1
|
Kearns R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol Neurobiol 2024; 44:64. [PMID: 39377830 PMCID: PMC11461658 DOI: 10.1007/s10571-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Belfast, UK.
| |
Collapse
|
2
|
Kearns R. The Kynurenine Pathway in Gut Permeability and Inflammation. Inflammation 2024:10.1007/s10753-024-02135-x. [PMID: 39256304 DOI: 10.1007/s10753-024-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Newry, Northern Ireland, United Kingdom.
| |
Collapse
|
3
|
De Marzio M, Lasky-Su J, Chu SH, Prince N, Litonjua AA, Weiss ST, Kelly RS, Glass KR. The metabolic role of vitamin D in children's neurodevelopment: a network study. Sci Rep 2024; 14:16929. [PMID: 39043876 PMCID: PMC11266698 DOI: 10.1038/s41598-024-67835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Neurodevelopmental disorders are rapidly increasing in prevalence and have been linked to various environmental risk factors. Mounting evidence suggests a potential role of vitamin D in child neurodevelopment, though the causal mechanisms remain largely unknown. Here, we investigate how vitamin D deficiency affects children's communication development, particularly in relation to Autism Spectrum Disorder (ASD). We do so by developing an integrative network approach that combines metabolomic profiles, clinical traits, and neurodevelopmental data from a pediatric cohort. Our results show that low levels of vitamin D are associated with changes in the metabolic networks of tryptophan, linoleic, and fatty acid metabolism. These changes correlate with distinct ASD-related phenotypes, including delayed communication skills and respiratory dysfunctions. Additionally, our analysis suggests the kynurenine and serotonin sub-pathways may mediate the effect of vitamin D on early life communication development. Altogether, our findings provide metabolome-wide insights into the potential of vitamin D as a therapeutic option for ASD and other communication disorders.
Collapse
Grants
- R01HL091528 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K01HL153941 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K01 HL153941 NHLBI NIH HHS
- UH3 OD023268 ODCDC CDC HHS
- K01HL146980 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL141826 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K25HL168157 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL155749 NHLBI NIH HHS
- R01HL155749 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Margherita De Marzio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Augusto A Litonjua
- Division of Pulmonary Medicine, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kimberly R Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
5
|
Curtis MA, Saferin N, Nguyen JH, Imami AS, Ryan WG, Neifer KL, Miller GW, Burkett JP. Developmental pyrethroid exposure in mouse leads to disrupted brain metabolism in adulthood. Neurotoxicology 2024; 103:87-95. [PMID: 38876425 DOI: 10.1016/j.neuro.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Environmental and genetic risk factors, and their interactions, contribute significantly to the etiology of neurodevelopmental disorders (NDDs). Recent epidemiology studies have implicated pyrethroid pesticides as an environmental risk factor for autism and developmental delay. Our previous research showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice caused male-biased changes in the brain and in NDD-relevant behaviors in adulthood. Here, we used a metabolomics approach to determine the broadest possible set of metabolic changes in the adult male mouse brain caused by low-dose pyrethroid exposure during development. Using a litter-based design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood and collected whole brain samples for untargeted high-resolution metabolomics analysis. Developmentally exposed mice had disruptions in 116 metabolites which clustered into pathways for folate biosynthesis, retinol metabolism, and tryptophan metabolism. As a cross-validation, we integrated metabolomics and transcriptomics data from the same samples, which confirmed previous findings of altered dopamine signaling. These results suggest that pyrethroid exposure during development leads to disruptions in metabolism in the adult brain, which may inform both prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Melissa A Curtis
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States
| | - Nilanjana Saferin
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States
| | - Jennifer H Nguyen
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States
| | - Ali S Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States
| | - William G Ryan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States
| | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States
| | - Gary W Miller
- Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA 30322, United States; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - James P Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States.
| |
Collapse
|
6
|
Curtis MA, Saferin N, Nguyen JH, Imami AS, Ryan WG, Neifer KL, Miller GW, Burkett JP. Developmental pyrethroid exposure in mouse leads to disrupted brain metabolism in adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562226. [PMID: 37961675 PMCID: PMC10634990 DOI: 10.1101/2023.10.13.562226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Environmental and genetic risk factors, and their interactions, contribute significantly to the etiology of neurodevelopmental disorders (NDDs). Recent epidemiology studies have implicated pyrethroid pesticides as an environmental risk factor for autism and developmental delay. Our previous research showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice caused male-biased changes in the brain and in NDD-relevant behaviors in adulthood. Here, we used a metabolomics approach to determine the broadest possible set of metabolic changes in the adult male mouse brain caused by low-dose pyrethroid exposure during development. Using a litter-based design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood and collected whole brain samples for untargeted high-resolution metabolomics analysis. Developmentally exposed mice had disruptions in 116 metabolites which clustered into pathways for folate biosynthesis, retinol metabolism, and tryptophan metabolism. As a cross-validation, we integrated metabolomics and transcriptomics data from the same samples, which confirmed previous findings of altered dopamine signaling. These results suggest that pyrethroid exposure during development leads to disruptions in metabolism in the adult brain, which may inform both prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Melissa A. Curtis
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Nilanjana Saferin
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Jennifer H. Nguyen
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Ali S. Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - William G. Ryan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Kari L. Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Gary W. Miller
- Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA 30322
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 (current)
| | - James P. Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| |
Collapse
|
7
|
Gomez-Gomez A, Martin BMS, Haro N, Pozo OJ. Determination of well-being-related markers in nails by liquid chromatography tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115586. [PMID: 37897979 DOI: 10.1016/j.ecoenv.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
Well-being is a multifactorial positive state that is highly influenced by some endogenous molecules that control happiness and euphoric feelings. These molecules, e.g., neurotransmitters, hormones and their derivatives, play a crucial role in metabolism and may be referred to as "well-being-related markers". The deregulation of well-being-related markers can lead to organism malfunctions and life-threatening states. In this research, we aimed to evaluate the potential of nails for the chronic production of several well-being-related markers. For this purpose, we developed an LCMS /MS-based method for the determination of 10 well-being-related markers, including melatonin, serotonin, cortisol, kynurenine and several precursors and metabolites. The method was optimized regarding different analytical steps: required sample amount, extraction time, number of required extractions, preconcentration, injection volume and MS conditions. Method validation was performed by two different approaches: (i) using surrogate nail matrix and (ii) using authentic nail samples by standard additions. The method was found to be linear in the expected endogenous range and sensitive enough to determine the low endogenous concentration levels in nails. Accuracy and precision were appropriate in both validation approaches. As proof of concept, the method was used (i) to correlate fingernail and toenail levels for all metabolites in 22 volunteers, (ii) to establish the endogenous concentration range of all metabolites in females (n = 50) and males (n = 34) and (iii) to correlate the metabolite levels with age. For some metabolites, the calculated ranges have been reported for the first time. In summary, the present strategy to evaluate well-being-related markers in nails may be a useful tool for the evaluation of the production of these important compounds with high potential for a wide range of clinical purposes.
Collapse
Affiliation(s)
- Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Blanca Montero-San Martin
- Laboratory Medicine, Arnau de Vilanova University Hospital, Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
8
|
Yildirim V, Simsek S, Cetin I, Dokuyucu R. Kynurenine, Kynurenic Acid, Quinolinic Acid and Interleukin-6 Levels in the Serum of Patients with Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1906. [PMID: 38003955 PMCID: PMC10673218 DOI: 10.3390/medicina59111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: It is known that inflammatory processes play a role in the pathogenesis of autism spectrum disorder (ASD). It is also reported that immune activation induces the kynurenine pathway (KP), as known as the tryptophan destruction pathway. In our study, we aimed to investigate whether the serum levels of KP products and interleukin (IL)-6 activating indolamine 2-3 dioxygenase (IDO) enzyme are different in healthy developing children and children with ASD. Materials and Methods: Forty-three ASD children aged 2-9 were included in this study. Forty-two healthy developing children, similar to the patient group in terms of age and gender, were selected as the control group. Serum levels of kynurenic acid, kynurenine, quinolinic acid and IL-6 were analyzed using the ELISA method. ASD severity was evaluated with the Autism Behavior Checklist (ABC). Results: The mean age of children with ASD was 42.4 ± 20.5 months, and that of healthy controls was 48.1 ± 15.8 months. While the serum levels of kynurenic acid, kynurenine and interleukin-6 were higher in the group with ASD (p < 0.05), there was no significant difference (p > 0.05) in terms of the quinolinic acid level. There was no significant difference between the ABC total and subscale scores of children with ASD and biochemical parameters (p > 0.05). Conclusions: We conclude that these biomarkers must be measured in all ASD cases. They may be important for the diagnosis of ASD.
Collapse
Affiliation(s)
- Veli Yildirim
- Special Clinic, Department of Child Psychiatry, Yenişehir, Mersin 33110, Turkey;
| | - Seref Simsek
- Special Clinic, Department of Child Psychiatry, Antalya 07000, Turkey;
| | - Ihsan Cetin
- Department of Nutrition and Dietetics, School of Health Sciences, Batman University, Batman 72040, Turkey;
| | - Recep Dokuyucu
- Department of Physiology, School of Medicine, Atlas University, Istanbul 34413, Turkey
| |
Collapse
|
9
|
De Marzio M, Lasky-Su J, Chu SH, Prince N, Litonjua AA, Weiss ST, Kelly RS, Glass KR. The metabolic role of vitamin D in children's neurodevelopment: a network study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546277. [PMID: 37425858 PMCID: PMC10327084 DOI: 10.1101/2023.06.23.546277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with various proposed environmental risk factors and a rapidly increasing prevalence. Mounting evidence suggests a potential role of vitamin D deficiency in ASD pathogenesis, though the causal mechanisms remain largely unknown. Here we investigate the impact of vitamin D on child neurodevelopment through an integrative network approach that combines metabolomic profiles, clinical traits, and neurodevelopmental data from a pediatric cohort. Our results show that vitamin D deficiency is associated with changes in the metabolic networks of tryptophan, linoleic, and fatty acid metabolism. These changes correlate with distinct ASD-related phenotypes, including delayed communication skills and respiratory dysfunctions. Additionally, our analysis suggests the kynurenine and serotonin sub-pathways may mediate the effect of vitamin D on early childhood communication development. Altogether, our findings provide metabolome-wide insights into the potential of vitamin D as a therapeutic option for ASD and other communication disorders.
Collapse
|
10
|
Zhao F, Zhang H, Wang P, Cui W, Xu K, Chen D, Hu M, Li Z, Geng X, Wei S. Oxytocin and serotonin in the modulation of neural function: Neurobiological underpinnings of autism-related behavior. Front Neurosci 2022; 16:919890. [PMID: 35937893 PMCID: PMC9354980 DOI: 10.3389/fnins.2022.919890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) is a group of generalized neurodevelopmental disorders. Its main clinical features are social communication disorder and repetitive stereotyped behavioral interest. The abnormal structure and function of brain network is the basis of social dysfunction and stereotyped performance in patients with autism spectrum disorder. The number of patients diagnosed with ASD has increased year by year, but there is a lack of effective intervention and treatment. Oxytocin has been revealed to effectively improve social cognitive function and significantly improve the social information processing ability, empathy ability and social communication ability of ASD patients. The change of serotonin level also been reported affecting the development of brain and causes ASD-like behavioral abnormalities, such as anxiety, depression like behavior, stereotyped behavior. Present review will focus on the research progress of serotonin and oxytocin in the pathogenesis, brain circuit changes and treatment of autism. Revealing the regulatory effect and neural mechanism of serotonin and oxytocin on patients with ASD is not only conducive to a deeper comprehension of the pathogenesis of ASD, but also has vital clinical significance.
Collapse
Affiliation(s)
- Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Cui
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- Zifa Li,
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- Xiwen Geng,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
11
|
Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr 2022; 28:374-385. [PMID: 35634735 DOI: 10.1017/s1092852922000840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing literature highlighted alterations of tryptophan (TRP) metabolism and kynurenine (KYN) pathway in children with autism spectrum disorder (ASD). However, no study specifically focused on adult samples. Meanwhile, several authors stressed the relevance of investigating neurobiological correlates of adult forms of ASD and of those subthreshold ASD manifestations frequently found in relatives of ASD probands, known as broad autism phenotype (BAP). This work aimed to evaluate circulating levels of TRP and metabolites of KYN pathway in a sample of ASD adults, their first-degree relatives and controls (CTLs), investigating also the correlations between biochemical variables' levels and ASD symptoms. METHODS A sample of ASD adults, together with a group of first-degree relatives (BAP group) and unrelated CTLs were assessed by means of psychometric scales. Circulating levels of TRP, KYN, quinolinic acid (QA), and kynurenic acid (KYNA) were assessed in all subjects. RESULTS ASD patients reported significantly higher total scores than the other groups on all psychometric scales. BAP subjects scored significantly higher than CTLs. ASD patients reported significantly lower TRP levels than BAP and CTL groups. Moreover, significantly lower levels of KYNA were reported in both ASD and BAP groups than in CTLs. Specific patterns of associations were found between autism symptoms and biochemical variables. CONCLUSIONS Our findings confirm in adult samples the presence of altered TRP metabolism through KYN pathway. The intermediate alterations reported among relatives of ASD patients further stress the presence of a continuum between subthreshold and full-threshold ASD phenotypes also from a biochemical perspective.
Collapse
|
12
|
Sun XD, Wu HL, Chen JC, Chen AQ, Chen Y, Ouyang YZ, Ding YJ, Yu RQ. Exploration advantages of data combination and partition: First chemometric analysis of liquid chromatography–mass spectrometry data in full scan mode with quadruple fragmentor voltages. Anal Chim Acta 2020; 1110:158-168. [PMID: 32278391 DOI: 10.1016/j.aca.2020.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
|
13
|
Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol 2018; 105:35-40. [PMID: 30266525 DOI: 10.1016/j.biocel.2018.09.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/12/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
Abstract
The placenta is the first organ to be created during mammalian development. As the main link between the mother and the fetus it has more diverse functions than any other organ, serving as a digestive, excretory, respiratory, endocrine, and immune system. The outer layer of the placenta, the trophoblast, plays a key role in fetal development by orchestrating all these functions. Recent research has associated perturbations of maternal conditions (such as malnutrition, stress or inflammation) with alterations of the trophoblasts' endocrine, transport and metabolic processes. As reviewed here, adaptations to these conditions enable the fetus to survive, but at the cost of permanently changing its physiology and structure. Moreover, these adaptations trigger fetal programming that increases predisposition to various pathological conditions in adult life, typically metabolic, cardiovascular or CNS diseases.
Collapse
|
14
|
Strati F, Calabrò A, Donati C, De Felice C, Hayek J, Jousson O, Leoncini S, Renzi D, Rizzetto L, De Filippo C, Cavalieri D. Intestinal Candida parapsilosis isolates from Rett syndrome subjects bear potential virulent traits and capacity to persist within the host. BMC Gastroenterol 2018; 18:57. [PMID: 29720131 PMCID: PMC5930502 DOI: 10.1186/s12876-018-0785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1β and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.
Collapse
Affiliation(s)
- Francesco Strati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy.,Present address: T Cell Development Lab, Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Antonio Calabrò
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Daniela Renzi
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Lisa Rizzetto
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Institute of Agriculture Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
15
|
Li SJ, Yu SS, Luo HY, Li X, Rao B, Wang Y, Li ZZ, Liu G, Zou LP, Zhang JS, Feng C, Liu J, Liu JW, Hu N, Chen XQ, Yu SY, Li K, He MW, Yu XG, Wang J, Guo SL, Chen ZY, Zhang L, Ma L. Two de novo variations identified by massively parallel sequencing in 13 Chinese families with children diagnosed with autism spectrum disorder. Clin Chim Acta 2018; 479:144-147. [PMID: 29366832 DOI: 10.1016/j.cca.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous neurodevelopmental disorder characterized by impairments in social interaction and communication, and by restricted and repetitive behaviors. The genetic architecture of ASD has been elucidated, including chromosomal rearrangements, de novo or inherited rare variants, and copy number variants. However, the genetic mechanism of Chinese families with ASD children is explored rarely. To identify genetic pathogenesis, we performed massively parallel sequencing on 13 Chinese ASD trio families, and found two de novo variations. The novel de novo splice alteration c.664 + 2T > G in the DEAF1 gene and the novel de novo missense mutation c.95 C > T in the AADAT gene associated with ASD may be important clues for exploring the etiology of this disorder.
Collapse
Affiliation(s)
- Shi-Jun Li
- Department of Medical Instruments, Chinese PLA General Hospital, Beijing 100853, China.
| | | | | | - Xin Li
- BGI-shenzhen, Shenzhen 518083, China
| | - Bin Rao
- BGI-shenzhen, Shenzhen 518083, China
| | - Yi Wang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen-Zhen Li
- Department of Medical Instruments, Chinese PLA General Hospital, Beijing 100853, China
| | - Gang Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Shui Zhang
- Department of Neurology, Beijing Children's Hospital of Capital Medical University, Beijing 100045, China
| | - Chen Feng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatric Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Wei Liu
- Institute of Geriatric Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Hu
- Department of Rehabilitation Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Qiao Chen
- Department of Neurology, Beijing Children's Hospital of Capital Medical University, Beijing 100045, China
| | - Sheng-Yuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ke Li
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Mian-Wang He
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin-Guang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng-Li Guo
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi-Ye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Zhang
- Department of Medical Information, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
16
|
Kałużna-Czaplińska J, Jóźwik-Pruska J, Chirumbolo S, Bjørklund G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metab Brain Dis 2017; 32:1585-1593. [PMID: 28608247 PMCID: PMC5596045 DOI: 10.1007/s11011-017-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
Abstract
Recent reports show that the worldwide incidence of autism spectrum disorder (ASD) is dramatically increasing, although ASD etiology and pathogenesis are still far to be fully elucidated. Some dietary-derived essential compounds, such as the amino acid tryptophan, appear to be impaired in patients with ASD. Tryptophan (Trp) plays a significant role in the human organism and serves as a precursor for a wide range of bioactive compounds, including major neurotransmitters. Research indicates that tryptophan might be deficient in subjects with ASD. Deficiency in the tryptophan level can be retrieved by investigating Trp levels or its major metabolite kynurenine in urines. The purpose of the present study is to quantify tryptophan content in urine samples (n = 236) of ASD patients, who underwent a supplemented dietary panel with B vitamins and magnesium, compared to controls (without this diet regimen). The samples were analyzed with gas chromatography-mass spectrometry. Additionally, the correlation between body mass index (BMI) and the level of this amino acid in urine was accomplished. Basic parameters of urine samples were also evaluated. Statistical evaluations in the concentration of tryptophan in ASD patients with different severity of symptoms were reported. A significant difference in tryptophan levels in all groups was observed. Supplementation with B vitamins and magnesium has an influence on the Trp concentration. Furthermore, no correlation between BMI and tryptophan levels was found. These results assess that the Trp level in ASD subjects is critical and that intake of B vitamins and magnesium with diet might influence its metabolic homeostasis.
Collapse
Affiliation(s)
- Joanna Kałużna-Czaplińska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego116, 90-924, Lodz, Poland.
| | - Jagoda Jóźwik-Pruska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego116, 90-924, Lodz, Poland
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
17
|
Affiliation(s)
- Keith Fluegge
- Institute of Health & Environmental Research, Cleveland, OH 44118, USA
| |
Collapse
|
18
|
Williams M, Zhang Z, Nance E, Drewes JL, Lesniak WG, Singh S, Chugani DC, Rangaramanujam K, Graham DR, Kannan S. Maternal Inflammation Results in Altered Tryptophan Metabolism in Rabbit Placenta and Fetal Brain. Dev Neurosci 2017; 39:399-412. [PMID: 28490020 DOI: 10.1159/000471509] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Maternal inflammation has been linked to neurodevelopmental and neuropsychiatric disorders such as cerebral palsy, schizophrenia, and autism. We had previously shown that intrauterine inflammation resulted in a decrease in serotonin, one of the tryptophan metabolites, and a decrease in serotonin fibers in the sensory cortex of newborns in a rabbit model of cerebral palsy. In this study, we hypothesized that maternal inflammation results in alterations in tryptophan pathway enzymes and metabolites in the placenta and fetal brain. We found that intrauterine endotoxin administration at gestational day 28 (G28) resulted in a significant upregulation of indoleamine 2,3-dioxygenase (IDO) in both the placenta and fetal brain at G29 (24 h after treatment). This endotoxin-mediated IDO induction was also associated with intense microglial activation, an increase in interferon gamma expression, and increases in kynurenine and the kynurenine pathway metabolites kynurenine acid and quinolinic acid, as well as a significant decrease in 5-hydroxyindole acetic acid (a precursor of serotonin) levels in the periventricular region of the fetal brain. These results indicate that maternal inflammation shunts tryptophan metabolism away from the serotonin to the kynurenine pathway, which may lead to excitotoxic injury along with impaired development of serotonin-mediated thalamocortical fibers in the newborn brain. These findings provide new targets for prevention and treatment of maternal inflammation-induced fetal and neonatal brain injury leading to neurodevelopmental disorders such as cerebral palsy and autism.
Collapse
Affiliation(s)
- Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University SOM, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Forrest CM, Kennedy PGE, Rodgers J, Dalton RN, Turner C, Darlington LG, Cobb SR, Stone TW. Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2 +/- mice, using liquid chromatography-tandem mass spectrometry. Neurochem Int 2016; 100:110-119. [PMID: 27623092 PMCID: PMC5115650 DOI: 10.1016/j.neuint.2016.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/22/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography – tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene – a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition. Pregnant rats were treated with an inhibitor of kynurenine-3-monoxygenase. Levels of several kynurenine metabolites increased in the maternal and foetal brains. The maternal changes at 5 h disappeared by 24 h, but were maintained in embryos. No changes were noted in the brains of Mecp2+/− mice. KMO inhibition but not Mecp2+/− suppression alters kynurenine metabolism.
Collapse
Affiliation(s)
- Caroline M Forrest
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Peter G E Kennedy
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - R Neil Dalton
- WellChild Laboratory, Evelina London Children's Hospital, King's College London, Lambeth Palace Road, London, SE1 7EH, UK
| | - Charles Turner
- WellChild Laboratory, Evelina London Children's Hospital, King's College London, Lambeth Palace Road, London, SE1 7EH, UK
| | - L Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, Surrey, KT21 2SB, UK
| | - Stuart R Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Marcos J, Renau N, Valverde O, Aznar-Laín G, Gracia-Rubio I, Gonzalez-Sepulveda M, Pérez-Jurado LA, Ventura R, Segura J, Pozo OJ. Targeting tryptophan and tyrosine metabolism by liquid chromatography tandem mass spectrometry. J Chromatogr A 2016; 1434:91-101. [DOI: 10.1016/j.chroma.2016.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
|
21
|
Modulation of the genome and epigenome of individuals susceptible to autism by environmental risk factors. Int J Mol Sci 2015; 16:8699-718. [PMID: 25903146 PMCID: PMC4425104 DOI: 10.3390/ijms16048699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
Diverse environmental factors have been implicated with the development of autism spectrum disorders (ASD). Genetic factors also underlie the differential vulnerability to environmental risk factors of susceptible individuals. Currently the way in which environmental risk factors interact with genetic factors to increase the incidence of ASD is not well understood. A greater understanding of the metabolic, cellular, and biochemical events involved in gene x environment interactions in ASD would have important implications for the prevention and possible treatment of the disorder. In this review we discuss various established and more alternative processes through which environmental factors implicated in ASD can modulate the genome and epigenome of genetically-susceptible individuals.
Collapse
|
22
|
Zhang WQ, Smolik CM, Barba-Escobedo PA, Gamez M, Sanchez JJ, Javors MA, Daws LC, Gould GG. Acute dietary tryptophan manipulation differentially alters social behavior, brain serotonin and plasma corticosterone in three inbred mouse strains. Neuropharmacology 2015; 90:1-8. [PMID: 25445490 PMCID: PMC4276517 DOI: 10.1016/j.neuropharm.2014.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 12/22/2022]
Abstract
Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 g%), or with 1% added TRP (1.2 g%) overnight to three mouse strains. Of these, BTBRT(+)Itpr3(tf)/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N = 8-10). Subsequent marble burying did not differ among diets or strains. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p < 0.05; N = 4-10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize conditions wherein TRP supplementation may best ameliorate sociability deficits.
Collapse
Affiliation(s)
- Wynne Q Zhang
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Rice University, Houston, TX 77005, USA
| | - Corey M Smolik
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Priscilla A Barba-Escobedo
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Texas A&M University at San Antonio, TX 78224, USA
| | - Monica Gamez
- Texas A&M University at San Antonio, TX 78224, USA
| | - Jesus J Sanchez
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Martin A Javors
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lynette C Daws
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Georgianna G Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Hannah Wilson
- Future Medicine Ltd., Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|