1
|
Okada Y, Ueda M, Nishiura H. Reconstructing the age-structured case count of COVID-19 from sentinel surveillance data in Japan: A modeling study. Int J Infect Dis 2024; 148:107223. [PMID: 39209148 DOI: 10.1016/j.ijid.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To reconstruct age-structured case counts of COVID-19 using sentinel reporting, which replaced universal reporting of COVID-19 from May 2023 in Japan. METHODS Using COVID-19 sentinel data stratified by discrete age groups in selected prefectures and referring to universal case count data up to May 8, 2023, we fitted a statistical model to handle weekly growth rates as a function of age and time so as to convert sentinel data to case counts after cessation of universal reporting. RESULTS The age distribution of cases in sentinel reporting was significantly biased toward younger age groups compared to universal reporting. When comparing the epidemic size of the 9th wave (May 8 to September 18, 2023) to the 8th wave (October 3, 2022 to April 10, 2023), using the wave-on-wave ratio of total cumulative sentinel cases led to a significant underestimation of the wave-on-wave in Tokyo (0.975, vs 1.461 by universal reporting) and Okinawa (1.299, vs 1.472). The estimates of growth rates, scaling factors between universal and sentinel cases, and expected universal case count showed robustness to changes in the ending week of the data period. CONCLUSION Our model quantified COVID-19 dynamics, comparably to universal reporting that ended in May 2023, enabling detailed and up-to-date health burden analysis using sentinel reports. The cumulative incidence was greater than that suggested from sentinel data in Tokyo, Nara, and Okinawa. Per-population burdens among children were particularly high in Osaka and Nara, indicating a strong bias in sentinel reporting toward pediatric cases.
Collapse
Affiliation(s)
- Yuta Okada
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minami Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
2
|
Kayano T, Sasanami M, Nishiura H. Science-based exit from stringent countermeasures against COVID-19: Mortality prediction using immune landscape between 2021 and 2022 in Japan. Vaccine X 2024; 20:100547. [PMID: 39238533 PMCID: PMC11375238 DOI: 10.1016/j.jvacx.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
Background Stringent public health and social measures against COVID-19 infection were implemented to avoid an overwhelming hospital caseload and excessive number of deaths, especially among elderly people. We analyzed population-level immunity and predicted mortality, calculated as the potential number of deaths on a given calendar date in Japan, to develop a science-based exit strategy from stringent control measures. Methods Immune proportions were inferred by age group using vaccination coverage data and the estimated number of naturally infected individuals. Immunity against symptomatic illness and death were estimated separately, allowing for inference of the immune fraction that was protected against either COVID-19-related symptomatic infection or death. By multiplying the infection fatality risk by age group for the immune fraction, the potential number of deaths was obtained. Results Accounting for a second and third dose of messenger RNA vaccine in the present-day population, approximately 155,000 potential deaths would be expected among people aged ≥ 60 years if all individuals were infected at the very end of 2022. A fourth dose (i.e., second booster) with a coverage identical to that of the third dose could reduce mortality by 60%. In all examined settings, the largest number of deaths occurred among people aged 80 years and older. Conclusions Our estimates can help policymakers understand the mortality impact of the COVID-19 epidemic in a quantitative manner and the critical importance of timely immunization so as to assist in decision making.
Collapse
Affiliation(s)
- Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Health Security, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Misaki Sasanami
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Health Security, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Okada Y, Nishiura H. Vaccine-induced reduction of COVID-19 clusters in school settings in Japan during the epidemic wave caused by B.1.1.529 (Omicron) BA.2, 2022. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7087-7101. [PMID: 39483074 DOI: 10.3934/mbe.2024312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Clusters of COVID-19 in high-risk settings, such as schools, have been deemed a critical driving force of the major epidemic waves at the societal level. In Japan, the vaccination coverage among students remained low up to early 2022, especially for 5-11-year-olds. The vaccination of the student population only started in February 2022. Given this background and considering that vaccine effectiveness against school transmission has not been intensively studied, this paper proposes a mathematical model that links the occurrence of clustering to the case count among populations aged 0-19, 20-59, and 60+ years of age. We first estimated the protected (immune) fraction of each age group either by infection or vaccination and then linked the case count in each age group to the number of clusters via a time series regression model that accounts for the time-varying hazard of clustering per infector. From January 3 to May 30, 2022, there were 4,722 reported clusters in school settings. Our model suggests that the immunity offered by vaccination averted 226 (95% credible interval: 219-232) school clusters. Counterfactual scenarios assuming elevated vaccination coverage with faster roll-out reveal that additional school clusters could have been averted. Our study indicates that even relatively low vaccination coverage among students could substantially lower the risk of clustering through vaccine-induced immunity. Our results also suggest that antigenically updated vaccines that are more effective against the variant responsible for the ongoing epidemic may greatly help decrease not only the incidence but also the unnecessary loss of learning opportunities among school-age students.
Collapse
Affiliation(s)
- Yuta Okada
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| |
Collapse
|
4
|
Sanada T, Honda T, Kohara M. Modeling of anti-spike IgG and neutralizing antibody waning after anti-SARS-CoV-2 mRNA vaccination. Vaccine 2024; 42:126146. [PMID: 39033078 DOI: 10.1016/j.vaccine.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
At present, mRNA-based vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being administered on a global scale. While the efficacy of mRNA vaccines has been demonstrated, several unknowns remains. For example, as the number of booster vaccinations increases, there are uncertainties regarding how long effects of a vaccine will last and how much individual variability exists. In this study, to predict the duration of vaccine efficacy, we modeled the kinetics of antibody levels for each SARS-CoV-2 vaccination dose, incorporating predictive intervals to estimate the duration of vaccine efficacy and to account for variability among individuals. A total of 3,059 serum samples from 1,346 participants were assayed to quantify IgG antibodies specific for the S1 subunit of the S protein (anti-S1 IgG) and neutralizing antibody activities against SARS-CoV-2. A power law model was used to simulate the decay of antibody titers following vaccination, and models were constructed to assess antibody level kinetics after the second, third, fourth, and fifth vaccinations. The models assumed that booster vaccinations would significantly reduce the decline in anti-S antibody and neutralizing antibody levels, resulting in levels being maintained for a longer period. No significant differences in the decay rate of antibody levels were observed among age groups, yet the peak titers of antibody levels were significantly higher in the ≤ 39 age group than in the ≥ 60 age group following the second vaccination; these differences were not observed after the third and fourth vaccinations. The modeling of antibody level kinetics after vaccination is considered to be useful for understanding the immune status of mRNA vaccine recipients.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
5
|
Kitamura N, Otani K, Kinoshita R, Yan F, Takizawa Y, Fukushima K, Yoneoka D, Suzuki M, Kamigaki T. Protective effect of previous infection and vaccination against reinfection with BA.5 Omicron subvariant: a nationwide population-based study in Japan. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 41:100911. [PMID: 38223396 PMCID: PMC10786644 DOI: 10.1016/j.lanwpc.2023.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 01/16/2024]
Abstract
Background The Omicron variant of SARS-CoV-2 was reported to evade immunity derived from vaccination and previous infection. A better understanding of hybrid immunity informs effective infection control strategies. Since the reinfection risk was not well-assessed in East Asia, this study aims to evaluate the risk of infection with Omicron subvariant BA.5 among previously infected individuals in Japan. Methods All notified cases were extracted from the Japanese national COVID-19 surveillance database including 20,297,335 records up to 25 September 2022. Reinfection with BA.5 was defined as the infection notified during the BA.5 dominated period with any prior SARS-CoV-2 infection. The protective effect of prior infections against reinfections with BA.5 was estimated by applying a case-population design and the protective effect of vaccination was estimated by a multivariable Cox regression adjusting for age, sex, variants of prior infection, and the time since the last vaccination. Findings Among 19,830,548 SARS-CoV-2 first infections, 233,424 (1.2%) were reinfected with BA.5. The protective effect against BA.5 reinfection of prior infection with Wuhan strain was 46%, Alpha variant was 35%, Delta variant was 41%, and BA.1/BA.2 subvariant was 74%. The reduced risk of BA.5 reinfection by 7%, 33%, and 66% was associated with two, three, and four doses of vaccination, respectively, compared with one-dose vaccination. Interpretation The prior infections with Omicron subvariant BA.1/BA.2 protected BA.5 reinfection more than pre-Omicron variants. Increased frequency of vaccination led to more protection from reinfection with BA.5. Up-to-date vaccination may be encouraged to prevent future reinfection among the previously infected population. Funding None.
Collapse
Affiliation(s)
- Noriko Kitamura
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kanako Otani
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryo Kinoshita
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fangyu Yan
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yu Takizawa
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Fukushima
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Yoneoka
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taro Kamigaki
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Kayano T, Nishiura H. Assessing the COVID-19 vaccination program during the Omicron variant (B.1.1.529) epidemic in early 2022, Tokyo. BMC Infect Dis 2023; 23:748. [PMID: 37907865 PMCID: PMC10619277 DOI: 10.1186/s12879-023-08748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Many countries, including high-income nations, struggled to control epidemic waves caused by the Omicron variant (B.1.1.529), which had an antigenically distinct evolution. Evaluating the direct and indirect effects of vaccination during the Omicron waves is essential to assess virus control policies. The present study assessed the population impacts of a vaccination program during the sixth wave caused by BA.1 and BA.2 from January to May 2022, in Tokyo. METHODS We analyzed the primary series and booster vaccination coverages and the confirmed cases stratified by vaccination history. We estimated the number of COVID-19 cases that were directly and indirectly prevented by vaccination. To estimate the direct impact, we used a statistical model that compared risks between unvaccinated and vaccinated individuals. A transmission model employing the renewal process was devised to quantify the total effect, given as the sum of the direct and indirect effects. RESULTS Assuming that the reporting coverage of cases was 25%, mass vaccination programs, including primary and booster immunizations, directly averted 640,000 COVID-19 cases (95% confidence interval: 624-655). Furthermore, these programs directly and indirectly prevented 8.5 million infections (95% confidence interval: 8.4-8.6). Hypothetical scenarios indicated that we could have expected a 19% or 7% relative reduction in the number of infections, respectively, compared with the observed number of infections, if the booster coverage had been equivalent to that of the second dose or if coverage among people aged 10-49 years had been 10% higher. If the third dose coverage was smaller and comparable to that of the fourth dose, the total number of infections would have increased by 52% compared with the observed number of infections. CONCLUSIONS The population benefit of vaccination via direct and indirect effects was substantial, with an estimated 65% reduction in the number of SARS-CoV-2 infections compared with counterfactual (without vaccination) in Tokyo during the sixth wave caused by BA.1 and BA.2.
Collapse
Affiliation(s)
- Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Kayano T, Ko Y, Otani K, Kobayashi T, Suzuki M, Nishiura H. Evaluating the COVID-19 vaccination program in Japan, 2021 using the counterfactual reproduction number. Sci Rep 2023; 13:17762. [PMID: 37853098 PMCID: PMC10584853 DOI: 10.1038/s41598-023-44942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
Japan implemented its nationwide vaccination program against COVID-19 in 2021, immunizing more than one million people (approximately 1%) a day. However, the direct and indirect impacts of the program at the population level have yet to be fully evaluated. To assess the vaccine effectiveness during the Delta variant (B.1.617.2) epidemic in 2021, we used a renewal process model. A transmission model was fitted to the confirmed cases from 17 February to 30 November 2021. In the absence of vaccination, the cumulative numbers of infections and deaths during the study period were estimated to be 63.3 million (95% confidence interval [CI] 63.2-63.6) and 364,000 (95% CI 363-366), respectively; the actual numbers of infections and deaths were 4.7 million and 10,000, respectively. Were the vaccination implemented 14 days earlier, there could have been 54% and 48% fewer cases and deaths, respectively, than the actual numbers. We demonstrated the very high effectiveness of COVID-19 vaccination in Japan during 2021, which reduced mortality by more than 97% compared with the counterfactual scenario. The timing of expanding vaccination and vaccine recipients could be key to mitigating the disease burden of COVID-19. Rapid and proper decision making based on firm epidemiological input is vital.
Collapse
Affiliation(s)
- Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yura Ko
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Virology, Tohoku University Graduate School of Medicine, Miyagi, 980-8575, Japan
| | - Kanako Otani
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tetsuro Kobayashi
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
8
|
Kodera S, Ueta H, Unemi T, Nakata T, Hirata A. Population-Level Immunity for Transient Suppression of COVID-19 Waves in Japan from April 2021 to September 2022. Vaccines (Basel) 2023; 11:1457. [PMID: 37766133 PMCID: PMC10537865 DOI: 10.3390/vaccines11091457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple COVID-19 waves have been observed worldwide, with varying numbers of positive cases. Population-level immunity can partly explain a transient suppression of epidemic waves, including immunity acquired after vaccination strategies. In this study, we aimed to estimate population-level immunity in 47 Japanese prefectures during the three waves from April 2021 to September 2022. For each wave, characterized by the predominant variants, namely, Delta, Omicron, and BA.5, the estimated rates of population-level immunity in the 10-64-years age group, wherein the most positive cases were observed, were 20%, 35%, and 45%, respectively. The number of infected cases in the BA.5 wave was inversely associated with the vaccination rates for the second and third injections. We employed machine learning to replicate positive cases in three Japanese prefectures to validate the reliability of our model for population-level immunity. Using interpolation based on machine learning, we estimated the impact of behavioral factors and vaccination on the fifth wave of new positive cases that occurred during the Tokyo 2020 Olympic Games. Our computational results highlighted the critical role of population-level immunity, such as vaccination, in infection suppression. These findings underscore the importance of estimating and monitoring population-level immunity to predict the number of infected cases in future waves. Such estimations that combine numerical derivation and machine learning are of utmost significance for effective management of medical resources, including the vaccination strategy.
Collapse
Affiliation(s)
- Sachiko Kodera
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Haruto Ueta
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tatsuo Unemi
- Glycan and Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| | - Taisuke Nakata
- Graduate School of Economics, University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Public Policy, University of Tokyo, Tokyo 113-0033, Japan
| | - Akimasa Hirata
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
9
|
Zhang T, Nishiura H. Estimating infection fatality risk and ascertainment bias of COVID-19 in Osaka, Japan from February 2020 to January 2022. Sci Rep 2023; 13:5540. [PMID: 37016060 PMCID: PMC10072030 DOI: 10.1038/s41598-023-32639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/30/2023] [Indexed: 04/06/2023] Open
Abstract
The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.
Collapse
Affiliation(s)
- Tong Zhang
- School of Public Health, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Nishiura
- School of Public Health, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Projection of COVID-19 Positive Cases Considering Hybrid Immunity: Case Study in Tokyo. Vaccines (Basel) 2023; 11:vaccines11030633. [PMID: 36992217 DOI: 10.3390/vaccines11030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Since the emergence of COVID-19, the forecasting of new daily positive cases and deaths has been one of the essential elements in policy setting and medical resource management worldwide. An essential factor in forecasting is the modeling of susceptible populations and vaccination effectiveness (VE) at the population level. Owing to the widespread viral transmission and wide vaccination campaign coverage, it becomes challenging to model the VE in an efficient and realistic manner, while also including hybrid immunity which is acquired through full vaccination combined with infection. Here, the VE model of hybrid immunity was developed based on an in vitro study and publicly available data. Computational replication of daily positive cases demonstrates a high consistency between the replicated and observed values when considering the effect of hybrid immunity. The estimated positive cases were relatively larger than the observed value without considering hybrid immunity. Replication of the daily positive cases and its comparison would provide useful information of immunity at the population level and thus serve as useful guidance for nationwide policy setting and vaccination strategies.
Collapse
|
11
|
Hirata Y, Iida S, Arashiro T, Nagasawa S, Saitoh H, Abe H, Ikemura M, Makino Y, Sawa R, Iwase H, Ushiku T, Suzuki T, Akitomi S. Impact of the COVID-19 pandemic on pathological autopsy practices in Japan. Pathol Int 2023; 73:120-126. [PMID: 36598024 DOI: 10.1111/pin.13306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, autopsies have provided valuable insights into the pathogenesis of COVID-19. The precise effect of this pandemic on autopsy procedures in Japan, especially in instances unrelated to COVID-19, has not yet been established. Therefore, we conducted a questionnaire survey from December 2020 to January 2021 regarding the status of pathological autopsy practices in Japan during the first year of the COVID-19 pandemic. The questionnaire was sent to 678 medical facilities with pathologists, of which 227 responded. In cases where a confirmed diagnosis of COVID-19 was not made at the time of autopsy, many facilities counted them as suspected COVID-19 cases if pneumonia was suspected clinically. At around half of the sites, autopsies were prohibited for suspected COVID-19 cases. In addition, the number of autopsies of non-COVID-19 cases during the pandemic period was also investigated, and a significant decrease was observed compared with the incidence in the pre-pandemic period. The COVID-19 pandemic has affected not only the autopsies of COVID-19 cases but also the entire practice of pathological autopsies. It is necessary to establish a system that supports the implementation of pathological autopsy practices during the pandemic of an emerging infectious disease.
Collapse
Affiliation(s)
- Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Arashiro
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Hisako Saitoh
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yohsuke Makino
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rintaro Sawa
- Japan Medical Association Research Institute, Tokyo, Japan
| | - Hirotaro Iwase
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Akitomi
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Japan Medical Association Research Institute, Tokyo, Japan
- International Medical Institute, Medical Safety Promotion Organization, Tokyo, Japan
| |
Collapse
|
12
|
Antibody response to third and fourth BNT162b2 mRNA booster vaccinations in healthcare workers in Tokyo, Japan. J Infect Chemother 2023; 29:339-346. [PMID: 36584813 PMCID: PMC9793957 DOI: 10.1016/j.jiac.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Booster vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being promoted worldwide to counter the coronavirus disease 2019 (COVID-19) pandemic. In this study, we analyzed the longitudinal effect of the third BNT162b2 mRNA vaccination on antibody responses in healthcare workers. Additionally, antibody responses induced by the fourth vaccination were analyzed. METHODS The levels of anti-spike (S) IgG and neutralizing antibody against SARS-CoV-2 were measured at 7 months after the second vaccination (n = 1138), and at 4 (n = 701) and 7 (n = 417) months after the third vaccination using an iFlash 3000 chemiluminescence immunoassay analyzer. Among the 417 participants surveyed at 7 months after the third vaccination, 40 had received the fourth vaccination. A multiple linear regression analysis was performed to clarify which factors were associated with the anti-S IgG and neutralizing antibody. Variables assessed included sex, age, number of days after the second or third vaccination, diagnostic history of COVID-19, and anti-nucleocapsid (N) IgG level. RESULTS At 7 months after the third vaccination, antibody responses were significantly higher than those at the same time after the second vaccination. Unlike the second vaccination, age had no effect on the antibody responses induced by the third vaccination. Furthermore, the fourth vaccination resulted in a further increase in antibody responses. The multiple linear regression analysis identified anti-N IgG level, presumably associated with infection, as a factor associated with antibody responses. CONCLUSIONS Our findings showed that BNT162b2 booster vaccinations increased and sustained the antibody responses against SARS-CoV-2.
Collapse
|
13
|
Sasanami M, Fujimoto M, Kayano T, Hayashi K, Nishiura H. Projecting the COVID-19 immune landscape in Japan in the presence of waning immunity and booster vaccination. J Theor Biol 2023; 559:111384. [PMID: 36528092 PMCID: PMC9749381 DOI: 10.1016/j.jtbi.2022.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) booster vaccination has been implemented globally in the midst of surges in infection due to the Delta and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The objective of the present study was to present a framework to estimate the proportion of the population that is immune to symptomatic SARS-CoV-2 infection with the Omicron variant (immune proportion) in Japan, considering the waning of immunity resulting from vaccination and naturally acquired infection. We quantified the decay rate of immunity against symptomatic infection with Omicron conferred by the second and third doses of COVID-19 vaccine. We estimated the current and future vaccination coverage for the second and third vaccine doses from February 17, 2021 to August 1, 2022 and used data on the confirmed COVID-19 incidence from February 17, 2021 to April 10, 2022. From this information, we estimated the age-specific immune proportion over the period from February 17, 2021 to August 1, 2022. Vaccine-induced immunity, conferred by the second vaccine dose in particular, was estimated to rapidly wane. There were substantial variations in the estimated immune proportion by age group because each age cohort experienced different vaccination rollout timing and speed as well as a different infection risk. Such variations collectively contributed to heterogeneous immune landscape trajectories over time and age. The resulting prediction of the proportion of the population that is immune to symptomatic SARS-CoV-2 infection could aid decision-making on when and for whom another round of booster vaccination should be considered. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
Affiliation(s)
- Misaki Sasanami
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo, Kyoto 606-8601, Japan.
| | - Marie Fujimoto
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo, Kyoto 606-8601, Japan.
| | - Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo, Kyoto 606-8601, Japan.
| | - Katsuma Hayashi
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo, Kyoto 606-8601, Japan.
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo, Kyoto 606-8601, Japan.
| |
Collapse
|
14
|
Ueda M, Hayashi K, Nishiura H. Identifying High-Risk Events for COVID-19 Transmission: Estimating the Risk of Clustering Using Nationwide Data. Viruses 2023; 15:v15020456. [PMID: 36851670 PMCID: PMC9967753 DOI: 10.3390/v15020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be overdispersed, meaning that only a fraction of infected cases contributes to super-spreading. While cluster interventions are an effective measure for controlling pandemics due to the viruses' overdispersed nature, a quantitative assessment of the risk of clustering has yet to be sufficiently presented. Using systematically collected cluster surveillance data for coronavirus disease 2019 (COVID-19) from June 2020 to June 2021 in Japan, we estimated the activity-dependent risk of clustering in 23 establishment types. The analysis indicated that elderly care facilities, welfare facilities for people with disabilities, and hospitals had the highest risk of clustering, with 4.65 (95% confidence interval [CI]: 4.43-4.87), 2.99 (2.59-3.46), and 2.00 (1.88-2.12) cluster reports per million event users, respectively. Risks in educational settings were higher overall among older age groups, potentially being affected by activities with close and uncontrollable contact during extracurricular hours. In dining settings, drinking and singing increased the risk by 10- to 70-fold compared with regular eating settings. The comprehensive analysis of the COVID-19 cluster records provides an additional scientific basis for the design of customized interventions.
Collapse
|
15
|
Sanada T, Kohara M. Response to the Letter to the Editor Regarding "Serologic Survey of IgG Against SARS-CoV-2 Among Hospital Visitors Without a History of SARS-CoV-2 Infection in Tokyo, 2020-2021". J Epidemiol 2023; 33:109. [PMID: 35908936 PMCID: PMC9794450 DOI: 10.2188/jea.je20220202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
16
|
Otsubo N, Fukuda T, Beppu H, Maki C, Yasui F, Hanawa T, Sugita C, Murakami M, Yamada T, Kohara M, Wakai S. Reduced antibody response to SARS-CoV-2 in COVID-19 patients with newly diagnosed diabetes: a retrospective observational study. BMC Endocr Disord 2023; 23:5. [PMID: 36604681 PMCID: PMC9816526 DOI: 10.1186/s12902-023-01263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has dramatically impacted global health, and patients with type 2 diabetes have been identified as a high-risk group for COVID-19 infection and the development of severe disease. In response, this study aimed to evaluate whether patients with type 2 diabetes infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could develop antibody responses in the same manner as patients without diabetes, and whether there is a difference in antibody response to SARS-CoV-2 between patients with diabetes diagnosed prior to hospitalization, and those with newly diagnosed diabetes. METHODS SARS-CoV-2-specific immunoglobulin G (IgG) levels were quantified using two iFlash 3000 Chemiluminescence Immunoassay analyzer kits (Shenzhen YHLO Biotech Co., Ltd.) to detect IgG antibodies specific for nucleocapsid protein (IgG-N), and specific for the S1 subunit of the spike protein (IgG-S1). In 124 hospitalized patients with COVID-19, 40 patients with type 2 diabetes were matched to 40 patients without diabetes using propensity score matching (PSM). RESULTS There was no difference in IgG-N and IgG-S1 levels between the patients with diabetes and those without. Of patients with diabetes, 31 patients had known diabetes and nine patients had newly diagnosed diabetes. The median levels of IgG-N at 7-13 days in patients with newly diagnosed diabetes were significantly lower than those in patients with known diabetes (IgG-N; 10.9 vs. 31.0 AU/mL, p = 0.031, IgG-S1; 7.5 vs. 24.4 AU/mL, p = 0.023). CONCLUSIONS Even after adjusting for covariates using PSM, COVID-19 patients with type 2 diabetes had comparable antibody responses to patients without diabetes. Patients with newly diagnosed diabetes had lower IgG-N and IgG-S1 production in the second week of the disease compared with those with previously known diabetes.
Collapse
Affiliation(s)
- Naoya Otsubo
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, 2-44-1 Kabuki-Cho, Shinjyuku-Ku, Tokyo, 160-8488 Japan
| | - Tatsuya Fukuda
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, 2-44-1 Kabuki-Cho, Shinjyuku-Ku, Tokyo, 160-8488 Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroko Beppu
- Department of Nephrology, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, Tokyo, Japan
| | - Chisato Maki
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, 2-44-1 Kabuki-Cho, Shinjyuku-Ku, Tokyo, 160-8488 Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohide Hanawa
- Department of Pulmonary Medicine, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, Tokyo, Japan
| | - Chise Sugita
- Department of Pulmonary Medicine, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, Tokyo, Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sachiko Wakai
- Department of Nephrology, Tokyo Metropolitan Health and Hospitals Corporation Okubo Hospital, Tokyo, Japan
| |
Collapse
|
17
|
Lyu Z, Fujitani T, Harada KH. Seropositivity for SARS-CoV-2 in a General Population: How Specific Is the Diagnostic? J Epidemiol 2023; 33:62. [PMID: 35908935 PMCID: PMC9727207 DOI: 10.2188/jea.je20220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Zhaoqing Lyu
- Department of Health Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Fujitani
- Department of Health Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kouji H. Harada
- Department of Health Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Iwabuchi S, Tsukahara T, Okayama T, Kitabatake M, Motobayashi H, Shichino S, Imafuku T, Yamaji K, Miyamoto K, Tamura S, Ueha S, Ito T, Murata SI, Kondo T, Ikeo K, Suzuki Y, Matsushima K, Kohara M, Torigoe T, Yamaue H, Hashimoto S. B cell receptor repertoire analysis from autopsy samples of COVID-19 patients. Front Immunol 2023; 14:1034978. [PMID: 36911681 PMCID: PMC9996338 DOI: 10.3389/fimmu.2023.1034978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being developed world over. We investigated the possibility of producing artificial antibodies from the formalin fixation and paraffin-embedding (FFPE) lung lobes of a patient who died by coronavirus disease 2019 (COVID-19). The B-cell receptors repertoire in the lung tissue where SARS-CoV-2 was detected were considered to have highly sensitive virus-neutralizing activity, and artificial antibodies were produced by combining the most frequently detected heavy and light chains. Some neutralizing effects against the SARS-CoV-2 were observed, and mixing two different artificial antibodies had a higher tendency to suppress the virus. The neutralizing effects were similar to the immunoglobulin G obtained from healthy donors who had received a COVID-19 mRNA vaccine. Therefore, the use of FFPE lung tissue, which preserves the condition of direct virus sensitization, to generate artificial antibodies may be useful against future unknown infectious diseases.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Toshitugu Okayama
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | | | - Hideki Motobayashi
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tadashi Imafuku
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kenzaburo Yamaji
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyohei Miyamoto
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinobu Tamura
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Shin-Ichi Murata
- Departments of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Michinori Kohara
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan.,Departments of Cancer Immunology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
19
|
Toya T, Sadato D, Sanada T, Honda T, Atsuta Y, Sekiya N, Shimizu H, Najima Y, Kobayashi T, Harada Y, Kohara M, Doki N. A third dose of COVID-19 mRNA vaccine induces limited humoral response in stem cell transplant recipients who got two vaccine doses before transplant. EJHAEM 2022; 4:JHA2637. [PMID: 36721642 PMCID: PMC9880636 DOI: 10.1002/jha2.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Takashi Toya
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Daichi Sadato
- Clinical Research Support CenterTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takahiro Sanada
- Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Tomoko Honda
- Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Yuya Atsuta
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Noritaka Sekiya
- Department of Infection Prevention and ControlTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
- Department of Clinical LaboratoryTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Hiroaki Shimizu
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Yuho Najima
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Takeshi Kobayashi
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| | - Yuka Harada
- Clinical Research Support CenterTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Michinori Kohara
- Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Noriko Doki
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
| |
Collapse
|
20
|
Estimation of mRNA COVID-19 Vaccination Effectiveness in Tokyo for Omicron Variants BA.2 and BA.5: Effect of Social Behavior. Vaccines (Basel) 2022; 10:vaccines10111820. [DOI: 10.3390/vaccines10111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The variability of the COVID-19 vaccination effectiveness (VE) should be assessed with a resolution of a few days, assuming that the VE is influenced by public behavior and social activity. Here, the VE for the Omicron variants (BA.2 and BA.5) is numerically derived for Japan’s population for the second and third vaccination doses. We then evaluated the daily VE variation due to social behavior from the daily data reports in Tokyo. The VE for the Omicron variants (BA.1, BA.2, and BA.5) are derived from the data of Japan and Tokyo with a computational approach. In addition, the effect of the different parameters regarding human behavior on VE was assessed using daily data in Tokyo. The individual VE for the Omicron BA.2 in Japan was 61% (95% CI: 57–65%) for the second dose of the vaccination from our computation, whereas that for the third dose was 86% (95% CI: 84–88%). The individual BA.5 VE for the second and third doses are 37% (95% CI: 33–40%) and 63% (95% CI: 61–65%). The reduction in the daily VE from the estimated value was closely correlated to the number of tweets related to social gatherings on Twitter. The number of tweets considered here would be one of the new candidates for VE evaluation and surveillance affecting the viral transmission.
Collapse
|
21
|
Toya T, Atsuta Y, Sanada T, Honda T, Sadato D, Sekiya N, Kogure H, Takakuwa S, Onai D, Shingai N, Shimizu H, Najima Y, Kobayashi T, Ohashi K, Harada Y, Kohara M, Doki N. Attenuated humoral response against SARS-CoV-2 mRNA vaccination in allogeneic stem cell transplantation recipients. Cancer Sci 2022; 114:586-595. [PMID: 36161681 PMCID: PMC9538567 DOI: 10.1111/cas.15603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
Antibody persistence several months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination in allogeneic stem cell transplantation recipients remains largely unknown. We sequentially evaluated the humoral response to two doses of mRNA vaccines in 128 adult recipients and identified the risk factors involved in a poor response. The median interval between stem cell transplantation and vaccination was 2.7 years. The SARS-CoV-2 S1 Ab became positive after the second vaccination dose in 87.6% of the recipients, and the median titer was 1235.4 arbitrary units (AU)/ml. In patients on corticosteroid treatment, the corticosteroid dose inversely correlated with Ab titer. Multivariate analysis identified risk factors for poor peak response such as an interval from stem cell transplantation ≤1 year, history of clinically significant CMV infection, and use of >5 mg/day prednisolone at vaccination. Six months after vaccination, the median titer decreased to 185.15 AU/ml, and use of >5 mg/day prednisolone at vaccination was significantly associated with a poor response. These results indicate that early vaccination after stem cell transplantation (<12 months) and CMV infection are risk factors for poor peak response, while steroid use is important for a peak as well as a persistent response. In conclusion, although humoral response is observed in many stem cell transplantation recipients after two doses of vaccination, Ab titers diminish with time, and factors associated with persistence and a peak immunity should be considered separately.
Collapse
Affiliation(s)
- Takashi Toya
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuya Atsuta
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takahiro Sanada
- Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Tomoko Honda
- Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Noritaka Sekiya
- Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan,Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Hiroko Kogure
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Sonomi Takakuwa
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Daishi Onai
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Naoki Shingai
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Hiroaki Shimizu
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuho Najima
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takeshi Kobayashi
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Kazuteru Ohashi
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Michinori Kohara
- Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Noriko Doki
- Hematology Division,Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| |
Collapse
|
22
|
Sasanami M, Nishiura H. [Grasping COVID-19 immune landscape in Japan]. Uirusu 2022; 72:31-38. [PMID: 37899227 DOI: 10.2222/jsv.72.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
COVID-19 vaccination commenced globally in December 2020. Japan launched its vaccination rollout on February 17, 2021 and commenced booster vaccination campaign on December 1, 2021. It has been crucial to grasp the immune landscape in the country in order to aid in decision-making and evaluation of vaccination campaigns as well as understating the transmission dynamics of various variants of SARS-CoV-2. The present article shows a framework that enables us to predict the immune landscape, specifically, the proportion of immune population, using a mathematical modeling approach. This involved: prediction of vaccine coverage; estimation of vaccine effectiveness against the dominant SARS-CoV-2 variant in circulation; the quantification of increasing vaccine effectiveness (immune-build up) since receiving the first dose; the estimation of waning rate of vaccine effectiveness since receiving the second and third doses; and the consideration on the infection-induced immunity.
Collapse
|