1
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
Chang CJ, O’Brien KM, Kresovich JK, Nwanaji-Enwerem JC, Xu Z, Gaston SA, Jackson CL, Sandler DP, Taylor JA, White AJ. Associations between use of chemical hair products and epigenetic age: Findings from the Sister Study. Environ Epidemiol 2024; 8:e311. [PMID: 38799263 PMCID: PMC11115975 DOI: 10.1097/ee9.0000000000000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Hair products may be a source of harmful chemicals and have been linked to age-related health outcomes. We investigated whether the use of hair products is related to epigenetic age in a sample of Black (both Hispanic and non-Hispanic) and non-Hispanic White women. Methods In a subset of 4358 participants aged 35-74 years from the Sister Study, we estimated cross-sectional associations between self-reported use of four chemical hair products (permanent dye, semipermanent dye, straighteners/relaxers, and hair permanents/body waves) in the year before enrollment (2003-2009) and three DNA methylation-based measures of epigenetic age (DunedinPACE, GrimAge age acceleration [GrimAgeAccel], and PhenoAge age acceleration [PhenoAgeAccel]) using survey-weighted multivariable linear regressions. Associations were estimated both overall and by self-identified race and ethnicity, adjusting for chronological age, socioeconomic and lifestyle factors, body mass index, menopausal status, and DNA methylation platform. Results Associations between the use of hair products and the three epigenetic age measures were largely null. Use of hair permanents/body waves was modestly associated with higher DunedinPACE among all participants (βever-never = 0.010; 95% confidence interval [CI] = 0.001, 0.019) and with lower PhenoAgeAccel among Black women (βever-never = -1.53; 95% CI = -2.84, -0.21). Conclusion In this US-based study, we found little evidence of associations between chemical hair product use and epigenetic age in Black and non-Hispanic White women. Observed associations were modest and largely not supported by dose-response relationships or were inconsistent across epigenetic age measures. Previously observed associations between chemical hair product use and aging-related health outcomes may not be explained by the biological aging pathways captured by DunedinPACE, GrimAgeAccel, or PhenoAgeAccel. Alternative biological pathways are worth investigating in racially diverse samples.
Collapse
Affiliation(s)
- Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jacob K. Kresovich
- Departments of Cancer Epidemiology and Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jamaji C. Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Symielle A. Gaston
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Chandra L. Jackson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
3
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
4
|
Teixeira J, Bessa MJ, Delerue-Matos C, Sarmento B, Santos-Silva A, Rodrigues F, Oliveira M. Firefighters' personal exposure to gaseous PAHs during controlled forest fires: A case study with estimation of respiratory health risks and in vitro toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168364. [PMID: 37963534 DOI: 10.1016/j.scitotenv.2023.168364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/02/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
Firefighters are daily exposed to adverse health-hazardous pollutants. Polycyclic aromatic hydrocarbons (PAHs), well known endocrine disruptors with carcinogenic, mutagenic, and teratogenic properties, are among the most relevant pollutants. The characterization of firefighters' occupational exposure to airborne PAHs remains limited; information is scarce for European firefighters. Also, the in vitro assessment of firefighters' respiratory health risks is inexistent. To reply to these scientific gaps, this work characterizes the levels of gaseous PAH in firefighters' personal air during regular working activities at controlled forest fires and at fire stations (control group). Breathable levels were 2.2-26.7 times higher during fire events than in the control group (2.63-32.63 μg/m3versus 1.22 μg/m3, p < 0.001); the available occupational guidelines (100 and 200 μg/m3 defined by the US National Institute for Occupational Safety and Health and the North American Occupational Safety and Health Administration, respectively) were not exceeded. Concentrations of (possible/probable) carcinogenic PAHs were 1.9-15.3 times superior during firefighting (p < 0.001). Increased values of total benzo(a)pyrene equivalents (p = 0.101), dose rates (p < 0.001), and carcinogenic risks (p = 0.063) were estimated in firefighters during controlled fires comparatively with the control group. Firefighters' breathable gaseous phase collected during fire events contributed to induce a significant viability decrease (<70 %; p < 0.05) in A549 and Calu-3 cell lines. The principal component analysis (PCA) allowed the differentiation between firefighters participating in controlled fire events from the control group. PCA analysis demonstrated the potential of PAHs to distinguish different sources of firefighters´ occupational exposure and of combining estimated health risk parameters with in vitro toxicities determined with human-breathable air collected during real-life scenarios. Overall, the participation in controlled fire events contributes to the respiratory health burden of firefighting forces. However, more studies are needed to corroborate these preliminary findings, explore the respiratory toxicological mechanisms, and support the implementation of preventive actions and mitigation strategies to pursue firefighters' health.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria João Bessa
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Bruno Sarmento
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, 4585-116 Gandra, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| |
Collapse
|
5
|
Quaid M, Goodrich JM, Calkins MM, Graber JM, Urwin D, Gabriel J, Caban-Martinez AJ, Petroff RL, Grant C, Beitel SC, Littau S, Gulotta JJ, Wallentine D, Hughes J, Burgess JL. Firefighting, per- and polyfluoroalkyl substances, and DNA methylation of genes associated with prostate cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:55-66. [PMID: 38523457 PMCID: PMC11006564 DOI: 10.1002/em.22589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Prostate cancer is the leading incident cancer among men in the United States. Firefighters are diagnosed with this disease at a rate 1.21 times higher than the average population. This increased risk may result from occupational exposures to many toxicants, including per- and polyfluoroalkyl substances (PFAS). This study assessed the association between firefighting as an occupation in general or PFAS serum levels, with DNA methylation. Only genomic regions previously linked to prostate cancer risk were selected for analysis: GSTP1, Alu repetitive elements, and the 8q24 chromosomal region. There were 444 male firefighters included in this study, with some analyses being conducted on fewer participants due to missingness. Statistical models were used to test associations between exposures and DNA methylation at CpG sites in the selected genomic regions. Exposure variables included proxies of cumulative firefighting exposures (incumbent versus academy status and years of firefighting experience) and biomarkers of PFAS exposures (serum concentrations of 9 PFAS). Proxies of cumulative exposures were associated with DNA methylation at 15 CpG sites and one region located within FAM83A (q-value <0.1). SbPFOA was associated with 19 CpG sites (q < 0.1), but due to low detection rates, this PFAS was modeled as detected versus not detected in serum. Overall, there is evidence that firefighting experience is associated with differential DNA methylation in prostate cancer risk loci, but this study did not find evidence that these differences are due to PFAS exposures specifically.
Collapse
Affiliation(s)
- Margaret Quaid
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Miriam M. Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Judith M. Graber
- Dept of Biostatistics and Epidemiology, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Derek Urwin
- Los Angeles County Fire Department, Los Angeles, CA, USA
- Dept. of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA
| | - Jamie Gabriel
- Los Angeles County Fire Department, Los Angeles, CA, USA
| | | | - Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA, USA
| | - Shawn C. Beitel
- Dept. of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Dept. of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | |
Collapse
|
6
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
7
|
Jung AM, Furlong MA, Goodrich JM, Cardenas A, Beitel SC, Littau SR, Caban-Martinez AJ, Gulotta JJ, Wallentine DD, Urwin D, Gabriel J, Hughes J, Graber JM, Grant C, Burgess JL. Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters. Epigenet Insights 2023; 16:25168657231206301. [PMID: 37953967 PMCID: PMC10634256 DOI: 10.1177/25168657231206301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023] Open
Abstract
Epigenetic changes may be biomarkers of health. Epigenetic age acceleration (EAA), the discrepancy between epigenetic age measured via epigenetic clocks and chronological age, is associated with morbidity and mortality. However, the intersection of epigenetic clocks with microRNAs (miRNAs) and corresponding miRNA-based health implications have not been evaluated. We analyzed DNA methylation and miRNA profiles from blood sampled among 332 individuals enrolled across 2 U.S.-based firefighter occupational studies (2015-2018 and 2018-2020). We considered 7 measures of EAA in leukocytes (PhenoAge, GrimAge, Horvath, skin-blood, and Hannum epigenetic clocks, and extrinsic and intrinsic epigenetic age acceleration). We identified miRNAs associated with EAA using individual linear regression models, adjusted for sex, race/ethnicity, chronological age, and cell type estimates, and investigated downstream effects of associated miRNAs with miRNA enrichment analyses and genomic annotations. On average, participants were 38 years old, 88% male, and 75% non-Hispanic white. We identified 183 of 798 miRNAs associated with EAA (FDR q < 0.05); 126 with PhenoAge, 59 with GrimAge, 1 with Horvath, and 1 with the skin-blood clock. Among miRNAs associated with Horvath and GrimAge, there were 61 significantly enriched disease annotations including age-related metabolic and cardiovascular conditions and several cancers. Enriched pathways included those related to proteins and protein modification. We identified miRNAs associated with EAA of multiple epigenetic clocks. PhenoAge had more associations with individual miRNAs, but GrimAge and Horvath had greater implications for miRNA-associated pathways. Understanding the relationship between these epigenetic markers could contribute to our understanding of the molecular underpinnings of aging and aging-related diseases.
Collapse
Affiliation(s)
- Alesia M Jung
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, College of Public Health, Tucson, AZ, USA
| | - Melissa A Furlong
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Shawn C Beitel
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Sally R Littau
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Derek Urwin
- Los Angeles County Fire Department, Los Angeles, CA, USA
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Division of Health Safety and Medicine, International Association of Fire Fighters, Washington, DC, USA
| | - Jamie Gabriel
- Los Angeles County Fire Department, Los Angeles, CA, USA
| | | | - Judith M Graber
- Department of Biostatistics & Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA, USA
| | - Jefferey L Burgess
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Niemiec SS, Kechris K, Pattee J, Yang IV, Adgate JL, Calafat AM, Dabelea D, Starling AP. Prenatal exposures to per- and polyfluoroalkyl substances and epigenetic aging in umbilical cord blood: The Healthy Start study. ENVIRONMENTAL RESEARCH 2023; 231:116215. [PMID: 37224946 PMCID: PMC10330919 DOI: 10.1016/j.envres.2023.116215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, environmentally persistent chemicals, and prenatal exposures have been associated with adverse child health outcomes. Prenatal PFAS exposure may lead to epigenetic age acceleration (EAA), defined as the discrepancy between an individual's chronologic and epigenetic or biological age. OBJECTIVES We estimated associations of maternal serum PFAS concentrations with EAA in umbilical cord blood DNA methylation using linear regression, and a multivariable exposure-response function of the PFAS mixture using Bayesian kernel machine regression. METHODS Five PFAS were quantified in maternal serum (median: 27 weeks of gestation) among 577 mother-infant dyads from a prospective cohort. Cord blood DNA methylation data were assessed with the Illumina HumanMethylation450 array. EAA was calculated as the residuals from regressing gestational age on epigenetic age, calculated using a cord-blood specific epigenetic clock. Linear regression tested for associations between each maternal PFAS concentration with EAA. Bayesian kernel machine regression with hierarchical selection estimated an exposure-response function for the PFAS mixture. RESULTS In single pollutant models we observed an inverse relationship between perfluorodecanoate (PFDA) and EAA (-0.148 weeks per log-unit increase, 95% CI: -0.283, -0.013). Mixture analysis with hierarchical selection between perfluoroalkyl carboxylates and sulfonates indicated the carboxylates had the highest group posterior inclusion probability (PIP), or relative importance. Within this group, PFDA had the highest conditional PIP. Univariate predictor-response functions indicated PFDA and perfluorononanoate were inversely associated with EAA, while perfluorohexane sulfonate had a positive association with EAA. CONCLUSIONS Maternal mid-pregnancy serum concentrations of PFDA were negatively associated with EAA in cord blood, suggesting a pathway by which prenatal PFAS exposures may affect infant development. No significant associations were observed with other PFAS. Mixture models suggested opposite directions of association between perfluoroalkyl sulfonates and carboxylates. Future studies are needed to determine the importance of neonatal EAA for later child health outcomes.
Collapse
Affiliation(s)
- Sierra S Niemiec
- Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jack Pattee
- Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Bessa MJ, Sarmento B, Oliveira M, Rodrigues F. In vitro data for fire pollutants: contribution of studies using human cell models towards firefighters' occupational. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:238-255. [PMID: 36883725 DOI: 10.1080/10937404.2023.2187909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.
Collapse
Affiliation(s)
- Maria João Bessa
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Porto, Portugal
| | | |
Collapse
|
10
|
Barros B, Oliveira M, Morais S. Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:127-171. [PMID: 36748115 DOI: 10.1080/10937404.2023.2172119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomarkers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
11
|
Mazumder NUS, Hossain MT, Jahura FT, Girase A, Hall AS, Lu J, Ormond RB. Firefighters' exposure to per-and polyfluoroalkyl substances (PFAS) as an occupational hazard: A review. FRONTIERS IN MATERIALS 2023; 10:10.3389/fmats.2023.1143411. [PMID: 38074949 PMCID: PMC10698640 DOI: 10.3389/fmats.2023.1143411] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The term "firefighter" and "cancer" have become so intertwined in the past decade that they are now nearly inseparable. Occupational exposure of firefighters to carcinogenic chemicals may increase their risk of developing different types of cancer. PFAS are one of the major classes of carcinogenic chemicals that firefighters are exposed to as occupational hazard. Elevated levels of PFAS have been observed in firefighters' blood serum in recent studies. Possible sources of occupational exposure to PFAS include turnout gear, aqueous film-forming foam, and air and dust at both the fire scene and fire station. Preliminary discussion on PFAS includes definition, classification, and chemical structure. The review is then followed by identifying the sources of PFAS that firefighters may encounter as an occupational hazard. The structural properties of the PFAS used in identified sources, their degradation, and exposure pathways are reviewed. The elevated level of PFAS in the blood serum and how this might associate with an increased risk of cancer is discussed. Our review shows a significant amount of PFAS on turnout gear and their migration to untreated layers, and how turnout gear itself might be a potential source of PFAS exposure. PFAS from aqueous film-forming foams (AFFF), air, and dust of fire stations have been already established as potential exposure sources. Studies on firefighters' cancer suggest that firefighters have a higher cancer risk compared to the general population. This review suggests that increased exposure to PFAS as an occupational hazard could be a potential cancer risk for firefighters.
Collapse
Affiliation(s)
- Nur-Us-Shafa Mazumder
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Md Tanjim Hossain
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Fatema Tuj Jahura
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Arjunsing Girase
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Andrew Stephen Hall
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Jingtian Lu
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - R. Bryan Ormond
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Bose R, Spulber S, Ceccatelli S. The Threat Posed by Environmental Contaminants on Neurodevelopment: What Can We Learn from Neural Stem Cells? Int J Mol Sci 2023; 24:4338. [PMID: 36901772 PMCID: PMC10002364 DOI: 10.3390/ijms24054338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Exposure to chemicals may pose a greater risk to vulnerable groups, including pregnant women, fetuses, and children, that may lead to diseases linked to the toxicants' target organs. Among chemical contaminants, methylmercury (MeHg), present in aquatic food, is one of the most harmful to the developing nervous system depending on time and level of exposure. Moreover, certain man-made PFAS, such as PFOS and PFOA, used in commercial and industrial products including liquid repellants for paper, packaging, textile, leather, and carpets, are developmental neurotoxicants. There is vast knowledge about the detrimental neurotoxic effects induced by high levels of exposure to these chemicals. Less is known about the consequences that low-level exposures may have on neurodevelopment, although an increasing number of studies link neurotoxic chemical exposures to neurodevelopmental disorders. Still, the mechanisms of toxicity are not identified. Here we review in vitro mechanistic studies using neural stem cells (NSCs) from rodents and humans to dissect the cellular and molecular processes changed by exposure to environmentally relevant levels of MeHg or PFOS/PFOA. All studies show that even low concentrations dysregulate critical neurodevelopmental steps supporting the idea that neurotoxic chemicals may play a role in the onset of neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Goldoost S, Zarredar H, Asadi M, Shirvaliloo M, Raeisi M. Expression and promoter methylation of mitogen-activated protein kinase 1 in tumor and marginal cells of breast cancer. Breast Dis 2023; 42:437-445. [PMID: 38143331 DOI: 10.3233/bd-230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
AIM In the present study, we sought to explore potential differences in the expression and promoter methylation of mitogen-activated protein kinase 1 (MAPK1) between tumor and marginal cells of breast cancer lesions. METHODS A total of 50 randomly selected patients with breast cancer (BCa) undergoing needle biopsy were enrolled. Clinical specimens containing both tumor and marginal cells were collected and preserved. After DNA extraction using specific primers, MAPK1 mRNA and promoter methylation were measured with spectrophotometry at 260/280 nm absorption wavelengths. To deliver a comparative analysis, data from The Cancer Genome Atlas (TCGA) program regarding breast cancer (BRCA), were downloaded from Xena Functional Genomics Explorer and separately analyzed. The suitability of MAPK1 expression and promoter methylation as biomarkers for BCa was analyzed with receiver operating characteristic (ROC) curves. RESULTS We found a positive correlation between tumor stage and MAPK1 expression (P-value: 0.029) in BCa. Likewise, MAPK1 expression was significantly associated with lymph node metastasis (P-value: 0.018). There was a significant difference in the expression of MAPK1 mRNA between tumor and marginal cells of BCa and BRCA (P-value < 0.001). However, we did not find any statistically significant difference in MAPK1 promoter methylation between tumor and marginal cells of both BCa and BRCA. With an area under the curve (AUC) of 0.71, the diagnostic accuracy of MAPK1 expression in BCa and BRCA was validated. However, MAPK1 promoter methylation was not found to be a suitable biomarker. CONCLUSION Our findings suggest that while MAPK1 expression, might be a promising biomarker for evaluating oncogenic activity in patients suspected of BCa. We were not able to detect a prognostic/diagnostic role for MAPK1 promoter methylation.
Collapse
Affiliation(s)
- Solmaz Goldoost
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Future Science Group, London, UK
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Siegel MR, Rocheleau CM, Hollerbach BS, Omari A, Jahnke SA, Almli LM, Olshan AF. Birth defects associated with paternal firefighting in the National Birth Defects Prevention Study. Am J Ind Med 2023; 66:30-40. [PMID: 36345775 PMCID: PMC9969860 DOI: 10.1002/ajim.23441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Few studies have evaluated birth defects among children of firefighters. We investigated associations between birth defects and paternal work as a firefighter compared to work in non-firefighting and police officer occupations. METHODS We analyzed 1997-2011 data from the multi-site case-control National Birth Defects Prevention Study. Cases included fetuses or infants with major structural birth defects and controls included a random sample of live-born infants without major birth defects. Mothers of infants self-reported information about parents' occupations held during pregnancy. We investigated associations between paternal firefighting and birth defect groups using logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Referent groups included families reporting fathers working non-firefighting and police officer jobs. RESULTS Occupational groups included 227 firefighters, 36,285 non-firefighters, and 433 police officers. Twenty-nine birth defects were analyzed. In adjusted analyses, fathers of children with total anomalous pulmonary venous return (TAPVR; OR = 3.1; 95% CI = 1.1-8.7), cleft palate (OR = 1.8; 95% CI = 1.0-3.3), cleft lip (OR = 2.2; 95% CI = 1.2-4.2), and transverse limb deficiency (OR = 2.2; 95% CI = 1.1-4.7) were more likely than fathers of controls to be firefighters, versus non-firefighters. In police-referent analyses, fathers of children with cleft palate were 2.4 times more likely to be firefighters than fathers of controls (95% CI = 1.1-5.4). CONCLUSIONS Paternal firefighting may be associated with an elevated risk of birth defects in offspring. Additional studies are warranted to replicate these findings. Further research may contribute to a greater understanding of the reproductive health of firefighters and their families for guiding workplace practices.
Collapse
Affiliation(s)
- Miriam R. Siegel
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Carissa M. Rocheleau
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | | | - Amel Omari
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and HealthCincinnatiOhioUSA
| | - Sara A. Jahnke
- Center for Fire, Rescue, and EMS Health ResearchNDRI‐USA, IncLeawoodKansasUSA
| | - Lynn M. Almli
- Division of Birth Defects and Infant DisordersNational Center on Birth Defects and Developmental Disabilities, CDCAtlantaGeorgiaUSA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | |
Collapse
|
15
|
Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M, Zhang S, Zhang Y, Bi J, Yao J, He M. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17039-17051. [PMID: 36374530 DOI: 10.1021/acs.est.2c04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is associated with blood lipids in adults, but the underlying mechanisms remain unclear. This pilot study aimed to investigate the associations between PFOA or PFOS and epigenome-wide DNA methylation and assess the mediating effect of DNA methylation on the PFOA/PFOS-blood lipid association. We measured plasma PFOA/PFOS and leukocyte DNA methylation in 98 patients enrolled from the hospital between October 2018 and August 2019. The median plasma PFOA/PFOS levels were 0.85 and 2.29 ng/mL. Plasma PFOA and PFOS levels were significantly associated with elevated total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels. There were 63/87 CpG positions and 8/11 differentially methylated regions (DMRs) associated with plasma PFOA/PFOS levels, respectively. In addition, 5 CpG positions (annotated to AFF3, CREB5, NRG2, USF2, and intergenic region) and one DMR annotated to IRF6 may mediate the association between plasma PFOA/PFOS and LDL levels (mediated proportion from 7.29 to 46.77%); two CpG positions may mediate the association between plasma PFOA/PFOS and TC levels (annotated to CREB5 and USF2, mediated proportion is around 30%). The data suggest that PFOA/PFOS exposure alters DNA methylation. More importantly, the association of PFOA/PFOS with lipid indicators was partly mediated by DNA methylation changes in lipid metabolism-related genes.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Mulatibieke Keerman
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
16
|
Nilsson S, Smurthwaite K, Aylward LL, Kay M, Toms LM, King L, Marrington S, Kirk MD, Mueller JF, Bräunig J. Associations between serum perfluoroalkyl acid (PFAA) concentrations and health related biomarkers in firefighters. ENVIRONMENTAL RESEARCH 2022; 215:114370. [PMID: 36174755 DOI: 10.1016/j.envres.2022.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Firefighters who used aqueous film forming foam in the past have experienced elevated exposures to perfluoroalkyl acids (PFAAs). The objective of this study was to examine the associations between clinical chemistry endpoints and serum concentrations of perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS) and perfluorooctane sulfonate (PFOS) in firefighters. Multiple linear regression was used to assess relationships between PFAA serum concentrations and biochemical markers for cardiovascular disease, kidney-, liver- and thyroid function, in a cross-sectional survey of 783 firefighters with elevated levels of PFHxS, PFHpS and PFOS in relation to the most recently reported levels in the general Australian population. Linear logistic regression was used to assess the odds ratios for selected self-reported health outcomes. Repeated measures linear mixed models were further used to assess relationships between PFAAs and biomarkers for cardiovascular disease and kidney function longitudinally in a subset of the firefighters (n = 130) where serum measurements were available from two timepoints, five years apart. In the cross-sectional analysis, higher levels of all PFAAs were significantly associated with higher levels of biomarkers for cardiovascular disease (total-cholesterol, and LDL-cholesterol). For example, doubling in PFOS serum concentration were associated with increases in total cholesterol (β:0.111, 95% confidence interval (95%CI): 0.026, 0.195 mmol/L) and LDL-cholesterol (β: 0.104, 95%CI:0.03, 0.178 mmol/L). Doubling in PFOA concentration, despite not being elevated in the study population, were additionally positively associated with kidney function marker urate (e.g., β: 0.010, 95%CI; 0.004, 0.016 mmol/L) and thyroid function marker TSH (e.g., β: 0.087, 95%CI: 0.014, 0.161 mIU/L). PFAAs were not associated with any assessed self-reported health conditions. No significant relationships were observed in the longitudinal analysis. Findings support previous studies, particularly on the association between PFAAs and serum lipids.
Collapse
Affiliation(s)
- Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia.
| | - Kayla Smurthwaite
- National Centre for Epidemiology and Population Health, The Australian National University, Cnr of Eggleston and Mills Roads Acton 2600, Australia
| | - Lesa L Aylward
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia; Summit Toxicology, LLP, La Quinta, 92253, CA, USA
| | - Margaret Kay
- General Practice Clinical Unit, Faculty of Medicine, The University of Queensland, Health Sciences Building, RBWH Complex, Herston, 4029, QLD, Australia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Musk Avenue, Kelvin Grove, 4059, QLD, Australia
| | - Leisa King
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Shelby Marrington
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Cnr of Eggleston and Mills Roads Acton 2600, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| |
Collapse
|
17
|
Goodrich JM, Jung AM, Furlong MA, Beitel S, Littau S, Gulotta J, Wallentine D, Burgess JL. Repeat measures of DNA methylation in an inception cohort of firefighters. Occup Environ Med 2022; 79:656-663. [PMID: 35332072 PMCID: PMC9484361 DOI: 10.1136/oemed-2021-108153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Firefighters face exposures associated with adverse health outcomes including risk for multiple cancers. DNA methylation, one type of epigenetic regulation, provides a potential mechanism linking occupational hazards to adverse health outcomes. We hypothesised that DNA methylation profiles would change in firefighters after starting their service and that these patterns would be associated with occupational exposures (cumulative fire-hours and fire-runs). METHODS We profiled DNA methylation with the Infinium MethylationEPIC in blood leucocytes at two time points in non-smoking new recruits: prior to live fire training and 20-37 months later. Linear mixed effects models adjusted for potential confounders were used to identify differentially methylated CpG sites over time using data from 50 individuals passing all quality control. RESULTS We report 680 CpG sites with altered methylation (q value <0.05) including 60 with at least a 5% methylation difference at follow-up. Genes with differentially methylated CpG sites were enriched in biological pathways related to cancers, neurological function, cell signalling and transcription regulation. Next, linear mixed effects models were used to determine associations between occupational exposures with methylation at the 680 loci. Of these, more CpG sites were associated with fire-runs (108 for all and 78 for structure-fires only, q<0.05) than with fire-hours (27 for all fires and 1 for structure fires). These associations were independent of time since most recent fire, suggesting an impact of cumulative exposures. CONCLUSIONS Overall, this study provides evidence that DNA methylation may be altered by fireground exposures, and the impact of this change on disease development should be evaluated.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alesia M Jung
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Shawn Beitel
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Sally Littau
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | | | | | - Jefferey L Burgess
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
18
|
Bulka CM, Enggasser AE, Fry RC. Epigenetics at the Intersection of COVID-19 Risk and Environmental Chemical Exposures. Curr Environ Health Rep 2022; 9:477-489. [PMID: 35648356 PMCID: PMC9157479 DOI: 10.1007/s40572-022-00353-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Several environmental contaminants have been implicated as contributors to COVID-19 susceptibility and severity. Immunomodulation and epigenetic regulation have been hypothesized as mediators of this relationship, but the precise underlying molecular mechanisms are not well-characterized. This review examines the evidence for epigenetic modification at the intersection of COVID-19 and environmental chemical exposures. RECENT FINDINGS Numerous environmental contaminants including air pollutants, toxic metal(loid)s, per- and polyfluorinated substances, and endocrine disrupting chemicals are hypothesized to increase susceptibility to the SARS-CoV-2 virus and the risk of severe COVID-19, but few studies currently exist. Drawing on evidence that many environmental chemicals alter the epigenetic regulation of key immunity genes and pathways, we discuss how exposures likely perturb host antiviral responses. Specific mechanisms vary by contaminant but include general immunomodulation as well as regulation of viral entry and recognition, inflammation, and immunologic memory pathways, among others. Associations between environmental contaminants and COVID-19 are likely mediated, in part, by epigenetic regulation of key immune pathways involved in the host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam E Enggasser
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Burgess JL, Fisher JM, Nematollahi A, Jung AM, Calkins MM, Graber JM, Grant CC, Beitel SC, Littau SR, Gulotta JJ, Wallentine DD, Hughes RJ, Popp C, Calafat AM, Botelho JC, Coleman AD, Schaefer-Solle N, Louzado-Feliciano P, Oduwole SO, Caban-Martinez AJ. Serum per- and polyfluoroalkyl substance concentrations in four municipal US fire departments. Am J Ind Med 2022; 66:411-423. [PMID: 35864570 PMCID: PMC9859935 DOI: 10.1002/ajim.23413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/05/2022] [Accepted: 07/08/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Firefighters have occupational and environmental exposures to per- and polyfluoroalkyl substances (PFAS). The goal of this study was to compare serum PFAS concentrations across multiple United States fire departments to National Health and Nutrition Examination Survey (NHANES) participants. METHODS Nine serum PFAS were compared in 290 firefighters from four municipal fire departments (coded A-D) and three NHANES participants matched to each firefighter on sex, ethnicity, age, and PFAS collection year. Only Departments A and C had sufficient women study participants (25 and six, respectively) to compare with NHANES. RESULTS In male firefighters compared with NHANES, geometric mean perfluorohexane sulfonate (PFHxS) was elevated in Departments A-C, sum of branched perfluoromethylheptane sulfonate isomers (Sm-PFOS) was elevated in all four departments, linear perfluorooctane sulfonate (n-PFOS) was elevated in Departments B and C, linear perfluorooctanoate (n-PFOA) was elevated in Departments B-D, and perfluorononanoate (PFNA) was elevated in Departments B-D, but lower in A. In male firefighters compared with NHANES, perfluoroundecanoate (PFUnDA) was more frequently detected in Departments B and D, and 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) was less frequently detected in Departments B-D. In female firefighters compared with NHANES, PFHxS and Sm-PFOS concentrations were elevated in Departments A and C. Other PFAS concentrations were elevated and/or reduced in only one department or not significantly different from NHANES in any department. CONCLUSIONS Serum PFHxS, Sm-PFOS, n-PFOS, n-PFOA, and PFNA concentrations were increased in at least two of four fire departments in comparison to NHANES.
Collapse
Affiliation(s)
- Jefferey L. Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Julia M. Fisher
- Statistics Consulting Laboratory, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Amy Nematollahi
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Alesia M. Jung
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Miriam M. Calkins
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Judith M. Graber
- Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Casey C. Grant
- D&S Research Associates & Engineers, LLC, Belmont, Massachusetts, USA
| | - Shawn C. Beitel
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Sally R. Littau
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | | | | | | | - Charles Popp
- Boston Fire Department, Boston, Massachusetts, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julianne C. Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alissa D. Coleman
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | | | | | - Simi O. Oduwole
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
20
|
Nilsson S, Smurthwaite K, Aylward LL, Kay M, Toms LM, King L, Marrington S, Hobson P, Barnes C, Rotander A, Kirk MD, Mueller JF, Braeunig J. Biomonitoring of per- and polyfluoroalkyl substances (PFAS) exposure in firefighters: Study design and lessons learned from stakeholder and participant engagement. Int J Hyg Environ Health 2022; 242:113966. [DOI: 10.1016/j.ijheh.2022.113966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023]
|
21
|
Goodrich J. Insights on exposure-induced disease susceptibility: an interview with Jaclyn Goodrich. Epigenomics 2022; 14:319-321. [PMID: 35259919 DOI: 10.2217/epi-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this interview, Dr Jaclyn Goodrich speaks with Storm Johnson, Commissioning Editor for Epigenomics, on her work to date on environmental epigenetics and the impact of toxic exposures on susceptible populations. Jaclyn Goodrich is a research assistant professor of environmental health sciences at the University of Michigan School of Public Health (Ann Arbor, MI, USA). She obtained a doctorate in toxicology and completed postdoctoral training in environmental epigenomics at the University of Michigan. The overarching goal of her current research program is to identify environmental factors that modify the epigenome and increase risk for disease throughout the life course. She primarily conducts epidemiological studies to investigate the impact of toxic exposures on susceptible populations including children and occupationally exposed workers. She has coauthored more than 70 publications and is an active member of the Society of Toxicology and the Environmental Mutagenesis and Genomics Society.
Collapse
Affiliation(s)
- Jaclyn Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|