Exposure in Humans Using Targeted Serum Albumin Adductomics. Chem Res Toxicol 2021; 34:1183-1196. [PMID: 33793228 DOI: 10.1021/acs.chemrestox.1c00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Outdoor air pollution, a spatially and temporally complex mixture, is a human carcinogen. However, ambient measurements may not reflect subject-level exposures, personal monitors do not assess internal dose, and spot assessments of urinary biomarkers may not recapitulate chronic exposures. Nucleophilic sites in serum albumin-particularly the free thiol at Cys34-form adducts with electrophiles. Due to the 4-week lifetime of albumin in circulation, accumulating adducts can serve as intermediate- to long-residence biomarkers of chronic exposure and implicate potential biological effects. Employing nanoflow liquid chromatography-high-resolution mass spectrometry (nLC-HRMS) and parallel reaction monitoring (PRM), we have developed and validated a novel targeted albumin adductomics platform capable of simultaneously monitoring dozens of Cys34 adducts per sample in only 2.5 μL of serum, with on-column limits of detection in the low-femtomolar range. Using this platform, we characterized the magnitude and impact of ambient outdoor air pollution exposures with three repeated measurements over 84 days in n = 26 nonsmoking women (n = 78 total samples) from Qidong, China, an area with a rising burden of lung cancer incidence. In concordance with seasonally rising ambient concentrations of NO2, SO2, and PM10 measured at stationary monitors, we observed elevations in concentrations of Cys34 adducts of benzoquinone (p < 0.05), benzene diol epoxide (BDE; p < 0.05), crotonaldehyde (p < 0.01), and oxidation (p < 0.001). Regression analysis revealed significant elevations in oxidation and BDE adduct concentrations of 300% to nearly 700% per doubling of ambient airborne pollutant levels (p < 0.05). Notably, the ratio of irreversibly oxidized to reduced Cys34 rose more than 3-fold during the 84-day period, revealing a dramatic perturbation of serum redox balance and potentially serving as a portent of increased pollution-related mortality risk. Our targeted albumin adductomics assay represents a novel and flexible approach for sensitive and multiplexed internal dosimetry of environmental exposures, providing a new strategy for personalized biomonitoring and prevention.
Collapse
Affiliation(s)
- Joshua W Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Robert N O'Meally
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jian-Guo Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, China
| | - Thomas W Kensler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Robert N Cole
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - John D Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
49
|
Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. ENVIRONMENTAL RESEARCH 2021; 195:110754. [PMID: 33577774 DOI: 10.1016/j.envres.2021.110754] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 05/12/2023]
Abstract
The burning of fossil fuels - especially coal, petrol, and diesel - is a major source of airborne fine particulate matter (PM2.5), and a key contributor to the global burden of mortality and disease. Previous risk assessments have examined the health response to total PM2.5, not just PM2.5 from fossil fuel combustion, and have used a concentration-response function with limited support from the literature and data at both high and low concentrations. This assessment examines mortality associated with PM2.5 from only fossil fuel combustion, making use of a recent meta-analysis of newer studies with a wider range of exposure. We also estimated mortality due to lower respiratory infections (LRI) among children under the age of five in the Americas and Europe, regions for which we have reliable data on the relative risk of this health outcome from PM2.5 exposure. We used the chemical transport model GEOS-Chem to estimate global exposure levels to fossil-fuel related PM2.5 in 2012. Relative risks of mortality were modeled using functions that link long-term exposure to PM2.5 and mortality, incorporating nonlinearity in the concentration response. We estimate a global total of 10.2 (95% CI: -47.1 to 17.0) million premature deaths annually attributable to the fossil-fuel component of PM2.5. The greatest mortality impact is estimated over regions with substantial fossil fuel related PM2.5, notably China (3.9 million), India (2.5 million) and parts of eastern US, Europe and Southeast Asia. The estimate for China predates substantial decline in fossil fuel emissions and decreases to 2.4 million premature deaths due to 43.7% reduction in fossil fuel PM2.5 from 2012 to 2018 bringing the global total to 8.7 (95% CI: -1.8 to 14.0) million premature deaths. We also estimated excess annual deaths due to LRI in children (0-4 years old) of 876 in North America, 747 in South America, and 605 in Europe. This study demonstrates that the fossil fuel component of PM2.5 contributes a large mortality burden. The steeper concentration-response function slope at lower concentrations leads to larger estimates than previously found in Europe and North America, and the slower drop-off in slope at higher concentrations results in larger estimates in Asia. Fossil fuel combustion can be more readily controlled than other sources and precursors of PM2.5 such as dust or wildfire smoke, so this is a clear message to policymakers and stakeholders to further incentivize a shift to clean sources of energy.
Collapse
Affiliation(s)
- Karn Vohra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Alina Vodonos
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Eloise A Marais
- Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | - Melissa P Sulprizio
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Loretta J Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
50
|
Systematic review and meta-analysis of cohort studies of long term outdoor nitrogen dioxide exposure and mortality. PLoS One 2021; 16:e0246451. [PMID: 33539450 PMCID: PMC7861378 DOI: 10.1371/journal.pone.0246451] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/10/2021] [Indexed: 01/04/2023] Open
Abstract
Objective To determine whether long term exposure to outdoor nitrogen dioxide (NO2) is associated with all-cause or cause-specific mortality. Methods MEDLINE, Embase, CENTRAL, Global Health and Toxline databases were searched using terms developed by a librarian. Screening, data extraction and risk of bias assessment were completed independently by two reviewers. Conflicts were resolved through consensus and/or involvement of a third reviewer. Pooling of results across studies was conducted using random effects models, heterogeneity among included studies was assessed using Cochran’s Q and I2 measures, and sources of heterogeneity were evaluated using meta-regression. Sensitivity of pooled estimates to individual studies was examined and publication bias was evaluated using Funnel plots, Begg’s and Egger’s tests, and trim and fill. Results Seventy-nine studies based on 47 cohorts, plus one set of pooled analyses of multiple European cohorts, met inclusion criteria. There was a consistently high degree of heterogeneity. After excluding studies with probably high or high risk of bias in the confounding domain (n = 12), pooled hazard ratios (HR) indicated that long term exposure to NO2 was significantly associated with mortality from all/ natural causes (pooled HR 1.047, 95% confidence interval (CI), 1.023–1.072 per 10 ppb), cardiovascular disease (pooled HR 1.058, 95%CI 1.026–1.091), lung cancer (pooled HR 1.083, 95%CI 1.041–1.126), respiratory disease (pooled HR 1.062, 95%CI1.035–1.089), and ischemic heart disease (pooled HR 1.111, 95%CI 1.079–1.144). Pooled estimates based on multi-pollutant models were consistently smaller than those from single pollutant models and mostly non-significant. Conclusions For all causes of death other than cerebrovascular disease, the overall quality of the evidence is moderate, and the strength of evidence is limited, while for cerebrovascular disease, overall quality is low and strength of evidence is inadequate. Important uncertainties remain, including potential confounding by co-pollutants or other concomitant exposures, and limited supporting mechanistic evidence. (PROSPERO registration number CRD42018084497)
Collapse
|